1
|
Bogaj K, Urban-Ciecko J. Inhibition of BK channels by GABAb receptors enhances intrinsic excitability of layer 2/3 vasoactive intestinal polypeptide-expressing interneurons in mouse neocortex. J Physiol 2025. [PMID: 39901494 DOI: 10.1113/jp286439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
GABAb receptors (GABAbRs) affect many signalling pathways, and hence the net effect of the activity of these receptors depends upon the specific ion channels that they are linked to, leading to different effects on specific neuronal populations. Typically, GABAbRs suppress neuronal activity in the cerebral cortex. Previously, we found that neocortical parvalbumin-expressing cells are strongly inhibited through GABAbRs, whereas somatostatin interneurons are immune to this modulation. Here, we employed in vitro whole-cell patch-clamp recordings to study whether GABAbRs modulate the activity of vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in layer (L) 2/3 of the mouse primary somatosensory cortex. Utilizing machine learning algorithms (hierarchical clustering and principal component analysis), we revealed that one VIP-IN cluster (about 68% of all VIP-INs) was sensitive to GABAbR activation. Paradoxically, when recordings were performed in standard conditions with high extracellular Ca2+ level, GABAbRs indirectly inhibited the activity of large conductance voltage- and calcium-activated potassium (BK) channels and reduced GABAaR-mediated inhibition, leading to an increase in intrinsic excitability of these interneurons. However, a classical inhibitory effect of GABAbRs on L2/3 VIP-INs was observed in modified artificial cerebrospinal fluid with physiological (low) Ca2+ concentration. Our results are essential for a deeper understanding of mechanisms underlying the modulation of cortical networks. KEY POINTS: Layer 2/3 vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) in the mouse somatosensory cortex cluster into three electrophysiological types differentially sensitive to GABAb receptors (GABAbRs). The majority of VIP-INs (type 1, about 68% of all VIP-INs) are regulated through pre- and postsynaptic GABAbRs, while a subset of these interneurons (types 2 and 3) is controlled only presynaptically. The net effect of GABAbR activation on VIP-IN excitability depends on [Ca2+] in artificial cerebrospinal fluid. When [Ca2+] is high (2.5 mM), GABAbRs indirectly inhibit BK channels and reduce GABAaR inhibition leading to increased intrinsic excitability of type 1 VIP-INs. When [Ca2+] is low (1 mM), which is more physiological, BK channels do not regulate the intrinsic excitability of VIP-INs and thus postsynaptic GABAbRs canonically decrease the intrinsic excitability of type 1 VIP-INs.
Collapse
Affiliation(s)
- Karolina Bogaj
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Urban-Ciecko
- Laboratory of Electrophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Munguba H, Srivastava I, Gutzeit VA, Singh A, Vijay A, Kristt M, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses. Neuron 2025:S0896-6273(25)00006-6. [PMID: 39879977 DOI: 10.1016/j.neuron.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Tuna T, Banks T, Glickert G, Sevinc C, Nair SS, Unal G. Basal forebrain innervation of the amygdala: an anatomical and computational exploration. Brain Struct Funct 2025; 230:30. [PMID: 39805973 PMCID: PMC11729089 DOI: 10.1007/s00429-024-02886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity. We used retrograde tracing with fluorescent immunohistochemistry to identify cholinergic and non-cholinergic parvalbumin- or calbindin-immunoreactive BF neuronal subgroups targeting the input (lateral and basolateral nuclei) and output (central nucleus and the central bed nucleus of the stria terminalis) regions of the amygdaloid complex. We observed a dense non-cholinergic, putative GABAergic projection from the ventral pallidum (VP) and the substantia innominata (SI) to the basolateral amygdala (BLA). The VP/SI axonal projections to the BLA were confirmed using viral anterograde tracing and transsynaptic labeling. We tested the potential function of this VP/SI-BLA pathway in a 1000-cell biophysically realistic network model, which incorporated principal neurons and three major interneuron groups of the BLA, together with extrinsic glutamatergic, cholinergic, and VP/SI GABAergic inputs. We observed in silico that theta-modulation of VP/SI GABAergic projections enhanced theta oscillations in the BLA via their selective innervation of the parvalbumin-expressing local interneurons. Ablation of parvalbumin-, but not somatostatin- or calretinin-expressing, interneurons reduced theta power in the BLA model. These results suggest that long-range BF GABAergic projections may modulate network activity at their target regions through the formation of a common interneuron-type and oscillatory phase-specific disinhibitory motif.
Collapse
Affiliation(s)
- Tuğçe Tuna
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Tyler Banks
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gregory Glickert
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Satish S Nair
- Neural Engineering Laboratory, Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, 65211, USA
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
4
|
Furriel BCRS, Furriel GP, Cunha Xavier Pinto M, Lemos RP. Computational modeling of fear and stress responses: validation using consolidated fear and stress protocols. Front Syst Neurosci 2024; 18:1454336. [PMID: 39776892 PMCID: PMC11703847 DOI: 10.3389/fnsys.2024.1454336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering. To advance the understanding of fear and stress, this study presents a biologically and behaviorally plausible computational architecture that integrates several subregions of key brain structures, such as the amygdala, hippocampus, and medial prefrontal cortex. Additionally, the model incorporates stress hormone curves and employs spiking neural networks with conductance-based integrate-and-fire neurons. The proposed approach was validated using the well-established Contextual Fear Conditioning paradigm and subsequently tested with IED and SEFL protocols. The results confirmed that higher intensity aversive stimuli result in more robust and persistent fear memories, making extinction more challenging. They also underscore the importance of the timing of extinction and the significant influence of stress. To our knowledge, this is the first instance of computational modeling being applied to IED and SEFL protocols. This study validates our computational model's complexity and biological realism in analyzing responses to fear and stress through fear conditioning, IED, and SEFL protocols. Rather than providing new biological insights, the primary contribution of this work lies in its methodological innovation, demonstrating that complex, biologically plausible neural architectures can effectively replicate established findings in fear and stress research. By simulating protocols typically conducted in vivo-often involving significant pain and suffering-in an insilico environment, our model offers a promising tool for studying fear-related mechanisms. These findings support the potential of computational models to reduce the reliance on animal testing while setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Brunna Carolinne Rocha Silva Furriel
- Instituto Federal de Goiás, Goiânia, Brazil
- Universidade Federal de Goias, School of Electrical, Mechanical and Computer Engineering, Goiânia, Brazil
- Imaging Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Rodrigo Pinto Lemos
- Universidade Federal de Goias, School of Electrical, Mechanical and Computer Engineering, Goiânia, Brazil
| |
Collapse
|
5
|
Salamanca G, Tagliavia C, Grandis A, Graïc JM, Cozzi B, Bombardi C. Distribution of vasoactive intestinal peptide (VIP) immunoreactivity in the rat pallial and subpallial amygdala and colocalization with γ-aminobutyric acid (GABA). Anat Rec (Hoboken) 2024; 307:2891-2911. [PMID: 38263752 DOI: 10.1002/ar.25390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
The amygdaloid complex, also known as the amygdala, is a heterogeneous group of distinct nuclear and cortical pallial and subpallial structures. The amygdala plays an important role in several complex functions including emotional behavior and learning. The expression of calcium-binding proteins and peptides in GABAergic neurons located in the pallial and subpallial amygdala is not uniform and is sometimes restricted to specific groups of cells. Vasoactive intestinal polypeptide (VIP) is present in specific subpopulations of GABAergic cells in the amygdala. VIP immunoreactivity has been observed in somatodendritic and axonal profiles of the rat basolateral and central amygdala. However, a comprehensive analysis of the distribution of VIP immunoreactivity in the various pallial and subpallial structures is currently lacking. The present study used immunohistochemical and morphometric techniques to analyze the distribution and the neuronal localization of VIP immunoreactivity in the rat pallial and subpallial amygdala. In the pallial amygdala, VIP-IR neurons are local inhibitory interneurons that presumably directly and indirectly regulate the activity of excitatory pyramidal neurons. In the subpallial amygdala, VIP immunoreactivity is expressed in several inhibitory cell types, presumably acting as projection or local interneurons. The distribution of VIP immunoreactivity is non-homogeneous throughout the different areas of the amygdaloid complex, suggesting a distinct influence of this neuropeptide on local neuronal circuits and, consequently, on the cognitive, emotional, behavioral and endocrine activities mediated by the amygdala.
Collapse
Affiliation(s)
- G Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - C Tagliavia
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - A Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - J M Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - B Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - C Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
7
|
Báldi R, Muthuswamy S, Loomba N, Patel S. Synaptic Organization-Function Relationships of Amygdala Interneurons Supporting Associative Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599631. [PMID: 38948865 PMCID: PMC11212985 DOI: 10.1101/2024.06.18.599631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Coordinated activity of basolateral amygdala (BLA) GABAergic interneurons (INs) and glutamatergic principal cells (PCs) is critical for associative learning, however the microcircuit organization-function relationships of distinct IN classes remain uncertain. Here, we show somatostatin (SOM) INs provide inhibition onto, and are excited by, local PCs, whereas vasoactive intestinal peptide (VIP) INs are driven by extrinsic afferents. Parvalbumin (PV) INs inhibit PCs and are activated by local and extrinsic inputs. Thus, SOM and VIP INs exhibit complementary roles in feedback and feedforward inhibition, respectively, while PV INs contribute to both microcircuit motifs. Functionally, each IN subtype reveals unique activity patterns across fear- and extinction learning with SOM and VIP INs showing most divergent characteristics, and PV INs display an intermediate phenotype parallelling synaptic data. Finally, SOM and PV INs dynamically track behavioral state transitions across learning. These data provide insight into the synaptic microcircuit organization-function relationships of distinct BLA IN classes.
Collapse
|
8
|
Munguba H, Gutzeit VA, Srivastava I, Kristt M, Singh A, Vijay A, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-Targeted Photopharmacology Reveals Distinct Anxiolytic Roles for Presynaptic mGluR2 in Prefrontal- and Insula-Amygdala Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575699. [PMID: 38293136 PMCID: PMC10827048 DOI: 10.1101/2024.01.15.575699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dissecting how membrane receptors regulate neural circuit function is critical for deciphering basic principles of neuromodulation and mechanisms of therapeutic drug action. Classical pharmacological and genetic approaches are not well-equipped to untangle the roles of specific receptor populations, especially in long-range projections which coordinate communication between brain regions. Here we use viral tracing, electrophysiological, optogenetic, and photopharmacological approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) activation in the basolateral amygdala (BLA) alters anxiety-related behavior. We find that mGluR2-expressing neurons from the ventromedial prefrontal cortex (vmPFC) and posterior insular cortex (pIC) preferentially target distinct cell types and subregions of the BLA to regulate different forms of avoidant behavior. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of vmPFC-BLA, but not pIC-BLA, connections can produce long-lasting decreases in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreased social avoidance, novelty-induced hypophagia, and increased exploratory behavior without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Overall, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action via photopharmacology.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A. Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M. Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
9
|
Nagy-Pál P, Veres JM, Fekete Z, Karlócai MR, Weisz F, Barabás B, Reéb Z, Hájos N. Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex. J Neurosci 2023; 43:6972-6987. [PMID: 37640552 PMCID: PMC10586541 DOI: 10.1523/jneurosci.0432-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.
Collapse
Affiliation(s)
- Petra Nagy-Pál
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Judit M Veres
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Fekete
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Mária R Karlócai
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Filippo Weisz
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bence Barabás
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Reéb
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Norbert Hájos
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, Indiana 47405
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana 47405
| |
Collapse
|
10
|
Kołosowska KA, Schratt G, Winterer J. microRNA-dependent regulation of gene expression in GABAergic interneurons. Front Cell Neurosci 2023; 17:1188574. [PMID: 37213213 PMCID: PMC10196030 DOI: 10.3389/fncel.2023.1188574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/23/2023] Open
Abstract
Information processing within neuronal circuits relies on their proper development and a balanced interplay between principal and local inhibitory interneurons within those circuits. Gamma-aminobutyric acid (GABA)ergic inhibitory interneurons are a remarkably heterogeneous population, comprising subclasses based on their morphological, electrophysiological, and molecular features, with differential connectivity and activity patterns. microRNA (miRNA)-dependent post-transcriptional control of gene expression represents an important regulatory mechanism for neuronal development and plasticity. miRNAs are a large group of small non-coding RNAs (21-24 nucleotides) acting as negative regulators of mRNA translation and stability. However, while miRNA-dependent gene regulation in principal neurons has been described heretofore in several studies, an understanding of the role of miRNAs in inhibitory interneurons is only beginning to emerge. Recent research demonstrated that miRNAs are differentially expressed in interneuron subclasses, are vitally important for migration, maturation, and survival of interneurons during embryonic development and are crucial for cognitive function and memory formation. In this review, we discuss recent progress in understanding miRNA-dependent regulation of gene expression in interneuron development and function. We aim to shed light onto mechanisms by which miRNAs in GABAergic interneurons contribute to sculpting neuronal circuits, and how their dysregulation may underlie the emergence of numerous neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| |
Collapse
|
11
|
Singh S, Topolnik L. Inhibitory circuits in fear memory and fear-related disorders. Front Neural Circuits 2023; 17:1122314. [PMID: 37035504 PMCID: PMC10076544 DOI: 10.3389/fncir.2023.1122314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Fear learning and memory rely on dynamic interactions between the excitatory and inhibitory neuronal populations that make up the prefrontal cortical, amygdala, and hippocampal circuits. Whereas inhibition of excitatory principal cells (PCs) by GABAergic neurons restrains their excitation, inhibition of GABAergic neurons promotes the excitation of PCs through a process called disinhibition. Specifically, GABAergic interneurons that express parvalbumin (PV+) and somatostatin (SOM+) provide inhibition to different subcellular domains of PCs, whereas those that express the vasoactive intestinal polypeptide (VIP+) facilitate disinhibition of PCs by inhibiting PV+ and SOM+ interneurons. Importantly, although the main connectivity motifs and the underlying network functions of PV+, SOM+, and VIP+ interneurons are replicated across cortical and limbic areas, these inhibitory populations play region-specific roles in fear learning and memory. Here, we provide an overview of the fear processing in the amygdala, hippocampus, and prefrontal cortex based on the evidence obtained in human and animal studies. Moreover, focusing on recent findings obtained using genetically defined imaging and intervention strategies, we discuss the population-specific functions of PV+, SOM+, and VIP+ interneurons in fear circuits. Last, we review current insights that integrate the region-specific inhibitory and disinhibitory network patterns into fear memory acquisition and fear-related disorders.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Quebec City, QC, Canada
- Neuroscience Axis, CRCHUQ, Laval University, Quebec City, QC, Canada
- *Correspondence: Lisa Topolnik
| |
Collapse
|
12
|
Mineur YS, Mose TN, Maibom KL, Pittenger ST, Soares AR, Wu H, Taylor SR, Huang Y, Picciotto MR. ACh signaling modulates activity of the GABAergic signaling network in the basolateral amygdala and behavior in stress-relevant paradigms. Mol Psychiatry 2022; 27:4918-4927. [PMID: 36050437 PMCID: PMC10718266 DOI: 10.1038/s41380-022-01749-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light-dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or β2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Tenna N Mose
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Kathrine Lefoli Maibom
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Steven T Pittenger
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Hao Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Seth R Taylor
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaqing Huang
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Experimental Pathology Graduate Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
| |
Collapse
|
13
|
GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron 2022; 110:2438-2454.e8. [PMID: 35700736 PMCID: PMC9365314 DOI: 10.1016/j.neuron.2022.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs. In mice, GluN3A is expressed by SST-INs in the cortex and pyramidal neurons in the BLA GluN3A assembles as excitatory glycine GluN1/GluN3A receptors (eGlyRs) eGlyRs detect extracellular glycine levels and generate tonic excitatory currents eGlyRs tune the function of SST-INs in cortex and alter the formation of fear memories in BLA
Collapse
|
14
|
Ramos-Prats A, Paradiso E, Castaldi F, Sadeghi M, Mir MY, Hörtnagl H, Göbel G, Ferraguti F. VIP-expressing interneurons in the anterior insular cortex contribute to sensory processing to regulate adaptive behavior. Cell Rep 2022; 39:110893. [PMID: 35649348 DOI: 10.1016/j.celrep.2022.110893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Adaptive behavior critically depends on the detection of behaviorally relevant stimuli. The anterior insular cortex (aIC) has long been proposed as a key player in the representation and integration of sensory stimuli, and implicated in a wide variety of cognitive and emotional functions. However, to date, little is known about the contribution of aIC interneurons to sensory processing. By using a combination of whole-brain connectivity tracing, imaging of neural calcium dynamics, and optogenetic modulation in freely moving mice across different experimental paradigms, such as fear conditioning and social preference, we describe here a role for aIC vasoactive intestinal polypeptide-expressing (VIP+) interneurons in mediating adaptive behaviors. Our findings enlighten the contribution of aIC VIP+ interneurons to sensory processing, showing that they are anatomically connected to a wide range of sensory-related brain areas and critically respond to behaviorally relevant stimuli independent of task and modality.
Collapse
Affiliation(s)
- Arnau Ramos-Prats
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Enrica Paradiso
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Federico Castaldi
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Maryam Sadeghi
- Department for Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Mohd Yaqub Mir
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; Szentágothai Doctoral School of Neuroscience, Semmelweis University, 1121 Budapest, Hungary
| | - Heide Hörtnagl
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Georg Göbel
- Department for Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Mansano NDS, Paradela RS, Bohlen TM, Zanardi IM, Chaves FM, Silveira MA, Tavares MR, Donato J, Frazao R. Vasoactive intestinal peptide exerts an excitatory effect on hypothalamic kisspeptin neurons during estrogen negative feedback. Mol Cell Endocrinol 2022; 542:111532. [PMID: 34915098 DOI: 10.1016/j.mce.2021.111532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/30/2022]
Abstract
Hypothalamic kisspeptin neurons are the primary modulators of gonadotropin-releasing hormone (GnRH) neurons. It has been shown that circadian rhythms driven by the suprachiasmatic nucleus (SCN) contribute to GnRH secretion. Kisspeptin neurons are potential targets of SCN neurons due to reciprocal connections with the anteroventral periventricular and rostral periventricular nuclei (AVPV/PeN) and the arcuate nucleus of the hypothalamus (ARH). Vasoactive intestinal peptide (VIP), a notable SCN neurotransmitter, modulates GnRH secretion depending on serum estradiol levels, aging or time of the day. Considering that kisspeptin neurons may act as interneurons and mediate VIP's effects on the reproductive axis, we investigated the effects of VIP on hypothalamic kisspeptin neurons in female mice during estrogen negative feedback. Our findings indicate that VIP induces a TTX-independent depolarization of approximately 30% of AVPV/PeN kisspeptin neurons in gonad-intact (diestrus) and ovariectomized (OVX) mice. In the ARH, the percentage of kisspeptin neurons that were depolarized by VIP was even higher (approximately 90%). An intracerebroventricular infusion of VIP leds to an increased percentage of kisspeptin neurons expressing the phosphoSer133 cAMP-response-element-binding protein (pCREB) in the AVPV/PeN. On the other hand, pCREB expression in ARH kisspeptin neurons was similar between saline- and VIP-injected mice. Thus, VIP can recruit different signaling pathways to modulate AVPV/PeN or ARH kisspeptin neurons, resulting in distinct cellular responses. The expression of VIP receptors (VPACR) was upregulated in the AVPV/PeN, but not in the ARH, of OVX mice compared to mice on diestrus and estradiol-primed OVX mice. Our findings indicate that VIP directly influences distinct cellular aspects of the AVPV/PeN and ARH kisspeptin neurons during estrogen negative feedback, possibly to influence pulsatile LH secretion.
Collapse
Affiliation(s)
- Naira da Silva Mansano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Regina Silva Paradela
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tabata M Bohlen
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Izabela M Zanardi
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Machado Chaves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marina Augusto Silveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana Rosolen Tavares
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Frazao
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Downregulation of kainate receptors regulating GABAergic transmission in amygdala after early life stress is associated with anxiety-like behavior in rodents. Transl Psychiatry 2021; 11:538. [PMID: 34663781 PMCID: PMC8523542 DOI: 10.1038/s41398-021-01654-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 01/06/2023] Open
Abstract
Early life stress (ELS) is a well-characterized risk factor for mood and anxiety disorders. GABAergic microcircuits in the amygdala are critically implicated in anxiety; however, whether their function is altered after ELS is not known. Here we identify a novel mechanism by which kainate receptors (KARs) modulate feedforward inhibition in the lateral amygdala (LA) and show that this mechanism is downregulated after ELS induced by maternal separation (MS). Specifically, we show that in control rats but not after MS, endogenous activity of GluK1 subunit containing KARs disinhibit LA principal neurons during activation of cortical afferents. GluK1 antagonism attenuated excitability of parvalbumin (PV)-expressing interneurons, resulting in loss of PV-dependent inhibitory control and an increase in firing of somatostatin-expressing interneurons. Inactivation of Grik1 expression locally in the adult amygdala reduced ongoing GABAergic transmission and was sufficient to produce a mild anxiety-like behavioral phenotype. Interestingly, MS and GluK1-dependent phenotypes showed similar gender specificity, being detectable in male but not female rodents. Our data identify a novel KAR-dependent mechanism for cell-type and projection-specific functional modulation of the LA GABAergic microcircuit and suggest that the loss of GluK1 KAR function contributes to anxiogenesis after ELS.
Collapse
|
17
|
Ahmed N, Headley DB, Paré D. Optogenetic study of central medial and paraventricular thalamic projections to the basolateral amygdala. J Neurophysiol 2021; 126:1234-1247. [PMID: 34469705 PMCID: PMC8560422 DOI: 10.1152/jn.00253.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
The central medial (CMT) and paraventricular (PVT) thalamic nuclei project strongly to the basolateral amygdala (BL). Similarities between the responsiveness of CMT, PVT, and BL neurons suggest that these nuclei strongly influence BL activity. Supporting this possibility, an electron microscopic study reported that, in contrast with other extrinsic afferents, CMT and PVT axon terminals form very few synapses with BL interneurons. However, since limited sampling is a concern in electron microscopic studies, the present investigation was undertaken to compare the impact of CMT and PVT thalamic inputs on principal and local-circuit BL neurons with optogenetic methods and whole cell recordings in vitro. Optogenetic stimulation of CMT and PVT axons elicited glutamatergic excitatory postsynaptic potentials (EPSPs) or excitatory postsynaptic currents (EPSCs) in principal cells and interneurons, but they generally had a longer latency in interneurons. Moreover, after blockade of polysynaptic interactions with tetrodotoxin (TTX), a lower proportion of interneurons (50%) than principal cells (90%) remained responsive to CMT and PVT inputs. Although the presence of TTX-resistant responses in some interneurons indicates that CMT and PVT inputs directly contact some local-circuit cells, their lower incidence and amplitude after TTX suggest that CMT and PVT inputs form fewer synapses with them than with principal BL cells. Together, these results indicate that CMT and PVT inputs mainly contact principal BL neurons such that when CMT or PVT neurons fire, limited feedforward inhibition counters their excitatory influence over principal BL cells. However, CMT and PVT axons can also recruit interneurons indirectly, via the activation of principal cells, thereby generating feedback inhibition.NEW & NOTEWORTHY Midline thalamic (MTh) nuclei contribute major projections to the basolateral amygdala (BL). Similarities between the responsiveness of MTh and BL neurons suggest that MTh neurons exert a significant influence over BL activity. Using optogenetic techniques, we show that MTh inputs mainly contact principal BL neurons such that when MTh neurons fire, little feedforward inhibition counters their excitatory influence over principal cells. Thus, MTh inputs may be major determinants of BL activity.
Collapse
Affiliation(s)
- Nowrin Ahmed
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Drew B Headley
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, New Jersey
| |
Collapse
|
18
|
Echeazarra L, García Del Caño G, Barrondo S, González-Burguera I, Saumell-Esnaola M, Aretxabala X, López de Jesús M, Borrega-Román L, Mato S, Ledent C, Matute C, Goicolea MA, Sallés J. Fit-for-purpose based testing and validation of antibodies to amino- and carboxy-terminal domains of cannabinoid receptor 1. Histochem Cell Biol 2021; 156:479-502. [PMID: 34453219 PMCID: PMC8604870 DOI: 10.1007/s00418-021-02025-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Specific and selective anti-CB1 antibodies are among the most powerful research tools to unravel the complex biological processes mediated by the CB1 receptor in both physiological and pathological conditions. However, low performance of antibodies remains a major source of inconsistency between results from different laboratories. Using a variety of techniques, including some of the most commonly accepted ones for antibody specificity testing, we identified three of five commercial antibodies against different regions of CB1 receptor as the best choice for specific end-use purposes. Specifically, an antibody against a long fragment of the extracellular amino tail of CB1 receptor (but not one against a short sequence of the extreme amino-terminus) detected strong surface staining when applied to live cells, whereas two different antibodies against an identical fragment of the extreme carboxy-terminus of CB1 receptor (but not one against an upstream peptide) showed acceptable performance on all platforms, although they behaved differently in immunohistochemical assays depending on the tissue fixation procedure used and showed different specificity in Western blot assays, which made each of them particularly suitable for one of those techniques. Our results provide a framework to interpret past and future results derived from the use of different anti-CB1 antibodies in the context of current knowledge about the CB1 receptor at the molecular level, and highlight the need for an adequate validation for specific purposes, not only before antibodies are placed on the market, but also before the decision to discontinue them is made.
Collapse
Affiliation(s)
- Leyre Echeazarra
- Departament of Physiology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Dispositivos Móviles para el Control de Enfermedades Crónicas, 01008, Vitoria-Gasteiz, Spain
| | - Gontzal García Del Caño
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Imanol González-Burguera
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Xabier Aretxabala
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Leire Borrega-Román
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain
| | - Susana Mato
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Multiple Sclerosis and Other Demyelinating Diseases Unit, Biocruces Bizkaia, Barakaldo, Spain
| | | | - Carlos Matute
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - María Aranzazu Goicolea
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029, Madrid, Spain. .,Bioaraba, Neurofarmacología Celular y Molecular, 01008, Vitoria-Gasteiz, Spain.
| |
Collapse
|
19
|
Badrinarayanan S, Manseau F, Williams S, Brandon MP. A Characterization of the Electrophysiological and Morphological Properties of Vasoactive Intestinal Peptide (VIP) Interneurons in the Medial Entorhinal Cortex (MEC). Front Neural Circuits 2021; 15:653116. [PMID: 34421547 PMCID: PMC8378838 DOI: 10.3389/fncir.2021.653116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022] Open
Abstract
Circuit interactions within the medial entorhinal cortex (MEC) translate movement into a coherent code for spatial location. Entorhinal principal cells are subject to strong lateral inhibition, suggesting that a disinhibitory mechanism may drive their activation. Cortical Vasoactive Intestinal Peptide (VIP) expressing inhibitory neurons are known to contact other interneurons and excitatory cells and are thus capable of providing a local disinhibitory mechanism, yet little is known about this cell type in the MEC. To investigate the electrophysiological and morphological properties of VIP cells in the MEC, we use in vitro whole-cell patch-clamp recordings in VIPcre/tdTom mice. We report several gradients in electrophysiological properties of VIP cells that differ across laminae and along the dorsal-ventral MEC axis. We additionally show that VIP cells have distinct morphological features across laminae. Together, these results characterize the cellular and morphological properties of VIP cells in the MEC.
Collapse
Affiliation(s)
- Saishree Badrinarayanan
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Frédéric Manseau
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Sylvain Williams
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Mark P Brandon
- Department of Psychiatry, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021; 15:687257. [PMID: 34177472 PMCID: PMC8222668 DOI: 10.3389/fncir.2021.687257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.
Collapse
Affiliation(s)
- Norbert Hájos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
21
|
McDonald AJ, Mascagni F. Specific neuronal subpopulations in the rat basolateral amygdala express high levels of nonphosphorylated neurofilaments. J Comp Neurol 2021; 529:3292-3312. [PMID: 33960421 DOI: 10.1002/cne.25169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/25/2022]
Abstract
Cortical pyramidal neurons (PNs) containing nonphosphorylated neurofilaments (NNFs) localized with the SMI-32 monoclonal antibody have been shown to be especially vulnerable to degeneration in Alzheimer's disease (AD). The present investigation is the first to study the expression of SMI-32+ NNFs in neurons of the basolateral nuclear complex of the amygdala (BNC), which contains cortex-like PNs and nonpyramidal neurons (NPNs). We observed that PNs in the rat basolateral nucleus (BL), but not in the lateral (LAT) or basomedial (BM) nuclei, have significant levels of SMI-32-ir in their somata with antibody diluents that did not contain Triton X-100, but staining in these cells was greatly attenuated when the antibody diluent contained 0.3% Triton. Using Triton-containing diluents, we found that all SMI-32+ neurons in all three of the BNC nuclei were NPNs. Using a dual-labeling immunoperoxidase technique, we demonstrated that most of these SMI-32+ NPNs were parvalbumin-positive (PV+) or somatostatin-positive NPNs but not vasoactive intestinal peptide-positive or neuropeptide Y-positive NPNs. Using a technique that combines retrograde tracing with SMI-32 immunohistochemistry using intermediate levels of Triton in the diluent, we found that all BNC neurons projecting to the mediodorsal thalamic nucleus (MD) were large NPNs, and most were SMI-32+. In contrast, BNC neurons projecting to the ventral striatum or cerebral cortex were PNs that expressed low levels of SMI-32 immunoreactivity (SMI-32-ir) in the BL, and no SMI-32-ir in the LAT or BM. These data suggest that the main neuronal subpopulations in the BNC that degenerate in AD may be PV+ and MD-projecting NPNs.
Collapse
Affiliation(s)
- Alexander Joseph McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Franco Mascagni
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
22
|
Perumal MB, Sah P. Inhibitory Circuits in the Basolateral Amygdala in Aversive Learning and Memory. Front Neural Circuits 2021; 15:633235. [PMID: 33994955 PMCID: PMC8120102 DOI: 10.3389/fncir.2021.633235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/23/2021] [Indexed: 11/21/2022] Open
Abstract
Neural circuits in the basolateral amygdala (BLA) play a pivotal role in the learning and memory formation, and processing of emotionally salient experiences, particularly aversive ones. A diverse population of GABAergic neurons present in the BLA orchestrate local circuits to mediate emotional memory functions. Targeted manipulation of GABAergic neuronal subtypes has shed light on cell-type specific functional roles in the fear learning and memory, revealing organizing principles for the operation of inhibitory circuit motifs in the BLA.
Collapse
Affiliation(s)
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Joint Center for Neuroscience and Neural Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
23
|
Total Number and Ratio of GABAergic Neuron Types in the Mouse Lateral and Basal Amygdala. J Neurosci 2021; 41:4575-4595. [PMID: 33837051 DOI: 10.1523/jneurosci.2700-20.2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 12/18/2022] Open
Abstract
GABAergic neurons are key circuit elements in cortical networks. Despite growing evidence showing that inhibitory cells play a critical role in the lateral (LA) and basal (BA) amygdala functions, neither the number of GABAergic neurons nor the ratio of their distinct types has been determined in these amygdalar nuclei. Using unbiased stereology, we found that the ratio of GABAergic neurons in the BA (22%) is significantly higher than in the LA (16%) in both male and female mice. No difference was observed between the right and left hemispheres in either sex. In addition, we assessed the ratio of the major inhibitory cell types in both amygdalar nuclei. Using transgenic mice and a viral strategy for visualizing inhibitory cells combined with immunocytochemistry, we estimated that the following cell types together compose the vast majority of GABAergic cells in the LA and BA: axo-axonic cells (5.5%-6%), basket cells expressing parvalbumin (17%-20%) or cholecystokinin (7%-9%), dendrite-targeting inhibitory cells expressing somatostatin (10%-16%), NPY-containing neurogliaform cells (14%-15%), VIP and/or calretinin-expressing interneuron-selective interneurons (29%-38%), and GABAergic projection neurons expressing somatostatin and neuronal nitric oxide synthase (5.5%-8%). Our results show that these amygdalar nuclei contain all major GABAergic neuron types as found in other cortical regions. Furthermore, our data offer an essential reference for future studies aiming to reveal changes in GABAergic cell number and in inhibitory cell types typically observed under different pathologic conditions, and to model functioning amygdalar networks in health and disease.SIGNIFICANCE STATEMENT GABAergic cells in cortical structures, as in the lateral and basal nucleus of the amygdala, have a determinant role in controlling circuit operation. In this study, we provide the first estimate for the total number of inhibitory cells in these two amygdalar nuclei. In addition, our study is the first to define the ratio of the major GABAergic cell types present in these cortical networks. Taking into account that hyperexcitability in the amygdala, arising from the imbalance between excitation and inhibition typifies many altered brain functions, including anxiety, post-traumatic stress disorder, schizophrenia, and autism, uncovering the number and ratio of distinct amygdalar inhibitory cell types offers a solid base for comparing the changes in inhibition in pathologic brain states.
Collapse
|
24
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
25
|
Simon RA, Barazanji N, Jones MP, Bednarska O, Icenhour A, Engström M, Hamilton JP, Keita ÅV, Walter S. Vasoactive intestinal polypeptide plasma levels associated with affective symptoms and brain structure and function in healthy females. Sci Rep 2021; 11:1406. [PMID: 33446759 PMCID: PMC7809454 DOI: 10.1038/s41598-020-80873-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Vasoactive intestinal polypeptide (VIP) is a neuroendocrine peptide distributed throughout the human body, including the CNS, where it is particularly abundant in brain regions associated with anxiety and depression. Based on earlier studies indicating that peripheral VIP may cross through the blood-brain barrier, we hypothesized plasma VIP levels to be associated with symptoms of anxiety and depression, as well as brain volume and resting-state functional connectivity in the amygdala, hippocampus, parahippocampus, and orbitofrontal cortex. Plasma VIP concentrations and anxiety/depression symptoms were measured in 37 healthy females. Functional and structural magnetic resonance imaging were used to evaluate functional connectivity and brain volume respectively, and their associations with VIP concentrations within brain regions associated with anxiety and depression. Negative correlations were found between VIP levels and symptoms of anxiety (r = - 0.44, p = 0.002) and depression (r = - 0.50, p = 0.001). Functional connectivity demonstrated significant VIP-dependent positive associations between the amygdala seed region with both the right parahippocampus (t(33) = 3.1, pFDR = 0.02) and right lateral orbitofrontal cortex (OFC; t(33) = 2.9, pFDR = 0.02). Moreover, VIP concentrations were significantly, positively correlated with brain volume in the left amygdala (r = 0.28, p = 0.007) and left lateral OFC (r = 0.29, p = 0.004). The present findings highlight a potential role for VIP in the neurobiology of affective symptoms.
Collapse
Affiliation(s)
- Rozalyn A Simon
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Nawroz Barazanji
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Michael P Jones
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Olga Bednarska
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Adriane Icenhour
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Maria Engström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - J Paul Hamilton
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Susanna Walter
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
26
|
Mattera A, Pagani M, Baldassarre G. A Computational Model Integrating Multiple Phenomena on Cued Fear Conditioning, Extinction, and Reinstatement. Front Syst Neurosci 2020; 14:569108. [PMID: 33132856 PMCID: PMC7550679 DOI: 10.3389/fnsys.2020.569108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 11/23/2022] Open
Abstract
Conditioning, extinction, and reinstatement are fundamental learning processes of animal adaptation, also strongly involved in human pathologies such as post-traumatic stress disorder, anxiety, depression, and dependencies. Cued fear conditioning, extinction, restatement, and systematic manipulations of the underlying brain amygdala and medial prefrontal cortex, represent key experimental paradigms to study such processes. Numerous empirical studies have revealed several aspects and the neural systems and plasticity underlying them, but at the moment we lack a comprehensive view. Here we propose a computational model based on firing rate leaky units that contributes to such integration by accounting for 25 different experiments on fear conditioning, extinction, and restatement, on the basis of a single neural architecture having a structure and plasticity grounded in known brain biology. This allows the model to furnish three novel contributions to understand these open issues: (a) the functioning of the central and lateral amygdala system supporting conditioning; (b) the role played by the endocannabinoids system in within- and between-session extinction; (c) the formation of three important types of neurons underlying fear processing, namely fear, extinction, and persistent neurons. The model integration of the results on fear conditioning goes substantially beyond what was done in previous models.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Marco Pagani
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
27
|
Keever MR, Zhang P, Bolt CR, Antonson AM, Rymut HE, Caputo MP, Houser AK, Hernandez AG, Southey BR, Rund LA, Johnson RW, Rodriguez-Zas SL. Lasting and Sex-Dependent Impact of Maternal Immune Activation on Molecular Pathways of the Amygdala. Front Neurosci 2020; 14:774. [PMID: 32848554 PMCID: PMC7431923 DOI: 10.3389/fnins.2020.00774] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
The prolonged and sex-dependent impact of maternal immune activation (MIA) during gestation on the molecular pathways of the amygdala, a brain region that influences social, emotional, and other behaviors, is only partially understood. To address this gap, we investigated the effects of viral-elicited MIA during gestation on the amygdala transcriptome of pigs, a species of high molecular and developmental homology to humans. Gene expression levels were measured using RNA-Seq on the amygdala for 3-week-old female and male offspring from MIA and control groups. Among the 403 genes that exhibited significant MIA effect, a prevalence of differentially expressed genes annotated to the neuroactive ligand-receptor pathway, glutamatergic functions, neuropeptide systems, and cilium morphogenesis were uncovered. Genes in these categories included corticotropin-releasing hormone receptor 2, glutamate metabotropic receptor 4, glycoprotein hormones, alpha polypeptide, parathyroid hormone 1 receptor, vasointestinal peptide receptor 2, neurotensin, proenkephalin, and gastrin-releasing peptide. These categories and genes have been associated with the MIA-related human neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Gene network reconstruction highlighted differential vulnerability to MIA effects between sexes. Our results advance the understanding necessary for the development of multifactorial therapies targeting immune modulation and neurochemical dysfunction that can ameliorate the effects of MIA on offspring behavior later in life.
Collapse
Affiliation(s)
- Marissa R. Keever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Courtni R. Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Adrienne M. Antonson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Haley E. Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Megan P. Caputo
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alexandra K. Houser
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- High-throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
28
|
Hou X, Rong C, Wang F, Liu X, Sun Y, Zhang HT. GABAergic System in Stress: Implications of GABAergic Neuron Subpopulations and the Gut-Vagus-Brain Pathway. Neural Plast 2020; 2020:8858415. [PMID: 32802040 PMCID: PMC7416252 DOI: 10.1155/2020/8858415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Stress can cause a variety of central nervous system disorders, which are critically mediated by the γ-aminobutyric acid (GABA) system in various brain structures. GABAergic neurons have different subsets, some of which coexpress certain neuropeptides that can be found in the digestive system. Accumulating evidence demonstrates that the gut-brain axis, which is primarily regulated by the vagus nerve, is involved in stress, suggesting a communication between the "gut-vagus-brain" pathway and the GABAergic neuronal system. Here, we first summarize the evidence that the GABAergic system plays an essential role in stress responses. In addition, we review the effects of stress on different brain regions and GABAergic neuron subpopulations, including somatostatin, parvalbumin, ionotropic serotonin receptor 5-HT3a, cholecystokinin, neuropeptide Y, and vasoactive intestinal peptide, with regard to signaling events, behavioral changes, and pathobiology of neuropsychiatric diseases. Finally, we discuss the gut-brain bidirectional communications and the connection of the GABAergic system and the gut-vagus-brain pathway.
Collapse
Affiliation(s)
- Xueqin Hou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Fugang Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Xiaoqian Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Yi Sun
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong 271016, China
| | - Han-Ting Zhang
- Departments of Neuroscience and Behavioral Medicine & Psychiatry, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
29
|
Guet-McCreight A, Skinner FK, Topolnik L. Common Principles in Functional Organization of VIP/Calretinin Cell-Driven Disinhibitory Circuits Across Cortical Areas. Front Neural Circuits 2020; 14:32. [PMID: 32581726 PMCID: PMC7296096 DOI: 10.3389/fncir.2020.00032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022] Open
Abstract
In the brain, there is a vast diversity of different structures, circuitries, cell types, and cellular genetic expression profiles. While this large diversity can often occlude a clear understanding of how the brain works, careful analyses of analogous studies performed across different brain areas can hint at commonalities in neuronal organization. This in turn can yield a fundamental understanding of necessary circuitry components that are crucial for how information is processed across the brain. In this review, we outline recent in vivo and in vitro studies that have been performed in different cortical areas to characterize the vasoactive intestinal polypeptide (VIP)- and/or calretinin (CR)-expressing cells that specialize in inhibiting GABAergic interneurons. In doing so, we make the case that, across cortical structures, interneuron-specific cells commonly specialize in the synaptic disinhibition of excitatory neurons, which can ungate the integration and plasticity of external inputs onto excitatory neurons. In line with this, activation of interneuron- specific cells enhances animal performance across a variety of behavioral tasks that involve learning, memory formation, and sensory discrimination, and may represent a key target for therapeutic interventions under different pathological conditions. As such, interneuron-specific cells across different cortical structures are an essential network component for information processing and normal brain function.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Brain Institute - Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Frances K Skinner
- Krembil Brain Institute - Division of Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada.,Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| |
Collapse
|
30
|
McDonald AJ, Augustine JR. Nonpyramidal neurons in the primate basolateral amygdala: A Golgi study in the baboon (Papio cynocephalus) and long-tailed macaque (Macaca fascicularis). J Comp Neurol 2020; 528:772-786. [PMID: 31600841 PMCID: PMC8259058 DOI: 10.1002/cne.24785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022]
Abstract
Nonpyramidal GABAergic interneurons in the basolateral nuclear complex (BNC) of the amygdala are critical for the regulation of emotion. Remarkably, there have been no Golgi studies of these neurons in nonhuman primates. Therefore, in the present study we investigated the morphology of nonpyramidal neurons (NPNs) in the BNC of the baboon and monkey using the Golgi technique. NPNs were scattered throughout all nuclei of the BNC and had aspiny or spine-sparse dendrites. NPNs were morphologically heterogeneous and could be divided into small, medium, large, and giant types based on the size of their somata. NPNs could be further divided on the basis of their somatodendritic morphology into four types: multipolar, bitufted, bipolar, and irregular. NPN axons, when stained, formed dense local arborizations that overlapped their dendritic fields to varying extents. These axons always exhibited varying numbers of varicosities representing axon terminals. Three specialized NPN subtypes were recognized because of their unique anatomical features: axo-axonic cells, neurogliaform cells, and giant cells. The axons of axo-axonic cells formed "axonal cartridges," with clustered varicosities that contacted the axon initial segments of pyramidal neurons (PNs). Neurogliaform cells had small somata and numerous short dendrites that formed a dense dendritic arborization; they also exhibited a very dense axonal arborization that overlapped the dendritic field. Giant cells had very large irregular somata and long, thick dendrites; their distal dendrites often branched extensively and had long appendages. In general, the NPNs of the baboon and monkey BNC, including the specialized subtypes, were similar to those of rodents.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - James R Augustine
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
31
|
McDonald AJ. Functional neuroanatomy of the basolateral amygdala: Neurons, neurotransmitters, and circuits. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:1-38. [PMID: 34220399 PMCID: PMC8248694 DOI: 10.1016/b978-0-12-815134-1.00001-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
32
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
33
|
Polepalli JS, Gooch H, Sah P. Diversity of interneurons in the lateral and basal amygdala. NPJ SCIENCE OF LEARNING 2020; 5:10. [PMID: 32802405 PMCID: PMC7400739 DOI: 10.1038/s41539-020-0071-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
The basolateral amygdala (BLA) is a temporal lobe structure that contributes to a host of behaviors. In particular, it is a central player in learning about aversive events and thus assigning emotional valence to sensory events. It is a cortical-like structure and contains glutamatergic pyramidal neurons and GABAergic interneurons. It is divided into the lateral (LA) and basal (BA) nuclei that have distinct cell types and connections. Interneurons in the BLA are a heterogenous population, some of which have been implicated in specific functional roles. Here we use optogenetics and slice electrophysiology to investigate the innervation, postsynaptic receptor stoichiometry, and plasticity of excitatory inputs onto interneurons within the BLA. Interneurons were divided into six groups based on their discharge properties, each of which received input from the auditory thalamus (AT) and auditory cortex (AC). Auditory innervation was concentrated in the LA, and optogenetic stimulation evoked robust synaptic responses in nearly all interneurons, drove many cells to threshold, and evoked disynaptic inhibition in most interneurons. Auditory input to the BA was sparse, innervated fewer interneurons, and evoked smaller synaptic responses. Biophysically, the subunit composition and distribution of AMPAR and NMDAR also differed between the two nuclei, with fewer BA IN expressing calcium permeable AMPAR, and a higher proportion expressing GluN2B-containing NMDAR. Finally, unlike LA interneurons, LTP could not be induced in the BA. These findings show that interneurons in the LA and BA are physiologically distinct populations and suggest they may have differing roles during associative learning.
Collapse
Affiliation(s)
- Jai S. Polepalli
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072 Australia
- Department of Anatomy, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, 117594 Singapore
| | - Helen Gooch
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072 Australia
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072 Australia
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Nanshan District, Shenzhen, Guangdong Province P.R. China
| |
Collapse
|
34
|
Switching Operation Modes in the Neocortex via Cholinergic Neuromodulation. Mol Neurobiol 2019; 57:139-149. [DOI: 10.1007/s12035-019-01764-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/29/2019] [Indexed: 12/26/2022]
|
35
|
Guardians of the learning gate. Nat Neurosci 2019; 22:1747-1748. [PMID: 31636446 DOI: 10.1038/s41593-019-0519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Adaptive disinhibitory gating by VIP interneurons permits associative learning. Nat Neurosci 2019; 22:1834-1843. [DOI: 10.1038/s41593-019-0508-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/05/2019] [Indexed: 01/19/2023]
|