1
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024:10.1007/s00232-024-00325-0. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Leitch B. Molecular Mechanisms Underlying the Generation of Absence Seizures: Identification of Potential Targets for Therapeutic Intervention. Int J Mol Sci 2024; 25:9821. [PMID: 39337309 PMCID: PMC11432152 DOI: 10.3390/ijms25189821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the molecular mechanisms underlying the generation of absence seizures is crucial for developing effective, patient-specific treatments for childhood absence epilepsy (CAE). Currently, one-third of patients remain refractive to the antiseizure medications (ASMs), previously called antiepileptic drugs (AEDs), available to treat CAE. Additionally, these ASMs often produce serious side effects and can even exacerbate symptoms in some patients. Determining the precise cellular and molecular mechanisms directly responsible for causing this type of epilepsy has proven challenging as they appear to be complex and multifactorial in patients with different genetic backgrounds. Aberrant neuronal activity in CAE may be caused by several mechanisms that are not fully understood. Thus, dissecting the causal factors that could be targeted in the development of precision medicines without side effects remains a high priority and the ultimate goal in this field of epilepsy research. The aim of this review is to highlight our current understanding of potential causative mechanisms for absence seizure generation, based on the latest research using cutting-edge technologies. This information will be important for identifying potential targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Soeung V, Puchalski RB, Noebels JL. The complex molecular epileptogenesis landscape of glioblastoma. Cell Rep Med 2024; 5:101691. [PMID: 39168100 PMCID: PMC11384957 DOI: 10.1016/j.xcrm.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
The cortical microenvironment surrounding malignant glioblastoma is a source of depolarizing crosstalk favoring hyperexcitability, tumor expansion, and immune evasion. Neosynaptogenesis, excess glutamate, and altered intrinsic membrane currents contribute to excitability dyshomeostasis, yet only half of the cases develop seizures, suggesting that tumor and host genomics, along with location, rather than mass effect, play a critical role. We analyzed the spatial contours and expression of 358 clinically validated human epilepsy genes in the human glioblastoma transcriptome compared to non-tumor adult and developing cortex datasets. Nearly half, including dosage-sensitive genes whose expression levels are securely linked to monogenic epilepsy, are strikingly enriched and aberrantly regulated at the leading edge, supporting a complex epistatic basis for peritumoral epileptogenesis. Surround hyperexcitability induced by complex patterns of proepileptic gene expression may explain the limited efficacy of narrowly targeted antiseizure medicines and the persistence of epilepsy following tumor resection and clarify why not all brain tumors provoke seizures.
Collapse
Affiliation(s)
- Victoria Soeung
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Ralph B Puchalski
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Center for Cancer Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Szymanowicz O, Drużdż A, Słowikowski B, Pawlak S, Potocka E, Goutor U, Konieczny M, Ciastoń M, Lewandowska A, Jagodziński PP, Kozubski W, Dorszewska J. A Review of the CACNA Gene Family: Its Role in Neurological Disorders. Diseases 2024; 12:90. [PMID: 38785745 PMCID: PMC11119137 DOI: 10.3390/diseases12050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Calcium channels are specialized ion channels exhibiting selective permeability to calcium ions. Calcium channels, comprising voltage-dependent and ligand-gated types, are pivotal in neuronal function, with their dysregulation is implicated in various neurological disorders. This review delves into the significance of the CACNA genes, including CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1E, CACNA1G, and CACNA1H, in the pathogenesis of conditions such as migraine, epilepsy, cerebellar ataxia, dystonia, and cerebellar atrophy. Specifically, variants in CACNA1A have been linked to familial hemiplegic migraine and epileptic seizures, underscoring its importance in neurological disease etiology. Furthermore, different genetic variants of CACNA1B have been associated with migraine susceptibility, further highlighting the role of CACNA genes in migraine pathology. The complex relationship between CACNA gene variants and neurological phenotypes, including focal seizures and ataxia, presents a variety of clinical manifestations of impaired calcium channel function. The aim of this article was to explore the role of CACNA genes in various neurological disorders, elucidating their significance in conditions such as migraine, epilepsy, and cerebellar ataxias. Further exploration of CACNA gene variants and their interactions with molecular factors, such as microRNAs, holds promise for advancing our understanding of genetic neurological disorders.
Collapse
Affiliation(s)
- Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Artur Drużdż
- Department of Neurology, Municipal Hospital in Poznan, 61-285 Poznan, Poland;
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Sandra Pawlak
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Ewelina Potocka
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Mateusz Konieczny
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Małgorzata Ciastoń
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Aleksandra Lewandowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| | - Paweł P. Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (B.S.); (P.P.J.)
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (O.S.); (S.P.); (E.P.); (U.G.); (M.K.); (M.C.); (A.L.)
| |
Collapse
|
5
|
Diaz-Villegas V, Pichardo-Macías LA, Juárez-Méndez S, Ignacio-Mejía I, Cárdenas-Rodríguez N, Vargas-Hernández MA, Mendoza-Torreblanca JG, Zamudio SR. Changes in the Dentate Gyrus Gene Expression Profile Induced by Levetiracetam Treatment in Rats with Mesial Temporal Lobe Epilepsy. Int J Mol Sci 2024; 25:1690. [PMID: 38338984 PMCID: PMC10855401 DOI: 10.3390/ijms25031690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is one of the most common forms of focal epilepsy. Levetiracetam (LEV) is an antiepileptic drug whose mechanism of action at the genetic level has not been fully described. Therefore, the aim of the present work was to evaluate the relevant gene expression changes in the dentate gyrus (DG) of LEV-treated rats with pilocarpine-induced TLE. Whole-transcriptome microarrays were used to obtain the differential genetic profiles of control (CTRL), epileptic (EPI), and EPI rats treated for one week with LEV (EPI + LEV). Quantitative RT-qPCR was used to evaluate the RNA levels of the genes of interest. According to the results of the EPI vs. CTRL analysis, 685 genes were differentially expressed, 355 of which were underexpressed and 330 of which were overexpressed. According to the analysis of the EPI + LEV vs. EPI groups, 675 genes were differentially expressed, 477 of which were downregulated and 198 of which were upregulated. A total of 94 genes whose expression was altered by epilepsy and modified by LEV were identified. The RT-qPCR confirmed that LEV treatment reversed the increased expression of Hgf mRNA and decreased the expression of the Efcab1, Adam8, Slc24a1, and Serpinb1a genes in the DG. These results indicate that LEV could be involved in nonclassical mechanisms involved in Ca2+ homeostasis and the regulation of the mTOR pathway through Efcab1, Hgf, SLC24a1, Adam8, and Serpinb1a, contributing to reduced hyperexcitability in TLE patients.
Collapse
Affiliation(s)
- Veronica Diaz-Villegas
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| | - Sergio Juárez-Méndez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Marco Antonio Vargas-Hernández
- Subdirección de Investigación, Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | | | - Sergio R. Zamudio
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (V.D.-V.); (L.A.P.-M.)
| |
Collapse
|
6
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
8
|
ÇELİK ZB, TİRYAKİ ES, TÜRKDÖNMEZ E, ÇİÇEKLİ MN, ALTUN A, GÜNAYDIN C. Parallel changes in the promoter methylation of voltage-gated T-type calcium channel alpha 1 subunit G and histone deacetylase activity in the WAG/Rij model of absence epilepsy. JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1207399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective: In the last two decades, research on epigenetic mechanisms has expanded dramatically. Recent studies demonstrated that epigenetic mechanisms regulate epilepsy and epileptogenic pathologies. In this study, we aimed to investigate changes in the promoter methylation status of the voltage-gated T-type calcium channel alpha 1 subunit G (CACNA1G) gene and total histone deacetylase activity in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats which is one of the commonly used genetic absence rat models of epilepsy in the three different age groups (3, 6, and 9 months old) on both sexes.
Material and Method: Evaluation of changes in the spike-wave discharges (SWDs) was performed with electrocorticography (ECoG). The promoter methylation status of the CACNA1G gene was determined by methylation-specific PCR (MSP), and histone deacetylase (HDAC) activity was determined spectrophotometrically.
Results: Our results demonstrated that the number of SWDs increased time-dependent in WAG/Rij. Additionally, it was observed that CACNA1G promoter methylation decreased, and total HDAC activity increased with age in both sexes.
Conclusion: Our results provide further support for epigenetic regulation in the absence epilepsy phenotype and suggest that the underlying mechanism behind the increase in the number of SWDs with age in the WAG/Rij animals might be regulated by CACNA1G promoter methylation or HDAC activity.
Collapse
|
9
|
Harman T, Udoh M, McElroy DL, Anderson LL, Kevin RC, Banister SD, Ametovski A, Markham J, Bladen C, Doohan PT, Greba Q, Laprairie RB, Snutch TP, McGregor IS, Howland JG, Arnold JC. MEPIRAPIM-derived synthetic cannabinoids inhibit T-type calcium channels with divergent effects on seizures in rodent models of epilepsy. Front Physiol 2023; 14:1086243. [PMID: 37082241 PMCID: PMC10110893 DOI: 10.3389/fphys.2023.1086243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Background: T-type Ca2+ channels (Cav3) represent emerging therapeutic targets for a range of neurological disorders, including epilepsy and pain. To aid the development and optimisation of new therapeutics, there is a need to identify novel chemical entities which act at these ion channels. A number of synthetic cannabinoid receptor agonists (SCRAs) have been found to exhibit activity at T-type channels, suggesting that cannabinoids may provide convenient chemical scaffolds on which to design novel Cav3 inhibitors. However, activity at cannabinoid type 1 (CB1) receptors can be problematic because of central and peripheral toxicities associated with potent SCRAs. The putative SCRA MEPIRAPIM and its analogues were recently identified as Cav3 inhibitors with only minimal activity at CB1 receptors, opening the possibility that this scaffold may be exploited to develop novel, selective Cav3 inhibitors. Here we present the pharmacological characterisation of SB2193 and SB2193F, two novel Cav3 inhibitors derived from MEPIRAPIM. Methods: The potency of SB2193 and SB2193F was evaluated in vitro using a fluorometric Ca2+ flux assay and confirmed using whole-cell patch-clamp electrophysiology. In silico docking to the cryo-EM structure of Cav3.1 was also performed to elucidate structural insights into T-type channel inhibition. Next, in vivo pharmacokinetic parameters in mouse brain and plasma were determined using liquid chromatography-mass spectroscopy. Finally, anticonvulsant activity was assayed in established genetic and electrically-induced rodent seizure models. Results: Both MEPIRAPIM derivatives produced potent inhibition of Cav3 channels and were brain penetrant, with SB2193 exhibiting a brain/plasma ratio of 2.7. SB2193 was further examined in mouse seizure models where it acutely protected against 6 Hz-induced seizures. However, SB2193 did not reduce spontaneous seizures in the Scn1a +/- mouse model of Dravet syndrome, nor absence seizures in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). Surprisingly, SB2193 appeared to increase the incidence and duration of spike-and-wave discharges in GAERS animals over a 4 h recording period. Conclusion: These results show that MEPIRAPIM analogues provide novel chemical scaffolds to advance Cav3 inhibitors against certain seizure types.
Collapse
Affiliation(s)
- Thomas Harman
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael Udoh
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dan L. McElroy
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lyndsey L. Anderson
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Adam Ametovski
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jack Markham
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Chris Bladen
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter T. Doohan
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Quentin Greba
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert B. Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Terrance P. Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iain S. McGregor
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - John G. Howland
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathon C. Arnold
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Jonathon C. Arnold,
| |
Collapse
|
10
|
Gorin G, Pachter L. Length biases in single-cell RNA sequencing of pre-mRNA. BIOPHYSICAL REPORTS 2022; 3:100097. [PMID: 36660179 PMCID: PMC9843228 DOI: 10.1016/j.bpr.2022.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Single-cell RNA sequencing data can be modeled using Markov chains to yield genome-wide insights into transcriptional physics. However, quantitative inference with such data requires careful assessment of noise sources. We find that long pre-mRNA transcripts are over-represented in sequencing data. To explain this trend, we propose a length-based model of capture bias, which may produce false-positive observations. We solve this model and use it to find concordant parameter trends as well as systematic, mechanistically interpretable technical and biological differences in paired data sets.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Lior Pachter
- Division of Biology and Biological Engineering, Pasadena, California
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
- Corresponding author
| |
Collapse
|
11
|
Hu B, Wang Z, Xu M, Zhang D, Wang D. The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis. Cogn Neurodyn 2022; 16:1449-1460. [PMID: 36408065 PMCID: PMC9666587 DOI: 10.1007/s11571-022-09788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022] Open
Abstract
Different from many previous theoretical studies, this paper explores the regulatory mechanism of the spike and wave discharges (SWDs) in the reticular thalamic nucleus (TRN) by a dynamic computational model. We observe that the SWDs appears in the TRN by changing the coupling weights and delays in the thalamocortical circuit. The abundant poly-spikes wave discharges is also induced when the delay increases to large enough. These discharges can be inhibited by tuning the inhibitory output from the basal ganglia to the thalamus. The mechanisms of these waves can be explained in this model together with simulation results, which are different from the mechanisms in the cortex. The TRN is an important target in treating epilepsy, and the results may be a theoretical evidence for experimental study in the future.
Collapse
Affiliation(s)
- Bing Hu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Zhizhi Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Minbo Xu
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dongmei Zhang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| | - Dingjiang Wang
- Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023 China
| |
Collapse
|
12
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
13
|
Loss of Rai1 enhances hippocampal excitability and epileptogenesis in mouse models of Smith-Magenis syndrome. Proc Natl Acad Sci U S A 2022; 119:e2210122119. [PMID: 36256819 PMCID: PMC9618093 DOI: 10.1073/pnas.2210122119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Smith–Magenis syndrome (SMS) is a neurodevelopmental disorder associated with autism and epileptic seizures. SMS is caused by losing one copy of the gene encoding retinoic acid induced 1 (RAI1), a ubiquitously expressed transcriptional regulator. To pinpoint brain regions and cell types contributing to neuronal hyperexcitability in SMS, we combined electrophysiology and three-dimensional imaging of Fos expression in the intact mouse brain. We found that Rai1-deficient hippocampal dentate gyrus granule cells (dGCs) show increased intrinsic excitability and enhanced glutamatergic synaptic transmission. Our findings indicate that Rai1 safeguards the hippocampal network from hyperexcitability and could help explain abnormal brain activity in SMS. Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith–Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.
Collapse
|
14
|
Amadori E, Pellino G, Bansal L, Mazzone S, Møller RS, Rubboli G, Striano P, Russo A. Answer to: Genetic paroxysmal neurological disorders featuring episodic ataxia and epilepsy (Amadori E et al., 2022). EJMG-D-22-00384. Eur J Med Genet 2022; 65:104634. [PMID: 36198373 DOI: 10.1016/j.ejmg.2022.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Elisabetta Amadori
- IRCCS G. Gaslini Institute, 16147, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Italy
| | - Giuditta Pellino
- Pediatric Unit, Azienda USL Ferrara - Sant'Anna University Hospital of Ferrara, Ferrara, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Lalit Bansal
- Division of Neurology, Children's Mercy Hospital, University of Missouri-Kansas City, Missouri, United States
| | - Serena Mazzone
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy
| | - Rikke S Møller
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark; Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Guido Rubboli
- Department of Neurology, Danish Epilepsy Center (Member of the European Reference Network EpiCARE), Dianalund, University of Copenhagen, Copenhagen, Denmark
| | - Pasquale Striano
- IRCCS G. Gaslini Institute, 16147, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Italy
| | - Angelo Russo
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'età pediatrica, Bologna, Italy.
| |
Collapse
|
15
|
Zhang YL, Moran SP, Allen A, Baez-Nieto D, Xu Q, Wang LA, Martenis WE, Sacher JR, Gale JP, Weïwer M, Wagner FF, Pan JQ. Novel Fluorescence-Based High-Throughput FLIPR Assay Utilizing Membrane-Tethered Genetic Calcium Sensors to Identify T-Type Calcium Channel Modulators. ACS Pharmacol Transl Sci 2022; 5:156-168. [PMID: 35311021 PMCID: PMC8923061 DOI: 10.1021/acsptsci.1c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 11/28/2022]
Abstract
T-type voltage-gated Ca2+ channels have been implicated in many human disorders, and there has been increasing interest in developing highly selective and potent T-type Ca2+ channel modulators for potential clinical use. However, the unique biophysical properties of T-type Ca2+ channels are not conducive for developing high-throughput screening (HTS) assays to identify modulators, particularly potentiators. To illustrate, T-type Ca2+ channels are largely inactivated and unable to open to allow Ca2+ influx at -25 mV, the typical resting membrane potential of the cell lines commonly used in cellular screening assays. To address this issue, we developed cell lines that express Kir2.3 channels to hyperpolarize the membrane potential to -70 mV, thus allowing T-type channels to return to their resting state where they can be subsequently activated by membrane depolarization in the presence of extracellular KCl. Furthermore, to simplify the HTS assay and to reduce reagent cost, we stably expressed a membrane-tethered genetic calcium sensor, GCaMP6s-CAAX, that displays superior signal to the background compared to the untethered GCaMP6s or the synthetic Ca2+ sensor Fluo-4AM. Here, we describe a novel GCaMP6s-CAAX-based calcium assay utilizing a high-throughput fluorometric imaging plate reader (Molecular Devices, Sunnyvale, CA) format that can identify both activators and inhibitors of T-type Ca2+ channels. Lastly, we demonstrate the utility of this novel fluorescence-based assay to evaluate the activities of two distinct G-protein-coupled receptors, thus expanding the use of GCaMP6s-CAAX to a wide range of applications relevant for developing cellular assays in drug discovery.
Collapse
Affiliation(s)
- Yan-Ling Zhang
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sean P. Moran
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andrew Allen
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - David Baez-Nieto
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Qihong Xu
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Lei A. Wang
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - William E. Martenis
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Joshua R. Sacher
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jennifer P. Gale
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Michel Weïwer
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Florence F. Wagner
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jen Q. Pan
- Stanley Center for Psychiatric
Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
16
|
Lanzetti S, Di Biase V. Small Molecules as Modulators of Voltage-Gated Calcium Channels in Neurological Disorders: State of the Art and Perspectives. Molecules 2022; 27:1312. [PMID: 35209100 PMCID: PMC8879281 DOI: 10.3390/molecules27041312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/03/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely expressed in the brain, heart and vessels, smooth and skeletal muscle, as well as in endocrine cells. VGCCs mediate gene transcription, synaptic and neuronal structural plasticity, muscle contraction, the release of hormones and neurotransmitters, and membrane excitability. Therefore, it is not surprising that VGCC dysfunction results in severe pathologies, such as cardiovascular conditions, neurological and psychiatric disorders, altered glycemic levels, and abnormal smooth muscle tone. The latest research findings and clinical evidence increasingly show the critical role played by VGCCs in autism spectrum disorders, Parkinson's disease, drug addiction, pain, and epilepsy. These findings outline the importance of developing selective calcium channel inhibitors and modulators to treat such prevailing conditions of the central nervous system. Several small molecules inhibiting calcium channels are currently used in clinical practice to successfully treat pain and cardiovascular conditions. However, the limited palette of molecules available and the emerging extent of VGCC pathophysiology require the development of additional drugs targeting these channels. Here, we provide an overview of the role of calcium channels in neurological disorders and discuss possible strategies to generate novel therapeutics.
Collapse
Affiliation(s)
| | - Valentina Di Biase
- Institute of Pharmacology, Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Peter-Mayr Strasse 1, A-6020 Innsbruck, Austria;
| |
Collapse
|
17
|
Tissone AI, Vidal VB, Nadal MS, Mato G, Amarillo Y. Differential contribution of the subthreshold operating currents IT, Ih, and IKir to the resonance of thalamocortical neurons. J Neurophysiol 2021; 126:561-574. [PMID: 34232785 DOI: 10.1152/jn.00147.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane potential oscillations of thalamocortical (TC) neurons are believed to be involved in the generation and maintenance of brain rhythms that underlie global physiological and pathological brain states. These membrane potential oscillations depend on the synaptic interactions of TC neurons and their intrinsic electrical properties. These oscillations may be also shaped by increased output responses at a preferred frequency, known as intrinsic neuronal resonance. Here, we combine electrophysiological recordings in mouse brain slices, modern pharmacological tools, dynamic clamp, and computational modeling to study the ionic mechanisms that generate and modulate TC neuron resonance. We confirm findings of pioneering studies showing that most TC neurons display resonance that results from the interaction of the slow inactivation of the low-threshold calcium current IT with the passive properties of the membrane. We also show that the hyperpolarization-activated cationic current Ih is not involved in the generation of resonance; instead it plays a minor role in the stabilization of TC neuron impedance magnitude due to its large contribution to the steady conductance. More importantly, we also demonstrate that TC neuron resonance is amplified by the inward rectifier potassium current IKir by a mechanism that hinges on its strong voltage-dependent inward rectification (i.e., a negative slope conductance region). Accumulating evidence indicate that the ion channels that control the oscillatory behavior of TC neurons participate in pathophysiological processes. Results presented here points to IKir as a new potential target for therapeutic intervention.NEW & NOTEWORTHY Our study expands the repertoire of ionic mechanisms known to be involved in the generation and control of resonance and provides the first experimental proof of previous theoretical predictions on resonance amplification mediated by regenerative hyperpolarizing currents. In thalamocortical neurons, we confirmed that the calcium current IT generates resonance, determined that the large steady conductance of the cationic current Ih curtails resonance, and demonstrated that the inward rectifier potassium current IKir amplifies resonance.
Collapse
Affiliation(s)
- Angela Isabel Tissone
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas, San Carlos de Bariloche, Río Negro, Argentina.,Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - Varinia Beatriz Vidal
- Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - Marcela Silvia Nadal
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas, San Carlos de Bariloche, Río Negro, Argentina.,Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina
| | - German Mato
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo (UNCUYO), San Carlos de Bariloche, Río Negro, Argentina
| | - Yimy Amarillo
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
18
|
Yu D, Febbo IG, Maroteaux MJ, Wang H, Song Y, Han X, Sun C, Meyer EE, Rowe S, Chen Y, Canavier CC, Schrader LA. The Transcription Factor Shox2 Shapes Neuron Firing Properties and Suppresses Seizures by Regulation of Key Ion Channels in Thalamocortical Neurons. Cereb Cortex 2021; 31:3194-3212. [PMID: 33675359 DOI: 10.1093/cercor/bhaa414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
Thalamocortical neurons (TCNs) play a critical role in the maintenance of thalamocortical oscillations, dysregulation of which can result in certain types of seizures. Precise control over firing rates of TCNs is foundational to these oscillations, yet the transcriptional mechanisms that constrain these firing rates remain elusive. We hypothesized that Shox2 is a transcriptional regulator of ion channels important for TCN function and that loss of Shox2 alters firing frequency and activity, ultimately perturbing thalamocortical oscillations into an epilepsy-prone state. In this study, we used RNA sequencing and quantitative PCR of control and Shox2 knockout mice to determine Shox2-affected genes and revealed a network of ion channel genes important for neuronal firing properties. Protein regulation was confirmed by Western blotting, and electrophysiological recordings showed that Shox2 KO impacted the firing properties of a subpopulation of TCNs. Computational modeling showed that disruption of these conductances in a manner similar to Shox2's effects modulated frequency of oscillations and could convert sleep spindles to near spike and wave activity, which are a hallmark for absence epilepsy. Finally, Shox2 KO mice were more susceptible to pilocarpine-induced seizures. Overall, these results reveal Shox2 as a transcription factor important for TCN function in adult mouse thalamus.
Collapse
Affiliation(s)
- Diankun Yu
- Neuroscience Program, Brain Institute, Tulane University, USA
| | | | | | - Hanyun Wang
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Yingnan Song
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xiao Han
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Cheng Sun
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Emily E Meyer
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Stuart Rowe
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Yiping Chen
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Carmen C Canavier
- Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Laura A Schrader
- Neuroscience Program, Brain Institute, Tulane University, USA.,Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
19
|
Indelicato E, Boesch S. From Genotype to Phenotype: Expanding the Clinical Spectrum of CACNA1A Variants in the Era of Next Generation Sequencing. Front Neurol 2021; 12:639994. [PMID: 33737904 PMCID: PMC7960780 DOI: 10.3389/fneur.2021.639994] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.
Collapse
Affiliation(s)
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Nieto-Barcelo JJ, Gonzalez Montes N, Gonzalo Alonso I, Martinez F, Aparisi MJ, Martinez-Matilla M, Marco Hernandez AV, Tomás Vila M. Variant in CACNA1G as a Possible Genetic Modifier of Neonatal Epilepsy in an Infant with a De Novo SCN2A Mutation. J Pediatr Genet 2021; 12:159-162. [PMID: 37090830 PMCID: PMC10118702 DOI: 10.1055/s-0041-1723958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
AbstractMutations in SCN2A genes have been described in patients with epilepsy, finding a large phenotypic variability, from benign familial epilepsy to epileptic encephalopathy. To explain this variability, it was proposed the existence of dominant modifier alleles at one or more loci that contribute to determine the severity of the epilepsy phenotype. One example of modifier factor may be the CACNA1G gene, as proved in animal models. We present a 6-day-old male newborn with recurrent seizures in which a mutation in the SCN2A gene is observed, in addition to a variant in CACNA1G gene. Our patient suffered in the first days of life myoclonic seizures, with pathologic intercritical electroencephalogram pattern, requiring multiple drugs to achieve adequate control of them. During the next weeks, the patient progressively improved until complete remission at the second month of life, being possible to withdraw the antiepileptic treatment. We propose that the variant in CACNA1G gene could have acted as a modifier of the epilepsy syndrome produced by the mutation in SCN2A gene in our patient.
Collapse
Affiliation(s)
| | | | | | - Francisco Martinez
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Maria Jose Aparisi
- Genomics Unit, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Miguel Tomás Vila
- Neuropediatrics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
21
|
DEMİRTAŞ ŞAHİN T, UTKAN T, KARSON A, YAZIR Y, KARAOZ E. Genetik absans epilepsili WAG/Rij sıçanlarda kardiyovasküler değişiklikler: Kronik etosüksimid tedavisinin etkileri. CUKUROVA MEDICAL JOURNAL 2020. [DOI: 10.17826/cumj.724491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Lu AC, Lee CK, Kleiman-Weiner M, Truong B, Wang M, Huguenard JR, Beenhakker MP. Nonlinearities between inhibition and T-type calcium channel activity bidirectionally regulate thalamic oscillations. eLife 2020; 9:e59548. [PMID: 32902384 PMCID: PMC7529462 DOI: 10.7554/elife.59548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Absence seizures result from 3 to 5 Hz generalized thalamocortical oscillations that depend on highly regulated inhibitory neurotransmission in the thalamus. Efficient reuptake of the inhibitory neurotransmitter GABA is essential, and reuptake failure worsens human seizures. Here, we show that blocking GABA transporters (GATs) in acute rat brain slices containing key parts of the thalamocortical seizure network modulates epileptiform activity. As expected, we found that blocking either GAT1 or GAT3 prolonged oscillations. However, blocking both GATs unexpectedly suppressed oscillations. Integrating experimental observations into single-neuron and network-level computational models shows how a non-linear dependence of T-type calcium channel gating on GABAB receptor activity regulates network oscillations. Receptor activity that is either too brief or too protracted fails to sufficiently open T-type channels necessary for sustaining oscillations. Only within a narrow range does prolonging GABAB receptor activity promote channel opening and intensify oscillations. These results have implications for therapeutics that modulate inhibition kinetics.
Collapse
Affiliation(s)
- Adam C Lu
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | | | | | - Brian Truong
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Megan Wang
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - John R Huguenard
- Department of Neurology, Stanford UniversityPalo AltoUnited States
| | - Mark P Beenhakker
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
23
|
Kim JW, Oh HA, Kim SR, Ko MJ, Seung H, Lee SH, Shin CY. Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid. Biomol Ther (Seoul) 2020; 28:389-396. [PMID: 32319264 PMCID: PMC7457173 DOI: 10.4062/biomolther.2020.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/05/2022] Open
Abstract
Valproic acid is a clinically used mood stabilizer and antiepileptic drug. Valproic acid has been suggested as a teratogen associated with the manifestation of neurodevelopmental disorders, such as fetal valproate syndrome and autism spectrum disorders, when taken during specific time window of pregnancy. Previous studies proposed that prenatal exposure to valproic acid induces abnormal proliferation and differentiation of neural progenitor cells, presumably by inhibiting histone deacetylase and releasing the condensed chromatin structure. Here, we found valproic acid up-regulates the transcription of T-type calcium channels by inhibiting histone deacetylase in neural progenitor cells. The pharmacological blockade of T-type calcium channels prevented the increased proliferation of neural progenitor cells induced by valproic acid. Differentiated neural cells from neural progenitor cells treated with valproic acid displayed increased levels of calcium influx in response to potassium chloride-induced depolarization. These results suggest that prenatal exposure to valproic acid up-regulates T-type calcium channels, which may contribute to increased proliferation of neural progenitor cells by inducing an abnormal calcium response and underlie the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ji-Woon Kim
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Ah Oh
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Mee Jung Ko
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hana Seung
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Chan Young Shin
- Departments of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
24
|
Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 2020; 472:831-844. [PMID: 32638069 PMCID: PMC7351805 DOI: 10.1007/s00424-020-02429-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
T-type, low-voltage activated, calcium channels, now designated Cav3 channels, are involved in a wide variety of physiological functions, especially in nervous systems. Their unique electrophysiological properties allow them to finely regulate neuronal excitability and to contribute to sensory processing, sleep, and hormone and neurotransmitter release. In the last two decades, genetic studies, including exploration of knock-out mouse models, have greatly contributed to elucidate the role of Cav3 channels in normal physiology, their regulation, and their implication in diseases. Mutations in genes encoding Cav3 channels (CACNA1G, CACNA1H, and CACNA1I) have been linked to a variety of neurodevelopmental, neurological, and psychiatric diseases designated here as neuronal Cav3 channelopathies. In this review, we describe and discuss the clinical findings and supporting in vitro and in vivo studies of the mutant channels, with a focus on de novo, gain-of-function missense mutations recently discovered in CACNA1G and CACNA1H. Overall, the studies of the Cav3 channelopathies help deciphering the pathogenic mechanisms of corresponding diseases and better delineate the properties and physiological roles Cav3 channels.
Collapse
Affiliation(s)
- Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France. .,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France.
| | - Sophie Nicole
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| |
Collapse
|
25
|
Pathophysiological roles and therapeutic potential of voltage-gated ion channels (VGICs) in pain associated with herpesvirus infection. Cell Biosci 2020; 10:70. [PMID: 32489585 PMCID: PMC7247163 DOI: 10.1186/s13578-020-00430-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus is ranked as one of the grand old members of all pathogens. Of all the viruses in the superfamily, Herpes simplex virus type 1 (HSV-1) is considered as a model virus for a variety of reasons. In a permissive non-neuronal cell culture, HSV-1 concludes the entire life cycle in approximately 18–20 h, encoding approximately 90 unique transcriptional units. In latency, the robust viral gene expression is suppressed in neurons by a group of noncoding RNA. Historically the lesions caused by the virus can date back to centuries ago. As a neurotropic pathogen, HSV-1 is associated with painful oral lesions, severe keratitis and lethal encephalitis. Transmission of pain signals is dependent on the generation and propagation of action potential in sensory neurons. T-type Ca2+ channels serve as a preamplifier of action potential generation. Voltage-gated Na+ channels are the main components for action potential production. This review summarizes not only the voltage-gated ion channels in neuropathic disorders but also provides the new insights into HSV-1 induced pain.
Collapse
|
26
|
Ye YS, Li WY, Du SZ, Yang J, Nian Y, Xu G. Congenetic Hybrids Derived from Dearomatized Isoprenylated Acylphloroglucinol with Opposite Effects on Ca v3.1 Low Voltage-Gated Ca 2+ Channel. J Med Chem 2020; 63:1709-1716. [PMID: 31999455 DOI: 10.1021/acs.jmedchem.9b02056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A hybrid of dearomatized isoprenylated acylphloroglucinol (DIAP) and monoterpenoid, hypatone A (1), together with its biosynthetic analogues 2-4 is characterized from Hypericum patulum. Structurally, 1 possesses an unprecedented spiro[bicyclo[3.2.1]octane-6,1'-cyclohexan]-2',4',6'-trione core as elucidated by extensive spectroscopic and X-ray crystallographic analyses. Biological studies reveal that compounds 1 and 2-4 produce opposite effects on Cav3.1 low voltage-gated Ca2+ channel, with 1 and 4, respectively, being the most potent Cav3.1 agonist and antagonist from natural products. Further studies suggest that compound 1 and its biogenetical precursor, 2, have the same binding site on Cav3.1 and that the rigid cagelike moiety at C-5 and C-6 is a key structural feature responsible for 1 being an agonist. Furthermore, 1 can normalize the pathological gating of a mutant Cav3.1 channel found in spinocerebellar ataxia 42 (SCA42), a hereditary neurodegenerative disorder with no available therapy. Collectively, our findings provide valuable tools for future studies on Cav3.1 physiology and pathophysiology, as well as afford possible leads for developing new drugs against SCA42, epilepsy, and pain.
Collapse
Affiliation(s)
- Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Wen-Yan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Shu-Zong Du
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jian Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223 , People's Republic of China
| | - Yin Nian
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Ion Channel Research and Drug Development Center , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223 , People's Republic of China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming Institute of Botany, Chinese Academy of Sciences , Kunming 650201 , People's Republic of China
| |
Collapse
|
27
|
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet 2020; 57:1-10. [PMID: 31217264 PMCID: PMC6929700 DOI: 10.1136/jmedgenet-2019-106163] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.
Collapse
Affiliation(s)
- Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Miao QL, Herlitze S, Mark MD, Noebels JL. Adult loss of Cacna1a in mice recapitulates childhood absence epilepsy by distinct thalamic bursting mechanisms. Brain 2020; 143:161-174. [PMID: 31800012 PMCID: PMC6935748 DOI: 10.1093/brain/awz365] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.
Collapse
Affiliation(s)
- Qing-Long Miao
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University of Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of Zoology and Neurobiology, Ruhr University of Bochum, Bochum, Germany
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
| |
Collapse
|
29
|
Hashiguchi S, Doi H, Kunii M, Nakamura Y, Shimuta M, Suzuki E, Koyano S, Okubo M, Kishida H, Shiina M, Ogata K, Hirashima F, Inoue Y, Kubota S, Hayashi N, Nakamura H, Takahashi K, Katsumoto A, Tada M, Tanaka K, Sasaoka T, Miyatake S, Miyake N, Saitsu H, Sato N, Ozaki K, Ohta K, Yokota T, Mizusawa H, Mitsui J, Ishiura H, Yoshimura J, Morishita S, Tsuji S, Takeuchi H, Ishikawa K, Matsumoto N, Ishikawa T, Tanaka F. Ataxic phenotype with altered Ca V3.1 channel property in a mouse model for spinocerebellar ataxia 42. Neurobiol Dis 2019; 130:104516. [PMID: 31229688 DOI: 10.1016/j.nbd.2019.104516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Spinocerebellar ataxia 42 (SCA42) is a neurodegenerative disorder recently shown to be caused by c.5144G > A (p.Arg1715His) mutation in CACNA1G, which encodes the T-type voltage-gated calcium channel CaV3.1. Here, we describe a large Japanese family with SCA42. Postmortem pathological examination revealed severe cerebellar degeneration with prominent Purkinje cell loss without ubiquitin accumulation in an SCA42 patient. To determine whether this mutation causes ataxic symptoms and neurodegeneration, we generated knock-in mice harboring c.5168G > A (p.Arg1723His) mutation in Cacna1g, corresponding to the mutation identified in the SCA42 family. Both heterozygous and homozygous mutants developed an ataxic phenotype from the age of 11-20 weeks and showed Purkinje cell loss at 50 weeks old. Degenerative change of Purkinje cells and atrophic thinning of the molecular layer were conspicuous in homozygous knock-in mice. Electrophysiological analysis of Purkinje cells using acute cerebellar slices from young mice showed that the point mutation altered the voltage dependence of CaV3.1 channel activation and reduced the rebound action potentials after hyperpolarization, although it did not significantly affect the basic properties of synaptic transmission onto Purkinje cells. Finally, we revealed that the resonance of membrane potential of neurons in the inferior olivary nucleus was decreased in knock-in mice, which indicates that p.Arg1723His CaV3.1 mutation affects climbing fiber signaling to Purkinje cells. Altogether, our study shows not only that a point mutation in CACNA1G causes an ataxic phenotype and Purkinje cell degeneration in a mouse model, but also that the electrophysiological abnormalities at an early stage of SCA42 precede Purkinje cell loss.
Collapse
Affiliation(s)
- Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yukihiro Nakamura
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Misa Shimuta
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Etsuko Suzuki
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Shigeru Koyano
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Masaki Okubo
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hitaru Kishida
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Fumiko Hirashima
- Department of Rehabilitation Medicine, Flower and Forest Tokyo Hospital, 2-3-6 Nishigahara, Kita-ku, Tokyo 114-0024, Japan
| | - Yukichi Inoue
- Department of Neurology, Toyama Prefectural Rehabilitation Hospital and Support Center for Children with Disabilities, 36 Shimoiino, Toyama 931-8517, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Noriko Hayashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Haruko Nakamura
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Atsuko Katsumoto
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Center for Bioresource-based Researches, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Nozomu Sato
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Kokoro Ozaki
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Kiyobumi Ohta
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Jun Yoshimura
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shinichi Morishita
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-0034, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Taro Ishikawa
- Department of Pharmacology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| |
Collapse
|
30
|
Inhibition of T-Type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy. Epilepsy Res 2019; 154:132-138. [PMID: 31132598 DOI: 10.1016/j.eplepsyres.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/20/2023]
Abstract
Temporal lobe epilepsy (TLE) is a form of adult epilepsy involving the entorhinal cortex (EC). Layer II neurons of the medial EC (mEC) are spared and become hyperexcitable in TLE. Studies have suggested a role for T-type calcium channels (T-type Ca2+ channels) in facilitating increases in neuronal activity associated with TLE within the hippocampus. We sought to determine if T-type Ca2+ channels play a role in facilitating neuronal hyperexcitability of layer II mEC stellate neurons in TLE. TLE was induced in rats by electrical stimulation of the hippocampus to induce status epilepticus (SE). Brain slices were prepared from rats exhibiting spontaneous seizures and compared with age-matched control rats. Action potentials (APs) were evoked either by current injection steps or via presynaptic stimulation of mEC deep layers. The selective T-type Ca2+ channel antagonist, TTA-P2 (1 μM), was applied to determine the role of T-type Ca2+ channels in maintaining neuronal excitability. Quantitative PCR techniques were used to assess T-type Ca2+ channel isoform mRNA levels within the mEC layer II. TLE mEC layer II stellate neurons were hyperexcitable compared to control neurons, evoking a higher frequency of APs and generating bursts of APs when synaptically stimulated. TTA-P2 (1 μM) reduced firing frequencies in TLE and control neurons and reduced AP burst firing in TLE stellate neurons. TTA-P2 had little effect on synaptically evoked AP's in control neurons. TTA-P2 also inhibited rebound APs evoked in TLE neurons to a greater degree than in control neurons. TLE tissue had almost a 3-fold increase in Cav3.1 mRNA compared to controls. Cav3.2 or Cav3.3 levels were unchanged. These findings support a role for T-type Ca2+ channel in establishing neuronal hyperexcitability of mEC layer II stellate neurons in TLE. Increased expression of Cav3.1 may be important for establishing neuronal hyperexcitability of mEC layer II neurons in TLE.
Collapse
|
31
|
Wang D, Ragnarsson L, Lewis RJ. T-type Calcium Channels in Health and Disease. Curr Med Chem 2018; 27:3098-3122. [PMID: 30277145 DOI: 10.2174/0929867325666181001112821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
Low Voltage-Activated (LVA) T-type calcium channels are characterized by transient current and Low Threshold Spikes (LTS) that trigger neuronal firing and oscillatory behavior. Combined with their preferential localization in dendrites and their specific "window current", T-type calcium channels are considered to be key players in signal amplification and synaptic integration. Assisted by the emerging pharmacological tools, the structural determinants of channel gating and kinetics, as well as novel physiological and pathological functions of T-type calcium channels, are being uncovered. In this review, we provide an overview of structural determinants in T-type calcium channels, their involvement in disorders and diseases, the development of novel channel modulators, as well as Structure-Activity Relationship (SAR) studies that lead to rational drug design.
Collapse
Affiliation(s)
- Dan Wang
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Lotten Ragnarsson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| | - Richard J Lewis
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, the University of Queensland, Brisbane Qld 4072, Australia
| |
Collapse
|
32
|
Voltage-Dependent Calcium Channels, Calcium Binding Proteins, and Their Interaction in the Pathological Process of Epilepsy. Int J Mol Sci 2018; 19:ijms19092735. [PMID: 30213136 PMCID: PMC6164075 DOI: 10.3390/ijms19092735] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
As an important second messenger, the calcium ion (Ca2+) plays a vital role in normal brain function and in the pathophysiological process of different neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), and epilepsy. Ca2+ takes part in the regulation of neuronal excitability, and the imbalance of intracellular Ca2+ is a trigger factor for the occurrence of epilepsy. Several anti-epileptic drugs target voltage-dependent calcium channels (VDCCs). Intracellular Ca2+ levels are mainly controlled by VDCCs located in the plasma membrane, the calcium-binding proteins (CBPs) inside the cytoplasm, calcium channels located on the intracellular calcium store (particular the endoplasmic reticulum/sarcoplasmic reticulum), and the Ca2+-pumps located in the plasma membrane and intracellular calcium store. So far, while many studies have established the relationship between calcium control factors and epilepsy, the mechanism of various Ca2+ regulatory factors in epileptogenesis is still unknown. In this paper, we reviewed the function, distribution, and alteration of VDCCs and CBPs in the central nervous system in the pathological process of epilepsy. The interaction of VDCCs with CBPs in the pathological process of epilepsy was also summarized. We hope this review can provide some clues for better understanding the mechanism of epileptogenesis, and for the development of new anti-epileptic drugs targeting on VDCCs and CBPs.
Collapse
|
33
|
Celli R, Santolini I, Guiducci M, van Luijtelaar G, Parisi P, Striano P, Gradini R, Battaglia G, Ngomba RT, Nicoletti F. The α2δ Subunit and Absence Epilepsy: Beyond Calcium Channels? Curr Neuropharmacol 2018; 15:918-925. [PMID: 28290248 PMCID: PMC5652034 DOI: 10.2174/1570159x15666170309105451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/16/2017] [Accepted: 03/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background: Spike-wave discharges, underlying absence seizures, are generated within a cortico-thalamo-cortical network that involves the somatosensory cortex, the reticular thalamic nucleus, and the ventrobasal thalamic nuclei. Activation of T-type voltage-sensitive calcium channels (VSCCs) contributes to the pathological oscillatory activity of this network, and some of the first-line drugs used in the treatment of absence epilepsy inhibit T-type calcium channels. The α2δ subunit is a component of high voltage-activated VSCCs (i.e., L-, N-, P/Q-, and R channels) and studies carried out in heterologous expression systems suggest that it may also associate with T channels. The α2δ subunit is also targeted by thrombospondins, which regulate synaptogenesis in the central nervous system. Objective: To discuss the potential role for the thrombospondin/α2δ axis in the pathophysiology of absence epilepsy. Methods: We searched PubMed articles for the terms “absence epilepsy”, “T-type voltage-sensitive calcium channels”, “α2δ subunit”, “ducky mice”, “pregabalin”, “gabapentin”, “thrombospondins”, and included papers focusing this Review's scope. Results: We moved from the evidence that mice lacking the α2δ-2 subunit show absence seizures and α2δ ligands (gabapentin and pregabalin) are detrimental in the treatment of absence epilepsy. This suggests that α2δ may be protective against absence epilepsy via a mechanism that does not involve T channels. We discuss the interaction between thrombospondins and α2δ and its potential relevance in the regulation of excitatory synaptic formation in the cortico-thalamo-cortical network. Conclusion: We speculate on the possibility that the thrombospondin/α2δ axis is critical for the correct functioning of the cortico-thalamo-cortical network, and that abnormalities in this axis may play a role in the pathophysiology of absence epilepsy.
Collapse
Affiliation(s)
- Roberta Celli
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | - Ines Santolini
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | - Michela Guiducci
- Departments of Neurosciences, Mental Health and Sensory Organs, Experimental Medicine, and Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen. Netherlands
| | - Pasquale Parisi
- Departments of Neurosciences, Mental Health and Sensory Organs, Experimental Medicine, and Physiology and Pharmacology, University Sapienza, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy
| | - Roberto Gradini
- I.R.C.C.S. Neuromed, Neuropharmacology Unit, Pozzilli, (IS), Italy
| | | | - Richard T Ngomba
- University of Lincoln, School of Pharmacy, Lincoln, United Kingdom
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
34
|
McCafferty C, David F, Venzi M, Lőrincz ML, Delicata F, Atherton Z, Recchia G, Orban G, Lambert RC, Di Giovanni G, Leresche N, Crunelli V. Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures. Nat Neurosci 2018; 21:744-756. [PMID: 29662216 PMCID: PMC6278913 DOI: 10.1038/s41593-018-0130-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022]
Abstract
Behaviorally and pathologically relevant cortico-thalamo-cortical oscillations are driven by diverse interacting cell-intrinsic and synaptic processes. However, the mechanism that gives rise to the paroxysmal oscillations of absence seizures (ASs) remains unknown. Here we report that, during ASs in behaving animals, cortico-thalamic excitation drives thalamic firing by preferentially eliciting tonic rather than T-type Ca 2+ channel (T-channel)-dependent burst firing in thalamocortical (TC) neurons and by temporally framing thalamic output via feedforward reticular thalamic (NRT)-to-TC neuron inhibition. In TC neurons, overall ictal firing was markedly reduced and bursts rarely occurred. Moreover, blockade of T-channels in cortical and NRT neurons suppressed ASs, but such blockade in TC neurons had no effect on seizures or on ictal thalamic output synchrony. These results demonstrate ictal bidirectional cortico-thalamic communications and provide the first mechanistic understanding of cortico-thalamo-cortical network firing dynamics during ASs in behaving animals.
Collapse
Affiliation(s)
- Cian McCafferty
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK. .,Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| | - François David
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.,Team Waking, Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Lyon, France
| | - Marcello Venzi
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK
| | - Magor L Lőrincz
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Francis Delicata
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.,Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Zoe Atherton
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK
| | - Gregorio Recchia
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK
| | - Gergely Orban
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.,Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Régis C Lambert
- Sorbonne Université, CNRS, Inserm, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Giuseppe Di Giovanni
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.,Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Nathalie Leresche
- Sorbonne Université, CNRS, Inserm, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK. .,Department of Physiology and Biochemistry, University of Malta, Msida, Malta.
| |
Collapse
|
35
|
Amarillo Y, Tissone AI, Mato G, Nadal MS. Inward rectifier potassium current I Kir promotes intrinsic pacemaker activity of thalamocortical neurons. J Neurophysiol 2018; 119:2358-2372. [PMID: 29561202 DOI: 10.1152/jn.00867.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Slow repetitive burst firing by hyperpolarized thalamocortical (TC) neurons correlates with global slow rhythms (<4 Hz), which are the physiological oscillations during non-rapid eye movement sleep or pathological oscillations during idiopathic epilepsy. The pacemaker activity of TC neurons depends on the expression of several subthreshold conductances, which are modulated in a behaviorally dependent manner. Here we show that upregulation of the small and neglected inward rectifier potassium current IKir induces repetitive burst firing at slow and delta frequency bands. We demonstrate this in mouse TC neurons in brain slices by manipulating the Kir maximum conductance with dynamic clamp. We also performed a thorough theoretical analysis that explains how the unique properties of IKir enable this current to induce slow periodic bursting in TC neurons. We describe a new ionic mechanism based on the voltage- and time-dependent interaction of IKir and hyperpolarization-activated cationic current Ih that endows TC neurons with the ability to oscillate spontaneously at very low frequencies, even below 0.5 Hz. Bifurcation analysis of conductance-based models of increasing complexity demonstrates that IKir induces bistability of the membrane potential at the same time that it induces sustained oscillations in combination with Ih and increases the robustness of low threshold-activated calcium current IT-mediated oscillations. NEW & NOTEWORTHY The strong inwardly rectifying potassium current IKir of thalamocortical neurons displays a region of negative slope conductance in the current-voltage relationship that generates potassium currents activated by hyperpolarization. Bifurcation analysis shows that IKir induces bistability of the membrane potential; generates sustained subthreshold oscillations by interacting with the hyperpolarization-activated cationic current Ih; and increases the robustness of oscillations mediated by the low threshold-activated calcium current IT. Upregulation of IKir in thalamocortical neurons induces repetitive burst firing at slow and delta frequency bands (<4 Hz).
Collapse
Affiliation(s)
- Yimy Amarillo
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina.,Gerencia de Área Investigación y Aplicaciones no Nucleares, Gerencia de Física, Departamento Sistemas Complejos y Altas Energías, División Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina
| | - Angela I Tissone
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina.,Gerencia de Área Investigación y Aplicaciones no Nucleares, Gerencia de Física, Departamento Sistemas Complejos y Altas Energías, División Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina.,Universidad Nacional del Comahue, Centro Regional Universitario Bariloche, San Carlos de Bariloche, Río Negro, Argentina
| | - Germán Mato
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina.,Gerencia de Área Investigación y Aplicaciones no Nucleares, Gerencia de Física, Departamento Sistemas Complejos y Altas Energías, División Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina
| | - Marcela S Nadal
- Departamento de Física Médica, Centro Atómico Bariloche and Instituto Balseiro, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Río Negro, Argentina.,Gerencia de Área Investigación y Aplicaciones no Nucleares, Gerencia de Física, Departamento Sistemas Complejos y Altas Energías, División Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina.,Universidad Nacional del Comahue, Centro Regional Universitario Bariloche, San Carlos de Bariloche, Río Negro, Argentina
| |
Collapse
|
36
|
Lacinová Ľ. Regulation of the Ca V3.2 calcium channels in health and disease Regulácia Ca V3.2 vápnikových kanálov v zdraví a chorobe. EUROPEAN PHARMACEUTICAL JOURNAL 2017. [DOI: 10.1515/afpuc-2017-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Family of T-type or low-voltage activated calcium channels consists of three members: CaV3.1, CaV3.2, and CaV3.3. CaV3.2 channel has almost identical biophysical properties as the CaV3.1 channel, but is distinguished by a specific tissue expression profile and a prominent role in several pathologies, including neuropathic pain, epilepsy, and dysregulation of cardiac rhythm. Further, it may be involved in phenotype of autism spectrum disorders, and amyotrophic lateral sclerosis. It represents a promising target for future pharmacotherapies.
Collapse
Affiliation(s)
- Ľ. Lacinová
- Slovenská akadémia vied, Biomedicínske centrum SAV, Bratislava , Slovakia
- Univerzita sv. Cyrila a Metoda v Trnave, Fakulta prírodných vied, Trnava , Slovakia
| |
Collapse
|
37
|
Schampel A, Kuerten S. Danger: High Voltage-The Role of Voltage-Gated Calcium Channels in Central Nervous System Pathology. Cells 2017; 6:E43. [PMID: 29140302 PMCID: PMC5755501 DOI: 10.3390/cells6040043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are widely distributed within the central nervous system (CNS) and presumed to play an important role in the pathophysiology of a broad spectrum of CNS disorders including Alzheimer's and Parkinson's disease as well as multiple sclerosis. Several calcium channel blockers have been in clinical practice for many years so that their toxicity and side effects are well studied. However, these drugs are primarily used for the treatment of cardiovascular diseases and most if not all effects on brain functions are secondary to peripheral effects on blood pressure and circulation. While the use of calcium channel antagonists for the treatment of CNS diseases therefore still heavily depends on the development of novel strategies to specifically target different channels and channel subunits, this review is meant to provide an impulse to further emphasize the importance of future research towards this goal.
Collapse
Affiliation(s)
- Andrea Schampel
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg 97070, Germany.
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
38
|
Corticothalamic network dysfunction and Alzheimer's disease. Brain Res 2017; 1702:38-45. [PMID: 28919464 DOI: 10.1016/j.brainres.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that is characterized by progressive cognitive decline and a prominent loss of hippocampal-dependent memory. Therefore, much focus has been placed on understanding the function and dysfunction of the hippocampus in AD. However, AD is also accompanied by a number of other debilitating cognitive and behavioral alterations including deficits in attention, cognitive processing, and sleep maintenance. The underlying mechanisms that give rise to impairments in such diverse behavioral domains are unknown, and identifying them would shed insight into the multifactorial nature of AD as well as reveal potential new therapeutic targets to improve overall function in AD. We present here several lines of evidence that suggest that dysregulation of the corticothalamic network may be a common denominator that contributes to the diverse cognitive and behavioral alterations in AD. First, we will review the mechanisms by which this network regulates processes that include attention, cognitive processing, learning and memory, and sleep maintenance. Then we will review how these behavioral and cognitive domains are altered in AD. We will also discuss how dysregulation of tightly regulated activity in the corticothalamic network can give rise to non-convulsive seizures and other forms of epileptiform activity that have also been documented in both AD patients and transgenic mouse models of AD. In summary, the corticothalamic network has the potential to be a master regulator of diverse cognitive and behavioral domains that are affected in AD.
Collapse
|
39
|
Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, Zamponi GW, Weiss N. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca 2+ currents by altering calnexin-dependent trafficking of Ca v3.2 channels. Sci Rep 2017; 7:11513. [PMID: 28912545 PMCID: PMC5599688 DOI: 10.1038/s41598-017-11591-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Low-voltage-activated T-type calcium channels are essential contributors to the functioning of thalamocortical neurons by supporting burst-firing mode of action potentials. Enhanced T-type calcium conductance has been reported in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS) and proposed to be causally related to the overall development of absence seizure activity. Here, we show that calnexin, an endoplasmic reticulum integral membrane protein, interacts with the III-IV linker region of the Cav3.2 channel to modulate the sorting of the channel to the cell surface. We demonstrate that the GAERS missense mutation located in the Cav3.2 III-IV linker alters the Cav3.2/calnexin interaction, resulting in an increased surface expression of the channel and a concomitant elevation in calcium influx. Our study reveals a novel mechanism that controls the expression of T-type channels, and provides a molecular explanation for the enhancement of T-type calcium conductance in GAERS.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Yuriy Rzhepetskyy
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Joanna Lazniewska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, Canada
| | - Stuart M Cain
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, Canada.
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
40
|
Becker F, Reid CA, Hallmann K, Tae HS, Phillips AM, Teodorescu G, Weber YG, Kleefuss-Lie A, Elger C, Perez-Reyes E, Petrou S, Kunz WS, Lerche H, Maljevic S. Functional variants in HCN4 and CACNA1H may contribute to genetic generalized epilepsy. Epilepsia Open 2017; 2:334-342. [PMID: 29588962 PMCID: PMC5862120 DOI: 10.1002/epi4.12068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2017] [Indexed: 01/11/2023] Open
Abstract
Objective Genetic generalized epilepsy (GGE) encompasses seizure disorders characterized by spike‐and‐wave discharges (SWD) originating within thalamo‐cortical circuits. Hyperpolarization‐activated (HCN) and T‐type Ca2+ channels are key modulators of rhythmic activity in these brain regions. Here, we screened HCN4 and CACNA1H genes for potentially contributory variants and provide their functional analysis. Methods Targeted gene sequencing was performed in 20 unrelated familial cases with different subtypes of GGE, and the results confirmed in 230 ethnically matching controls. Selected variants in CACNA1H and HCN4 were functionally assessed in tsA201 cells and Xenopus laevis oocytes, respectively. Results We discovered a novel CACNA1H (p.G1158S) variant in two affected members of a single family. One of them also carried an HCN4 (p.P1117L) variant inherited from the unaffected mother. In a separate family, an HCN4 variant (p.E153G) was identified in one of several affected members. Voltage‐clamp analysis of CACNA1H (p.G1158S) revealed a small but significant gain‐of‐function, including increased current density and a depolarizing shift of steady‐state inactivation. HCN4 p.P1117L and p.G153E both caused a hyperpolarizing shift in activation and reduced current amplitudes, resulting in a loss‐of‐function. Significance Our results are consistent with a model suggesting cumulative contributions of subtle functional variations in ion channels to seizure susceptibility and GGE.
Collapse
Affiliation(s)
- Felicitas Becker
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany.,RKU-University Neurology Clinic of Ulm Ulm Germany
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia
| | - Kerstin Hallmann
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Han-Shen Tae
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia.,Present address: Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong New South Wales Australia
| | - A Marie Phillips
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia.,School of Biosciences The University of Melbourne Melbourne Victoria Australia
| | - Georgeta Teodorescu
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany
| | - Yvonne G Weber
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany
| | - Ailing Kleefuss-Lie
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Christian Elger
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Edward Perez-Reyes
- Department of Pharmacology University of Virginia Charlottesville Virginia U.S.A
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia
| | - Wolfram S Kunz
- Department of Neurology and Epileptology University of Bonn Medical Center Bonn Germany
| | - Holger Lerche
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany
| | - Snezana Maljevic
- Department of Neurology and Epileptology Hertie-Institute for Clinical Brain-Research University of Tübingen Tübingen Germany.,The Florey Institute of Neuroscience and Mental Health Melbourne Victoria Australia
| |
Collapse
|
41
|
Fogerson PM, Huguenard JR. Tapping the Brakes: Cellular and Synaptic Mechanisms that Regulate Thalamic Oscillations. Neuron 2017; 92:687-704. [PMID: 27883901 DOI: 10.1016/j.neuron.2016.10.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/26/2022]
Abstract
Thalamic oscillators contribute to both normal rhythms associated with sleep and anesthesia and abnormal, hypersynchronous oscillations that manifest behaviorally as absence seizures. In this review, we highlight new findings that refine thalamic contributions to cortical rhythms and suggest that thalamic oscillators may be subject to both local and global control. We describe endogenous thalamic mechanisms that limit network synchrony and discuss how these protective brakes might be restored to prevent absence seizures. Finally, we describe how intrinsic and circuit-level specializations among thalamocortical loops may determine their involvement in widespread oscillations and render subsets of thalamic nuclei especially vulnerable to pathological synchrony.
Collapse
Affiliation(s)
- P Michelle Fogerson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy in a mouse model of Dravet syndrome. Epilepsia 2017; 58:e111-e115. [PMID: 28556246 DOI: 10.1111/epi.13811] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
Dravet syndrome, an early onset epileptic encephalopathy, is most often caused by de novo mutation of the neuronal voltage-gated sodium channel gene SCN1A. Mouse models with deletion of Scn1a recapitulate Dravet syndrome phenotypes, including spontaneous generalized tonic-clonic seizures, susceptibility to seizures induced by elevated body temperature, and elevated risk of sudden unexpected death in epilepsy. Importantly, the epilepsy phenotype of Dravet mouse models is highly strain-dependent, suggesting a strong influence of genetic modifiers. We previously identified Cacna1g, encoding the Cav3.1 subunit of the T-type calcium channel family, as an epilepsy modifier in the Scn2aQ54 transgenic epilepsy mouse model. In this study, we asked whether transgenic alteration of Cacna1g expression modifies severity of the Scn1a+/- Dravet phenotype. Scn1a+/- mice with decreased Cacna1g expression showed partial amelioration of disease phenotypes with improved survival and reduced spontaneous seizure frequency. However, reduced Cacna1g expression did not alter susceptibility to hyperthermia-induced seizures. Transgenic elevation of Cacna1g expression had no effect on the Scn1a+/- epilepsy phenotype. These results provide support for Cacna1g as a genetic modifier in a mouse model of Dravet syndrome and suggest that Cav3.1 may be a potential molecular target for therapeutic intervention in patients.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Nicole J Zachwieja
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| |
Collapse
|
43
|
Moguilner S, García AM, Mikulan E, Del Carmen García M, Vaucheret E, Amarillo Y, Bekinschtein TA, Ibáñez A. An unaware agenda: interictal consciousness impairments in epileptic patients. Neurosci Conscious 2017; 2017:niw024. [PMID: 30042834 PMCID: PMC6007167 DOI: 10.1093/nc/niw024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/16/2016] [Accepted: 12/21/2016] [Indexed: 01/07/2023] Open
Abstract
Consciousness impairments have been described as a cornerstone of epilepsy. Generalized seizures are usually characterized by a complete loss of consciousness, whereas focal seizures have more variable degrees of responsiveness. In addition to these impairments that occur during ictal episodes, alterations of consciousness have also been repeatedly observed between seizures (i.e. during interictal periods). In this opinion article, we review evidence supporting the novel hypothesis that epilepsy produces consciousness impairments which remain present interictally. Then, we discuss therapies aimed to reduce seizure frequency, which may modulate consciousness between epileptic seizures. We conclude with a consideration of relevant pathophysiological mechanisms. In particular, the thalamocortical network seems to be involved in both seizure generation and interictal consciousness impairments, which could inaugurate a promising translational agenda for epilepsy studies.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Instituto Balseiro and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Adolfo M García
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Faculty of Elementary and Special Education (FEEyE), National University of Cuyo (UNCuyo), Mendoza, Argentina
| | - Ezequiel Mikulan
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Maria Del Carmen García
- Programa de Cirugía de Epilepsia, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Esteban Vaucheret
- Servicio de Neurologia Infantil del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Yimy Amarillo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Física Estadística e Interdisciplinaria, Centro Atómico Bariloche, San Carlos de Bariloche, Rio Negro, Argentina
| | | | - Agustín Ibáñez
- Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Australian Research Council Centre of Excellence in Cognition and its Disorders, Sydney, Australia
| |
Collapse
|
44
|
Siegrist R, Pozzi D, Jacob G, Torrisi C, Colas K, Braibant B, Mawet J, Pfeifer T, de Kanter R, Roch C, Kessler M, Corminboeuf O, Bezençon O. Structure–Activity Relationship, Drug Metabolism and Pharmacokinetics Properties Optimization, and in Vivo Studies of New Brain Penetrant Triple T-Type Calcium Channel Blockers. J Med Chem 2016; 59:10661-10675. [DOI: 10.1021/acs.jmedchem.6b01356] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Romain Siegrist
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Gaël Jacob
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Caterina Torrisi
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Kilian Colas
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Bertrand Braibant
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Jacques Mawet
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Thomas Pfeifer
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Catherine Roch
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Melanie Kessler
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| | - Olivier Bezençon
- Drug Discovery Chemistry,
Biology and Pharmacology, Actelion Pharmaceuticals Ltd., Gewerbestrasse
16, CH-4123 Allschwil, Switzerland
| |
Collapse
|
45
|
Rangel-Barajas C, Estrada-Sánchez AM, Barton SJ, Luedtke RR, Rebec GV. Dysregulated corticostriatal activity in open-field behavior and the head-twitch response induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine. Neuropharmacology 2016; 113:502-510. [PMID: 27816502 DOI: 10.1016/j.neuropharm.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
The substituted amphetamine, 2,5-dimethoxy-4-iodoamphetamine (DOI), is a hallucinogen that has been used to model a variety of psychiatric conditions. Here, we studied the effect of DOI on neural activity recorded simultaneously in the primary motor cortex (M1) and dorsal striatum of freely behaving FvB/N mice. DOI significantly decreased the firing rate of individually isolated neurons in M1 and dorsal striatum relative to pre-drug baseline. It also induced a bursting pattern of activity by increasing both the number of spikes within a burst and burst duration. In addition, DOI increased coincident firing between simultaneously recorded neuron pairs within the striatum and between M1 and dorsal striatum. Local field potential (LFP) activity also increased in coherence between M1 and dorsal striatum after DOI in the low frequency gamma band (30-50 Hz), while corticostriatal coherence in delta, theta, alpha, and beta activity decreased. We also assessed corticostriatal LFP activity in relation to the DOI-induced head-twitch response (HTR), a readily identifiable behavior used to assess potential treatments for the conditions it models. The HTR was associated with increased delta and decreased theta power in both M1 and dorsal striatum. Together, our results suggest that DOI dysregulates corticostriatal communication and that the HTR is associated with this dysregulation.
Collapse
Affiliation(s)
- Claudia Rangel-Barajas
- Indiana University Bloomington, Department of Psychological and Brain Sciences, Program in Neuroscience, 1101 E. 10th St., Bloomington, IN 47405, USA
| | - Ana María Estrada-Sánchez
- Indiana University Bloomington, Department of Psychological and Brain Sciences, Program in Neuroscience, 1101 E. 10th St., Bloomington, IN 47405, USA; Intellectual and Developmental Disabilities Research Center, Semel Institute, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Scott J Barton
- Indiana University Bloomington, Department of Psychological and Brain Sciences, Program in Neuroscience, 1101 E. 10th St., Bloomington, IN 47405, USA
| | - Robert R Luedtke
- University of North Texas Health Science Center, The Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - George V Rebec
- Indiana University Bloomington, Department of Psychological and Brain Sciences, Program in Neuroscience, 1101 E. 10th St., Bloomington, IN 47405, USA.
| |
Collapse
|
46
|
Isolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy. J Neurosci 2016; 36:405-18. [PMID: 26758833 DOI: 10.1523/jneurosci.2555-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Generalized spike-wave seizures involving abnormal synchronization of cortical and underlying thalamic circuitry represent a major category of childhood epilepsy. Inborn errors of Cacna1a, the P/Q-type voltage-gated calcium channel α subunit gene, expressed throughout the brain destabilize corticothalamic rhythmicity and produce this phenotype. To determine the minimal cellular lesion required for this network disturbance, we used neurotensin receptor 1 (Ntsr1) cre-driver mice to ablate floxed Cacna1a in layer VI pyramidal neurons, which supply the sole descending cortical synaptic input to thalamocortical relay cells and reticular interneurons and activate intrathalamic circuits. Targeted Cacna1a ablation in layer VI cells resulted in mice that display a robust spontaneous spike-wave absence seizure phenotype accompanied by behavioral arrest and inhibited by ethosuximide. To verify the selectivity of the molecular lesion, we determined that P/Q subunit proteins were reduced in corticothalamic relay neuron terminal zones, and confirmed that P/Q-mediated glutamate release was reduced at these synapses. Spike-triggered exocytosis was preserved by N-type calcium channel rescue, demonstrating that evoked release at layer VI terminals relies on both P/Q and N-type channels. Whereas intrinsic excitability of the P/Q channel depleted layer VI neurons was unaltered, T-type calcium currents in the postsynaptic thalamic relay and reticular cells were dramatically elevated, favoring rebound bursting and seizure generation. We find that an early P/Q-type release defect, limited to synapses of a single cell-type within the thalamocortical circuit, is sufficient to remodel synchronized firing behavior and produce a stable generalized epilepsy phenotype. SIGNIFICANCE STATEMENT This study dissects a critical component of the corticothalamic circuit in spike-wave epilepsy and identifies the developmental importance of P/Q-type calcium channel-mediated presynaptic glutamate release at layer VI pyramidal neuron terminals. Genetic ablation of Cacna1a in layer VI neurons produced synchronous spike-wave discharges in the cortex and thalamus that were inhibited by ethosuximide. These mice also displayed N-type calcium channel compensation at descending thalamic synapses, and consistent with other spike-wave models increased low-threshold T-type calcium currents within postsynaptic thalamic relay and reticular neurons. These results demonstrate, for the first time, that preventing the developmental homeostatic switch from loose to tightly coupled synaptic release at a single class of deep layer cortical excitatory output neurons results in generalized spike-wave epilepsy.
Collapse
|
47
|
Hazra A, Corbett BF, You JC, Aschmies S, Zhao L, Li K, Lepore AC, Marsh ED, Chin J. Corticothalamic network dysfunction and behavioral deficits in a mouse model of Alzheimer's disease. Neurobiol Aging 2016; 44:96-107. [PMID: 27318137 DOI: 10.1016/j.neurobiolaging.2016.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is associated with cognitive decline and seizures. Growing evidence indicates that seizures contribute to cognitive deficits early in disease, but how they develop and impact cognition are unclear. To investigate potential mechanisms, we studied a mouse model that overexpresses mutant human amyloid precursor protein with high levels of amyloid beta (Aβ). These mice develop generalized epileptiform activity, including nonconvulsive seizures, consistent with alterations in corticothalamic network activity. Amyloid precursor protein mice exhibited reduced activity marker expression in the reticular thalamic nucleus, a key inhibitory regulatory nucleus, and increased activity marker expression in downstream thalamic relay targets that project to cortex and limbic structures. Slice recordings revealed impaired cortical inputs to the reticular thalamic nucleus that may contribute to corticothalamic dysfunction. These results are consistent with our findings of impaired sleep maintenance in amyloid precursor protein mice. Finally, the severity of sleep impairments predicted the severity of deficits in Morris water maze, suggesting corticothalamic dysfunction may relate to hippocampal dysfunction, and may be a pathophysiological mechanism underlying multiple behavioral and cognitive alterations in Alzheimer's disease.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Brian F Corbett
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jason C You
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Suzan Aschmies
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lijuan Zhao
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ke Li
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Angelo C Lepore
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107
| | - Eric D Marsh
- Departments of Pediatrics and Neurology, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Jeannie Chin
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107.,Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, PA 19107.,Memory & Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
48
|
Calhoun JD, Hawkins NA, Zachwieja NJ, Kearney JA. Cacna1g is a genetic modifier of epilepsy caused by mutation of voltage-gated sodium channel Scn2a. Epilepsia 2016; 57:e103-7. [PMID: 27112236 DOI: 10.1111/epi.13390] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 01/02/2023]
Abstract
More than 1,200 mutations in neuronal voltage-gated sodium channel (VGSC) genes have been identified in patients with several epilepsy syndromes. A common feature of genetic epilepsies is variable expressivity among individuals with the same mutation. The Scn2a(Q54) transgenic mouse model has a mutation in Scn2a that results in spontaneous epilepsy. Scn2a(Q54) phenotype severity varies depending on the genetic strain background, making it a useful model for identifying and characterizing epilepsy modifier genes. Scn2a(Q54) mice on the [C57BL/6JxSJL/J]F1 background exhibit earlier seizure onset, elevated spontaneous seizure frequency, and decreased survival compared to Scn2a(Q54) mice congenic on the C57BL/6J strain. Genetic mapping and RNA-Seq analysis identified Cacna1g as a candidate modifier gene at the Moe1 locus, which influences Scn2a(Q54) phenotype severity. In this study, we evaluated the modifier potential of Cacna1g, encoding the Cav3.1 voltage-gated calcium channel, by testing whether transgenic alteration of Cacna1g expression modifies severity of the Scn2a(Q54) seizure phenotype. Scn2a(Q54) mice exhibited increased spontaneous seizure frequency with elevated Cacna1g expression and decreased seizure frequency with decreased Cacna1g expression. These results provide support for Cacna1g as an epilepsy modifier gene and suggest that modulation of Cav3.1 may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Jeffrey D Calhoun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A.,Department of Medicine, Vanderbilt University, Nashville, Tennessee, U.S.A
| | - Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A.,Neuroscience Program, Vanderbilt University, Nashville, Tennessee, U.S.A
| | - Nicole J Zachwieja
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A.,Department of Medicine, Vanderbilt University, Nashville, Tennessee, U.S.A
| |
Collapse
|
49
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
50
|
Morino H, Matsuda Y, Muguruma K, Miyamoto R, Ohsawa R, Ohtake T, Otobe R, Watanabe M, Maruyama H, Hashimoto K, Kawakami H. A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia. Mol Brain 2015; 8:89. [PMID: 26715324 PMCID: PMC4693440 DOI: 10.1186/s13041-015-0180-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spinocerebellar ataxia (SCA) is a genetically heterogeneous disease. To date, 36 dominantly inherited loci have been reported, and 31 causative genes have been identified. RESULTS In this study, we analyzed a Japanese family with autosomal dominant SCA using linkage analysis and exome sequencing, and identified CACNA1G, which encodes the calcium channel CaV3.1, as a new causative gene. The same mutation was also found in another family with SCA. Although most patients exhibited the pure form of cerebellar ataxia, two patients showed prominent resting tremor in addition to ataxia. CaV3.1 is classified as a low-threshold voltage-dependent calcium channel (T-type) and is expressed abundantly in the central nervous system, including the cerebellum. The mutation p.Arg1715His, identified in this study, was found to be located at S4 of repeat IV, the voltage sensor of the CaV3.1. Electrophysiological analyses revealed that the membrane potential dependency of the mutant CaV3.1 transfected into HEK293T cells shifted toward a positive potential. We established induced pluripotent stem cells (iPSCs) from fibroblasts of the patient, and to our knowledge, this is the first report of successful differentiation from the patient-derived iPSCs into Purkinje cells. There was no significant difference in the differentiation status between control- and patient-derived iPSCs. CONCLUSIONS To date, several channel genes have been reported as causative genes for SCA. Our findings provide important insights into the pathogenesis of SCA as a channelopathy.
Collapse
Affiliation(s)
- Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Keiko Muguruma
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe, Japan.
| | - Ryosuke Miyamoto
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Toshiyuki Ohtake
- Department of Neurology, Tokyo Metropolitan Health and Medical Treatment Corporation Ebara Hospital, Tokyo, Japan.
| | - Reiko Otobe
- Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, Japan.
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience & Therapeutics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|