1
|
Kim J, Yoshida T. Sense of agency at a temporally-delayed gaze-contingent display. PLoS One 2024; 19:e0309998. [PMID: 39241025 DOI: 10.1371/journal.pone.0309998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
The subjective feeling of being the author of one's actions and the subsequent consequences is referred to as a sense of agency. Such a feeling is crucial for usability in human-computer interactions, where eye movement has been adopted, yet this area has been scarcely investigated. We examined how the temporal action-feedback discrepancy affects the sense of agency concerning eye movement. Participants conducted a visual search for an array of nine Chinese characters within a temporally-delayed gaze-contingent display, blurring the peripheral view. The relative delay between each eye movement and the subsequent window movement varied from 0 to 4,000 ms. In the control condition, the window played a recorded gaze behavior. The mean authorship rating and the proportion of "self" responses in the categorical authorship report ("self," "delayed self," and "other") gradually decreased as the temporal discrepancy increased, with "other" being rarely reported, except in the control condition. These results generally mirror those of prior studies on hand actions, suggesting that sense of agency extends beyond the effector body parts to other modalities, and two different types of sense of agency that have different temporal characteristics are simultaneously operating. The mode of fixation duration shifted as the delay increased under 200-ms delays and was divided into two modes at 200-500 ms delays. The frequency of 0-1.5° saccades exhibited an increasing trend as the delay increased. These results demonstrate the influence of perceived action-effect discrepancy on action refinement and task strategy.
Collapse
Affiliation(s)
- Junhui Kim
- School of Engineering, Tokyo Institute of Technology, Meguro City, Tokyo, Japan
| | - Takako Yoshida
- School of Engineering, Tokyo Institute of Technology, Meguro City, Tokyo, Japan
| |
Collapse
|
2
|
Moran C, Johnson PA, Landau AN, Hogendoorn H. Decoding Remapped Spatial Information in the Peri-Saccadic Period. J Neurosci 2024; 44:e2134232024. [PMID: 38871460 PMCID: PMC11270511 DOI: 10.1523/jneurosci.2134-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
It has been suggested that, prior to a saccade, visual neurons predictively respond to stimuli that will fall in their receptive fields after completion of the saccade. This saccadic remapping process is thought to compensate for the shift of the visual world across the retina caused by eye movements. To map the timing of this predictive process in the brain, we recorded neural activity using electroencephalography during a saccade task. Human participants (male and female) made saccades between two fixation points while covertly attending to oriented gratings briefly presented at various locations on the screen. Data recorded during trials in which participants maintained fixation were used to train classifiers on stimuli in different positions. Subsequently, data collected during saccade trials were used to test for the presence of remapped stimulus information at the post-saccadic retinotopic location in the peri-saccadic period, providing unique insight into when remapped information becomes available. We found that the stimulus could be decoded at the remapped location ∼180 ms post-stimulus onset, but only when the stimulus was presented 100-200 ms before saccade onset. Within this range, we found that the timing of remapping was dictated by stimulus onset rather than saccade onset. We conclude that presenting the stimulus immediately before the saccade allows for optimal integration of the corollary discharge signal with the incoming peripheral visual information, resulting in a remapping of activation to the relevant post-saccadic retinotopic neurons.
Collapse
Affiliation(s)
- Caoimhe Moran
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
- Department of Psychology,Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
| | - Philippa A Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden 2333 AK, The Netherlands
| | - Ayelet N Landau
- Department of Psychology,Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
3
|
Kim J, Yoshida T. Sense of agency at a gaze-contingent display with jittery temporal delay. Front Psychol 2024; 15:1364076. [PMID: 38827897 PMCID: PMC11141391 DOI: 10.3389/fpsyg.2024.1364076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Inconsistent jittery temporal delays between action and subsequent feedback, prevalent in network-based human-computer interaction (HCI), have been insufficiently explored, particularly regarding their impact on the sense of agency (SoA). This study investigates the SoA in the context of eye-gaze HCI under jittery delay conditions. Methods Participants performed a visual search for Chinese characters using a biresolutional gaze-contingent display, which displayed a high-resolution image in the central vision and a low-resolution in the periphery. We manipulated the delay between eye movements and display updates using a truncated normal distribution (μ to μ + 2 σ) with μ ranging from 0 to 400 ms and σ fixed at 50 ms. Playback of recorded gaze data provided a non-controllable condition. Results The study revealed that both reported authorship and controllability scores, as well as the fixation count per second, decreased as μ increased, aligning with trends observed under constant delay conditions. The subjective authorship weakened significantly at a μ of 94 ms. Notably, the comparison between jittery and constant delays indicated the minimum value (μ) of the distribution as a critical parameter influencing both authorship perception and visual search time efficiency. Discussion This finding underscores the importance of the shortest delay in modulating SoA. Further examining the relative distribution for fixation duration and saccade amplitude suggests an adaptation in action planning and attention distribution in response to delay. By providing a systematic examination of the statistical attributes of jittery delays that most significantly affect SoA, this research offers valuable implications for the design of efficient, delay-tolerant eye-gaze HCI, expanding our understanding of SoA in technologically mediated interactions. Moreover, our findings highlight the significance of considering both constant and variable delay impacts in HCI usability design, marking a novel contribution to the field.
Collapse
Affiliation(s)
- Junhui Kim
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | | |
Collapse
|
4
|
Whyte CJ, Redinbaugh MJ, Shine JM, Saalmann YB. Thalamic contributions to the state and contents of consciousness. Neuron 2024; 112:1611-1625. [PMID: 38754373 PMCID: PMC11537458 DOI: 10.1016/j.neuron.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.
Collapse
Affiliation(s)
- Christopher J Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - James M Shine
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
5
|
Yao B, Rolfs M, Slate R, Roberts D, Fattal J, Achtyes ED, Tso IF, Diwadkar VA, Kashy D, Bao J, Thakkar KN. Abnormal Oculomotor Corollary Discharge Signaling as a Trans-diagnostic Mechanism of Psychosis. Schizophr Bull 2024; 50:631-641. [PMID: 38245499 PMCID: PMC11059795 DOI: 10.1093/schbul/sbad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
BACKGROUND AND HYPOTHESIS Corollary discharge (CD) signals are "copies" of motor signals sent to sensory areas to predict the corresponding input. They are a posited mechanism enabling one to distinguish actions generated by oneself vs external forces. Consequently, altered CD is a hypothesized mechanism for agency disturbances in psychosis. Previous studies have shown a decreased influence of CD signals on visual perception in individuals with schizophrenia-particularly in those with more severe positive symptoms. We therefore hypothesized that altered CD may be a trans-diagnostic mechanism of psychosis. STUDY DESIGN We examined oculomotor CD (using the blanking task) in 49 participants with schizophrenia or schizoaffective disorder (SZ), 36 bipolar participants with psychosis (BPP), and 40 healthy controls (HC). Participants made a saccade to a visual target. Upon saccade initiation, the target disappeared and reappeared at a horizontally displaced position. Participants indicated the direction of displacement. With intact CD, participants can make accurate perceptual judgements. Otherwise, participants may use saccade landing site as a proxy of pre-saccadic target to inform perception. Thus, multi-level modeling was used to examine the influence of target displacement and saccade landing site on displacement judgements. STUDY RESULTS SZ and BPP were equally less sensitive to target displacement than HC. Moreover, regardless of diagnosis, SZ and BPP with more severe positive symptoms were more likely to rely on saccade landing site. CONCLUSIONS These results suggest that altered CD may be a trans-diagnostic mechanism of psychosis.
Collapse
Affiliation(s)
- Beier Yao
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Martin Rolfs
- Department of Psychology, Humboldt University, Berlin, Germany
| | - Rachael Slate
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Dominic Roberts
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Jessica Fattal
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Eric D Achtyes
- Cherry Health, Grand Rapids, MI, USA
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Ivy F Tso
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience, Wayne State University, Detroit, MI, USA
| | - Deborah Kashy
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Jacqueline Bao
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Department of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
6
|
White PA. The perceptual timescape: Perceptual history on the sub-second scale. Cogn Psychol 2024; 149:101643. [PMID: 38452720 DOI: 10.1016/j.cogpsych.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
There is a high-capacity store of brief time span (∼1000 ms) which information enters from perceptual processing, often called iconic memory or sensory memory. It is proposed that a main function of this store is to hold recent perceptual information in a temporally segregated representation, named the perceptual timescape. The perceptual timescape is a continually active representation of change and continuity over time that endows the perceived present with a perceived history. This is accomplished primarily by two kinds of time marking information: time distance information, which marks all items of information in the perceptual timescape according to how far in the past they occurred, and ordinal temporal information, which organises items of information in terms of their temporal order. Added to that is information about connectivity of perceptual objects over time. These kinds of information connect individual items over a brief span of time so as to represent change, persistence, and continuity over time. It is argued that there is a one-way street of information flow from perceptual processing either to the perceived present or directly into the perceptual timescape, and thence to working memory. Consistent with that, the information structure of the perceptual timescape supports postdictive reinterpretations of recent perceptual information. Temporal integration on a time scale of hundreds of milliseconds takes place in perceptual processing and does not draw on information in the perceptual timescape, which is concerned with temporal segregation, not integration.
Collapse
Affiliation(s)
- Peter A White
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, Wales CF10 3YG, United Kingdom.
| |
Collapse
|
7
|
Huber-Huber C, Melcher D. Saccade execution increases the preview effect with faces: An EEG and eye-tracking coregistration study. Atten Percept Psychophys 2023:10.3758/s13414-023-02802-5. [PMID: 37917292 DOI: 10.3758/s13414-023-02802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Under naturalistic viewing conditions, humans conduct about three to four saccadic eye movements per second. These dynamics imply that in real life, humans rarely see something completely new; there is usually a preview of the upcoming foveal input from extrafoveal regions of the visual field. In line with results from the field of reading research, we have shown with EEG and eye-tracking coregistration that an extrafoveal preview also affects postsaccadic visual object processing and facilitates discrimination. Here, we ask whether this preview effect in the fixation-locked N170, and in manual responses to the postsaccadic target face (tilt discrimination), requires saccade execution. Participants performed a gaze-contingent experiment in which extrafoveal face images could change their orientation during a saccade directed to them. In a control block, participants maintained stable gaze throughout the experiment and the extrafoveal face reappeared foveally after a simulated saccade latency. Compared with this no-saccade condition, the neural and the behavioral preview effects were much larger in the saccade condition. We also found shorter first fixation durations after an invalid preview, which is in contrast to reading studies. We interpret the increased preview effect under saccade execution as the result of the additional sensorimotor processes that come with gaze behavior compared with visual perception under stable fixation. In addition, our findings call into question whether EEG studies with fixed gaze capture key properties and dynamics of active, natural vision.
Collapse
Affiliation(s)
- Christoph Huber-Huber
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068, Rovereto, Italy.
| | - David Melcher
- Center for Brain & Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Willett SM, Maenner SK, Mayo JP. The perceptual consequences and neurophysiology of eye blinks. Front Syst Neurosci 2023; 17:1242654. [PMID: 37654528 PMCID: PMC10466800 DOI: 10.3389/fnsys.2023.1242654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
A hand passing in front of a camera produces a large and obvious disruption of a video. Yet the closure of the eyelid during a blink, which lasts for hundreds of milliseconds and occurs thousands of times per day, typically goes unnoticed. What are the neural mechanisms that mediate our uninterrupted visual experience despite frequent occlusion of the eyes? Here, we review the existing literature on the neurophysiology, perceptual consequences, and behavioral dynamics of blinks. We begin by detailing the kinematics of the eyelid that define a blink. We next discuss the ways in which blinks alter visual function by occluding the pupil, decreasing visual sensitivity, and moving the eyes. Then, to anchor our understanding, we review the similarities between blinks and other actions that lead to reductions in visual sensitivity, such as saccadic eye movements. The similarity between these two actions has led to suggestions that they share a common neural substrate. We consider the extent of overlap in their neural circuits and go on to explain how recent findings regarding saccade suppression cast doubt on the strong version of the shared mechanism hypothesis. We also evaluate alternative explanations of how blink-related processes modulate neural activity to maintain visual stability: a reverberating corticothalamic loop to maintain information in the face of lid closure; and a suppression of visual transients related to lid closure. Next, we survey the many areas throughout the brain that contribute to the execution of, regulation of, or response to blinks. Regardless of the underlying mechanisms, blinks drastically attenuate our visual abilities, yet these perturbations fail to reach awareness. We conclude by outlining opportunities for future work to better understand how the brain maintains visual perception in the face of eye blinks. Future work will likely benefit from incorporating theories of perceptual stability, neurophysiology, and novel behavior paradigms to address issues central to our understanding of natural visual behavior and for the clinical rehabilitation of active vision.
Collapse
Affiliation(s)
- Shawn M. Willett
- Department of Ophthalmology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah K. Maenner
- Department of Ophthalmology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
| | - J. Patrick Mayo
- Department of Ophthalmology, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Pomè A, Tyralla S, Zimmermann E. Altered oculomotor flexibility is linked to high autistic traits. Sci Rep 2023; 13:13032. [PMID: 37563189 PMCID: PMC10415324 DOI: 10.1038/s41598-023-40044-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
Autism is a multifaced disorder comprising sensory abnormalities and a general inflexibility in the motor domain. The sensorimotor system is continuously challenged to answer whether motion-contingent errors result from own movements or whether they are due to external motion. Disturbances in this decision could lead to the perception of motion when there is none and to an inflexibility with regard to motor learning. Here, we test the hypothesis that altered processing of gaze-contingent sensations are responsible for both the motor inflexibility and the sensory overload in autism. We measured motor flexibility by testing how strong participants adapted in a classical saccade adaptation task. We asked healthy participants, scored for autistic traits, to make saccades to a target that was displaced either in inward or in outward direction during saccade execution. The amount of saccade adaptation, that requires to shift the internal target representation, varied with the autistic symptom severity. The higher participants scored for autistic traits, the less they adapted. In order to test for visual stability, we asked participants to localize the position of the saccade target after they completed their saccade. We found the often-reported saccade-induced mis-localization in low Autistic Quotient (AQ) participants. However, we also found mislocalization in high AQ participants despite the absence of saccade adaptation. Our data suggest that high autistic traits are associated with an oculomotor inflexibility that might produce altered processing of trans-saccadic vision which might increase the perceptual overstimulation that is experienced in autism spectrum disorders (ASD).
Collapse
Affiliation(s)
- Antonella Pomè
- Institute for Experimental Psychology, Heinrich Heine University Duesseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Sandra Tyralla
- Institute for Experimental Psychology, Heinrich Heine University Duesseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Eckart Zimmermann
- Institute for Experimental Psychology, Heinrich Heine University Duesseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
10
|
Masselink J, Cheviet A, Froment-Tilikete C, Pélisson D, Lappe M. A triple distinction of cerebellar function for oculomotor learning and fatigue compensation. PLoS Comput Biol 2023; 19:e1011322. [PMID: 37540726 PMCID: PMC10456158 DOI: 10.1371/journal.pcbi.1011322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/25/2023] [Accepted: 07/02/2023] [Indexed: 08/06/2023] Open
Abstract
The cerebellum implements error-based motor learning via synaptic gain adaptation of an inverse model, i.e. the mapping of a spatial movement goal onto a motor command. Recently, we modeled the motor and perceptual changes during learning of saccadic eye movements, showing that learning is actually a threefold process. Besides motor recalibration of (1) the inverse model, learning also comprises perceptual recalibration of (2) the visuospatial target map and (3) of a forward dynamics model that estimates the saccade size from corollary discharge. Yet, the site of perceptual recalibration remains unclear. Here we dissociate cerebellar contributions to the three stages of learning by modeling the learning data of eight cerebellar patients and eight healthy controls. Results showed that cerebellar pathology restrains short-term recalibration of the inverse model while the forward dynamics model is well informed about the reduced saccade change. Adaptation of the visuospatial target map trended in learning direction only in control subjects, yet without reaching significance. Moreover, some patients showed a tendency for uncompensated oculomotor fatigue caused by insufficient upregulation of saccade duration. According to our model, this could induce long-term perceptual compensation, consistent with the overestimation of target eccentricity found in the patients' baseline data. We conclude that the cerebellum mediates short-term adaptation of the inverse model, especially by control of saccade duration, while the forward dynamics model was not affected by cerebellar pathology.
Collapse
Affiliation(s)
- Jana Masselink
- Institute for Psychology & Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Bron cedex, France
- Department of Psychology, Durham University, South Road, Durham, United Kingdom
| | - Caroline Froment-Tilikete
- IMPACT Team, Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Bron cedex, France
- Hospices Civils de Lyon—Pierre-Wertheimer Hospital, Neuro-Ophtalmology Unit, Bron cedex, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Bron cedex, France
| | - Markus Lappe
- Institute for Psychology & Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Heins F, Masselink J, Scherer JN, Lappe M. Adaptive changes to saccade amplitude and target localization do not require pre-saccadic target visibility. Sci Rep 2023; 13:8315. [PMID: 37221275 DOI: 10.1038/s41598-023-35434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The accuracy of saccadic eye movements is maintained by saccadic adaptation, a learning mechanism that is proposed to rely on visual prediction error, i.e., a mismatch between the pre-saccadically predicted and post-saccadically experienced position of the saccade target. However, recent research indicates that saccadic adaptation might be driven by postdictive motor error, i.e., a retrospective estimation of the pre-saccadic target position based on the post-saccadic image. We investigated whether oculomotor behavior can be adapted based on post-saccadic target information alone. We measured eye movements and localization judgements as participants aimed saccades at an initially invisible target, which was always shown only after the saccade. Each such trial was followed by either a pre- or a post-saccadic localization trial. The target position was fixed for the first 100 trials of the experiment and, during the following 200 trials, successively shifted inward or outward. Saccade amplitude and the pre- and post-saccadic localization judgements adjusted to the changing target position. Our results suggest that post-saccadic information is sufficient to induce error-reducing adaptive changes in saccade amplitude and target localization, possibly reflecting continuous updating of the estimated pre-saccadic target location driven by postdictive motor error.
Collapse
Affiliation(s)
- Frauke Heins
- Institute for Psychology, University of Münster, 48149, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany.
| | - Jana Masselink
- Institute for Psychology, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | | | - Markus Lappe
- Institute for Psychology, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| |
Collapse
|
12
|
Martín-Cortecero J, Isaías-Camacho EU, Boztepe B, Ziegler K, Mease RA, Groh A. Monosynaptic trans-collicular pathways link mouse whisker circuits to integrate somatosensory and motor cortical signals. PLoS Biol 2023; 21:e3002126. [PMID: 37205722 DOI: 10.1371/journal.pbio.3002126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
The superior colliculus (SC), a conserved midbrain node with extensive long-range connectivity throughout the brain, is a key structure for innate behaviors. Descending cortical pathways are increasingly recognized as central control points for SC-mediated behaviors, but how cortico-collicular pathways coordinate SC activity at the cellular level is poorly understood. Moreover, despite the known role of the SC as a multisensory integrator, the involvement of the SC in the somatosensory system is largely unexplored in comparison to its involvement in the visual and auditory systems. Here, we mapped the connectivity of the whisker-sensitive region of the SC in mice with trans-synaptic and intersectional tracing tools and in vivo electrophysiology. The results reveal a novel trans-collicular connectivity motif in which neurons in motor- and somatosensory cortices impinge onto the brainstem-SC-brainstem sensory-motor arc and onto SC-midbrain output pathways via only one synapse in the SC. Intersectional approaches and optogenetically assisted connectivity quantifications in vivo reveal convergence of motor and somatosensory cortical input on individual SC neurons, providing a new framework for sensory-motor integration in the SC. More than a third of the cortical recipient neurons in the whisker SC are GABAergic neurons, which include a hitherto unknown population of GABAergic projection neurons targeting thalamic nuclei and the zona incerta. These results pinpoint a whisker region in the SC of mice as a node for the integration of somatosensory and motor cortical signals via parallel excitatory and inhibitory trans-collicular pathways, which link cortical and subcortical whisker circuits for somato-motor integration.
Collapse
Affiliation(s)
- Jesús Martín-Cortecero
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | | | - Berin Boztepe
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Katharina Ziegler
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Rebecca Audrey Mease
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| | - Alexander Groh
- Medical Biophysics, Institute for Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
13
|
Haigh SM, Berryhill ME, Kilgore-Gomez A, Dodd M. Working memory and sensory memory in subclinical high schizotypy: An avenue for understanding schizophrenia? Eur J Neurosci 2023; 57:1577-1596. [PMID: 36895099 PMCID: PMC10178355 DOI: 10.1111/ejn.15961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
The search for robust, reliable biomarkers of schizophrenia remains a high priority in psychiatry. Biomarkers are valuable because they can reveal the underlying mechanisms of symptoms and monitor treatment progress and may predict future risk of developing schizophrenia. Despite the existence of various promising biomarkers that relate to symptoms across the schizophrenia spectrum, and despite published recommendations encouraging multivariate metrics, they are rarely investigated simultaneously within the same individuals. In those with schizophrenia, the magnitude of purported biomarkers is complicated by comorbid diagnoses, medications and other treatments. Here, we argue three points. First, we reiterate the importance of assessing multiple biomarkers simultaneously. Second, we argue that investigating biomarkers in those with schizophrenia-related traits (schizotypy) in the general population can accelerate progress in understanding the mechanisms of schizophrenia. We focus on biomarkers of sensory and working memory in schizophrenia and their smaller effects in individuals with nonclinical schizotypy. Third, we note irregularities across research domains leading to the current situation in which there is a preponderance of data on auditory sensory memory and visual working memory, but markedly less in visual (iconic) memory and auditory working memory, particularly when focusing on schizotypy where data are either scarce or inconsistent. Together, this review highlights opportunities for researchers without access to clinical populations to address gaps in knowledge. We conclude by highlighting the theory that early sensory memory deficits contribute negatively to working memory and vice versa. This presents a mechanistic perspective where biomarkers may interact with one another and impact schizophrenia-related symptoms.
Collapse
Affiliation(s)
- Sarah M. Haigh
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Marian E. Berryhill
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Alexandrea Kilgore-Gomez
- Department of Psychology, Center for Integrative Neuroscience, Programs in Cognitive and Brain Sciences, and Neuroscience, University of Nevada, Reno, Nevada, USA
| | - Michael Dodd
- Department of Psychology, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
14
|
Fabius JH, Fracasso A, Deodato M, Melcher D, Van der Stigchel S. Bilateral increase in MEG planar gradients prior to saccade onset. Sci Rep 2023; 13:5830. [PMID: 37037892 PMCID: PMC10086038 DOI: 10.1038/s41598-023-32980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Every time we move our eyes, the retinal locations of objects change. To distinguish the changes caused by eye movements from actual external motion of the objects, the visual system is thought to anticipate the consequences of eye movements (saccades). Single neuron recordings have indeed demonstrated changes in receptive fields before saccade onset. Although some EEG studies with human participants have also demonstrated a pre-saccadic increased potential over the hemisphere that will process a stimulus after a saccade, results have been mixed. Here, we used magnetoencephalography to investigate the timing and lateralization of visually evoked planar gradients before saccade onset. We modelled the gradients from trials with both a saccade and a stimulus as the linear combination of the gradients from two conditions with either only a saccade or only a stimulus. We reasoned that any residual gradients in the condition with both a saccade and a stimulus must be uniquely linked to visually-evoked neural activity before a saccade. We observed a widespread increase in residual planar gradients. Interestingly, this increase was bilateral, showing activity both contralateral and ipsilateral to the stimulus, i.e. over the hemisphere that would process the stimulus after saccade offset. This pattern of results is consistent with predictive pre-saccadic changes involving both the current and the future receptive fields involved in processing an attended object, well before the start of the eye movement. The active, sensorimotor coupling of vision and the oculomotor system may underlie the seamless subjective experience of stable and continuous perception.
Collapse
Affiliation(s)
- Jasper H Fabius
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Van der Stigchel
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Wu Y, Wang T, Zhou T, Li Y, Yang Y, Dai W, Zhang Y, Han C, Xing D. V1-bypassing suppression leads to direction-specific microsaccade modulation in visual coding and perception. Nat Commun 2022; 13:6366. [PMID: 36289224 PMCID: PMC9606005 DOI: 10.1038/s41467-022-34057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Microsaccades play a critical role in refreshing visual information and have been shown to have direction-specific influences on human perception. However, the neural mechanisms underlying such direction-specific effects remains unknown. Here, we report the emergence of direction-specific microsaccade modulation in the middle layer of V2 but not in V1: responses of V2 neurons after microsaccades moved toward their receptive fields were stronger than those when microsaccades moved away. The decreased responses from V1 to V2, which are correlated with the amplitude of microsaccades away from receptive fields, suggest topographically location-specific suppression from an oculomotor source. Consistent with directional effects in V2, microsaccades function as a guide for monkeys' behavior in a peripheral detection task; both can be explained by a dynamic neural network. Our findings suggest a V1-bypassing suppressive circuit for direction-specific microsaccade modulation in V2 and its functional influence on visual sensitivity, which highlights the optimal sampling nature of microsaccades.
Collapse
Affiliation(s)
- Yujie Wu
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China ,grid.20513.350000 0004 1789 9964College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Tingting Zhou
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yang Li
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yi Yang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Weifeng Dai
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Yange Zhang
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Chuanliang Han
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
16
|
Heins F, Lappe M. Mislocalization after inhibition of saccadic adaptation. J Vis 2022; 22:3. [PMID: 35834378 PMCID: PMC9290319 DOI: 10.1167/jov.22.8.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Saccadic eye movements are often imprecise and result in an error between expected and actual retinal target location after the saccade. Repeated experience of this error produces changes in saccade amplitude to reduce the error and concomitant changes in apparent visual location. We investigated the relationship between these two plastic processes in a series of experiments. Following a recent paradigm of inhibition of saccadic adaptation, in which participants are instructed to look at the initial target position and to continue to look at that position even if the target were to move again, our participants nevertheless perceived a visual probe presented near the saccade target to be shifted in direction of the target error. The location percept of the target gradually shifted and diverged over time from the executed saccade. Our findings indicate that changes in perceived location can be the same even when changes in saccade amplitude differ according to instruction and can develop even when the amplitude of the saccades executed during the adaptation procedure does not change. There are two possible explanations for this divergence between the adaptation states of saccade amplitude and perceived location. Either the intrasaccadic target step might trigger updating of the association between pre- and post-saccadic target positions, causing the localization shift, or the saccade motor command adjusts together with the perceived location at a common adaptation site, downstream from which voluntary control is exerted upon the executed eye movement only.
Collapse
Affiliation(s)
- Frauke Heins
- Institute for Psychology and Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany.,
| | - Markus Lappe
- Institute for Psychology and Otto-Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany.,
| |
Collapse
|
17
|
Katz CN, Schjetnan AGP, Patel K, Barkley V, Hoffman KL, Kalia SK, Duncan KD, Valiante TA. A corollary discharge mediates saccade-related inhibition of single units in mnemonic structures of the human brain. Curr Biol 2022; 32:3082-3094.e4. [PMID: 35779529 DOI: 10.1016/j.cub.2022.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Despite the critical link between visual exploration and memory, little is known about how neuronal activity in the human mesial temporal lobe (MTL) is modulated by saccades. Here, we characterize saccade-associated neuronal modulations, unit-by-unit, and contrast them to image onset and to occipital lobe neurons. We reveal evidence for a corollary discharge (CD)-like modulatory signal that accompanies saccades, inhibiting/exciting a unique population of broad-/narrow-spiking units, respectively, before and during saccades and with directional selectivity. These findings comport well with the timing, directional nature, and inhibitory circuit implementation of a CD. Additionally, by linking neuronal activity to event-related potentials (ERPs), which are directionally modulated following saccades, we recontextualize the ERP associated with saccades as a proxy for both the strength of inhibition and saccade direction, providing a mechanistic underpinning for the more commonly recorded saccade-related ERP in the human brain.
Collapse
Affiliation(s)
- Chaim N Katz
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Andrea G P Schjetnan
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Kramay Patel
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Victoria Barkley
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada
| | - Kari L Hoffman
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Suneil K Kalia
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; The KITE Research Institute, University Health Network, Toronto, ON M5G 2A2, Canada
| | - Katherine D Duncan
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, ON M5T 1M8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada; CRANIA, University Health Network and University of Toronto, Toronto, ON M5G 2A2, Canada; The KITE Research Institute, University Health Network, Toronto, ON M5G 2A2, Canada; Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada.
| |
Collapse
|
18
|
Microsaccades, Drifts, Hopf Bundle and Neurogeometry. J Imaging 2022; 8:jimaging8030076. [PMID: 35324631 PMCID: PMC8953095 DOI: 10.3390/jimaging8030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The first part of the paper contains a short review of the image processing in early vision is static, when the eyes and the stimulus are stable, and in dynamics, when the eyes participate in fixation eye movements. In the second part, we give an interpretation of Donders’ and Listing’s law in terms of the Hopf fibration of the 3-sphere over the 2-sphere. In particular, it is shown that the configuration space of the eye ball (when the head is fixed) is the 2-dimensional hemisphere SL+, called Listing hemisphere, and saccades are described as geodesic segments of SL+ with respect to the standard round metric. We study fixation eye movements (drift and microsaccades) in terms of this model and discuss the role of fixation eye movements in vision. A model of fixation eye movements is proposed that gives an explanation of presaccadic shift of receptive fields.
Collapse
|
19
|
Benucci A. Motor-related signals support localization invariance for stable visual perception. PLoS Comput Biol 2022; 18:e1009928. [PMID: 35286305 PMCID: PMC8947590 DOI: 10.1371/journal.pcbi.1009928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/24/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Our ability to perceive a stable visual world in the presence of continuous movements of the body, head, and eyes has puzzled researchers in the neuroscience field for a long time. We reformulated this problem in the context of hierarchical convolutional neural networks (CNNs)-whose architectures have been inspired by the hierarchical signal processing of the mammalian visual system-and examined perceptual stability as an optimization process that identifies image-defining features for accurate image classification in the presence of movements. Movement signals, multiplexed with visual inputs along overlapping convolutional layers, aided classification invariance of shifted images by making the classification faster to learn and more robust relative to input noise. Classification invariance was reflected in activity manifolds associated with image categories emerging in late CNN layers and with network units acquiring movement-associated activity modulations as observed experimentally during saccadic eye movements. Our findings provide a computational framework that unifies a multitude of biological observations on perceptual stability under optimality principles for image classification in artificial neural networks.
Collapse
Affiliation(s)
- Andrea Benucci
- RIKEN Center for Brain Science, Wako-shi, Japan
- University of Tokyo, Graduate School of Information Science and Technology, Department of Mathematical Informatics, Tokyo, Japan
| |
Collapse
|
20
|
Akbarian A, Clark K, Noudoost B, Nategh N. A sensory memory to preserve visual representations across eye movements. Nat Commun 2021; 12:6449. [PMID: 34750376 PMCID: PMC8575989 DOI: 10.1038/s41467-021-26756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Saccadic eye movements (saccades) disrupt the continuous flow of visual information, yet our perception of the visual world remains uninterrupted. Here we assess the representation of the visual scene across saccades from single-trial spike trains of extrastriate visual areas, using a combined electrophysiology and statistical modeling approach. Using a model-based decoder we generate a high temporal resolution readout of visual information, and identify the specific changes in neurons' spatiotemporal sensitivity that underly an integrated perisaccadic representation of visual space. Our results show that by maintaining a memory of the visual scene, extrastriate neurons produce an uninterrupted representation of the visual world. Extrastriate neurons exhibit a late response enhancement close to the time of saccade onset, which preserves the latest pre-saccadic information until the post-saccadic flow of retinal information resumes. These results show how our brain exploits available information to maintain a representation of the scene while visual inputs are disrupted.
Collapse
Affiliation(s)
- Amir Akbarian
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Kelsey Clark
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Neda Nategh
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA. .,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
Fenk LM, Kim AJ, Maimon G. Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Curr Biol 2021; 31:4608-4619.e3. [PMID: 34644548 DOI: 10.1016/j.cub.2021.09.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022]
Abstract
From mammals to insects, locomotion has been shown to strongly modulate visual-system physiology. Does the manner in which a locomotor act is initiated change the modulation observed? We performed patch-clamp recordings from motion-sensitive visual neurons in tethered, flying Drosophila. We observed motor-related signals in flies performing flight turns in rapid response to looming discs and also during spontaneous turns, but motor-related signals were weak or non-existent in the context of turns made in response to brief pulses of unidirectional visual motion (i.e., optomotor responses). Thus, the act of a locomotor turn is variably associated with modulation of visual processing. These results can be understood via the following principle: suppress visual responses during course-changing, but not course-stabilizing, navigational turns. This principle is likely to apply broadly-even to mammals-whenever visual cells whose activity helps to stabilize a locomotor trajectory or the visual gaze angle are targeted for motor modulation.
Collapse
Affiliation(s)
- Lisa M Fenk
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Active Sensing, Max Plank Institute of Neurobiology, Martinsried, Germany.
| | - Anmo J Kim
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA; Department of Biomedical Engineering, Hanyang University, Seoul, South Korea; Department of Electronic Engineering, Hanyang University, Seoul, South Korea.
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
22
|
Goettker A, Gegenfurtner KR. A change in perspective: The interaction of saccadic and pursuit eye movements in oculomotor control and perception. Vision Res 2021; 188:283-296. [PMID: 34489101 DOI: 10.1016/j.visres.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
Due to the close relationship between oculomotor behavior and visual processing, eye movements have been studied in many different areas of research over the last few decades. While these studies have brought interesting insights, specialization within each research area comes at the potential cost of a narrow and isolated view of the oculomotor system. In this review, we want to expand this perspective by looking at the interactions between the two most important types of voluntary eye movements: saccades and pursuit. Recent evidence indicates multiple interactions and shared signals at the behavioral and neurophysiological level for oculomotor control and for visual perception during pursuit and saccades. Oculomotor control seems to be based on shared position- and velocity-related information, which leads to multiple behavioral interactions and synergies. The distinction between position- and velocity-related information seems to be also present at the neurophysiological level. In addition, visual perception seems to be based on shared efferent signals about upcoming eye positions and velocities, which are to some degree independent of the actual oculomotor response. This review suggests an interactive perspective on the oculomotor system, based mainly on different types of sensory input, and less so on separate subsystems for saccadic or pursuit eye movements.
Collapse
Affiliation(s)
- Alexander Goettker
- Abteilung Allgemeine Psychologie and Center for Mind, Brain & Behavior, Justus-Liebig University Giessen, Germany.
| | - Karl R Gegenfurtner
- Abteilung Allgemeine Psychologie and Center for Mind, Brain & Behavior, Justus-Liebig University Giessen, Germany
| |
Collapse
|
23
|
Spontaneous modulations of high-frequency cortical activity. Clin Neurophysiol 2021; 132:2391-2403. [PMID: 34454266 DOI: 10.1016/j.clinph.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We clarified the clinical and mechanistic significance of physiological modulations of high-frequency broadband cortical activity associated with spontaneous saccadic eye movements during a resting state. METHODS We studied 30 patients who underwent epilepsy surgery following extraoperative electrocorticography and electrooculography recordings. We determined whether high-gamma activity at 70-110 Hz preceding saccade onset would predict upcoming ocular behaviors. We assessed how accurately the model incorporating saccade-related high-gamma modulations would localize the primary visual cortex defined by electrical stimulation. RESULTS The dynamic atlas demonstrated transient high-gamma suppression in the striatal cortex before saccade onset and high-gamma augmentation subsequently involving the widespread posterior brain regions. More intense striatal high-gamma suppression predicted the upcoming saccade directed to the ipsilateral side and lasting longer in duration. The bagged-tree-ensemble model demonstrated that intense saccade-related high-gamma modulations localized the visual cortex with an accuracy of 95%. CONCLUSIONS We successfully animated the neural dynamics supporting saccadic suppression, a principal mechanism minimizing the perception of blurred vision during rapid eye movements. The primary visual cortex per se may prepare actively in advance for massive image motion expected during upcoming prolonged saccades. SIGNIFICANCE Measuring saccade-related electrocorticographic signals may help localize the visual cortex and avoid misperceiving physiological high-frequency activity as epileptogenic.
Collapse
|
24
|
Yao B, Rolfs M, McLaughlin C, Isenstein EL, Guillory SB, Grosman H, Kashy DA, Foss-Feig JH, Thakkar KN. Oculomotor corollary discharge signaling is related to repetitive behavior in children with autism spectrum disorder. J Vis 2021; 21:9. [PMID: 34351395 PMCID: PMC8354038 DOI: 10.1167/jov.21.8.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
Corollary discharge (CD) signals are "copies" of motor signals sent to sensory regions that allow animals to adjust sensory consequences of self-generated actions. Autism spectrum disorder (ASD) is characterized by sensory and motor deficits, which may be underpinned by altered CD signaling. We evaluated oculomotor CD using the blanking task, which measures the influence of saccades on visual perception, in 30 children with ASD and 35 typically developing (TD) children. Participants were instructed to make a saccade to a visual target. Upon saccade initiation, the presaccadic target disappeared and reappeared to the left or right of the original position. Participants indicated the direction of the jump. With intact CD, participants can make accurate perceptual judgements. Otherwise, participants may use saccade landing site as a proxy of the presaccadic target and use it to inform perception. We used multilevel modeling to examine the influence of saccade landing site on trans-saccadic perceptual judgements. We found that, compared with TD participants, children with ASD were more sensitive to target displacement and less reliant on saccade landing site when spatial uncertainty of the post-saccadic target was high. This pattern was driven by ASD participants with less severe restricted and repetitive behaviors. These results suggest a relationship between altered CD signaling and core ASD symptoms.
Collapse
Affiliation(s)
- Beier Yao
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Germany
| | - Christopher McLaughlin
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Emily L Isenstein
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Sylvia B Guillory
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Hannah Grosman
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Deborah A Kashy
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Jennifer H Foss-Feig
- Seaver Autism Center, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
25
|
Huber-Huber C, Buonocore A, Melcher D. The extrafoveal preview paradigm as a measure of predictive, active sampling in visual perception. J Vis 2021; 21:12. [PMID: 34283203 PMCID: PMC8300052 DOI: 10.1167/jov.21.7.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
A key feature of visual processing in humans is the use of saccadic eye movements to look around the environment. Saccades are typically used to bring relevant information, which is glimpsed with extrafoveal vision, into the high-resolution fovea for further processing. With the exception of some unusual circumstances, such as the first fixation when walking into a room, our saccades are mainly guided based on this extrafoveal preview. In contrast, the majority of experimental studies in vision science have investigated "passive" behavioral and neural responses to suddenly appearing and often temporally or spatially unpredictable stimuli. As reviewed here, a growing number of studies have investigated visual processing of objects under more natural viewing conditions in which observers move their eyes to a stationary stimulus, visible previously in extrafoveal vision, during each trial. These studies demonstrate that the extrafoveal preview has a profound influence on visual processing of objects, both for behavior and neural activity. Starting from the preview effect in reading research we follow subsequent developments in vision research more generally and finally argue that taking such evidence seriously leads to a reconceptualization of the nature of human visual perception that incorporates the strong influence of prediction and action on sensory processing. We review theoretical perspectives on visual perception under naturalistic viewing conditions, including theories of active vision, active sensing, and sampling. Although the extrafoveal preview paradigm has already provided useful information about the timing of, and potential mechanisms for, the close interaction of the oculomotor and visual systems while reading and in natural scenes, the findings thus far also raise many new questions for future research.
Collapse
Affiliation(s)
- Christoph Huber-Huber
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, The Netherlands
- CIMeC, University of Trento, Italy
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, BW, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, BW, Germany
| | - David Melcher
- CIMeC, University of Trento, Italy
- Division of Science, New York University Abu Dhabi, UAE
| |
Collapse
|
26
|
Bansal S, Joiner WM. Transsaccadic visual perception of foveal compared to peripheral environmental changes. J Vis 2021; 21:12. [PMID: 34160578 PMCID: PMC8237106 DOI: 10.1167/jov.21.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The maintenance of stable visual perception across eye movements is hypothesized to be aided by extraretinal information (e.g., corollary discharge [CD]). Previous studies have focused on the benefits of this information for perception at the fovea. However, there is little information on the extent that CD benefits peripheral visual perception. Here we systematically examined the extent that CD supports the ability to perceive transsaccadic changes at the fovea compared to peripheral changes. Human subjects made saccades to targets positioned at different amplitudes (4° or 8°) and directions (rightward or upward). On each trial there was a reference point located either at (fovea) or 4° away (periphery) from the target. During the saccade the target and reference disappeared and, after a blank period, the reference reappeared at a shifted location. Subjects reported the perceived shift direction, and we determined the perceptual threshold for detection and estimate of the reference location. We also simulated the detection and location if subjects solely relied on the visual error of the shifted reference experienced after the saccade. The comparison of the reference location under these two conditions showed that overall the perceptual estimate was approximately 53% more accurate and 30% less variable than estimates based solely on visual information at the fovea. These values for peripheral shifts were consistently lower than that at the fovea: 34% more accurate and 9% less variable. Overall, the results suggest that CD information does support stable visual perception in the periphery, but is consistently less beneficial compared to the fovea.
Collapse
Affiliation(s)
- Sonia Bansal
- Department of Neuroscience, George Mason University, Fairfax, VA, USA.,Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,
| | - Wilsaan M Joiner
- Department of Bioengineering, George Mason University, Fairfax, VA, USA.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Neurology, University of California Davis, Davis, CA, USA.,
| |
Collapse
|
27
|
Braun DI, Schütz AC, Gegenfurtner KR. Age effects on saccadic suppression of luminance and color. J Vis 2021; 21:11. [PMID: 34144606 PMCID: PMC8237129 DOI: 10.1167/jov.21.6.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/14/2021] [Indexed: 11/24/2022] Open
Abstract
Saccadic eye movements modulate visual perception: they initiate and terminate high acuity vision at a certain location in space, but before and during their execution visual contrast sensitivity is strongly attenuated for 100 to 200 ms. Transient perisaccadic perceptual distortions are assumed to be an important mechanism to maintain visual stability. Little is known about age effects on saccadic suppression, even though for healthy adults other major age-related changes are well documented, like a decrease of visual contrast sensitivity for intermediate and high spatial frequencies or an increase of saccade latencies. Here, we tested saccadic suppression of luminance and isoluminant chromatic flashes in 100 participants from eight to 78 years. To estimate the effect of saccadic suppression on contrast sensitivity, we used a two-alternative forced choice (2AFC) design and an adaptive staircase procedure to modulate the luminance or chromatic contrast of a flashed detection target during fixation and 15 ms after saccade onset. The target was a single horizontal luminance or chromatic line flashed 2° above or below the fixation or saccade target. Compared to fixation, average perisaccadic contrast sensitivity decreased significantly by 66% for luminance and by 36% for color. A significant correlation was found for the strength of saccadic suppression of luminance and color. However, a small age effect was found only for the strength of saccadic suppression of luminance, which increased from 64% to 70% from young to old age. We conclude that saccadic suppression for luminance and color is present in most participants independent of their age and that mechanisms of suppression stay relatively stable during healthy aging.
Collapse
Affiliation(s)
- Doris I Braun
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Center for Mind, Brain & Behavior, Marburg, Germany
- https://www.allpsych.uni-giessen.de/doris
| | - Alexander C Schütz
- Allgemeine und Biologische Psychologie, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain & Behavior, Marburg, Germany
- https://www.uni-marburg.de/en/fb04/team-schuetz/team/alexander-schutz
| | - Karl R Gegenfurtner
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Giessen, Germany
- Center for Mind, Brain & Behavior, Marburg, Germany
- https://www.allpsych.uni-giessen.de/karl
| |
Collapse
|
28
|
Abstract
Remapping is a property of some cortical and subcortical neurons that update their responses around the time of an eye movement to account for the shift of stimuli on the retina due to the saccade. Physiologically, remapping is traditionally tested by briefly presenting a single stimulus around the time of the saccade and looking at the onset of the response and the locations in space to which the neuron is responsive. Here we suggest that a better way to understand the functional role of remapping is to look at the time at which the neural signal emerges when saccades are made across a stable scene. Based on data obtained using this approach, we suggest that remapping in the lateral intraparietal area is sufficient to play a role in maintaining visual stability across saccades, whereas in the frontal eye field, remapped activity carries information that affects future saccadic choices and, in a separate subset of neurons, is used to maintain a map of locations in the scene that have been previously fixated.
Collapse
Affiliation(s)
- James W Bisley
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Psychology and the Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Koorosh Mirpour
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yelda Alkan
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
29
|
Jékely G, Godfrey-Smith P, Keijzer F. Reafference and the origin of the self in early nervous system evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190764. [PMID: 33550954 PMCID: PMC7934971 DOI: 10.1098/rstb.2019.0764] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Discussions of the function of early nervous systems usually focus on a causal flow from sensors to effectors, by which an animal coordinates its actions with exogenous changes in its environment. We propose, instead, that much early sensing was reafferent; it was responsive to the consequences of the animal's own actions. We distinguish two general categories of reafference-translocational and deformational-and use these to survey the distribution of several often-neglected forms of sensing, including gravity sensing, flow sensing and proprioception. We discuss sensing of these kinds in sponges, ctenophores, placozoans, cnidarians and bilaterians. Reafference is ubiquitous, as ongoing action, especially whole-body motility, will almost inevitably influence the senses. Corollary discharge-a pathway or circuit by which an animal tracks its own actions and their reafferent consequences-is not a necessary feature of reafferent sensing but a later-evolving mechanism. We also argue for the importance of reafferent sensing to the evolution of the body-self, a form of organization that enables an animal to sense and act as a single unit. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Peter Godfrey-Smith
- School of History and Philosophy of Science, University of Sydney, New South Wales 2006, Australia
| | - Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
30
|
Cheviet A, Pisella L, Pélisson D. The posterior parietal cortex processes visuo-spatial and extra-retinal information for saccadic remapping: A case study. Cortex 2021; 139:134-151. [PMID: 33862400 DOI: 10.1016/j.cortex.2021.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/10/2020] [Accepted: 02/28/2021] [Indexed: 11/26/2022]
Abstract
Optimally collecting information and controlling behaviour require that we constantly scan our visual environment through eye movements. How the dynamic interaction between short-lived retinal images and extra-retinal signals of eye motion results in our subjective experience of visual stability remains a major issue in Cognitive Neuroscience. The present study aimed to assess and determine the nature of the contribution of the posterior parietal cortex (PPC) to the saccadic remapping mechanisms which contribute to such perceptual visual constancy. Perceptual responses in transsaccadic visual localization tasks were measured in a patient presenting with a PPC lesion and manifesting optic ataxia in the left hemifield with no neglect. Two perceptual localization tasks, each with versus without an intervening saccade, were used: the saccadic suppression of displacement (SSD) task (Ostendorf, Liebermann, & Ploner, 2010) and the peri-saccadic flash localization (LOC) task (Zimmerman & Lappe, 2010). Compared to a group of age-matched healthy subjects, the patient showed a specific pattern of perceptual deficits in the ataxic (left) hemifield. First, a significant impairment occurred in the stationary eye conditions, attesting for an alteration of visuo-spatial encoding. Second, in the saccade conditions, an additional perceptual deficit (an error of ~5° along the saccade direction) was observed in both tasks and mainly in conditions where extra-retinal signals are thought to be critically involved, revealing a constant underestimation by extra-retinal signals of the saccade size, despite preserved saccade accuracy. These findings highlight a crucial role of the PPC in saccadic remapping processes underlying perceptual visual constancy and provide empirical evidence for models such as Ziesche and Hamker's (2014).
Collapse
Affiliation(s)
- Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.
| | - Laure Pisella
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.
| |
Collapse
|
31
|
Masselink J, Lappe M. Visuomotor learning from postdictive motor error. eLife 2021; 10:64278. [PMID: 33687328 PMCID: PMC8057815 DOI: 10.7554/elife.64278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sensorimotor learning adapts motor output to maintain movement accuracy. For saccadic eye movements, learning also alters space perception, suggesting a dissociation between the performed saccade and its internal representation derived from corollary discharge (CD). This is critical since learning is commonly believed to be driven by CD-based visual prediction error. We estimate the internal saccade representation through pre- and trans-saccadic target localization, showing that it decouples from the actual saccade during learning. We present a model that explains motor and perceptual changes by collective plasticity of spatial target percept, motor command, and a forward dynamics model that transforms CD from motor into visuospatial coordinates. We show that learning does not follow visual prediction error but instead a postdictive update of space after saccade landing. We conclude that trans-saccadic space perception guides motor learning via CD-based postdiction of motor error under the assumption of a stable world.
Collapse
Affiliation(s)
- Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|
32
|
The behavioural preview effect with faces is susceptible to statistical regularities: Evidence for predictive processing across the saccade. Sci Rep 2021; 11:942. [PMID: 33441804 PMCID: PMC7806959 DOI: 10.1038/s41598-020-79957-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
The world around us appears stable and continuous despite saccadic eye movements. This apparent visual stability is achieved by trans-saccadic perception leading at the behavioural level to preview effects: performance in processing a foveal stimulus is better if the stimulus remained unchanged (valid) compared to when it changed (invalid) during the saccade that brought it into focus. Trans-saccadic perception is known to predictively adapt to the statistics of the environment. Here, we asked whether the behavioural preview effect shows the same characteristics, employing a between-participants training design. Participants made saccades to faces which could change their orientation (upright/inverted) during the saccade. In addition, the post-saccadic face was slightly tilted and participants reported this tilt upon fixation. In a training phase, one group of participants conducted only invalid trials whereas another group conducted only valid trials. In a subsequent test phase with 50% valid and 50% invalid trials, we measured the preview effect. Invalid training reduced the preview effect. With a mixed-model analysis, we could show how this training effect gradually declines in the course of the test phase. These results show that the behavioural preview effect adapts to the statistics of the environment suggesting that it results from predictive processes.
Collapse
|
33
|
Leptourgos P, Corlett PR. Embodied Predictions, Agency, and Psychosis. Front Big Data 2020; 3:27. [PMID: 33693400 PMCID: PMC7931869 DOI: 10.3389/fdata.2020.00027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
Psychotic symptoms, i.e., hallucinations and delusions, involve gross departures from conscious apprehension of consensual reality; respectively, perceiving and believing things that, according to same culture peers, do not obtain. In schizophrenia, those experiences are often related to abnormal sense of control over one's own actions, often expressed as a distorted sense of agency (i.e., passivity symptoms). Cognitive and computational neuroscience have furnished an account of these experiences and beliefs in terms of the brain's generative model of the world, which underwrites inferences to the best explanation of current and future states, in order to behave adaptively. Inference then involves a reliability-based trade off of predictions and prediction errors, and psychotic symptoms may arise as departures from this inference process, either an over- or under-weighting of priors relative to prediction errors. Surprisingly, there is empirical evidence in favor of both positions. Relatedly, there is evidence for both an enhanced and a diminished sense of agency in schizophrenia. How can this be? We argue that there is more than one generative model in the brain, and that ego- and allo-centric models operate in tandem. In brief, ego-centric models implement corollary discharge signals that cancel out the effects of self-generated actions while allo-centric models compare several hypothesis regarding the causes of sensory inputs (including the self among the potential causes). The two parallel hierarchies give rise to different levels of agency, with ego-centric models subserving "feelings of agency" and allo-centric predictions giving rise to "judgements of agency." Those two components are weighted according to their reliability and combined, generating a higher-level "sense of agency." We suggest that in schizophrenia a failure of corollary discharges to suppress self-generated inputs results in the absence of a "feeling of agency" and in a compensatory enhancement of allo-centric priors, which might underlie hallucinations, delusions of control but also, under certain circumstances, the enhancement of "judgments of agency." We discuss the consequences of such a model, and potential courses of action that could lead to its falsification.
Collapse
Affiliation(s)
| | - Philip R. Corlett
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Haven, CT, United States
| |
Collapse
|
34
|
Cavanaugh J, McAlonan K, Wurtz RH. Organization of Corollary Discharge Neurons in Monkey Medial Dorsal Thalamus. J Neurosci 2020; 40:6367-6378. [PMID: 32680937 PMCID: PMC7424873 DOI: 10.1523/jneurosci.2344-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022] Open
Abstract
A corollary discharge (CD) is a copy of a neuronal command for movement sent to other brain regions to inform them of the impending movement. In monkeys, a circuit from superior colliculus (SC) through medial-dorsal nucleus of the thalamus (MD) to frontal eye field (FEF) carries such a CD for saccadic eye movements. This circuit provides the clearest example of such internal monitoring reaching cerebral cortex. In this report we first investigated the functional organization of the critical MD relay by systematically recording neurons within a grid of penetrations. In two male rhesus macaque monkeys (Macaca mulatta), we found that lateral MD neurons carrying CD signals discharged before saccades to ipsilateral as well as contralateral visual fields instead of just contralateral fields, often had activity over large movement fields, and had activity from both central and peripheral visual fields. Each of these characteristics has been found in FEF, but these findings indicate that these characteristics are already present in the thalamus. These characteristics show that the MD thalamic relay is not passive but instead assembles inputs from the SC before transmission to cortex. We next determined the exact location of the saccade-related CD neurons using the grid of penetrations. The neurons occupy an anterior-posterior band at the lateral edge of MD, and we established this band in stereotaxic coordinates to facilitate future study of CD neurons. These observations reveal both the organizational features of the internal CD signals within the thalamus, and the location of the thalamic relay for those signals.SIGNIFICANCE STATEMENT A corollary discharge (CD) circuit within the brain keeps an internal record of physical movements. In monkeys and humans, one such CD keeps track of rapid eye movements, and in monkeys, a circuit carrying this CD extends from midbrain to cerebral cortex through a relay in the thalamus. This circuit provides guidance for eye movements, contributes to stable visual perception, and when defective, might be related to difficulties that schizophrenic patients have in recognizing their own movements. This report facilitates the comparison of the circuit in monkeys and humans, particularly for comparison of the location of the thalamic relay in monkeys and in humans.
Collapse
Affiliation(s)
- James Cavanaugh
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Kerry McAlonan
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
35
|
Separate and overlapping functional roles for efference copies in the human thalamus. Neuropsychologia 2020; 147:107558. [PMID: 32771475 DOI: 10.1016/j.neuropsychologia.2020.107558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022]
Abstract
How the perception of space is generated from the multiple maps in the brain is still an unsolved mystery in neuroscience. A neural pathway ascending from the superior colliculus through the medio-dorsal (MD) nucleus of thalamus to the frontal eye field has been identified in monkeys that conveys efference copy information about the metrics of upcoming eye movements. Information sent through this pathway stabilizes vision across saccades. We investigated whether this motor plan information might also shape spatial perception even when no saccades are performed. We studied patients with medial or lateral thalamic lesions (likely involving either the MD or the ventrolateral (VL) nuclei). Patients performed a double-step task testing motor updating, a trans-saccadic localization task testing visual updating, and a localization task during fixation testing a general role of motor signals for visual space in the absence of eye movements. Single patients with medial or lateral thalamic lesions showed deficits in the double-step task, reflecting insufficient transfer of efference copy. However, only a patient with a medial lesion showed impaired performance in the trans-saccadic localization task, suggesting that different types of efference copies contribute to motor and visual updating. During fixation, the MD patient localized stationary stimuli more accurately than healthy controls, suggesting that patients compensate the deficit in visual prediction of saccades - induced by the thalamic lesion - by relying on stationary visual references. We conclude that partially separable efference copy signals contribute to motor and visual stability in company of purely visual signals that are equally effective in supporting trans-saccadic perception.
Collapse
|
36
|
Neupane S, Guitton D, Pack CC. Perisaccadic remapping: What? How? Why? Rev Neurosci 2020; 31:505-520. [PMID: 32242834 DOI: 10.1515/revneuro-2019-0097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/31/2019] [Indexed: 11/15/2022]
Abstract
About 25 years ago, the discovery of receptive field (RF) remapping in the parietal cortex of nonhuman primates revealed that visual RFs, widely assumed to have a fixed retinotopic organization, can change position before every saccade. Measuring such changes can be deceptively difficult. As a result, studies that followed have generated a fascinating but somewhat confusing picture of the phenomenon. In this review, we describe how observations of RF remapping depend on the spatial and temporal sampling of visual RFs and saccade directions. Further, we summarize some of the theories of how remapping might occur in neural circuitry. Finally, based on neurophysiological and psychophysical observations, we discuss the ways in which remapping information might facilitate computations in downstream brain areas.
Collapse
Affiliation(s)
- Sujaya Neupane
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Guitton
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A2B4, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A2B4, Canada
| |
Collapse
|
37
|
Li S, Zhu H, Tian X. Corollary Discharge Versus Efference Copy: Distinct Neural Signals in Speech Preparation Differentially Modulate Auditory Responses. Cereb Cortex 2020; 30:5806-5820. [PMID: 32542347 DOI: 10.1093/cercor/bhaa154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/14/2022] Open
Abstract
Actions influence sensory processing in a complex way to shape behavior. For example, during actions, a copy of motor signals-termed "corollary discharge" (CD) or "efference copy" (EC)-can be transmitted to sensory regions and modulate perception. However, the sole inhibitory function of the motor copies is challenged by mixed empirical observations as well as multifaceted computational demands for behaviors. We hypothesized that the content in the motor signals available at distinct stages of actions determined the nature of signals (CD vs. EC) and constrained their modulatory functions on perceptual processing. We tested this hypothesis using speech in which we could precisely control and quantify the course of action. In three electroencephalography (EEG) experiments using a novel delayed articulation paradigm, we found that preparation without linguistic contents suppressed auditory responses to all speech sounds, whereas preparing to speak a syllable selectively enhanced the auditory responses to the prepared syllable. A computational model demonstrated that a bifurcation of motor signals could be a potential algorithm and neural implementation to achieve the distinct functions in the motor-to-sensory transformation. These results suggest that distinct motor signals are generated in the motor-to-sensory transformation and integrated with sensory input to modulate perception.
Collapse
Affiliation(s)
- Siqi Li
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Hao Zhu
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.,Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
| | - Xing Tian
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.,Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
| |
Collapse
|
38
|
Fabius JH, Nijboer TCW, Fracasso A, Van der Stigchel S. Intra-saccadic displacement sensitivity after a lesion to the posterior parietal cortex. Cortex 2020; 127:108-119. [PMID: 32172025 PMCID: PMC7254053 DOI: 10.1016/j.cortex.2020.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022]
Abstract
Visual perception is introspectively stable and continuous across eye movements. It has been hypothesized that displacements in retinal input caused by eye movements can be dissociated from displacements in the external world using extra-retinal information, such as a corollary discharge from the oculomotor system. The extra-retinal information can inform the visual system about an upcoming eye movement and accompanying displacements in retinal input. The parietal cortex has been hypothesized to be critically involved in integrating retinal and extra-retinal information. Two tasks have been widely used to assess the quality of this integration: double-step saccades and intra-saccadic displacements. Double-step saccades performed by patients with parietal cortex lesions seemed to show hypometric second saccades. However, recently idea has been refuted by demonstrating that patients with very similar lesions were able to perform the double step saccades, albeit taking multiple saccades to reach the saccade target. So, it seems that extra-retinal information is still available for saccade execution after a lesion to the parietal lobe. Here, we investigated whether extra-retinal signals are also available for perceptual judgements in nine patients with strokes affecting the posterior parietal cortex. We assessed perceptual continuity with the intra-saccadic displacement task. We exploited the increased sensitivity when a small temporal blank is introduced after saccade offset (blank effect). The blank effect is thought to reflect the availability of extra-retinal signals for perceptual judgements. Although patients exhibited a relative difference to control subjects, they still demonstrated the blank effect. The data suggest that a lesion to the posterior parietal cortex (PPC) alters the processing of extra-retinal signals but does not abolish their influence altogether.
Collapse
Affiliation(s)
- Jasper H Fabius
- Experimental Psychology, Utrecht University, Utrecht, the Netherlands; Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Tanja C W Nijboer
- Experimental Psychology, Utrecht University, Utrecht, the Netherlands; Center of Excellence for Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University and De Hoogstraat Rehabilitation, Utrecht, the Netherlands
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Radiology, Center for Image Sciences, University Medical Center Utrecht, GA, Utrecht, the Netherlands; Spinoza Center for Neuroimaging, University of Amsterdam, BK, Amsterdam, the Netherlands
| | | |
Collapse
|
39
|
Saccadic Suppression of Displacement Does Not Reflect a Saccade-Specific Bias to Assume Stability. Vision (Basel) 2019; 3:vision3040049. [PMID: 31735850 PMCID: PMC6969937 DOI: 10.3390/vision3040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 11/27/2022] Open
Abstract
Across saccades, small displacements of a visual target are harder to detect and their directions more difficult to discriminate than during steady fixation. Prominent theories of this effect, known as saccadic suppression of displacement, propose that it is due to a bias to assume object stability across saccades. Recent studies comparing the saccadic effect to masking effects suggest that suppression of displacement is not saccade-specific. Further evidence for this account is presented from two experiments where participants judged the size of displacements on a continuous scale in saccade and mask conditions, with and without blanking. Saccades and masks both reduced the proportion of correctly perceived displacements and increased the proportion of missed displacements. Blanking improved performance in both conditions by reducing the proportion of missed displacements. Thus, if suppression of displacement reflects a bias for stability, it is not a saccade-specific bias, but a more general stability assumption revealed under conditions of impoverished vision. Specifically, I discuss the potentially decisive role of motion or other transient signals for displacement perception. Without transients or motion, the quality of relative position signals is poor, and saccadic and mask-induced suppression of displacement reflects performance when the decision has to be made on these signals alone. Blanking may improve those position signals by providing a transient onset or a longer time to encode the pre-saccadic target position.
Collapse
|
40
|
Thakkar KN, Rolfs M. Disrupted Corollary Discharge in Schizophrenia: Evidence From the Oculomotor System. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:773-781. [PMID: 31105039 PMCID: PMC6733648 DOI: 10.1016/j.bpsc.2019.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/04/2019] [Accepted: 03/22/2019] [Indexed: 01/18/2023]
Abstract
Corollary discharge (CD) signals are motor-related signals that exert an influence on sensory processing. They allow mobile organisms to predict the sensory consequences of their imminent actions. Among the many functions of CD is to provide a means by which we can distinguish sensory experiences caused by our own actions from those with external causes. In this way, they contribute to a subjective sense of agency. A disruption in the sense of agency is central to many of the clinical symptoms of schizophrenia, and abnormalities in CD signaling have been theorized to underpin particularly those agency-related psychotic symptoms of the illness. Characterizing abnormal CD associated with eye movements in schizophrenia and their resulting influence on visual processing and subsequent action plans may have advantages over other sensory and motor systems. That is because the most robust psychophysiological and neurophysiological data regarding the dynamics and influence of CD as well as the neural circuitry implicated in CD generation and transmission comes from the study of eye movements in humans and nonhuman primates. We review studies of oculomotor CD signaling in the schizophrenia spectrum and possible neurobiological correlates of CD disturbances. We conclude by speculating on the ways in which oculomotor CD dysfunction, specifically, may invoke specific experiences, clinical symptoms, and cognitive impairments. These speculations lay the groundwork for empirical study, and we conclude by outlining potentially fruitful research directions.
Collapse
Affiliation(s)
- Katharine N Thakkar
- Department of Psychology, Michigan State University, East Lansing, Michigan; Division of Psychiatry and Behavioral Medicine, Michigan State University, East Lansing, Michigan.
| | - Martin Rolfs
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
41
|
Affiliation(s)
- Katja Fiehler
- Department of Psychology, Justus Liebig University, Giessen, Germany
- Center for Mind, Brain, and Behavior (CMBB), Universities of Marburg and Giessen, Germany
| | - Eli Brenner
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
| | - Miriam Spering
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
42
|
Császár N, Kapócs G, Bókkon I. A possible key role of vision in the development of schizophrenia. Rev Neurosci 2019; 30:359-379. [PMID: 30244235 DOI: 10.1515/revneuro-2018-0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Based on a brief overview of the various aspects of schizophrenia reported by numerous studies, here we hypothesize that schizophrenia may originate (and in part be performed) from visual areas. In other words, it seems that a normal visual system or at least an evanescent visual perception may be an essential prerequisite for the development of schizophrenia as well as of various types of hallucinations. Our study focuses on auditory and visual hallucinations, as they are the most prominent features of schizophrenic hallucinations (and also the most studied types of hallucinations). Here, we evaluate the possible key role of the visual system in the development of schizophrenia.
Collapse
Affiliation(s)
- Noemi Császár
- Gaspar Karoly University Psychological Institute, H-1091 Budapest, Hungary.,Psychoszomatic Outpatient Department, H-1037 Budapest, Hungary
| | - Gabor Kapócs
- Buda Family Centred Mental Health Centre, Department of Psychiatry and Psychiatric Rehabilitation, St. John Hospital, Budapest, Hungary
| | - István Bókkon
- Psychoszomatic Outpatient Department, H-1037 Budapest, Hungary.,Vision Research Institute, Neuroscience and Consciousness Research Department, 25 Rita Street, Lowell, MA 01854, USA
| |
Collapse
|
43
|
Gaffin-Cahn E, Hudson TE, Landy MS. Did I do that? Detecting a perturbation to visual feedback in a reaching task. J Vis 2019; 19:5. [PMID: 30640373 PMCID: PMC6334820 DOI: 10.1167/19.1.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The motor system executes actions in a highly stereotyped manner despite the high number of degrees of freedom available. Studies of motor adaptation leverage this fact by disrupting, or perturbing, visual feedback to measure how the motor system compensates. To elicit detectable effects, perturbations are often large compared to trial-to-trial reach endpoint variability. However, awareness of large perturbations can elicit qualitatively different compensation processes than unnoticeable ones can. The current experiment measures the perturbation detection threshold, and investigates how humans combine proprioception and vision to decide whether displayed reach endpoint errors are self-generated only, or are due to experimenter-imposed perturbation. We scaled or rotated the position of the visual feedback of center-out reaches to targets and asked subjects to indicate whether visual feedback was perturbed. Subjects detected perturbations when they were at least 1.5 times the standard deviation of trial-to-trial endpoint variability. In contrast to previous studies, subjects suboptimally combined vision and proprioception. Instead of using proprioceptive input, they responded based on the final (possibly perturbed) visual feedback. These results inform methodology in motor system experimentation, and more broadly highlight the ability to attribute errors to one's own motor output and combine visual and proprioceptive feedback to make decisions.
Collapse
Affiliation(s)
- Elon Gaffin-Cahn
- Department of Psychology, New York University, New York, NY, USA
| | - Todd E Hudson
- Departments of Neurology and Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Michael S Landy
- Departments of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
44
|
Huber-Huber C, Buonocore A, Dimigen O, Hickey C, Melcher D. The peripheral preview effect with faces: Combined EEG and eye-tracking suggests multiple stages of trans-saccadic predictive and non-predictive processing. Neuroimage 2019; 200:344-362. [PMID: 31260837 DOI: 10.1016/j.neuroimage.2019.06.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
The world appears stable despite saccadic eye-movements. One possible explanation for this phenomenon is that the visual system predicts upcoming input across saccadic eye-movements based on peripheral preview of the saccadic target. We tested this idea using concurrent electroencephalography (EEG) and eye-tracking. Participants made cued saccades to peripheral upright or inverted face stimuli that changed orientation (invalid preview) or maintained orientation (valid preview) while the saccade was completed. Experiment 1 demonstrated better discrimination performance and a reduced fixation-locked N170 component (fN170) with valid than with invalid preview, demonstrating integration of pre- and post-saccadic information. Moreover, the early fixation-related potentials (FRP) showed a preview face inversion effect suggesting that some pre-saccadic input was represented in the brain until around 170 ms post fixation-onset. Experiment 2 replicated Experiment 1 and manipulated the proportion of valid and invalid trials to test whether the preview effect reflects context-based prediction across trials. A whole-scalp Bayes factor analysis showed that this manipulation did not alter the fN170 preview effect but did influence the face inversion effect before the saccade. The pre-saccadic inversion effect declined earlier in the mostly invalid block than in the mostly valid block, which is consistent with the notion of pre-saccadic expectations. In addition, in both studies, we found strong evidence for an interaction between the pre-saccadic preview stimulus and the post-saccadic target as early as 50 ms (Experiment 2) or 90 ms (Experiment 1) into the new fixation. These findings suggest that visual stability may involve three temporal stages: prediction about the saccadic target, integration of pre-saccadic and post-saccadic information at around 50-90 ms post fixation onset, and post-saccadic facilitation of rapid categorization.
Collapse
Affiliation(s)
- Christoph Huber-Huber
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, Rovereto, TN, 38068, Italy.
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Otfried-Müller-Straße 25, Tuebingen, 72076, Germany; Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, 72076, Germany
| | - Olaf Dimigen
- Department of Psychology, Humboldt-Universität zu Berlin, Unter Den Linden 6, 10099, Berlin, Germany
| | - Clayton Hickey
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, Rovereto, TN, 38068, Italy
| | - David Melcher
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, Rovereto, TN, 38068, Italy
| |
Collapse
|
45
|
Abstract
Our vision depends upon shifting our high-resolution fovea to objects of interest in the visual field. Each saccade displaces the image on the retina, which should produce a chaotic scene with jerks occurring several times per second. It does not. This review examines how an internal signal in the primate brain (a corollary discharge) contributes to visual continuity across saccades. The article begins with a review of evidence for a corollary discharge in the monkey and evidence from inactivation experiments that it contributes to perception. The next section examines a specific neuronal mechanism for visual continuity, based on corollary discharge that is referred to as visual remapping. Both the basic characteristics of this anticipatory remapping and the factors that control it are enumerated. The last section considers hypotheses relating remapping to the perceived visual continuity across saccades, including remapping's contribution to perceived visual stability across saccades.
Collapse
Affiliation(s)
- Robert H Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892-4435, USA;
| |
Collapse
|
46
|
Subramanian D, Alers A, Sommer MA. Corollary Discharge for Action and Cognition. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:782-790. [PMID: 31351985 DOI: 10.1016/j.bpsc.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/19/2022]
Abstract
In motor systems, a copy of the movement command known as corollary discharge is broadcast to other regions of the brain to warn them of the impending movement. The premise of this review is that the concept of corollary discharge may generalize in revealing ways to the brain's cognitive systems. An oculomotor pathway from the brain stem to frontal cortex provides a well-established example of how corollary discharge is instantiated for sensorimotor processing. Building on causal evidence from inactivation of the pathway, we motivate forward models as a tool for understanding the contributions of corollary discharge to perception and movement. Finally, we extend the definition of corollary discharge to account for signals that may be used for cognitive forward models of decision making. This framework may provide new insights into signals and circuits that contribute to sequential decision processes, the breakdown of which may account for some symptoms of psychiatric disorders.
Collapse
Affiliation(s)
- Divya Subramanian
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina
| | - Anthony Alers
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Marc A Sommer
- Department of Neurobiology, Duke University, Durham, North Carolina; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina; Department of Biomedical Engineering, Duke University, Durham, North Carolina.
| |
Collapse
|
47
|
Poletti M, Tortorella A, Raballo A. Impaired Corollary Discharge in Psychosis and At-Risk States: Integrating Neurodevelopmental, Phenomenological, and Clinical Perspectives. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:832-841. [PMID: 31262709 DOI: 10.1016/j.bpsc.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/28/2022]
Abstract
The brain is increasingly viewed in contemporary neuroscience as a predictive machine; its products, such as movements and decisions, are indeed accompanied by predictions of outcomes at distinct levels of awareness. In this conceptual review, we focus on corollary discharge, a basic neurophysiological mechanism that is allegedly involved in sensory prediction and contributes to the distinction between self-generated and externally generated actions. Failures in corollary discharge have been hypothesized as potentially relevant for the progressive development of positive psychotic symptoms such as passivity delusions and auditory verbal hallucinations. We articulate this framework adopting three confocal lenses, namely, the neurodevelopmental, phenomenological, and clinical perspectives. Converging evidence from these research domains indicates a possible developmental cascade leading to increased lifetime risk of psychosis. That is, early childhood alterations of corollary discharge mechanisms, endophenotypically expressed in motor impairment, may concur with a progressive fading of the feeling of self-agency on one's own experiences. Combined with other age-dependent situational challenges occurring along development, this may progressively hamper the ontogenesis of the embodied self, thereby facilitating the emergence of anomalous subjective experiences such as self-disorders (a longitudinal index of schizophrenia spectrum vulnerability) and broadly conceived clinical high-risk states. Overall, this condition increases the risk of developing passivity symptoms, phenotypically expressed in a severity gradient ranging from intrusive thoughts to passivity delusions and auditory verbal hallucinations. Empirical and clinical implications of this framework, as well as future scenarios, are discussed.
Collapse
Affiliation(s)
- Michele Poletti
- Department of Mental Health, Azienda Unità Sanitaria Locale-IRCSS di Reggio Emilia, Reggio Emilia, Italy
| | - Alfonso Tortorella
- Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy
| | - Andrea Raballo
- Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy; Center for Translational, Phenomenological and Developmental Psychopathology, Perugia University Hospital, Perugia, Italy.
| |
Collapse
|
48
|
Poletti M, Gebhardt E, Kvande MN, Ford J, Raballo A. Motor Impairment and Developmental Psychotic Risk: Connecting the Dots and Narrowing the Pathophysiological Gap. Schizophr Bull 2019; 45:503-508. [PMID: 30007369 PMCID: PMC6483583 DOI: 10.1093/schbul/sby100] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The motor system in its manifold articulations is receiving increasing clinical and research attention. This is because motor impairments constitute a central, expressive component of the mental state examination and a key transdiagnostic feature indexing disease severity. Furthermore, within the schizophrenia spectrum, the integration of neurophysiological, developmental, and phenomenological perspectives suggests that motor impairment is not simply a generic, extrinsic proxy of an altered neurodevelopment, but might be more intimately related to psychotic risk. Therefore, an increased understanding, conceptualization, and knowledge of such motor system and its anomalies could empower contemporary risk prediction and diagnostic procedures.
Collapse
Affiliation(s)
- Michele Poletti
- Department of Mental Health, Reggio Emilia Local Health Trust, Reggio Emilia, Italy
| | - Eva Gebhardt
- Cmed Polyspecialistic Diagnostic and Therapeutic Centre, Rome, Italy
| | - Marianne N Kvande
- Department of Psychology, Psychopathology and development Research Unit, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Judith Ford
- Psychiatry Service (116D), San Francisco VA Medical Center, San Francisco, CA,Department of Psychiatry, University of California, San Francisco, CA
| | - Andrea Raballo
- Department of Psychology, Psychopathology and development Research Unit, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy,To whom correspondence should be addressed; Piazzale Lucio Severi 1, 06132 Perugia, Italy, tel: +390755784100, e-mail:
| |
Collapse
|
49
|
Paradiso MA, Akers-Campbell S, Ruiz O, Niemeyer JE, Geman S, Loper J. Transsacadic Information and Corollary Discharge in Local Field Potentials of Macaque V1. Front Integr Neurosci 2019; 12:63. [PMID: 30692920 PMCID: PMC6340263 DOI: 10.3389/fnint.2018.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Approximately three times per second, human visual perception is interrupted by a saccadic eye movement. In addition to taking the eyes to a new location, several lines of evidence suggest that the saccades play multiple roles in visual perception. Indeed, it may be crucial that visual processing is informed about movements of the eyes in order to analyze visual input distinctly and efficiently on each fixation and preserve stable visual perception of the world across saccades. A variety of studies has demonstrated that activity in multiple brain areas is modulated by saccades. The hypothesis tested here is that these signals carry significant information that could be used in visual processing. To test this hypothesis, local field potentials (LFPs) were simultaneously recorded from multiple electrodes in macaque primary visual cortex (V1); support vector machines (SVMs) were used to classify the peri-saccadic LFPs. We find that LFPs in area V1 carry information that can be used to distinguish neural activity associated with fixations from saccades, precisely estimate the onset time of fixations, and reliably infer the directions of saccades. This information may be used by the brain in processes including visual stability, saccadic suppression, receptive field (RF) remapping, fixation amplification, and trans-saccadic visual perception.
Collapse
Affiliation(s)
- Michael A Paradiso
- Department of Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Seth Akers-Campbell
- Department of Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Octavio Ruiz
- Department of Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - James E Niemeyer
- Department of Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Stuart Geman
- Department of Applied Mathematics, Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| | - Jackson Loper
- Department of Applied Mathematics, Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
50
|
Abstract
Humans move their eyes several times per second, yet we perceive the outside world as continuous despite the sudden disruptions created by each eye movement. To date, the mechanism that the brain employs to achieve visual continuity across eye movements remains unclear. While it has been proposed that the oculomotor system quickly updates and informs the visual system about the upcoming eye movement, behavioral studies investigating the time course of this updating suggest the involvement of a slow mechanism, estimated to take more than 500 ms to operate effectively. This is a surprisingly slow estimate, because both the visual system and the oculomotor system process information faster. If spatiotopic updating is indeed this slow, it cannot contribute to perceptual continuity, because it is outside the temporal regime of typical oculomotor behavior. Here, we argue that the behavioral paradigms that have been used previously are suboptimal to measure the speed of spatiotopic updating. In this study, we used a fast gaze-contingent paradigm, using high phi as a continuous stimulus across eye movements. We observed fast spatiotopic updating within 150 ms after stimulus onset. The results suggest the involvement of a fast updating mechanism that predictively influences visual perception after an eye movement. The temporal characteristics of this mechanism are compatible with the rate at which saccadic eye movements are typically observed in natural viewing.
Collapse
|