1
|
Baudouin SJ, Giles AR, Pearson N, Deforges S, He C, Boileau C, Partouche N, Borta A, Gautron J, Wartel M, Bočkaj I, Scavarda D, Bartolomei F, Penchet G, Aupy J, Sims J, Smith J, Mercer A, Danos O, Mulle C, Crépel V, Porter R. A novel AAV9-dual microRNA-vector targeting GRIK2 in the hippocampus as a treatment for mesial temporal lobe epilepsy. Mol Ther Methods Clin Dev 2024; 32:101342. [PMID: 39429724 PMCID: PMC11489344 DOI: 10.1016/j.omtm.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
Mesial temporal lobe epilepsy (mTLE) is the most prevalent type of epilepsy in adults. First and subsequent generations of anti-epileptic therapy regimens fail to decrease seizures in a large number of patients suffering from mTLE, leaving surgical ablation of part of the hippocampus as the only therapeutic option to potentially reach seizure freedom. GluK2 has recently been identified as a promising target for the treatment of mTLE using gene therapy. Here, we engineered an adeno-associated virus serotype 9 vector expressing a cluster of two synthetic microRNAs (miRNAs), expressed from the human synapsin promoter, that target GRIK2 mRNA. Intra-hippocampal delivery of this vector in a mouse model of mTLE significantly reduced GRIK2 expression and daily seizure frequency. This treatment also improved the animals' health, reduced their anxiety, and restored working memory. Focal administration of the vector to the hippocampus of cynomolgus monkeys in GLP toxicology studies led to the selective transduction of hippocampal neurons with little exposure elsewhere in the brain and no transduction outside the central nervous system. Expression of miRNAs in hippocampal neurons resulted in substantially decreased GRIK2 mRNA expression. These data suggest that the intra-hippocampal delivery of a GMP-grade AAV9 encoding a synthetic miRNAs targeting GRIK2 is a promising treatment strategy for mTLE.
Collapse
Affiliation(s)
| | | | - Nick Pearson
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | | | - Chenxia He
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | - Céline Boileau
- INSERM, INMED, Aix-Marseille University, 13009 Marseille, France
| | | | - Andreas Borta
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| | | | - Morgane Wartel
- uniQure biopharma B.V., 1105BP Amsterdam, the Netherlands
| | - Irena Bočkaj
- uniQure biopharma B.V., 1105BP Amsterdam, the Netherlands
| | - Didier Scavarda
- APHM, INSERM, Aix-Marseille University, Timone Hospital, Pediatric Neurosurgery, 13005 Marseille, France
| | - Fabrice Bartolomei
- APHM, INSERM, Aix-Marseille University, INS, Timone Hospital, Epileptology Department, 13005 Marseille, France
| | - Guillaume Penchet
- Pellegrin Hospital, Neurosurgery Department, CHU, 33000 Bordeaux, France
| | - Jérôme Aupy
- Pellegrin Hospital, Neurosurgery Department, CHU, 33000 Bordeaux, France
| | | | | | | | | | | | - Valérie Crépel
- INSERM, INMED, Aix-Marseille University, 13009 Marseille, France
| | - Richard Porter
- uniQure (Corlieve Therapeutics AG), 4052 Basel, Switzerland
| |
Collapse
|
2
|
Pelkey KA, Vargish GA, Pellegrini LV, Calvigioni D, Chapeton J, Yuan X, Hunt S, Cummins AC, Eldridge MAG, Pickel J, Chittajallu R, Averbeck BB, Tóth K, Zaghloul K, McBain CJ. Evolutionary conservation of hippocampal mossy fiber synapse properties. Neuron 2023; 111:3802-3818.e5. [PMID: 37776852 PMCID: PMC10841147 DOI: 10.1016/j.neuron.2023.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/03/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Geoffrey A Vargish
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonardo V Pellegrini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Daniela Calvigioni
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julio Chapeton
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoqing Yuan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Hunt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex C Cummins
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A G Eldridge
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramesh Chittajallu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bruno B Averbeck
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katalin Tóth
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Kareem Zaghloul
- National Institute of Neurological Disorders and Stroke Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chris J McBain
- Eunice Kennedy Shriver National Institute of Child Health and Human Development Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Boileau C, Deforges S, Peret A, Scavarda D, Bartolomei F, Giles A, Partouche N, Gautron J, Viotti J, Janowitz H, Penchet G, Marchal C, Lagarde S, Trebuchon A, Villeneuve N, Rumi J, Marissal T, Khazipov R, Khalilov I, Martineau F, Maréchal M, Lepine A, Milh M, Figarella-Branger D, Dougy E, Tong S, Appay R, Baudouin S, Mercer A, Smith JB, Danos O, Porter R, Mulle C, Crépel V. GluK2 Is a Target for Gene Therapy in Drug-Resistant Temporal Lobe Epilepsy. Ann Neurol 2023; 94:745-761. [PMID: 37341588 DOI: 10.1002/ana.26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Temporal lobe epilepsy (TLE) is characterized by recurrent seizures generated in the limbic system, particularly in the hippocampus. In TLE, recurrent mossy fiber sprouting from dentate gyrus granule cells (DGCs) crea an aberrant epileptogenic network between DGCs which operates via ectopically expressed GluK2/GluK5-containing kainate receptors (KARs). TLE patients are often resistant to anti-seizure medications and suffer significant comorbidities; hence, there is an urgent need for novel therapies. Previously, we have shown that GluK2 knockout mice are protected from seizures. This study aims at providing evidence that downregulating KARs in the hippocampus using gene therapy reduces chronic epileptic discharges in TLE. METHODS We combined molecular biology and electrophysiology in rodent models of TLE and in hippocampal slices surgically resected from patients with drug-resistant TLE. RESULTS Here, we confirmed the translational potential of KAR suppression using a non-selective KAR antagonist that markedly attenuated interictal-like epileptiform discharges (IEDs) in TLE patient-derived hippocampal slices. An adeno-associated virus (AAV) serotype-9 vector expressing anti-grik2 miRNA was engineered to specifically downregulate GluK2 expression. Direct delivery of AAV9-anti grik2 miRNA into the hippocampus of TLE mice led to a marked reduction in seizure activity. Transduction of TLE patient hippocampal slices reduced levels of GluK2 protein and, most importantly, significantly reduced IEDs. INTERPRETATION Our gene silencing strategy to knock down aberrant GluK2 expression demonstrates inhibition of chronic seizure in a mouse TLE model and IEDs in cultured slices derived from TLE patients. These results provide proof-of-concept for a gene therapy approach targeting GluK2 KARs for drug-resistant TLE patients. ANN NEUROL 2023;94:745-761.
Collapse
Affiliation(s)
| | - Severine Deforges
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | - Didier Scavarda
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Pediatric Neurosurgery, Marseille, France
| | - Fabrice Bartolomei
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | | | - Nicolas Partouche
- Aix-Marseille Univ. INSERM, Marseille, France
- Corlieve Therapeutics SAS, uniQure NV, Paris, France
| | - Justine Gautron
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
- Corlieve Therapeutics SAS, uniQure NV, Paris, France
| | - Julio Viotti
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | | | - Cécile Marchal
- Pellegrin Hospital, Neurosurgery Department, Bordeaux, France
| | - Stanislas Lagarde
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Agnès Trebuchon
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Nathalie Villeneuve
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Julie Rumi
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | | | | | | | | - Marine Maréchal
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | - Anne Lepine
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Mathieu Milh
- APHM, INSERM, Aix Marseille Univ, INS, Timone Hospital, Epileptology Department, Marseille, France
| | - Dominique Figarella-Branger
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Etienne Dougy
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Soutsakhone Tong
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | - Romain Appay
- APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Aix-Marseille Univ, Marseille, France
| | | | | | | | | | | | - Christophe Mulle
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience IINS, UMR 5297, Bordeaux, France
| | | |
Collapse
|
4
|
Morris G, Avoli M, Bernard C, Connor K, de Curtis M, Dulla CG, Jefferys JGR, Psarropoulou C, Staley KJ, Cunningham MO. Can in vitro studies aid in the development and use of antiseizure therapies? A report of the ILAE/AES Joint Translational Task Force. Epilepsia 2023; 64:2571-2585. [PMID: 37642296 DOI: 10.1111/epi.17744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
In vitro preparations (defined here as cultured cells, brain slices, and isolated whole brains) offer a variety of approaches to modeling various aspects of seizures and epilepsy. Such models are particularly amenable to the application of anti-seizure compounds, and consequently are a valuable tool to screen the mechanisms of epileptiform activity, mode of action of known anti-seizure medications (ASMs), and the potential efficacy of putative new anti-seizure compounds. Despite these applications, all disease models are a simplification of reality and are therefore subject to limitations. In this review, we summarize the main types of in vitro models that can be used in epilepsy research, describing key methodologies as well as notable advantages and disadvantages of each. We argue that a well-designed battery of in vitro models can form an effective and potentially high-throughput screening platform to predict the clinical usefulness of ASMs, and that in vitro models are particularly useful for interrogating mechanisms of ASMs. To conclude, we offer several key recommendations that maximize the potential value of in vitro models in ASM screening. This includes the use of multiple in vitro tests that can complement each other, carefully combined with in vivo studies, the use of tissues from chronically epileptic (rather than naïve wild-type) animals, and the integration of human cell/tissue-derived preparations.
Collapse
Affiliation(s)
- Gareth Morris
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
- Department of Physiology, McGill University, Montréal, Quebec, Canada
| | - Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| | - Kate Connor
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John G R Jefferys
- Department of Physiology, 2nd Medical School, Motol, Charles University, Prague, Czech Republic
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Caterina Psarropoulou
- Laboratory of Animal and Human Physiology, Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kevin J Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
5
|
Goirand-Lopez L, Moulinier M, Vigier A, Boileau C, Carleton A, Muldoon SF, Marissal T, Crépel V. Kainate receptors modulate the microstructure of synchrony during dentate gyrus epileptiform activity. Neurobiol Dis 2023; 185:106260. [PMID: 37573957 DOI: 10.1016/j.nbd.2023.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
Temporal Lobe Epilepsy (TLE) is the most common form of epilepsy in adults. In TLE, recurrent mossy fiber (rMF) sprouting from dentate gyrus granule cells (DGCs) forms an aberrant epileptogenic network between dentate granule cells (DGCs) that operates via ectopically expressed kainate receptors (KARs). It was previously shown that KARs expressed at the rMF-DGC synapses play a prominent role in epileptiform network events in TLE. However, it is not well understood how KARs influence neuronal network dynamics and contribute to the generation of epileptiform network activity in the dentate gyrus. To address this question, we monitored the activity of DGCs using single-cell resolution calcium imaging performed in a reliable in vitro model of TLE. Under our experimental conditions, the most prominent DGC activity patterns were interictal-like epileptiform network events, which were correlated with high levels of neuronal synchronization. The pharmacological blockade of KARs reduced the frequency as well as the number of neurons involved in these events, without altering their spatiotemporal dynamics. Analysis of the microstructure of synchrony showed that blockade of KARs diminished the fraction of neurons forming the main functional cluster. Therefore, we propose that KARs act as modulators in the epileptic network by facilitating the recruitment of neurons into coactive cell assemblies, thereby contributing to the occurrence of epileptiform network events.
Collapse
Affiliation(s)
| | - Marie Moulinier
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | - Alan Carleton
- Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sarah F Muldoon
- Mathematics Department, Institute for Artificial Intelligence and Data Science, and Neuroscience Program, University at Buffalo, SUNY, Buffalo NY14260, USA
| | | | | |
Collapse
|
6
|
Seelman A, Vu K, Buckmaster P, Mackie K, Field C, Johnson S, Wyeth M. Cannabinoid receptor 1-labeled boutons in the sclerotic dentate gyrus of epileptic sea lions. Epilepsy Res 2022; 184:106965. [PMID: 35724601 DOI: 10.1016/j.eplepsyres.2022.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/03/2022]
Abstract
Pathology in the dentate gyrus, including sclerosis, is a hallmark of temporal lobe epilepsy, and reduced inhibition to dentate granule cells may contribute to epileptogenesis. The perisomatic-targeting axonal boutons of parvalbumin-expressing interneurons decrease in proportion with granule cells in temporal lobe epilepsy. In contrast, dendrite-targeting axonal boutons of somatostatin-expressing interneurons sprout exuberantly in temporal lobe epilepsy. A third major class of GABAergic interneurons expresses cannabinoid receptor type 1 (CB1) on their terminal boutons, but there is conflicting evidence as to whether these boutons are increased or decreased in temporal lobe epilepsy. Naturally occurring temporal lobe epilepsy in California sea lions, with unilateral or bilateral sclerosis, offers the benefit of neuroanatomy and neuropathology akin to humans, but with the advantage that the entirety of both hippocampi from control and epileptic brains can be studied. Stereological quantification in the dentate gyrus revealed that sclerotic hippocampi from epileptic sea lions had fewer CB1-labeled boutons than controls. However, the reduction in the number of granule cells was greater, resulting in increased CB1-labeled boutons per granule cell in sclerotic hippocampi at temporal levels. This suggests that although CB1-expressing boutons are decreased in sclerotic dentate gyri, surviving cells have enhanced innervation from these boutons in epileptic sea lions.
Collapse
Affiliation(s)
- Amanda Seelman
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Western University of Health Sciences, East 2nd Street, Pomona, CA 91766, USA
| | - Kristina Vu
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA; College of Veterinary Medicine, Cornell University, 602 Tower Rd, Ithaca, NY 14853, USA
| | - Paul Buckmaster
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Ken Mackie
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th Street, Bloomington, IN 47405, USA; Gill Centre for Biomolecular Science, Indiana University, 702 North Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Cara Field
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Shawn Johnson
- The Marine Mammal Center, 2000 Bunker Road, Sausalito, CA 94965, USA
| | - Megan Wyeth
- Department of Comparative Medicine, School of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Ammothumkandy A, Ravina K, Wolseley V, Tartt AN, Yu PN, Corona L, Zhang N, Nune G, Kalayjian L, Mann JJ, Rosoklija GB, Arango V, Dwork AJ, Lee B, Smith JAD, Song D, Berger TW, Heck C, Chow RH, Boldrini M, Liu CY, Russin JJ, Bonaguidi MA. Altered adult neurogenesis and gliogenesis in patients with mesial temporal lobe epilepsy. Nat Neurosci 2022; 25:493-503. [PMID: 35383330 PMCID: PMC9097543 DOI: 10.1038/s41593-022-01044-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/01/2022] [Indexed: 01/19/2023]
Abstract
The hippocampus is the most common seizure focus in people. In the hippocampus, aberrant neurogenesis plays a critical role in the initiation and progression of epilepsy in rodent models, but it is unknown whether this also holds true in humans. To address this question, we used immunofluorescence on control healthy hippocampus and surgical resections from mesial temporal lobe epilepsy (MTLE), plus neural stem-cell cultures and multi-electrode recordings of ex vivo hippocampal slices. We found that a longer duration of epilepsy is associated with a sharp decline in neuronal production and persistent numbers in astrogenesis. Further, immature neurons in MTLE are mostly inactive, and are not observed in cases with local epileptiform-like activity. However, immature astroglia are present in every MTLE case and their location and activity are dependent on epileptiform-like activity. Immature astroglia, rather than newborn neurons, therefore represent a potential target to continually modulate adult human neuronal hyperactivity.
Collapse
Affiliation(s)
- Aswathy Ammothumkandy
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kristine Ravina
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victoria Wolseley
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexandria N Tartt
- Division of Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Pen-Ning Yu
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Luis Corona
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naibo Zhang
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Nune
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura Kalayjian
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J John Mann
- Division of Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Gorazd B Rosoklija
- Division of Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Victoria Arango
- Division of Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Andrew J Dwork
- Division of Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Brian Lee
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J A D Smith
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dong Song
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Theodore W Berger
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Christianne Heck
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert H Chow
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Maura Boldrini
- Division of Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Charles Y Liu
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jonathan J Russin
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Bonaguidi
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
- Department of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Department of Biochemistry and Molecular Medicine, University of Southern California, Los Angeles, CA, USA.
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Araújo NS, Reyes-Garcia SZ, Brogin JAF, Bueno DD, Cavalheiro EA, Scorza CA, Faber J. Chaotic and stochastic dynamics of epileptiform-like activities in sclerotic hippocampus resected from patients with pharmacoresistant epilepsy. PLoS Comput Biol 2022; 18:e1010027. [PMID: 35417449 PMCID: PMC9037954 DOI: 10.1371/journal.pcbi.1010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/25/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
The types of epileptiform activity occurring in the sclerotic hippocampus with highest incidence are interictal-like events (II) and periodic ictal spiking (PIS). These activities are classified according to their event rates, but it is still unclear if these rate differences are consequences of underlying physiological mechanisms. Identifying new and more specific information related to these two activities may bring insights to a better understanding about the epileptogenic process and new diagnosis. We applied Poincaré map analysis and Recurrence Quantification Analysis (RQA) onto 35 in vitro electrophysiological signals recorded from slices of 12 hippocampal tissues surgically resected from patients with pharmacoresistant temporal lobe epilepsy. These analyzes showed that the II activity is related to chaotic dynamics, whereas the PIS activity is related to deterministic periodic dynamics. Additionally, it indicates that their different rates are consequence of different endogenous dynamics. Finally, by using two computational models we were able to simulate the transition between II and PIS activities. The RQA was applied to different periods of these simulations to compare the recurrences between artificial and real signals, showing that different ranges of regularity-chaoticity can be directly associated with the generation of PIS and II activities. Temporal lobe epilepsy (TLE) is the most prevalent type of epilepsy in adults and hippocampal sclerosis is the major pathophysiological substrate of pharmaco-refractory TLE. Different patterns of epileptiform-like activity have been described in human hippocampal sclerosis, but the standard analysis applied to characterize the activities usually do not consider the nonlinear features that epileptiform patterns exhibit. Here, using Poincaré map and Recurrence Quantitative Analysis we characterized the most prevalent type of epileptiform-like activities—interictal-like events (II) and periodic ictal spiking (PIS), recorded in vitro from resected hippocampi of pharmacoresistant patients with TLE—according to their levels of stochasticity, chaoticity and determinism. The II activities showed to be more chaotic with complex rhythmicity than PIS activities. The nonlinear dynamic differences between II and PIS leads us to conjecture that they are expressions of different seizure susceptibility. We also identified that each hippocampal subfield expresses II and PIS activities in a specific and different way. Finally, from the modulation of internal parameters of two computational models, we show the conversion of one type of activity into the other, showing how specific neuron networks synchronize over time, leading to II and PIS activities and then into a generalized seizure.
Collapse
Affiliation(s)
- Noemi S. Araújo
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Selvin Z. Reyes-Garcia
- Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - João A. F. Brogin
- Department of Mechanical Engineering, São Paulo State University (UNESP), School of Engineering of Ilha Solteira, Ilha Solteira, São Paulo, Brazil
| | - Douglas D. Bueno
- Department of Mathematics, São Paulo State University (UNESP), School of Engineering of Ilha Solteira, Ilha Solteira, São Paulo, Brazil
| | - Esper A. Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Carla A. Scorza
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
9
|
Aiba I, Noebels JL. Kcnq2/Kv7.2 controls the threshold and bi-hemispheric symmetry of cortical spreading depolarization. Brain 2021; 144:2863-2878. [PMID: 33768249 PMCID: PMC8536937 DOI: 10.1093/brain/awab141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 12/03/2022] Open
Abstract
Spreading depolarization is a slowly propagating wave of massive cellular depolarization associated with acute brain injury and migraine aura. Genetic studies link depolarizing molecular defects in Ca2+ flux, Na+ current in interneurons, and glial Na+-K+ ATPase with spreading depolarization susceptibility, emphasizing the important roles of synaptic activity and extracellular ionic homeostasis in determining spreading depolarization threshold. In contrast, although gene mutations in voltage-gated potassium ion channels that shape intrinsic membrane excitability are frequently associated with epilepsy susceptibility, it is not known whether epileptogenic mutations that regulate membrane repolarization also modify spreading depolarization threshold and propagation. Here we report that the Kcnq2/Kv7.2 potassium channel subunit, frequently mutated in developmental epilepsy, is a spreading depolarization modulatory gene with significant control over the seizure-spreading depolarization transition threshold, bi-hemispheric cortical expression, and diurnal temporal susceptibility. Chronic DC-band cortical EEG recording from behaving conditional Kcnq2 deletion mice (Emx1cre/+::Kcnq2flox/flox) revealed spontaneous cortical seizures and spreading depolarization. In contrast to the related potassium channel deficient model, Kv1.1-KO mice, spontaneous cortical spreading depolarizations in Kcnq2 cKO mice are tightly coupled to the terminal phase of seizures, arise bilaterally, and are observed predominantly during the dark phase. Administration of the non-selective Kv7.2 inhibitor XE991 to Kv1.1-KO mice partly reproduced the Kcnq2 cKO-like spreading depolarization phenotype (tight seizure coupling and bilateral symmetry) in these mice, indicating that Kv7.2 currents can directly and actively modulate spreading depolarization properties. In vitro brain slice studies confirmed that Kcnq2/Kv7.2 depletion or pharmacological inhibition intrinsically lowers the cortical spreading depolarization threshold, whereas pharmacological Kv7.2 activators elevate the threshold to multiple depolarizing and hypometabolic spreading depolarization triggers. Together these results identify Kcnq2/Kv7.2 as a distinctive spreading depolarization regulatory gene, and point to spreading depolarization as a potentially significant pathophysiological component of KCNQ2-linked epileptic encephalopathy syndromes. Our results also implicate KCNQ2/Kv7.2 channel activation as a potential adjunctive therapeutic target to inhibit spreading depolarization incidence.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Schlabitz S, Monni L, Ragot A, Dipper-Wawra M, Onken J, Holtkamp M, Fidzinski P. Spatiotemporal Correlation of Epileptiform Activity and Gene Expression in vitro. Front Mol Neurosci 2021; 14:643763. [PMID: 33859552 PMCID: PMC8042243 DOI: 10.3389/fnmol.2021.643763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Epileptiform activity alters gene expression in the central nervous system, a phenomenon that has been studied extensively in animal models. Here, we asked whether also in vitro models of seizures are in principle suitable to investigate changes in gene expression due to epileptiform activity and tested this hypothesis mainly in rodent and additionally in some human brain slices. We focused on three genes relevant for seizures and epilepsy: FOS proto-oncogene (c-Fos), inducible cAMP early repressor (Icer) and mammalian target of rapamycin (mTor). Seizure-like events (SLEs) were induced by 4-aminopyridine (4-AP) in rat entorhinal-hippocampal slices and by 4-AP/8 mM potassium in human temporal lobe slices obtained from surgical treatment of epilepsy. SLEs were monitored simultaneously by extracellular field potentials and intrinsic optical signals (IOS) for 1–4 h, mRNA expression was quantified by real time PCR. In rat slices, both duration of SLE exposure and SLE onset region were associated with increased expression of c-Fos and Icer while no such association was shown for mTor expression. Similar to rat slices, c-FOS induction in human tissue was increased in slices with epileptiform activity. Our results indicate that irrespective of limitations imposed by ex vivo conditions, in vitro models represent a suitable tool to investigate gene expression. Our finding is of relevance for the investigation of human tissue that can only be performed ex vivo. Specifically, it presents an important prerequisite for future studies on transcriptome-wide and cell-specific changes in human tissue with the goal to reveal novel candidates involved in the pathophysiology of epilepsy and possibly other CNS pathologies.
Collapse
Affiliation(s)
- Sophie Schlabitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Laura Monni
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Alienor Ragot
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Matthias Dipper-Wawra
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany
| | - Julia Onken
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurosurgery, Berlin, Germany
| | - Martin Holtkamp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany
| | - Pawel Fidzinski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Clinical and Experimental Epileptology, Berlin, Germany.,Epilepsy-Center Berlin-Brandenburg, Institute for Diagnostics of Epilepsy, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Neuroscience Research Center, Berlin, Germany
| |
Collapse
|
11
|
Latorre A, Rocchi L, Magrinelli F, Mulroy E, Berardelli A, Rothwell JC, Bhatia KP. Unravelling the enigma of cortical tremor and other forms of cortical myoclonus. Brain 2021; 143:2653-2663. [PMID: 32417917 DOI: 10.1093/brain/awaa129] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Cortical tremor is a fine rhythmic oscillation involving distal upper limbs, linked to increased sensorimotor cortex excitability, as seen in cortical myoclonus. Cortical tremor is the hallmark feature of autosomal dominant familial cortical myoclonic tremor and epilepsy (FCMTE), a syndrome not yet officially recognized and characterized by clinical and genetic heterogeneity. Non-coding repeat expansions in different genes have been recently recognized to play an essential role in its pathogenesis. Cortical tremor is considered a rhythmic variant of cortical myoclonus and is part of the 'spectrum of cortical myoclonus', i.e. a wide range of clinical motor phenomena, from reflex myoclonus to myoclonic epilepsy, caused by abnormal sensorimotor cortical discharges. The aim of this update is to provide a detailed analysis of the mechanisms defining cortical tremor, as seen in FCMTE. After reviewing the clinical and genetic features of FCMTE, we discuss the possible mechanisms generating the distinct elements of the cortical myoclonus spectrum, and how cortical tremor fits into it. We propose that the spectrum is due to the evolution from a spatially limited focus of excitability to recruitment of more complex mechanisms capable of sustaining repetitive activity, overcoming inhibitory mechanisms that restrict excitatory bursts, and engaging wide areas of cortex. Finally, we provide evidence for a possible common denominator of the elements of the spectrum, i.e. the cerebellum, and discuss its role in FCMTE, according to recent genetic findings.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
12
|
Stevenson R, Samokhina E, Rossetti I, Morley JW, Buskila Y. Neuromodulation of Glial Function During Neurodegeneration. Front Cell Neurosci 2020; 14:278. [PMID: 32973460 PMCID: PMC7473408 DOI: 10.3389/fncel.2020.00278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.
Collapse
Affiliation(s)
- Rebecca Stevenson
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behaviour and Development, Penrith, NSW, Australia
| |
Collapse
|
13
|
Inhibition of epileptiform activity by neuropeptide Y in brain tissue from drug-resistant temporal lobe epilepsy patients. Sci Rep 2019; 9:19393. [PMID: 31852985 PMCID: PMC6920462 DOI: 10.1038/s41598-019-56062-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023] Open
Abstract
In epilepsy patients, drug-resistant seizures often originate in one of the temporal lobes. In selected cases, when certain requirements are met, this area is surgically resected for therapeutic reasons. We kept the resected tissue slices alive in vitro for 48 h to create a platform for testing a novel treatment strategy based on neuropeptide Y (NPY) against drug-resistant epilepsy. We demonstrate that NPY exerts a significant inhibitory effect on epileptiform activity, recorded with whole-cell patch-clamp, in human hippocampal dentate gyrus. Application of NPY reduced overall number of paroxysmal depolarising shifts and action potentials. This effect was mediated by Y2 receptors, since application of selective Y2-receptor antagonist blocked the effect of NPY. This proof-of-concept finding is an important translational milestone for validating NPY-based gene therapy for targeting focal drug-resistant epilepsies, and increasing the prospects for positive outcome in potential clinical trials.
Collapse
|
14
|
Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 2019; 20:282-297. [PMID: 30792501 DOI: 10.1038/s41583-019-0126-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epilepsy is a neurological disorder afflicting ~65 million people worldwide. It is caused by aberrant synchronized firing of populations of neurons primarily due to imbalance between excitatory and inhibitory neurotransmission. Hence, the historical focus of epilepsy research has been neurocentric. However, the past two decades have enjoyed an explosion of research into the role of glia in supporting and modulating neuronal activity, providing compelling evidence of glial involvement in the pathophysiology of epilepsy. The mechanisms by which glia, particularly astrocytes and microglia, may contribute to epilepsy and consequently could be harnessed therapeutically are discussed in this Review.
Collapse
Affiliation(s)
- Dipan C Patel
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Bhanu P Tewari
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Lata Chaunsali
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA
| | - Harald Sontheimer
- Fralin Biomedical Research Institute, Glial Biology in Health, Disease, and Cancer Center, Roanoke, VA, USA. .,School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Tyrtyshnaia AA, Manzhulo IV, Konovalova SP, Zaglyadkina AA, Starinets AA. The Effects of Neuropathic Pain on the State of Glial Cells and Hippocampal Neurogenesis in Old Animals. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Toglia P, Ullah G. Mitochondrial dysfunction and role in spreading depolarization and seizure. J Comput Neurosci 2019; 47:91-108. [PMID: 31506806 DOI: 10.1007/s10827-019-00724-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 03/12/2019] [Accepted: 07/26/2019] [Indexed: 11/24/2022]
Abstract
The effect of pathological phenomena such as epileptic seizures and spreading depolarization (SD) on mitochondria and the potential feedback of mitochondrial dysfunction into the dynamics of those phenomena are complex and difficult to study experimentally due to the simultaneous changes in many variables governing neuronal behavior. By combining a model that accounts for a wide range of neuronal behaviors including seizures, normoxic SD, and hypoxic SD (HSD), together with a detailed model of mitochondrial function and intracellular Ca2+ dynamics, we investigate mitochondrial dysfunction and its potential role in recovery of the neuron from seizures, HSD, and SD. Our results demonstrate that HSD leads to the collapse of mitochondrial membrane potential and cellular ATP levels that recover only when normal oxygen supply is restored. Mitochondrial organic phosphate and pH gradients determine the strength of the depolarization block during HSD and SD, how quickly the cell enters the depolarization block when the oxygen supply is disrupted or potassium in the bath solution is raised beyond the physiological value, and how fast the cell recovers from SD and HSD when normal potassium concentration and oxygen supply are restored. Although not as dramatic as phosphate and pH gradients, mitochondrial Ca2+ uptake has a similar effect on neuronal behavior during these conditions.
Collapse
Affiliation(s)
- Patrick Toglia
- Department of Physics, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, 4202 E. Fowler Ave., Tampa, FL, 33620, USA.
| |
Collapse
|
17
|
Kraus L, Hetsch F, Schneider UC, Radbruch H, Holtkamp M, Meier JC, Fidzinski P. Dimethylethanolamine Decreases Epileptiform Activity in Acute Human Hippocampal Slices in vitro. Front Mol Neurosci 2019; 12:209. [PMID: 31551707 PMCID: PMC6743366 DOI: 10.3389/fnmol.2019.00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/09/2019] [Indexed: 01/13/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy with about 30% of patients developing pharmacoresistance. These patients continue to suffer from seizures despite polytherapy with antiepileptic drugs (AEDs) and have an increased risk for premature death, thus requiring further efforts for the development of new antiepileptic therapies. The molecule dimethylethanolamine (DMEA) has been tested as a potential treatment in various neurological diseases, albeit the functional mechanism of action was never fully understood. In this study, we investigated the effects of DMEA on neuronal activity in single-cell recordings of primary neuronal cultures. DMEA decreased the frequency of spontaneous synaptic events in a concentration-dependent manner with no apparent effect on resting membrane potential (RMP) or action potential (AP) threshold. We further tested whether DMEA can exert antiepileptic effects in human brain tissue ex vivo. We analyzed the effect of DMEA on epileptiform activity in the CA1 region of the resected hippocampus of TLE patients in vitro by recording extracellular field potentials in the pyramidal cell layer. Epileptiform burst activity in resected hippocampal tissue from TLE patients remained stable over several hours and was pharmacologically suppressed by lacosamide, demonstrating the applicability of our platform to test antiepileptic efficacy. Similar to lacosamide, DMEA also suppressed epileptiform activity in the majority of samples, albeit with variable interindividual effects. In conclusion, DMEA might present a new approach for treatment in pharmacoresistant TLE and further studies will be required to identify its exact mechanism of action and the involved molecular targets.
Collapse
Affiliation(s)
- Larissa Kraus
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Berlin, Germany
- Berlin Institute of Health (BIH), Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Hetsch
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ulf C. Schneider
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurosurgery, Berlin, Germany
| | - Helena Radbruch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
| | - Martin Holtkamp
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Berlin, Germany
- Berlin Institute of Health (BIH), Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jochen C. Meier
- Berlin Institute of Health (BIH), Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
- Zoologisches Institut, Technische Universität Braunschweig, Braunschweig, Germany
| | - Pawel Fidzinski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Berlin, Germany
| |
Collapse
|
18
|
Inhibition and oscillations in the human brain tissue in vitro. Neurobiol Dis 2019; 125:198-210. [DOI: 10.1016/j.nbd.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
|
19
|
Malkov A, Ivanov AI, Latyshkova A, Bregestovski P, Zilberter M, Zilberter Y. Activation of nicotinamide adenine dinucleotide phosphate oxidase is the primary trigger of epileptic seizures in rodent models. Ann Neurol 2019; 85:907-920. [PMID: 30937971 DOI: 10.1002/ana.25474] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/05/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Despite decades of epilepsy research, 30% of focal epilepsies remain resistant to antiseizure drugs, with effective drug development impeded by lack of understanding on how seizures are initiated. Here, we report the mechanism of seizure onset relevant to most seizures that are characteristic of focal epilepsies. METHODS Electric and metabolic network parameters were measured using several seizure models in mouse hippocampal slices and acutely induced seizures in rats in vivo to determine metabolic events occurring at seizure onset. RESULTS We show that seizure onset is associated with a rapid release of H2 O2 resulting from N-methyl-D-aspartate (NMDA) receptor-mediated activation of nicotinamide adenine dinucleotide phosphate oxidase (NOX). NOX blockade prevented the fast H2 O2 release as well as the direct current shift and seizurelike event induction in slices. Similarly, intracerebroventricular injection of NOX antagonists prevented acutely induced seizures in rats. INTERPRETATION Our results show that seizures are initiated by NMDA receptor-mediated NOX-induced oxidative stress and can be arrested by NOX inhibition. We introduce a novel use for blood-brain barrier-permeable NOX inhibitor with a significant potential to become the first seizure-specific medication. Thus, targeting NOX may provide a breakthrough treatment for focal epilepsies. ANN NEUROL 2019;85:907-920.
Collapse
Affiliation(s)
- Anton Malkov
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anton I Ivanov
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France
| | - Alexandra Latyshkova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Piotr Bregestovski
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France.,Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA
| | - Yuri Zilberter
- Aix-Marseille University, National Institute of Health and Medical Research, Institute of Neuroscience Systems, Mixed Unit of Research 1106, Marseille, France
| |
Collapse
|
20
|
Cameron S, Lopez A, Glabman R, Abrams E, Johnson S, Field C, Gulland FMD, Buckmaster PS. Proportional loss of parvalbumin-immunoreactive synaptic boutons and granule cells from the hippocampus of sea lions with temporal lobe epilepsy. J Comp Neurol 2019; 527:2341-2355. [PMID: 30861128 DOI: 10.1002/cne.24680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 03/02/2019] [Indexed: 01/10/2023]
Abstract
One in 26 people develop epilepsy and in these temporal lobe epilepsy (TLE) is common. Many patients display a pattern of neuron loss called hippocampal sclerosis. Seizures usually start in the hippocampus but underlying mechanisms remain unclear. One possibility is insufficient inhibition of dentate granule cells. Normally parvalbumin-immunoreactive (PV) interneurons strongly inhibit granule cells. Humans with TLE display loss of PV interneurons in the dentate gyrus but questions persist. To address this, we evaluated PV interneuron and bouton numbers in California sea lions (Zalophus californianus) that naturally develop TLE after exposure to domoic acid, a neurotoxin that enters the marine food chain during harmful algal blooms. Sclerotic hippocampi were identified by the loss of Nissl-stained hilar neurons. Stereological methods were used to estimate the number of granule cells and PV interneurons per dentate gyrus. Sclerotic hippocampi contained fewer granule cells, fewer PV interneurons, and fewer PV synaptic boutons, and the ratio of granule cells to PV interneurons was higher than in controls. To test whether fewer boutons was attributable to loss versus reduced immunoreactivity, expression of synaptotagmin-2 (syt2) was evaluated. Syt2 is also expressed in boutons of PV interneurons. Sclerotic hippocampi displayed proportional losses of syt2-immunoreactive boutons, PV boutons, and granule cells. There was no significant difference in the average numbers of PV- or syt2-positive boutons per granule cell between control and sclerotic hippocampi. These findings do not address functionality of surviving synapses but suggest reduced granule cell inhibition in TLE is not attributable to anatomical loss of PV boutons.
Collapse
Affiliation(s)
- Starr Cameron
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Ariana Lopez
- Department of Comparative Medicine, Stanford University, Stanford, California.,College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Raisa Glabman
- Department of Comparative Medicine, Stanford University, Stanford, California.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily Abrams
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | - Cara Field
- The Marine Mammal Center, Sausalito, California
| | | | - Paul S Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California.,Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
21
|
Zottoli SJ, Seyfarth EA. Mary Jane Hogue (1883-1962): A pioneer in human brain tissue culture. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2018; 27:333-354. [PMID: 29768082 DOI: 10.1080/0964704x.2018.1468967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ability to maintain human brain explants in tissue culture was a critical step in the use of these cells for the study of central nervous system disorders. Ross G. Harrison (1870-1959) was the first to successfully maintain frog medullary tissue in culture in 1907, but it took another 38 years before successful culture of human brain tissue was accomplished. One of the pioneers in this achievement was Mary Jane Hogue (1883-1962). Hogue was born into a Quaker family in 1883 in West Chester, Pennsylvania, and received her undergraduate degree from Goucher College in Baltimore, Maryland. Research with the developmental biologist Theodor Boveri (1862-1915) in Würzburg, Germany, resulted in her Ph.D. (1909). Hogue transitioned from studying protozoa to the culture of human brain tissue in the 1940s and 1950s, when she was one of the first to culture cells from human fetal, infant, and adult brain explants. We review Hogue's pioneering contributions to the study of human brain cells in culture, her putative identification of progenitor neuroblast and/or glioblast cells, and her use of the cultures to study the cytopathogenic effects of poliovirus. We also put Hogue's work in perspective by discussing how other women pioneers in tissue culture influenced Hogue and her research.
Collapse
Affiliation(s)
- Steven J Zottoli
- a Department of Biology , Williams College , Williamstown , Massachusetts , USA
- b Marine Biological Laboratory , Woods Hole , Massachusetts , USA
| | - Ernst-August Seyfarth
- b Marine Biological Laboratory , Woods Hole , Massachusetts , USA
- c Institut für Zellbiologie und Neurowissenschaft der Goethe-Universität , Frankfurt am Main , Germany
| |
Collapse
|
22
|
Grainger AI, King MC, Nagel DA, Parri HR, Coleman MD, Hill EJ. In vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Front Neurosci 2018; 12:590. [PMID: 30233290 PMCID: PMC6127295 DOI: 10.3389/fnins.2018.00590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022] Open
Abstract
The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. The effects of prospective therapeutic entities on the brain and central nervous system (CNS) may potentially cause significant injury, hence, CNS toxicity testing forms part of the “core battery” of safety pharmacology studies. Drug-induced seizure is a major reason for compound attrition during drug development. Currently, the rat ex vivo hippocampal slice assay is the standard option for seizure-liability studies, followed by primary rodent cultures. These models can respond to diverse agents and predict seizure outcome, yet controversy over the relevance, efficacy, and cost of these animal-based methods has led to interest in the development of human-derived models. Existing platforms often utilize rodents, and so lack human receptors and other drug targets, which may produce misleading data, with difficulties in inter-species extrapolation. Current electrophysiological approaches are typically used in a low-throughput capacity and network function may be overlooked. Human-derived induced pluripotent stem cells (iPSCs) are a promising avenue for neurotoxicity testing, increasingly utilized in drug screening and disease modeling. Furthermore, the combination of iPSC-derived models with functional techniques such as multi-electrode array (MEA) analysis can provide information on neuronal network function, with increased sensitivity to neurotoxic effects which disrupt different pathways. The use of an in vitro human iPSC-derived neural model for neurotoxicity studies, combined with high-throughput techniques such as MEA recordings, could be a suitable addition to existing pre-clinical seizure-liability testing strategies.
Collapse
Affiliation(s)
| | - Marianne C King
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - David A Nagel
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - H Rheinallt Parri
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Michael D Coleman
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Eric J Hill
- Life and Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
23
|
Wellbourne-Wood J, Chatton JY. From Cultured Rodent Neurons to Human Brain Tissue: Model Systems for Pharmacological and Translational Neuroscience. ACS Chem Neurosci 2018; 9:1975-1985. [PMID: 29847093 DOI: 10.1021/acschemneuro.8b00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the enormous complexity of the functional and pathological brain there are a number of possible experimental model systems to choose from. Depending on the research question choosing the appropriate model may not be a trivial task, and given the dynamic and intricate nature of an intact living brain several models might be needed to properly address certain questions. In this review, we aim to provide an overview of neural cell and tissue culture, reflecting on historic methodological milestones and providing a brief overview of the state-of-the-art. We additionally present an example of an effective model system pipeline, composed of dissociated mouse cultures, organotypics, acute mouse brain slices, and acute human brain slices, in that order. The sequential use of these four model systems allows a balance and progression from experimental control to human applicability, and provides a meta-model that can help validate basic research findings in a translational setting. We then conclude with a few remarks regarding the necessity of an integrated approach when performing translational and neuropharmacological studies.
Collapse
Affiliation(s)
- Joel Wellbourne-Wood
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
24
|
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146:63-86. [PMID: 30086482 DOI: 10.1016/j.eplepsyres.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/16/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Epilepsy is one of the most common chronic, recurrent and progressive neurological diseases. In spite of the large number of antiepileptic drugs currently available for the suppression of seizures, about one-third of patients develop drug-resistant epilepsy, even when they are administered the most appropriate treatment available. Thus, nonclinical models can be valuable tools for the elucidation of the mechanisms underlying the development of pharmacoresistance and also for the development of new therapeutic agents that may be promising therapeutic approaches for this unmet medical need. Up today, several epilepsy and seizure models have been developed, exhibiting similar physiopathological features of human drug-resistant epilepsy; moreover, pharmacological response to antiepileptic drugs clinically available tends to be similar in animal models and humans. Therefore, they should be more intensively used in the preclinical discovery and development of new candidates to antiepileptic drugs. Although useful, in vitro models cannot completely replicate the complexity of a living being and their potential for a systematic use in antiepileptic drug screening is limited. The whole-animal models are the most commonly employed and they can be classified as per se drug-resistant due to an inherent poor drug response or be based on the selection of subgroups of epileptic animals that respond or not to a specific antiepileptic drug. Although more expensive and time-consuming, the latter are chronic models of epilepsy that better exhibit the disease-associated alterations found in human epilepsy. Several antiepileptic drugs in development or already marketed have been already tested and shown to be effective in these models of drug-resistant epilepsy, constituting a new hope for the treatment of drug-resistant epilepsy. This review will provide epilepsy researchers with detailed information on the in vitro and in vivo nonclinical models of interest in drug-resistant epilepsy, which may enable a refined selection of most relevant models for understanding the mechanisms of the disease and developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
25
|
Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res 2018; 143:50-59. [DOI: 10.1016/j.eplepsyres.2018.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/26/2018] [Accepted: 04/07/2018] [Indexed: 01/01/2023]
|
26
|
Reyes-Garcia SZ, Scorza CA, Araújo NS, Ortiz-Villatoro NN, Jardim AP, Centeno R, Yacubian EMT, Faber J, Cavalheiro EA. Different patterns of epileptiform-like activity are generated in the sclerotic hippocampus from patients with drug-resistant temporal lobe epilepsy. Sci Rep 2018; 8:7116. [PMID: 29740014 PMCID: PMC5940759 DOI: 10.1038/s41598-018-25378-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
Human hippocampal slice preparations from patients with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (HS) are excellent material for the characterization of epileptiform-like activity. However, it is still unknown if hippocampal regions as cornu Ammonis (CA) 1, CA3 and CA4, generate population epileptiform-like activity. Here, we investigated epileptiform activities of the subiculum, CA1, CA2, CA3, CA4 (induced by elevation of extracellular potassium concentration) and the dentate gyrus (induced with hilar stimulation and elevation of potassium concentration) from sclerotic hippocampi of patients with drug-resistant TLE. Five types of epileptiform-like activity were observed: interictal-like events; periodic ictal spiking; seizure-like events; spreading depression-like events; tonic seizure-like events and no activity. Different susceptibilities to generate epileptiform activity among hippocampal regions were observed; the dentate gyrus was the most susceptible region followed by the subiculum, CA4, CA1, CA2 and CA3. The incidence of epileptiform activity pattern was associated with specific regions of the hippocampal formation. Moreover, it was observed that each region of the hippocampal formation exhibits frequency-specific ranges in each subfield of the sclerotic human tissue. In conclusion, this study demonstrates that epileptiform-like activity may be induced in different regions of the hippocampal formation, including regions that are severely affected by neuronal loss.
Collapse
Affiliation(s)
- Selvin Z Reyes-Garcia
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil. .,Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras.
| | - Carla A Scorza
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Noemi S Araújo
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nancy N Ortiz-Villatoro
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Anaclara Prada Jardim
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Centeno
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Elza Márcia Targas Yacubian
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jean Faber
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Esper A Cavalheiro
- Departamento de Neurologia e Neurocirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Abstract
Resected hippocampal tissue from patients with drug-resistant epilepsy presents a unique possibility to test novel treatment strategies directly in target tissue. The post-resection time for testing and analysis however is normally limited. Acute tissue slices allow for electrophysiological recordings typically up to 12 hours. To enable longer time to test novel treatment strategies such as, e.g., gene-therapy, we developed a method for keeping acute human brain slices viable over a longer period. Our protocol keeps neurons viable well up to 48 hours. Using a dual-flow chamber, which allows for microscopic visualisation of individual neurons with a submerged objective for whole-cell patch-clamp recordings, we report stable electrophysiological properties, such as action potential amplitude and threshold during this time. We also demonstrate that epileptiform activity, monitored by individual dentate granule whole-cell recordings, can be consistently induced in these slices, underlying the usefulness of this methodology for testing and/or validating novel treatment strategies for epilepsy.
Collapse
|
28
|
Papageorgiou IE, Valous NA, Lahrmann B, Janova H, Klaft ZJ, Koch A, Schneider UC, Vajkoczy P, Heppner FL, Grabe N, Halama N, Heinemann U, Kann O. Astrocytic glutamine synthetase is expressed in the neuronal somatic layers and down-regulated proportionally to neuronal loss in the human epileptic hippocampus. Glia 2018; 66:920-933. [DOI: 10.1002/glia.23292] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Ismini E. Papageorgiou
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326; Heidelberg D-69120 Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364; Heidelberg D-69120 Germany
- Present address: Institute of Radiology, Südharz Klinikum Nordhausen gGmbH, Dr.-Robert-Koch-Str. 39; Nordhausen D-99734 Germany
| | - Nektarios A. Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases, German Cancer Research Center, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
- Department of Medical Oncology; National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
| | - Bernd Lahrmann
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), National Center for Tumor Diseases, BIOQUANT, Im Neuenheimer Feld 267, University of Heidelberg; Heidelberg D-69120 Germany
- Steinbeis Transfer Center for Medical Systems Biology, Heckerstr. 9; Heidelberg D-69124 Germany
| | - Hana Janova
- Division of Clinical Neuroscience; Max Planck Institute of Experimental Medicine, Hermann-Rein-str. 3; Göttingen D-37075 Germany
| | - Zin-Juan Klaft
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
| | - Arend Koch
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1; Berlin D-10117 Germany
| | - Ulf C. Schneider
- Department of Neurosurgery; Charité-Universitätsmedizin Berlin, Campus Virchow Medical Center, Augustenplatz 1; Berlin D-11353 Germany
| | - Peter Vajkoczy
- Department of Neurosurgery; Charité-Universitätsmedizin Berlin, Campus Virchow Medical Center, Augustenplatz 1; Berlin D-11353 Germany
| | - Frank L. Heppner
- Institute of Neuropathology, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1; Berlin D-10117 Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), National Center for Tumor Diseases, BIOQUANT, Im Neuenheimer Feld 267, University of Heidelberg; Heidelberg D-69120 Germany
- Steinbeis Transfer Center for Medical Systems Biology, Heckerstr. 9; Heidelberg D-69124 Germany
| | - Niels Halama
- Department of Medical Oncology; National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460; Heidelberg D-69120 Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1; Berlin D-10117 Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326; Heidelberg D-69120 Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Im Neuenheimer Feld 364; Heidelberg D-69120 Germany
| |
Collapse
|
29
|
Tóth K, Hofer KT, Kandrács Á, Entz L, Bagó A, Erőss L, Jordán Z, Nagy G, Sólyom A, Fabó D, Ulbert I, Wittner L. Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex. J Physiol 2017; 596:317-342. [PMID: 29178354 DOI: 10.1113/jp275413] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices derived from epileptic patients and were hypersynchronous events characterized by high levels of excitability. Spontaneous population activity emerged in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. These results help us to understand better the role of excitatory and inhibitory neuronal circuits in the generation of population events, and to define the subtle border between physiological and pathological synchronies. ABSTRACT Interictal activity is a hallmark of epilepsy diagnostics and is linked to neuronal hypersynchrony. Little is known about perturbations in human epileptic neocortical microcircuits, and their role in generating pathological synchronies. To explore hyperexcitability of the human epileptic network, and its contribution to convulsive activity, we investigated an in vitro model of synchronous burst activity spontaneously occurring in postoperative tissue slices derived from patients with or without preoperative clinical and electrographic manifestations of epileptic activity. Human neocortical slices generated two types of synchronies. Interictal-like discharges (classified as epileptiform events) emerged only in epileptic samples, and were hypersynchronous bursts characterized by considerably elevated levels of excitation. Synchronous population activity was initiated in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. However, in pharmacoresistant epileptic tissue, a higher percentage of slices exhibited population activity, with higher local field potential gradient amplitudes. More intracellularly recorded neurons received depolarizing synaptic potentials, discharging more reliably during the events. Light and electron microscopic examinations showed slightly lower neuron densities and higher densities of excitatory synapses in the human epileptic neocortex. Our data suggest that human neocortical microcircuits retain their functionality and plasticity in vitro, and can generate two significantly different synchronies. We propose that population bursts might not be pathological events while interictal-like discharges may reflect the epileptogenicity of the human cortex. Our results show that hyperexcitability characterizes the human epileptic neocortical network, and that it is closely related to the emergence of synchronies.
Collapse
Affiliation(s)
- Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary
| | - Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - László Entz
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Attila Bagó
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Gábor Nagy
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - András Sólyom
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary.,National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| |
Collapse
|
30
|
Perkins KL, Arranz AM, Yamaguchi Y, Hrabetova S. Brain extracellular space, hyaluronan, and the prevention of epileptic seizures. Rev Neurosci 2017; 28:869-892. [PMID: 28779572 PMCID: PMC5705429 DOI: 10.1515/revneuro-2017-0017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/03/2017] [Indexed: 01/08/2023]
Abstract
Mutant mice deficient in hyaluronan (HA) have an epileptic phenotype. HA is one of the major constituents of the brain extracellular matrix. HA has a remarkable hydration capacity, and a lack of HA causes reduced extracellular space (ECS) volume in the brain. Reducing ECS volume can initiate or exacerbate epileptiform activity in many in vitro models of epilepsy. There is both in vitro and in vivo evidence of a positive feedback loop between reduced ECS volume and synchronous neuronal activity. Reduced ECS volume promotes epileptiform activity primarily via enhanced ephaptic interactions and increased extracellular potassium concentration; however, the epileptiform activity in many models, including the brain slices from HA synthase-3 knockout mice, may still require glutamate-mediated synaptic activity. In brain slice epilepsy models, hyperosmotic solution can effectively shrink cells and thus increase ECS volume and block epileptiform activity. However, in vivo, the intravenous administration of hyperosmotic solution shrinks both brain cells and brain ECS volume. Instead, manipulations that increase the synthesis of high-molecular-weight HA or decrease its breakdown may be used in the future to increase brain ECS volume and prevent seizures in patients with epilepsy. The prevention of epileptogenesis is also a future target of HA manipulation. Head trauma, ischemic stroke, and other brain insults that initiate epileptogenesis are known to be associated with an early decrease in high-molecular-weight HA, and preventing that decrease in HA may prevent the epileptogenesis.
Collapse
Affiliation(s)
- Katherine L. Perkins
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Amaia M. Arranz
- VIB Center for Brain and Disease Research, 3000 Leuven, Belgium; and KU Leuven Department for Neurosciences, Leuven Institute for Neurodegenerative Disorders (LIND) and Universitaire Ziekenhuizen Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Sabina Hrabetova
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
31
|
Prolonged seizure activity causes caspase dependent cleavage and dysfunction of G-protein activated inwardly rectifying potassium channels. Sci Rep 2017; 7:12313. [PMID: 28951616 PMCID: PMC5615076 DOI: 10.1038/s41598-017-12508-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Recurrent high-frequency epileptic seizures cause progressive hippocampal sclerosis, which is associated with caspase-3 activation and NMDA receptor-dependent excitotoxicity. However, the identity of caspase-3 substrates that contribute to seizure-induced hippocampal atrophy remains largely unknown. Here, we show that prolonged high-frequency epileptiform discharges in cultured hippocampal neurons leads to caspase-dependent cleavage of GIRK1 and GIRK2, the major subunits of neuronal G protein-activated inwardly rectifying potassium (GIRK) channels that mediate membrane hyperpolarization and synaptic inhibition in the brain. We have identified caspase-3 cleavage sites in GIRK1 (387ECLD390) and GIRK2 (349YEVD352). The YEVD motif is highly conserved in GIRK2-4, and located within their C-terminal binding sites for Gβγ proteins that mediate membrane-delimited GIRK activation. Indeed, the cleaved GIRK2 displays reduced binding to Gβγ and cannot coassemble with GIRK1. Loss of an ER export motif upon cleavage of GIRK2 abolishes surface and current expression of GIRK2 homotetramic channels. Lastly, kainate-induced status epilepticus causes GIRK1 and GIRK2 cleavage in the hippocampus in vivo. Our findings are the first to show direct cleavage of GIRK1 and GIRK2 subunits by caspase-3, and suggest the possible role of caspase-3 mediated down-regulation of GIRK channel function and expression in hippocampal neuronal injury during prolonged epileptic seizures.
Collapse
|
32
|
Buckmaster PS, Abrams E, Wen X. Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 2017; 525:2592-2610. [PMID: 28425097 PMCID: PMC5963263 DOI: 10.1002/cne.24226] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/19/2023]
Abstract
Epilepsy occurs in one of 26 people. Temporal lobe epilepsy is common and can be difficult to treat effectively. It can develop after brain injuries that damage the hippocampus. Multiple pathophysiological mechanisms involving the hippocampal dentate gyrus have been proposed. This study evaluated a mouse model of temporal lobe epilepsy to test which pathological changes in the dentate gyrus correlate with seizure frequency and help prioritize potential mechanisms for further study. FVB mice (n = 127) that had experienced status epilepticus after systemic treatment with pilocarpine 31-61 days earlier were video-monitored for spontaneous, convulsive seizures 9 hr/day every day for 24-36 days. Over 4,060 seizures were observed. Seizure frequency ranged from an average of one every 3.6 days to one every 2.1 hr. Hippocampal sections were processed for Nissl stain, Prox1-immunocytochemistry, GluR2-immunocytochemistry, Timm stain, glial fibrillary acidic protein-immunocytochemistry, glutamic acid decarboxylase in situ hybridization, and parvalbumin-immunocytochemistry. Stereological methods were used to measure hilar ectopic granule cells, mossy cells, mossy fiber sprouting, astrogliosis, and GABAergic interneurons. Seizure frequency was not significantly correlated with the generation of hilar ectopic granule cells, the number of mossy cells, the extent of mossy fiber sprouting, the extent of astrogliosis, or the number of GABAergic interneurons in the molecular layer or hilus. Seizure frequency significantly correlated with the loss of GABAergic interneurons in or adjacent to the granule cell layer, but not with the loss of parvalbumin-positive interneurons. These findings prioritize the loss of granule cell layer interneurons for further testing as a potential cause of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Paul S. Buckmaster
- Department of Comparative Medicine, Stanford University, Stanford, California
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, California
| | - Emily Abrams
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Xiling Wen
- Department of Comparative Medicine, Stanford University, Stanford, California
| |
Collapse
|
33
|
Kourdougli N, Pellegrino C, Renko JM, Khirug S, Chazal G, Kukko-Lukjanov TK, Lauri SE, Gaiarsa JL, Zhou L, Peret A, Castrén E, Tuominen RK, Crépel V, Rivera C. Depolarizing γ-aminobutyric acid contributes to glutamatergic network rewiring in epilepsy. Ann Neurol 2017; 81:251-265. [PMID: 28074534 DOI: 10.1002/ana.24870] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 12/16/2023]
Abstract
OBJECTIVE Rewiring of excitatory glutamatergic neuronal circuits is a major abnormality in epilepsy. Besides the rewiring of excitatory circuits, an abnormal depolarizing γ-aminobutyric acidergic (GABAergic) drive has been hypothesized to participate in the epileptogenic processes. However, a remaining clinically relevant question is whether early post-status epilepticus (SE) evoked chloride dysregulation is important for the remodeling of aberrant glutamatergic neuronal circuits. METHODS Osmotic minipumps were used to infuse intracerebrally a specific inhibitor of depolarizing GABAergic transmission as well as a functionally blocking antibody toward the pan-neurotrophin receptor p75 (p75NTR ). The compounds were infused between 2 and 5 days after pilocarpine-induced SE. Immunohistochemistry for NKCC1, KCC2, and ectopic recurrent mossy fiber (rMF) sprouting as well as telemetric electroencephalographic and electrophysiological recordings were performed at day 5 and 2 months post-SE. RESULTS Blockade of NKCC1 after SE with the specific inhibitor bumetanide restored NKCC1 and KCC2 expression, normalized chloride homeostasis, and significantly reduced the glutamatergic rMF sprouting within the dentate gyrus. This mechanism partially involves p75NTR signaling, as bumetanide application reduced SE-induced p75NTR expression and functional blockade of p75NTR decreased rMF sprouting. The early transient (3 days) post-SE infusion of bumetanide reduced rMF sprouting and recurrent seizures in the chronic epileptic phase. INTERPRETATION Our findings show that early post-SE abnormal depolarizing GABA and p75NTR signaling fosters a long-lasting rearrangement of glutamatergic network that contributes to the epileptogenic process. This finding defines promising and novel targets to constrain reactive glutamatergic network rewiring in adult epilepsy. Ann Neurol 2017;81:251-265.
Collapse
Affiliation(s)
- Nazim Kourdougli
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Christophe Pellegrino
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Juho-Matti Renko
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | | | - Geneviève Chazal
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | | | - Sari E Lauri
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Jean-Luc Gaiarsa
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Liang Zhou
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Angélique Peret
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Valérie Crépel
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
| | - Claudio Rivera
- Inserm Unit 901, Inmed, Marseille, France
- Mixed Unit of Research S901, Aix-Marseille University, Marseille, France
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Riffault B, Kourdougli N, Dumon C, Ferrand N, Buhler E, Schaller F, Chambon C, Rivera C, Gaiarsa JL, Porcher C. Pro-Brain-Derived Neurotrophic Factor (proBDNF)-Mediated p75NTR Activation Promotes Depolarizing Actions of GABA and Increases Susceptibility to Epileptic Seizures. Cereb Cortex 2016; 28:510-527. [DOI: 10.1093/cercor/bhw385] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/17/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Baptiste Riffault
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Nazim Kourdougli
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Camille Dumon
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Nadine Ferrand
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Emmanuelle Buhler
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- Plateforme Post-Génomique, INMED, 13273 Marseille, France
| | - Fabienne Schaller
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- Plateforme Post-Génomique, INMED, 13273 Marseille, France
| | - Caroline Chambon
- Aix-Marseille University, Département de Biologie, NIA, UMR 7260 CNRS, 13331 cedex 03, Marseille, France
| | - Claudio Rivera
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, Département de Biologie, Parc Scientifique de Luminy, 13273 Marseille, France
- INSERM—Institut National de la Santé et de la Recherche Médicale, Unité 901, Marseille, Parc Scientifique de Luminy, 13273 Marseille, France
- INMED—Institut de Neurobiologie de la Méditerranée, Parc Scientifique de Luminy, 13273 Marseille, France
| |
Collapse
|
35
|
Avaliani N, Andersson M, Runegaard AH, Woldbye D, Kokaia M. DREADDs suppress seizure-like activity in a mouse model of pharmacoresistant epileptic brain tissue. Gene Ther 2016; 23:760-766. [PMID: 27416078 DOI: 10.1038/gt.2016.56] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Epilepsy is a neurological disorder with a prevalence of ≈1% of general population. Available antiepileptic drugs (AEDs) have multiple side effects and are ineffective in 30% of patients. Therefore, development of effective treatment strategies is highly needed, requiring drug-screening models that are relevant and reliable. We investigated novel chemogenetic approach, using DREADDs (designer receptors exclusively activated by designer drugs) as possible inhibitor of epileptiform activity in organotypic hippocampal slice cultures (OHSCs). The OHSCs are characterized by increased overall excitability and closely resemble features of human epileptic tissue. Studies suggest that chemically induced epileptiform activity in rat OHSCs is pharmacoresistant to most of AEDs. However, high-frequency electric stimulus train-induced bursting (STIB) in OHSCs is responsive to carbamazepine and phenytoin. We investigated whether inhibitory DREADD, hM4Di, would be effective in suppressing STIB in OHSC. hM4Di is a mutated muscarinic receptor selectively activated by otherwise inert clozapine-N-oxide, which leads to hyperpolarization in neurons. We demonstrated that this hyperpolarization effectively suppresses STIB in mouse OHSCs. As we also found that STIB in mouse OHSCs is resistant to common AED, valproic acid, collectively our findings suggest that DREADD-based strategy may be effective in suppressing epileptiform activity in a pharamcoresitant epileptic brain tissue.
Collapse
Affiliation(s)
- N Avaliani
- Epilepsy Centre, Experimental Epilepsy Group, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - M Andersson
- Epilepsy Centre, Experimental Epilepsy Group, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - A H Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - D Woldbye
- Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - M Kokaia
- Epilepsy Centre, Experimental Epilepsy Group, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
36
|
Buckmaster PS, Yamawaki R, Thind K. More Docked Vesicles and Larger Active Zones at Basket Cell-to-Granule Cell Synapses in a Rat Model of Temporal Lobe Epilepsy. J Neurosci 2016; 36:3295-308. [PMID: 26985038 PMCID: PMC4792940 DOI: 10.1523/jneurosci.4049-15.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022] Open
Abstract
Temporal lobe epilepsy is a common and challenging clinical problem, and its pathophysiological mechanisms remain unclear. One possibility is insufficient inhibition in the hippocampal formation where seizures tend to initiate. Normally, hippocampal basket cells provide strong and reliable synaptic inhibition at principal cell somata. In a rat model of temporal lobe epilepsy, basket cell-to-granule cell (BC→GC) synaptic transmission is more likely to fail, but the underlying cause is unknown. At some synapses, probability of release correlates with bouton size, active zone area, and number of docked vesicles. The present study tested the hypothesis that impaired GABAergic transmission at BC→GC synapses is attributable to ultrastructural changes. Boutons making axosomatic symmetric synapses in the granule cell layer were reconstructed from serial electron micrographs. BC→GC boutons were predicted to be smaller in volume, have fewer and smaller active zones, and contain fewer vesicles, including fewer docked vesicles. Results revealed the opposite. Compared with controls, epileptic pilocarpine-treated rats displayed boutons with over twice the average volume, active zone area, total vesicles, and docked vesicles and with more vesicles closer to active zones. Larger active zones in epileptic rats are consistent with previous reports of larger amplitude miniature IPSCs and larger BC→GC quantal size. Results of this study indicate that transmission failures at BC→GC synapses in epileptic pilocarpine-treated rats are not attributable to smaller boutons or fewer docked vesicles. Instead, processes following vesicle docking, including priming, Ca(2+) entry, or Ca(2+) coupling with exocytosis, might be responsible. SIGNIFICANCE STATEMENT One in 26 people develops epilepsy, and temporal lobe epilepsy is a common form. Up to one-third of patients are resistant to currently available treatments. This study tested a potential underlying mechanism for previously reported impaired inhibition in epileptic animals at basket cell-to-granule cell (BC→GC) synapses, which normally are reliable and strong. Electron microscopy was used to evaluate 3D ultrastructure of BC→GC synapses in a rat model of temporal lobe epilepsy. The hypothesis was that impaired synaptic transmission is attributable to smaller boutons, smaller synapses, and abnormally low numbers of synaptic vesicles. Results revealed the opposite. These findings suggest that impaired transmission at BC→GC synapses in epileptic rats is attributable to later steps in exocytosis following vesicle docking.
Collapse
Affiliation(s)
- Paul S Buckmaster
- Departments of Comparative Medicine and Neurology and Neurological Sciences, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
37
|
Salar S, Lapilover E, Müller J, Hollnagel JO, Lippmann K, Friedman A, Heinemann U. Synaptic plasticity in area CA1 of rat hippocampal slices following intraventricular application of albumin. Neurobiol Dis 2016; 91:155-65. [PMID: 26972679 DOI: 10.1016/j.nbd.2016.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/16/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
Epileptogenesis following insults to the brain may be triggered by a dysfunctional blood-brain barrier (BBB) associated with albumin extravasation and activation of astrocytes. Using ex vivo recordings from the BBB-disrupted hippocampus after neocortical photothrombotic stroke, we previously demonstrated abnormal activity-dependent accumulation of extracellular potassium with facilitated generation of seizure like events and spreading depolarizations. Similar changes could be observed after intracerebroventricular (icv) application of albumin. We hypothesized that alterations in extracellular potassium and glutamate homeostasis might lead to alterations in synaptic interactions. We therefore assessed the effects of icv albumin on homo- and heterosynaptic plasticity in hippocampal CA1, 24h after a single injection or 7days after continuous infusion of icv albumin. We demonstrate alterations in both homo- and heterosynaptic plasticity compared to control conditions in ex vivo slice studies. Albumin-treated tissue reveals (1) reduced long-term depression following low-frequency stimulation; (2) increased long-term potentiation of population spikes in response to 20Hz stimulation; (3) potentiated responses to Schaffer collateral stimulation following high-frequency stimulation of the direct cortical input and low-frequency stimulation of alveus and finally, (4) TGFβ receptor II (TGFβR-II) involvement in albumin-induced homosynaptic plasticity changes. We conclude that albumin-induced network hyperexcitability is associated with abnormal homo- and heterosynaptic plasticity that could partly be reversed by interference with TGFβR-II-mediated signaling and therefore it might be an important factor in the process of epileptogenesis.
Collapse
Affiliation(s)
- Seda Salar
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Ezequiel Lapilover
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Julia Müller
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Jan-Oliver Hollnagel
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Kristina Lippmann
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany
| | - Alon Friedman
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany; Departments of Cognitive and Brain Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Uwe Heinemann
- Neuroscience Research Center and Institute of Neurophysiology, Charite-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
38
|
Serafini R, Dettloff S, Loeb JA. Neocortical slices from adult chronic epileptic rats exhibit discharges of higher voltages and broader spread. Neuroscience 2016; 322:509-24. [PMID: 26892299 DOI: 10.1016/j.neuroscience.2016.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 11/30/2022]
Abstract
Much of the current understanding of epilepsy mechanisms has been built on data recorded with one or a few electrodes from temporal lobe slices of normal young animals stimulated with convulsants. Mechanisms of adult, extratemporal, neocortical chronic epilepsy have not been characterized as much. A more advanced understanding of epilepsy mechanisms can be obtained by recording epileptiform discharges simultaneously from multiple points of an epileptic focus so as to define their sites of initiation and pathways of spreading. Brain slice recordings can characterize epileptic mechanisms in a simpler, more controlled preparation than in vivo. Yet, the intrinsic hyper-excitability of a chronic epileptic focus may not be entirely preserved in slices following the severing of connections in slice preparation. This study utilizes recordings of multiple electrode arrays to characterize which features of epileptic hyper-excitability present in in vivo chronic adult neocortical epileptic foci are preserved in brain slices. After tetanus toxin somatosensory cortex injections, adult rats manifest chronic spontaneous epileptic discharges both in the injection site (primary focus) and in the contralateral side (secondary focus). We prepared neocortical slices from these epileptic animals. When perfused with 4-Aminopyridine in a magnesium free medium, epileptic rat slices exhibit higher voltage discharges and broader spreading than control rat slices. Rates of discharges are similar in slices of epileptic and normal rats, however. Ictal and interictal discharges are distributed over most cortical layers, though with significant differences between primary and secondary foci. A chronic neocortical epileptic focus in slices does not show increased spontaneous pacemakers initiating epileptic discharges but shows discharges with higher voltages and broader spread, consistent with an enhanced synchrony of cellular and synaptic generators over wider surfaces.
Collapse
Affiliation(s)
- R Serafini
- Department of Neurology, University of Utah, Clinical Neuroscience Center, George E. Wahlen VA Medical Center, Salt Lake City, UT, United States.
| | - S Dettloff
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - J A Loeb
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States; Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
39
|
Bui A, Kim HK, Maroso M, Soltesz I. Microcircuits in Epilepsy: Heterogeneity and Hub Cells in Network Synchronization. Cold Spring Harb Perspect Med 2015; 5:5/11/a022855. [PMID: 26525454 DOI: 10.1101/cshperspect.a022855] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epilepsy is a complex disorder involving neurological alterations that lead to the pathological development of spontaneous, recurrent seizures. For decades, seizures were thought to be largely repetitive, and had been examined at the macrocircuit level using electrophysiological recordings. However, research mapping the dynamics of large neuronal populations has revealed that seizures are not simply recurrent bursts of hypersynchrony. Instead, it is becoming clear that seizures involve a complex interplay of different neurons and circuits. Herein, we will review studies examining microcircuit changes that may underlie network hyperexcitability, discussing observations from network theory, computational modeling, and optogenetics. We will delve into the idea of hub cells as pathological centers for seizure activity, and will explore optogenetics as a novel avenue to target and treat pathological circuits. Finally, we will conclude with a discussion on future directions in the field.
Collapse
Affiliation(s)
- Anh Bui
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Hannah K Kim
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Mattia Maroso
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| | - Ivan Soltesz
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697
| |
Collapse
|
40
|
Kourdougli N, Varpula S, Chazal G, Rivera C. Detrimental effect of post Status Epilepticus treatment with ROCK inhibitor Y-27632 in a pilocarpine model of temporal lobe epilepsy. Front Cell Neurosci 2015; 9:413. [PMID: 26557054 PMCID: PMC4615811 DOI: 10.3389/fncel.2015.00413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/28/2015] [Indexed: 01/18/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults where 20-30% of the patients are refractory to currently available anti-epileptic drugs. The RhoA/Rho-kinase signaling pathway activation has been involved in inflammatory responses, neurite outgrowth and neuronal death under pathological conditions such as epileptic insults. Acute preventive administration of ROCK inhibitor has been reported to have beneficial outcomes in Status Epilepticus (SE) epilepsy. In the present study, we evaluate the effect of chronic post SE treatment with the ROCK inhibitor Y-27632 in a rat pilocarpine model of TLE. We used chronic i.p. injections of Y-27632 for 5 days in 6 week old control rats or rats subjected to pilocarpine treatment as a model of TLE. Surprisingly, our findings demonstrate that a systemic administration of Y-27632 in pilocarpine-treated rats increases neuronal death in the CA3 region and ectopic recurrent mossy fiber sprouting (rMFS) in the dentate gyrus of the hippocampal formation. Interestingly, we found that chronic treatment with Y-27632 exacerbates the down-regulation and pathological distribution of the K(+)-Cl(-) cotransporter KCC2, thus providing a putative mechanism for post SE induced neuronal death. The involvement of astrogliosis in this mechanism appears to be intricate as ROCK inhibition reduces reactive astrogliosis in pilocarpine rats. Conversely, in control rats, chronic Y-27632 treatment increases astrogliosis. Together, our findings suggest that Y-27632 has a detrimental effect when chronically used post SE in a rat pilocarpine model of TLE.
Collapse
Affiliation(s)
- Nazim Kourdougli
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
| | - Saara Varpula
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Genevieve Chazal
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
| | - Claudio Rivera
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| |
Collapse
|
41
|
Mishto M, Raza ML, de Biase D, Ravizza T, Vasuri F, Martucci M, Keller C, Bellavista E, Buchholz TJ, Kloetzel PM, Pession A, Vezzani A, Heinemann U. The immunoproteasome β5i subunit is a key contributor to ictogenesis in a rat model of chronic epilepsy. Brain Behav Immun 2015; 49:188-96. [PMID: 26044087 DOI: 10.1016/j.bbi.2015.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/13/2015] [Accepted: 05/25/2015] [Indexed: 02/08/2023] Open
Abstract
The proteasome is the core of the ubiquitin-proteasome system and is involved in synaptic protein metabolism. The incorporation of three inducible immuno-subunits into the proteasome results in the generation of the so-called immunoproteasome, which is endowed of pathophysiological functions related to immunity and inflammation. In healthy human brain, the expression of the key catalytic β5i subunit of the immunoproteasome is almost absent, while it is induced in the epileptogenic foci surgically resected from patients with pharmaco-resistant seizures, including temporal lobe epilepsy. We show here that the β5i immuno-subunit is induced in experimental epilepsy, and its selective pharmacological inhibition significantly prevents, or delays, 4-aminopyridine-induced seizure-like events in acute rat hippocampal/entorhinal cortex slices. These effects are stronger in slices from epileptic vs normal rats, likely due to the more prominent β5i subunit expression in neurons and glia cells of diseased tissue. β5i subunit is transcriptionally induced in epileptogenic tissue likely by Toll-like receptor 4 signaling activation, and independently on promoter methylation. The recent availability of selective β5i subunit inhibitors opens up novel therapeutic opportunities for seizure inhibition in drug-resistant epilepsies.
Collapse
Affiliation(s)
- Michele Mishto
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Muhammad L Raza
- Institut für Neurophysiology, Charité - Universitätsmedizin Berlin, Garystr. 5, 14195 Berlin, Germany
| | - Dario de Biase
- Dept. of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Francesco Vasuri
- Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine, DIMES, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy
| | - Morena Martucci
- Dept. of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy
| | - Christin Keller
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena Bellavista
- Dept. of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Via S. Giacomo 12, 40126 Bologna, Italy
| | - Tonia J Buchholz
- Onyx Pharmaceuticals Inc., Amgen Subsidiary, 249 E. Grand Ave., South San Francisco, CA 94080, USA
| | - Peter M Kloetzel
- Institut für Biochemie, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Annalisa Pession
- Department of Pharmacy and Biotechnology, FaBiT, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Uwe Heinemann
- Institut für Neurophysiology, Charité - Universitätsmedizin Berlin, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|
42
|
In vitro seizure like events and changes in ionic concentration. J Neurosci Methods 2015; 260:33-44. [PMID: 26300181 DOI: 10.1016/j.jneumeth.2015.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/06/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND In vivo, seizure like events are associated with increases in extracellular K(+) concentration, decreases in extracellular Ca(2+) concentration, diphasic changes in extracellular sodium, chloride, and proton concentration, as well as changes of extracellular space size. These changes point to mechanisms underlying the induction, spread and termination of seizure like events. METHODS We investigated the potential role of alterations of the ionic environment on the induction of seizure like events-considering a review of the literature and own experimental work in animal and human slices. RESULTS Increasing extracellular K(+) concentration, lowering extracellular Mg(2+) concentration, or lowering extracellular Ca(2+) concentration can induce seizure like events. In human tissue from epileptic patients, elevation of K(+) concentration induces seizure like events in the dentate gyrus and subiculum. A combination of elevated K(+) concentration and 4-AP or bicuculline can induce seizure like events in neocortical tissue. CONCLUSIONS These protocols provide insight into the mechanisms involved in seizure initiation, spread and termination. Moreover, pharmacological studies as well as studies on mechanisms underlying pharmacoresistance are feasible.
Collapse
|
43
|
Olude MA, Mustapha OA, Aderounmu OA, Olopade JO, Ihunwo AO. Astrocyte morphology, heterogeneity, and density in the developing African giant rat (Cricetomys gambianus). Front Neuroanat 2015; 9:67. [PMID: 26074782 PMCID: PMC4443027 DOI: 10.3389/fnana.2015.00067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023] Open
Abstract
Astrocyte morphologies and heterogeneity were described in male African giant rats (AGR; Cricetomys gambianus, Waterhouse) across three age groups (five neonates, five juveniles, and five adults) using Silver impregnation method and immunohistochemistry against glial fibrillary acidic protein. Immunopositive cell signaling, cell size and population were least in neonates, followed by adults and juveniles, respectively. In neonates, astrocyte processes were mostly detected within the glia limitans of the mid and hind brain; their cell bodies measuring 32 ± 4.8 μm in diameter against 91 ± 5.4 μm and 75 ± 1.9 μm in juveniles and adults, respectively. Astrocyte heterogeneity in juvenile and adult groups revealed eight subtypes to include fibrous astrocytes chiefly in the corpus callosum and brain stem, protoplasmic astrocytes in the cortex and dentate gyrus (DG); radial glia were found along the olfactory bulb (OB) and subventricular zone (SVZ); velate astrocytes were mainly found in the cerebellum and hippocampus; marginal astrocytes close to the pia mater; Bergmann glia in the molecular layer of the cerebellum; perivascular and periventricular astrocytes in the cortex and third ventricle, respectively. Cell counts from twelve anatomical regions of the brain were significantly higher in juveniles than in adults (p ≤ 0.01) using unpaired student t-test in the cerebral cortex, pia, corpus callosum, rostral migratory stream, DG, and cerebellum. Highest astrocyte count was found in the DG, while the least count was in the brain stem and sub cortex. Astrocytes along the periventricular layer of the OB are believed to be part of the radial glia system that transport newly formed cells towards the hippocampus and play roles in neurogenesis migration and homeostasis in the AGR. Therefore, astrocyte heterogeneity was examined across age groups in the AGR to determine whether age influences astrocytes population in different regions of the AGR brain and discuss possible functional roles.
Collapse
Affiliation(s)
- Matthew A Olude
- Neuroscience Unit, Department of Veterinary Anatomy, Federal University of Agriculture Abeokuta, Nigeria ; Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan Ibadan, Nigeria ; School of Anatomical Sciences, Neuroscience Unit, University of the Witwatersrand Johannesburg, South Africa
| | - Oluwaseun A Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, Federal University of Agriculture Abeokuta, Nigeria ; Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan Ibadan, Nigeria
| | - Oluwatunde A Aderounmu
- Neuroscience Unit, Department of Veterinary Anatomy, Federal University of Agriculture Abeokuta, Nigeria ; Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan Ibadan, Nigeria
| | - James O Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Federal University of Agriculture Abeokuta, Nigeria
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Neuroscience Unit, University of the Witwatersrand Johannesburg, South Africa
| |
Collapse
|
44
|
Artinian J, Peret A, Mircheva Y, Marti G, Crépel V. Impaired neuronal operation through aberrant intrinsic plasticity in epilepsy. Ann Neurol 2015; 77:592-606. [PMID: 25583290 DOI: 10.1002/ana.24348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/30/2014] [Accepted: 12/10/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Patients with temporal lobe epilepsy often display cognitive comorbidity with recurrent seizures. However, the cellular mechanisms underlying the impairment of neuronal information processing remain poorly understood in temporal lobe epilepsy. Within the hippocampal formation neuronal networks undergo major reorganization, including the sprouting of mossy fibers in the dentate gyrus; they establish aberrant recurrent synapses between dentate granule cells and operate via postsynaptic kainate receptors. In this report, we tested the hypothesis that this aberrant local circuit alters information processing of perforant path inputs constituting the major excitatory afferent pathway from entorhinal cortex to dentate granule cells. METHODS Experiments were performed in dentate granule cells from control rats and rats with temporal lobe epilepsy induced by pilocarpine hydrochloride treatment. Neurons were recorded in patch clamp in whole cell configuration in hippocampal slices. RESULTS Our present data revealed that an aberrant readout of synaptic inputs by kainate receptors triggered a long-lasting impairment of the perforant path input-output operation in epileptic dentate granule cells. We demonstrated that this is due to the aberrant activity-dependent potentiation of the persistent sodium current altering intrinsic firing properties of dentate granule cells. INTERPRETATION We propose that this aberrant activity-dependent intrinsic plasticity, which lastingly impairs the information processing of cortical inputs in dentate gyrus, may participate in hippocampal-related cognitive deficits, such as those reported in patients with epilepsy.
Collapse
Affiliation(s)
- Julien Artinian
- Mediterranean Institute of Neurobiology, National Institute of Health and Medical Research, Marseille, France; Aix-Marseille University, Marseille, France
| | | | | | | | | |
Collapse
|
45
|
Huberfeld G, Blauwblomme T, Miles R. Hippocampus and epilepsy: Findings from human tissues. Rev Neurol (Paris) 2015; 171:236-51. [PMID: 25724711 PMCID: PMC4409112 DOI: 10.1016/j.neurol.2015.01.563] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022]
Abstract
Surgical removal of the epileptogenic zone provides an effective therapy for several focal epileptic syndromes. This surgery offers the opportunity to study pathological activity in living human tissue for pharmacoresistant partial epilepsy syndromes including temporal lobe epilepsies with hippocampal sclerosis, cortical dysplasias, epilepsies associated with tumors and developmental malformations. Slices of tissue from patients with these syndromes retain functional neuronal networks and may generate epileptic activities. The properties of cells in this tissue may not be greatly changed, but excitatory synaptic transmission is often enhanced and GABAergic inhibition is preserved. Typically epileptic activity is not generated spontaneously by the neocortex, whether dysplastic or not, but can be induced by convulsants. The initiation of ictal discharges in the neocortex depends on both GABAergic signaling and increased extracellular potassium. In contrast, a spontaneous interictal-like activity is generated by tissues from patients with temporal lobe epilepsies associated with hippocampal sclerosis. This activity is initiated, not in the hippocampus but in the subiculum, an output region, which projects to the entorhinal cortex. Interictal events seem to be triggered by GABAergic cells, which paradoxically excite about 20% of subicular pyramidal cells while simultaneously inhibiting the majority. Interictal discharges thus depend on both GABAergic and glutamatergic signaling. The depolarizing effects of GABA depend on a pathological elevation in levels of chloride in some subicular cells, similar to those of developmentally immature cells. Such defect is caused by a perturbed expression of the cotransporters regulating intracellular chloride concentration, the importer NKCC1 and the extruder KCC2. Blockade of NKCC1 actions by the diuretic bumetanide restores intracellular chloride and thus hyperpolarizing GABAergic actions and consequently suppressing interictal activity.
Collapse
Affiliation(s)
- G Huberfeld
- Département de neurophysiologie, Sorbonne universités, UPMC - université Paris 06, UPMC, CHU de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France; INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France.
| | - T Blauwblomme
- INSERM Unit U1129 Infantile Epilepsies and Brain Plasticity, University Paris Descartes, Sorbonne Paris Cité, CEA, 12, rue de l'École-de-Médecine, 75006 Paris, France; Neurosurgery Department, Necker-Enfants Malades Hospital, University Paris Descartes, PRES Sorbonne Paris Cité, 12, rue de l'École-de-Médecine, 75006 Paris, France
| | - R Miles
- Inserm U1127, CNRS UMR7225, Sorbonne universités, UPMC - université Paris 6 UMR S1127, Institut du cerveau et de la moelle épinière, 47, boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
46
|
Sandow N, Kim S, Raue C, Päsler D, Klaft ZJ, Antonio LL, Hollnagel JO, Kovacs R, Kann O, Horn P, Vajkoczy P, Holtkamp M, Meencke HJ, Cavalheiro EA, Pragst F, Gabriel S, Lehmann TN, Heinemann U. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of p-glycoprotein and multidrug resistance-associated proteins. Front Neurol 2015; 6:30. [PMID: 25741317 PMCID: PMC4332373 DOI: 10.3389/fneur.2015.00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/03/2015] [Indexed: 01/16/2023] Open
Abstract
Drug resistant patients undergoing epilepsy surgery have a good chance to become sensitive to anticonvulsant medication, suggesting that the resected brain tissue is responsible for drug resistance. Here, we address the question whether P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) expressed in the resected tissue contribute to drug resistance in vitro. Effects of anti-epileptic drugs [carbamazepine (CBZ), sodium valproate, phenytoin] and two unspecific inhibitors of Pgp and MRPs [verapamil (VPM) and probenecid (PBN)] on seizure-like events (SLEs) induced in slices from 35 hippocampal and 35 temporal cortex specimens of altogether 51 patients (161 slices) were studied. Although in slice preparations the blood brain barrier is not functional, we found that SLEs predominantly persisted in the presence of anticonvulsant drugs (90%) and also in the presence of VPM and PBN (86%). Following subsequent co-administration of anti-epileptic drugs and drug transport inhibitors, SLEs continued in 63% of 143 slices. Drug sensitivity in slices was recognized either as transition to recurrent epileptiform transients (30%) or as suppression (7%), particularly by perfusion with CBZ in PBN containing solutions (43, 9%). Summarizing responses to co-administration from more than one slice per patient revealed that suppression of seizure-like activity in all slices was only observed in 7% of patients. Patients whose tissue was completely or partially sensitive (65%) presented with higher seizure frequencies than those with resistant tissue (35%). However, corresponding subgroups of patients do not differ with respect to expression rates of drug transporters. Our results imply that parenchymal MRPs and Pgp are not responsible for drug resistance in resected tissue.
Collapse
Affiliation(s)
- Nora Sandow
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Simon Kim
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Claudia Raue
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Dennis Päsler
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Zin-Juan Klaft
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Leandro Leite Antonio
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Laboratorio de Neurologia Experimental, Universidade Federal de São Paulo-Escola Paulista de Medicina , São Paulo , Brazil
| | - Jan Oliver Hollnagel
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Richard Kovacs
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Oliver Kann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany ; Institute of Physiology and Pathophysiology, University of Heidelberg , Heidelberg , Germany
| | - Peter Horn
- Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Martin Holtkamp
- Epilepsy Center of Berlin-Brandenburg, Ev. Krankenhaus Königin Elisabeth Herzberge , Berlin , Germany
| | - Heinz-Joachim Meencke
- Epilepsy Center of Berlin-Brandenburg, Ev. Krankenhaus Königin Elisabeth Herzberge , Berlin , Germany
| | - Esper A Cavalheiro
- Laboratorio de Neurologia Experimental, Universidade Federal de São Paulo-Escola Paulista de Medicina , São Paulo , Brazil
| | - Fritz Pragst
- Institute of Forensic Medicine - Forensic Toxicology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | - Siegrun Gabriel
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| | | | - Uwe Heinemann
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
47
|
Crépel V, Mulle C. Physiopathology of kainate receptors in epilepsy. Curr Opin Pharmacol 2014; 20:83-8. [PMID: 25506747 DOI: 10.1016/j.coph.2014.11.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Kainate receptors (KARs) are tetrameric ionotropic glutamate receptors composed of the combinations of five subunits GluK1-GluK5. KARs are structurally related to AMPA receptors but they serve quite distinct functions by regulating the activity of synaptic circuits at presynaptic and postsynaptic sites, through either ionotropic or metabotropic actions. Although kainate is a potent neurotoxin known to induce acute seizures through activation of KARs, the actual role of KARs in the clinically-relevant chronic phase of temporal lobe epilepsy (TLE) has long been elusive. Recent evidences have described pathophysiological mechanisms of heteromeric GluK2/GluK5 KARs in generating recurrent seizures in chronic epilepsy. The role of the other major subunit GluK1 in epileptogenic activity is still a matter of debate. This review will present the current knowledge on the subtype-specific pharmacology of KARs and highlight recent results linking KARs to epileptic conditions.
Collapse
Affiliation(s)
- Valérie Crépel
- INSERM, INMED, U901, 13009 Marseille, France; Aix-Marseille Université, UMR 901, 13009 Marseille, France
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, France; University of Bordeaux, F-33000 Bordeaux, France.
| |
Collapse
|
48
|
Yamawaki R, Thind K, Buckmaster PS. Blockade of excitatory synaptogenesis with proximal dendrites of dentate granule cells following rapamycin treatment in a mouse model of temporal lobe epilepsy. J Comp Neurol 2014; 523:281-97. [PMID: 25234294 DOI: 10.1002/cne.23681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022]
Abstract
Inhibiting the mammalian target of rapamycin (mTOR) signaling pathway with rapamycin blocks granule cell axon (mossy fiber) sprouting after epileptogenic injuries, including pilocarpine-induced status epilepticus. However, it remains unclear whether axons from other types of neurons sprout into the inner molecular layer and synapse with granule cell dendrites despite rapamycin treatment. If so, other aberrant positive-feedback networks might develop. To test this possibility stereological electron microscopy was used to estimate the numbers of excitatory synapses in the inner molecular layer per hippocampus in pilocarpine-treated control mice, in mice 5 days after pilocarpine-induced status epilepticus, and after status epilepticus and daily treatment beginning 24 hours later with rapamycin or vehicle for 2 months. The optical fractionator method was used to estimate numbers of granule cells in Nissl-stained sections so that numbers of excitatory synapses in the inner molecular layer per granule cell could be calculated. Control mice had an average of 2,280 asymmetric synapses in the inner molecular layer per granule cell, which was reduced to 63% of controls 5 days after status epilepticus, recovered to 93% of controls in vehicle-treated mice 2 months after status epilepticus, but remained at only 63% of controls in rapamycin-treated mice. These findings reveal that rapamycin prevented excitatory axons from synapsing with proximal dendrites of granule cells and raise questions about the recurrent excitation hypothesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Ruth Yamawaki
- Department of Comparative Medicine, Stanford University, Stanford, CA, 94305
| | | | | |
Collapse
|
49
|
Eugène E, Cluzeaud F, Cifuentes-Diaz C, Fricker D, Le Duigou C, Clemenceau S, Baulac M, Poncer JC, Miles R. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J Neurosci Methods 2014; 235:234-44. [PMID: 25064188 PMCID: PMC4426207 DOI: 10.1016/j.jneumeth.2014.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND A long-term in vitro preparation of diseased brain tissue would facilitate work on human pathologies. Organotypic tissue cultures retain an appropriate neuronal form, spatial arrangement, connectivity and electrical activity over several weeks. However, they are typically prepared with tissue from immature animals. In work using tissue from adult animals or humans, survival times longer than a few days have not been reported and it is not clear that pathological neuronal activities are retained. NEW METHOD We modified tissue preparation procedures and used a defined culture medium to make organotypic cultures of temporal lobe tissue obtained after operations on adult patients with pharmaco-resistant mesial temporal lobe epilepsies. RESULTS Organototypic culture preparation and maintenance techniques were judged on criteria of morphology and the generation of epileptiform activities. Short-duration (30-100 ms) interictal-like population activities were initiated spontaneously in either the subiculum, dentate gyrus or the CA2/CA3 region, but not the cortex, for up to 3-4 weeks in culture. Ictal-like discharges, of duration greater than 10s, were induced by convulsants. Epileptiform activities were modulated by both glutamatergic and GABAergic receptor antagonists. COMPARISON WITH EXISTING METHODS Our methods now permit the maintenance in organotypic culture of epileptic adult human tissue, generating appropriate epileptiform activity over 3-4 weeks. CONCLUSIONS We have shown that characteristic morphology and pathological activities are maintained in organotypic cultures of adult human tissue. These cultures should permit studies on the effects of prolonged drug treatments and long-term procedures such as viral transduction.
Collapse
Affiliation(s)
- Emmanuel Eugène
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France; INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France.
| | - Françoise Cluzeaud
- Service Microscopie, Centre de recherche biomedicale, CHU Bichat, Université Paris Diderot, 16 rue Henri Huchard, Paris 75870, France
| | - Carmen Cifuentes-Diaz
- INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France
| | - Desdemona Fricker
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Caroline Le Duigou
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Stephane Clemenceau
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Michel Baulac
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France
| | - Jean-Christophe Poncer
- INSERM, UMR-839, Paris 75005, France; UPMC Univ Paris, UMR-839, Paris 75005, France; Institut du Fer a Moulin, Paris 75005 France
| | - Richard Miles
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris6 UMR S1127, Institut du Cerveau et de la Moelle épinière, 47 Boulevard de l'Hôpital, Paris 75013, France.
| |
Collapse
|
50
|
Hsiao MC, Yu PN, Song D, Liu CY, Heck CN, Millett D, Berger TW. An in vitro seizure model from human hippocampal slices using multi-electrode arrays. J Neurosci Methods 2014; 244:154-63. [PMID: 25244953 DOI: 10.1016/j.jneumeth.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 11/28/2022]
Abstract
Temporal lobe epilepsy is a neurological condition marked by seizures, typically accompanied by large amplitude synchronous electrophysiological discharges, affecting a variety of mental and physical functions. The neurobiological mechanisms responsible for the onset and termination of seizures are still unclear. While pharmacological therapies can suppress the symptoms of seizures, typically 30% of patients do not respond well to drug control. Unilateral temporal lobectomy, a procedure in which a substantial part of the hippocampal formation and surrounding tissue is removed, is a common surgical treatment for medically refractory epilepsy. In this study, we have developed an in vitro model of epilepsy using human hippocampal slices resected from patients suffering from intractable mesial temporal lobe epilepsy. We show that using a planar multi-electrode array system, spatio-temporal inter-ictal like activity can be consistently recorded in high-potassium (8 mM), low-magnesium (0.25 mM) artificial cerebral spinal fluid with 4-aminopyridine (100 μM) added. The induced epileptiform discharges can be recorded in different subregions of the hippocampus, including dentate, CA1 and subiculum. This new paradigm will allow the study of seizure generation in different subregions of hippocampus simultaneously, as well as propagation of seizure activity throughout the intrinsic circuitry of hippocampus. This experimental model also should provide insights into seizure control and prevention, while providing a platform to develop novel, anti-seizure therapeutics.
Collapse
Affiliation(s)
- Min-Chi Hsiao
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Pen-Ning Yu
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Dong Song
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| | - Charles Y Liu
- Department of Neurological Surgery and Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Department of Biomedical Engineering, and Rancho Los Amigos National Rehabilitation Center, USA.
| | - Christianne N Heck
- Department of Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Los Angeles, CA 90033, USA.
| | - David Millett
- Department of Neurology, USC Keck School of Medicine, USC Center for Neurorestoration, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA.
| | - Theodore W Berger
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|