1
|
Bastawy EM, Eraslan IM, Voglsanger L, Suphioglu C, Walker AJ, Dean OM, Read JL, Ziemann M, Smith CM. Novel Insights into Changes in Gene Expression within the Hypothalamus in Two Asthma Mouse Models: A Transcriptomic Lung-Brain Axis Study. Int J Mol Sci 2024; 25:7391. [PMID: 39000495 PMCID: PMC11242700 DOI: 10.3390/ijms25137391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung-brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood-brain barrier. To gain a better insight into such neuropsychiatric sequelae, this study investigated gene expression differences in the hypothalamus following lung inflammation (asthma) induction in mice, using RNA transcriptome profiling. BALB/c mice were challenged with either bacterial lipopolysaccharide (LPS, E. coli) or ovalbumin (OVA) allergens or saline control (n = 7 per group), and lung inflammation was confirmed via histological examination of postmortem lung tissue. The majority of the hypothalamus was micro-dissected, and total RNA was extracted for sequencing. Differential expression analysis identified 31 statistically significant single genes (false discovery rate FDR5%) altered in expression following LPS exposure compared to controls; however, none were significantly changed following OVA treatment, suggesting a milder hypothalamic response. When gene sets were examined, 48 were upregulated and 8 were downregulated in both asthma groups relative to controls. REACTOME enrichment analysis suggests these gene sets are involved in signal transduction metabolism, immune response and neuroplasticity. Interestingly, we identified five altered gene sets directly associated with neurotransmitter signaling. Intriguingly, many of these altered gene sets can influence mental health and or/neuroinflammation in humans. These findings help characterize the links between asthma-induced lung inflammation and the brain and may assist in identifying relevant pathways and therapeutic targets for future intervention.
Collapse
Affiliation(s)
- Eslam M Bastawy
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Lara Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Cenk Suphioglu
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
| | - Adam J Walker
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Olivia M Dean
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne 3052, Australia
| | - Justin L Read
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Mark Ziemann
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
- Burnet Institute, Melbourne 3004, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| |
Collapse
|
2
|
Agarwal S, Schaefer ML, Krall C, Johns RA. Isoflurane Disrupts Postsynaptic Density-95 Protein Interactions Causing Neuronal Synapse Loss and Cognitive Impairment in Juvenile Mice via Canonical NO-mediated Protein Kinase-G Signaling. Anesthesiology 2022; 137:212-231. [PMID: 35504002 PMCID: PMC9332139 DOI: 10.1097/aln.0000000000004264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inhalational anesthetics are known to disrupt PDZ2 domain-mediated protein-protein interactions of the postsynaptic density (PSD)-95 protein. The aim of this study is to investigate the underlying mechanisms in response to early isoflurane exposure on synaptic PSD-95 PDZ2 domain disruption that altered spine densities and cognitive function. The authors hypothesized that activation of protein kinase-G by the components of nitric oxide (NO) signaling pathway constitutes a mechanism that prevents loss of early dendritic spines and synapse in neurons and cognitive impairment in mice in response to disruption of PDZ2 domain of the PSD-95 protein. METHODS Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 wild-type PDZ2 peptide or soluble guanylyl cyclase activator YC-1 along with their respective controls. Primary neurons at 7 days in vitro were exposed to isoflurane or PSD-95 wild-type PDZ2 peptide for 4 h. Coimmunoprecipitation, spine density, synapses, cyclic guanosine monophosphate-dependent protein kinase activity, and novel object recognition memory were assessed. RESULTS Exposure of isoflurane or PSD-95 wild-type PDZ2 peptide relative to controls causes the following. First, there is a decrease in PSD-95 coimmunoprecipitate relative to N-methyl-d-aspartate receptor subunits NR2A and NR2B precipitate (mean ± SD [in percentage of control]: isoflurane, 54.73 ± 16.52, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 51.32 ± 12.93, P = 0.001). Second, there is a loss in spine density (mean ± SD [spine density per 10 µm]: control, 5.28 ± 0.56 vs. isoflurane, 2.23 ± 0.67, P < 0.0001; and PSD-95 mutant PDZ2 peptide, 4.74 ± 0.94 vs. PSD-95 wild-type PDZ2 peptide, 1.47 ± 0.87, P < 0.001) and a decrease in synaptic puncta (mean ± SD [in percentage of control]: isoflurane, 41.1 ± 14.38, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 50.49 ± 14.31, P < 0.001). NO donor or cyclic guanosine monophosphate analog prevents the spines and synapse loss and decline in the cyclic guanosine monophosphate-dependent protein kinase activity, but this prevention was blocked by soluble guanylyl cyclase or protein kinase-G inhibitors in primary neurons. Third, there were deficits in object recognition at 5 weeks (mean ± SD [recognition index]: male, control, 64.08 ± 10.57 vs. isoflurane, 48.49 ± 13.41, P = 0.001, n = 60; and female, control, 67.13 ± 11.17 vs. isoflurane, 53.76 ± 6.64, P = 0.003, n = 58). Isoflurane-induced impairment in recognition memory was preventable by the introduction of YC-1. CONCLUSIONS Activation of soluble guanylyl cyclase or protein kinase-G prevents isoflurane or PSD-95 wild-type PDZ2 peptide-induced loss of dendritic spines and synapse. Prevention of recognition memory with YC-1, a NO-independent activator of guanylyl cyclase, supports a role for the soluble guanylyl cyclase mediated protein kinase-G signaling in countering the effects of isoflurane-induced cognitive impairment. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Swati Agarwal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Michele L Schaefer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Caroline Krall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
3
|
Memory Enhancers for Alzheimer's Dementia: Focus on cGMP. Pharmaceuticals (Basel) 2021; 14:ph14010061. [PMID: 33451088 PMCID: PMC7828493 DOI: 10.3390/ph14010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic guanosine-3',5'-monophosphate, better known as cyclic-GMP or cGMP, is a classical second messenger involved in a variety of intracellular pathways ultimately controlling different physiological functions. The family of guanylyl cyclases that includes soluble and particulate enzymes, each of which comprises several isoforms with different mechanisms of activation, synthesizes cGMP. cGMP signaling is mainly executed by the activation of protein kinase G and cyclic nucleotide gated channels, whereas it is terminated by its hydrolysis to GMP operated by both specific and dual-substrate phosphodiesterases. In the central nervous system, cGMP has attracted the attention of neuroscientists especially for its key role in the synaptic plasticity phenomenon of long-term potentiation that is instrumental to memory formation and consolidation, thus setting off a "gold rush" for new drugs that could be effective for the treatment of cognitive deficits. In this article, we summarize the state of the art on the neurochemistry of the cGMP system and then review the pre-clinical and clinical evidence on the use of cGMP enhancers in Alzheimer's disease (AD) therapy. Although preclinical data demonstrates the beneficial effects of cGMP on cognitive deficits in AD animal models, the results of the clinical studies carried out to date are not conclusive. More trials with a dose-finding design on selected AD patient's cohorts, possibly investigating also combination therapies, are still needed to evaluate the clinical potential of cGMP enhancers.
Collapse
|
4
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
5
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
6
|
Acquarone E, Argyrousi EK, van den Berg M, Gulisano W, Fà M, Staniszewski A, Calcagno E, Zuccarello E, D’Adamio L, Deng SX, Puzzo D, Arancio O, Fiorito J. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener 2019; 14:26. [PMID: 31248451 PMCID: PMC6598340 DOI: 10.1186/s13024-019-0326-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/05/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Soluble aggregates of oligomeric forms of tau protein (oTau) have been associated with impairment of synaptic plasticity and memory in Alzheimer's disease. However, the molecular mechanisms underlying the synaptic and memory dysfunction induced by elevation of oTau are still unknown. METHODS This work used a combination of biochemical, electrophysiological and behavioral techniques. Biochemical methods included analysis of phosphorylation of the cAMP-responsive element binding (CREB) protein, a transcriptional factor involved in memory, histone acetylation, and expression immediate early genes c-Fos and Arc. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated both short-term spatial memory and associative memory. These phenomena were examined following oTau elevation. RESULTS Levels of phospho-CREB, histone 3 acetylation at lysine 27, and immediate early genes c-Fos and Arc, were found to be reduced after oTau elevation during memory formation. These findings led us to explore whether up-regulation of various components of the nitric oxide (NO) signaling pathway impinging onto CREB is capable of rescuing oTau-induced impairment of plasticity, memory, and CREB phosphorylation. The increase of NO levels protected against oTau-induced impairment of LTP through activation of soluble guanylyl cyclase. Similarly, the elevation of cGMP levels and stimulation of the cGMP-dependent protein kinases (PKG) re-established normal LTP after exposure to oTau. Pharmacological inhibition of cGMP degradation through inhibition of phosphodiesterase 5 (PDE5), rescued oTau-induced LTP reduction. These findings could be extrapolated to memory because PKG activation and PDE5 inhibition rescued oTau-induced memory impairment. Finally, PDE5 inhibition re-established normal elevation of CREB phosphorylation and cGMP levels after memory induction in the presence of oTau. CONCLUSIONS Up-regulation of CREB activation through agents acting on the NO cascade might be beneficial against tau-induced synaptic and memory dysfunctions.
Collapse
Affiliation(s)
- Erica Acquarone
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- DiMi Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Manon van den Berg
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Walter Gulisano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
| | - Mauro Fà
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Elisa Calcagno
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Experimental Medicine, Section of General Pathology, School of Medical and Pharmaceutical Sciences, University of Genoa, 16132 Genoa, Italy
| | - Elisa Zuccarello
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, Newark, NJ USA
| | - Shi-Xian Deng
- Department of Medicine, Columbia University, New York, NY 10032 USA
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95125 Catania, Italy
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Medicine, Columbia University, New York, NY 10032 USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 USA
| | - Jole Fiorito
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S 12-420D, New York, NY 10032 USA
- Department of Life Sciences, New York Institute of Technology, Northern Boulevard P.O. Box 8000, Theobald Science Center, room 425, Old Westbury, NY 11568 USA
| |
Collapse
|
7
|
Liu LM, Wang N, Lu Y, Wang WP. Edaravone acts as a potential therapeutic drug against pentylenetetrazole-induced epilepsy in male albino rats by downregulating cyclooxygenase-II. Brain Behav 2019; 9:e01156. [PMID: 30506635 PMCID: PMC6346642 DOI: 10.1002/brb3.1156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The effects of edaravone against pentylenetetrazole (PTZ)-induced epilepsy in male albino rats were investigated. Edaravone is a well-known commercial drug used in the treatment of strokes and amyotrophic lateral sclerosis (ALS). Antioxidant and free radical scavenging activities of edaravone have been reported in patients with ALS. METHODS In this study, the experimental groups were as follows: sham, control, 5 mg/kg edaravone, and 10 mg/kg edaravone. Behavioral assessment, determination of biochemical markers, apoptosis, nitric oxide (NO), and mRNA and protein expression of cyclooxygenase-II (COX-II) were carried out. Seizure incidence, including generalized tonic-clonic seizure (GTCS) and minimal clonic seizure (MCS), was directly associated with PTZ administration in rats. RESULTS Edaravone supplementation substantially increased MCS and GTCS latency in rats, and biochemical markers were significantly altered in the brain tissue of PTZ-treated rats. Edaravone treatment normalized altered biochemical markers compared with the untreated control. Apoptosis and NO levels were significantly reduced by more than 50% compared to their respective controls. COX-II mRNA was increased by 130% in PTZ-treated rats, while edaravone supplementation reduced mRNA and protein expression of COX-II by more than 20% and 40%, respectively. Immunohistochemistry indicated that COX-II protein expression was reduced by 13.2% and 33.7% following supplementation with 5 and 10 mg/kg edaravone, respectively. CONCLUSION Taken together, our results suggest that edaravone functions by downregulating the levels of COX-II and NO and is a potential candidate for the treatment of PTZ-induced epilepsy.
Collapse
Affiliation(s)
- Liang-Min Liu
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Ning Wang
- Department of Pediatric Intensive Care Unit, Anyang Traditional Chinese Medicine Hospital, Anyang, Henan, PR China
| | - Yan Lu
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Wei-Ping Wang
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| |
Collapse
|
8
|
Lai B, Li M, Hu WL, Li W, Gan WB. The Phosphodiesterase 9 Inhibitor PF-04449613 Promotes Dendritic Spine Formation and Performance Improvement after Motor Learning. Dev Neurobiol 2018; 78:859-872. [PMID: 30022611 PMCID: PMC6158093 DOI: 10.1002/dneu.22623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
The cyclic nucleotide cGMP is an intracellular second messenger with important roles in neuronal functions and animals' behaviors. The phosphodiesterases (PDEs) are a family of enzymes that hydrolyze the second messengers cGMP and cAMP. Inhibition of phosphodiesterase 9 (PDE9), a main isoform of PDEs hydrolyzing cGMP, has been shown to improve learning and memory as well as cognitive function in rodents. However, the role of PDE9 in regulating neuronal structure and function in vivo remains unclear. Here we used in vivo two-photon microscopy to investigate the effect of a selective PDE9 inhibitor PF-04449613 on the activity and plasticity of dendritic spines of layer V pyramidal neurons in the mouse primary motor cortex. We found that administration of PF-04449613 increased calcium activity of dendrites and dendritic spines of layer V pyramidal neurons in mice under resting and running conditions. Chronic treatment of PF-04449613 over weeks increased dendritic spine formation and elimination under basal conditions. Furthermore, PF-04449613 treatment over 1-7 days increased the formation and survival of new spines as well as performance improvement after rotarod motor training. Taken together, our studies suggest that elevating the level of cGMP with the PDE9 inhibitor PF-04449613 increases synaptic calcium activity and learning-dependent synaptic plasticity, thereby contributing to performance improvement after learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Baoling Lai
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Miao Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wan-Ling Hu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wei Li
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
| | - Wen-Biao Gan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China, 518055
- Molecular Neurobiology Program, Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|
9
|
Borghans LGJM, Sambeth A, Prickaerts J, Ramaekers JG, Blokland A. The effects of the soluble guanylate cyclase stimulator riociguat on memory performance in healthy volunteers with a biperiden-induced memory impairment. Psychopharmacology (Berl) 2018; 235:2407-2416. [PMID: 29882087 PMCID: PMC6061766 DOI: 10.1007/s00213-018-4938-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/30/2018] [Indexed: 10/25/2022]
Abstract
RATIONALE After stimulation with nitric oxide, soluble guanylate cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), which stimulates an important signalling pathway for long-term potentiation (LTP). By upregulating cGMP, LTP could be stimulated and thereby enhancing memory processes. The present study investigated the effects of the sGC stimulator riociguat on cognition in healthy volunteers. Participants were pre-treated with and without biperiden, which impairs memory performance, to investigate the memory-enhancing effects of riociguat. METHODS Twenty volunteers participated in a double-blind placebo-controlled six-way crossover design with a cognitive test battery including the verbal learning task (VLT), n-back task, spatial memory test, the attention network test, and a reaction time task. Treatments were placebo and riociguat 0.5 mg, placebo and riociguat 1.0 mg, biperiden 2.0 mg and placebo, biperiden 2.0 mg and riociguat 0.5 mg and biperiden 2.0 mg and riociguat 1.0 mg. RESULTS Blood pressure was found to be decreased and heart rate to be increased after administration of riociguat. Cognitive performance was not enhanced after administration of riociguat. Biperiden decreased episodic memory on the VLT, yet this deficit was not reversed by riociguat. CONCLUSION This supports the notion that biperiden might be a valuable pharmacological model to induce episodic memory impairments as observed in AD/MCI.
Collapse
Affiliation(s)
- Laura G. J. M. Borghans
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Anke Sambeth
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Medicine, Health & Life Science, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
10
|
Dorner-Ciossek C, Kroker KS, Rosenbrock H. Role of PDE9 in Cognition. ADVANCES IN NEUROBIOLOGY 2017; 17:231-254. [DOI: 10.1007/978-3-319-58811-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Habib A, Sawmiller D, Tan J. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. J Neurosci Res 2016; 95:973-991. [PMID: 27531392 DOI: 10.1002/jnr.23823] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Soluble amyloid precursor protein α (sAPPα), a secreted proteolytic fragment of nonamyloidogenic amyloid precursor protein (APP) processing, is known for numerous neuroprotective functions. These functions include but are not limited to proliferation, neuroprotection, synaptic plasticity, memory formation, neurogenesis, and neuritogenesis in cell culture and animal models. In addition, sAPPα influences amyloid-β (Aβ) production by direct modulation of APP β-secretase proteolysis as well as Aβ-related or unrelated tau pathology, hallmark pathologies of Alzheimer's disease (AD). Thus, the restoration of sAPPα levels and functions in the brain by increasing nonamyloidogenic APP processing and/or manipulation of its signaling could reduce AD pathology and cognitive impairment. It is likely that identification and characterization of sAPPα receptors in the brain, downstream effectors, and signaling pathways will pave the way for an attractive therapeutic target for AD prevention or intervention. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Darrell Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
12
|
Akkerman S, Blokland A, van Goethem NP, Cremers P, Shaffer CL, Osgood SM, Steinbusch HWM, Prickaerts J. PDE5 inhibition improves acquisition processes after learning via a central mechanism. Neuropharmacology 2015; 97:233-9. [PMID: 26027948 DOI: 10.1016/j.neuropharm.2015.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/11/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
Abstract
In previous studies, we have shown that phosphodiesterase type 5 inhibitors (PDE5-Is) can improve early consolidation of object memory. These conclusions were based on the timing of drug administration relative to the learning trial (i.e. before or after). However, there are very little pharmacological data available about the pharmacokinetic profile of orally administered PDE5-Is in the rat. Furthermore, there is still debate whether these effects are achieved via central or peripheral mechanisms and if acquisition processes are improved. In the current study, we tested the effects of the PDE5-I vardenafil in a cholinergic-deficit model and compared the effects after intracerebroventricular (ICV) versus oral (PO) administration. We found that PO vardenafil restored a scopolamine-induced memory impairment when dosed within 2 min after the learning trial while ICV vardenafil was able to restore memory when injected within 4 min after learning. Because the test trial was within 10 min after the learning trial, this suggests that these effects on object memory are related to acquisition processes that may still be ongoing in a time window after the learning trial. To further elucidate the extent of this acquisition window, we investigated the pharmacokinetic profile of vardenafil after PO administration where it was detected within 4 min post-dose. Taken together, our data suggest that PDE5 is involved in acquisition processes, which may linger for at least 4-6 min after learning. Further studies are needed to exclude that these effects could also be explained on basis of an effect on early consolidation processes. Additionally, the effectiveness of ICV-administered vardenafil provides further experimental evidence that PDE5-Is improve memory via a central mechanism.
Collapse
Affiliation(s)
- S Akkerman
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - A Blokland
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - N P van Goethem
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - P Cremers
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - C L Shaffer
- Department of Pharmacokinetics, Pharmacodynamics and Metabolism, Worldwide Research & Development, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - S M Osgood
- Department of Pharmacokinetics, Pharmacodynamics and Metabolism, Worldwide Research & Development, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - H W M Steinbusch
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands
| | - J Prickaerts
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Rizzo V, Carletti F, Gambino G, Schiera G, Cannizzaro C, Ferraro G, Sardo P. Role of CB2 receptors and cGMP pathway on the cannabinoid-dependent antiepileptic effects in an in vivo model of partial epilepsy. Epilepsy Res 2014; 108:1711-8. [PMID: 25458534 DOI: 10.1016/j.eplepsyres.2014.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
This study aimed at providing an insight on the possible role of cannabinoid (CB) type 2 receptors (CB2R) and cGMP pathway in the antiepileptic activity of WIN 55,212-2, (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo[1,2,3-de]-1,4-benzoxazin-6-Yl]-1-naphthalenylmethanone, a non-selective CB agonist, in the maximal dentate activation (MDA) model of partial epilepsy in adult male rats. We evaluated the activity of a CB2 antagonist/inverse agonist AM630, [6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone or 6-iodopravadoline, alone or in co-administration with WIN 55,212-2. Also, in the MDA model it was investigated the co-treatment of WIN 55,212-2 and 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), a specific inhibitor of the nitric oxide (NO)-activated soluble guanylyl cyclase (sGC), the cGMP producing enzyme. The WIN 55,212-2-dependent (21mg/kg) antiepileptic effects were significantly increased by the co-administration with AM630 and by the co-treatment with ODQ (10mg/kg). Whereas, the administration of AM630 (2mg/kg), alone exerts no effects on hippocampal hyperexcitability. Our data show that pharmacological blockade of CB2 receptors and of sGC seems to cooperate with WIN in its antiepileptic action. These findings shed light on CB signaling mechanisms, hinting that the modulation of the effects of CB agonist in the hyperexcitability phenomena may be exerted both by targeting CB receptors and their possible downstream effectors, such as nitrergic-dependent cGMP pathway.
Collapse
Affiliation(s)
- Valerio Rizzo
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (Bio.Ne.C.), Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy; Department of Neuroscience, The Scripps Research Institute, Scripps Florida 130 Scripps Way, Jupiter, FL 33458.
| | - Fabio Carletti
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (Bio.Ne.C.), Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy
| | - Giuditta Gambino
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (Bio.Ne.C.), Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy
| | - Girolamo Schiera
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (Bio.Ne.C.), Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy
| | - Carla Cannizzaro
- Dipartimento di Scienze per la Promozione della salute, Università degli Studi di Palermo, Via del Vespro, 133, 90100 Palermo, Italy
| | - Giuseppe Ferraro
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (Bio.Ne.C.), Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy
| | - Pierangelo Sardo
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (Bio.Ne.C.), Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy
| |
Collapse
|
14
|
Lu Y, Hu J, Sun W, Duan X, Chen X. Nitric oxide signaling pathway activation inhibits the immune escape of pancreatic carcinoma cells. Oncol Lett 2014; 8:2371-2378. [PMID: 25364398 PMCID: PMC4214498 DOI: 10.3892/ol.2014.2607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/05/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of the nitric oxide signaling pathway on immune escape; thus, a tumorigenesis model was established using nude mice. The mice were inoculated with pancreatic carcinoma cells and divided into two groups, a glyceryl trinitrate (GTN) and a placebo group. When tumor volumes reached 150 mm3, the mice in the GTN group were treated with GTN transdermal patches (dose, 7.3 μg/h) while the mice in the placebo group were administered untreated patches. Following treatment, the tumor volume was recorded every 3-4 days and after 28 days, the tumors were analyzed. The results indicated that GTN treatment may reduce the levels of soluble major histocompatibility complex class I chain-related molecules, and natural killer group 2 member D, as well as inhibiting tumor growth.
Collapse
Affiliation(s)
- Yebin Lu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juanjuan Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weijia Sun
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaohui Duan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
15
|
Modulating nitric oxide signaling in the CNS for Alzheimer's disease therapy. Future Med Chem 2014; 5:1451-68. [PMID: 23919554 DOI: 10.4155/fmc.13.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO)/solube GC (sGC)/cGMP signaling is important for modulating synaptic transmission and plasticity in the hippocampus and cerebral cortex, which are critical for learning and memory. Physiological concentrations of NO also elicit anti-apoptotic/prosurvival effects against various neurotoxic challenges and brain insults through multiple mechanisms. Depression of the NO/sGC pathway is a feature of Alzheimer's disease (AD), attributed to amyloid-β neuropathology, and altered expression and activity of NOS, sGC and PDE enzymes. Different classes of NO-releasing hybrid drugs, including nomethiazoles, NO-NSAIDs and NO-acetylcholinesterase inhibitors were designed to deliver low concentrations of exogenous NO to the CNS while targeting other underlying disease mechanisms, such as excitotoxicity, neuro-inflammation and acetylcholine deficiency, respectively. Incorporating a NO-donating moiety may also reduce gastrointestinal and liver toxicity of the parent drugs. Progress has also been made in targeting downstream sGC and PDE enzymes. The PDE9 inhibitor PF-04447943 has completed Phase II clinical trials for AD. The search for effective NO-donating hybrid drugs, CNS-targeting sGC stimulators/activators and selective PDE inhibitors is an important goal for pharmacotherapy that manipulates NO biochemical pathways involved in cognitive function and neuroprotection. Rigorous preclinical validation of target engagement, and optimization of pharmacokinetic and toxicity profiles are likely to advance more drug candidates into clinical trials for mild cognitive impairment and early stage AD.
Collapse
|
16
|
The nitric oxide-cGKII system relays death and survival signals during embryonic retinal development via AKT-induced CREB1 activation. Cell Death Differ 2014; 21:915-28. [PMID: 24531539 DOI: 10.1038/cdd.2014.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 01/28/2023] Open
Abstract
During early neurogenesis, retinal neuronal cells display a conserved differentiation program in vertebrates. Previous studies established that nitric oxide (NO) and cGMP accumulation regulate essential events in retinal physiology. Here we used pharmacological and genetic loss-of-function to investigate the effects of NO and its downstream signaling pathway in the survival of developing avian retinal neurons in vitro and in vivo. Six-day-old (E6) chick retinal cells displayed increased calcium influx and produced higher amounts of NO when compared with E8 cells. L-arginine (substrate for NO biosynthesis) and S-nitroso-N-acetyl-D,L-penicillamine (SNAP; a nitrosothiol NO donor) promoted extensive cell death in E6 retinas, whereas in E8 both substances decreased apoptosis. The effect of NO at both periods was mediated by soluble guanylyl cyclase (sGC) and cGMP-dependent kinase (cGK) activation. In addition, shRNA-mediated cGKII knockdown prevented NO-induced cell death (E6) and cell survival (E8). This, NO-induced cell death or cell survival was not correlated with an early inhibition of retinal cell proliferation. E6 cells also responded differentially from E8 neurons regarding cyclic AMP-responsive element-binding protein (CREB) activation in the retina in vivo. NO strongly decreased nuclear phospho-CREB staining in E6 but it robustly enhanced CREB phosphorylation in the nuclei of E8 neurons, an effect that was completely abrogated by cGKII shRNAs at both embryonic stages. The ability of NO in regulating CREB differentially during retinal development relied on the capacity of cGKII in decreasing (E6) or increasing (E8) nuclear AKT (V-Akt murine thymoma viral oncogene) activation. Accordingly, inhibiting AKT prevented both cGKII shRNA-mediated CREB upregulation in E6 and SNAP-induced CREB activation in E8. Furthermore, shRNA-mediated in vivo cGKII or in vitro CREB1 knockdown confirmed that NO/cGKII dualistically regulated the downstream CREB1 pathway and caspase activation in the chick retina to modulate neuronal viability. These data demonstrate that NO-mediated cGKII signaling may function to control the viability of neuronal cells during early retinal development via AKT/CREB1 activity.
Collapse
|
17
|
Banks PJ, Warburton EC, Brown MW, Bashir ZI. Mechanisms of synaptic plasticity and recognition memory in the perirhinal cortex. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:193-209. [PMID: 24484702 DOI: 10.1016/b978-0-12-420170-5.00007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Learning is widely believed to involve synaptic plasticity, employing mechanisms such as those used in long-term potentiation (LTP) and long-term depression (LTD). In this chapter, we will review work on mechanisms of synaptic plasticity in perirhinal cortex in vitro and relate these findings to studies underlying recognition memory in vivo. We describe how antagonism of different glutamate and acetylcholine receptors, inhibition of nitric oxide synthase, inhibition of CREB phosphorylation, and interfering with glutamate AMPA receptor internalization can produce deficits in synaptic plasticity in vitro. Inhibition of each of these different mechanisms in vivo also results in recognition memory deficits. Therefore, we provide strong evidence that synaptic plastic mechanisms are necessary for the information processing and storage that underlies object recognition memory.
Collapse
Affiliation(s)
- P J Banks
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - E C Warburton
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - M W Brown
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - Z I Bashir
- School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Wairkar YP, Trivedi D, Natarajan R, Barnes K, Dolores L, Cho P. CK2α regulates the transcription of BRP in Drosophila. Dev Biol 2013; 384:53-64. [PMID: 24080510 DOI: 10.1016/j.ydbio.2013.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/26/2023]
Abstract
Development and plasticity of synapses are brought about by a complex interplay between various signaling pathways. Typically, either changing the number of synapses or strengthening an existing synapse can lead to changes during synaptic plasticity. Altering the machinery that governs the exocytosis of synaptic vesicles, which primarily fuse at specialized structures known as active zones on the presynaptic terminal, brings about these changes. Although signaling pathways that regulate the synaptic plasticity from the postsynaptic compartments are well defined, the pathways that control these changes presynaptically are poorly described. In a genetic screen for synapse development in Drosophila, we found that mutations in CK2α lead to an increase in the levels of Bruchpilot (BRP), a scaffolding protein associated with the active zones. Using a combination of genetic and biochemical approaches, we found that the increase in BRP in CK2α mutants is largely due to an increase in the transcription of BRP. Interestingly, the transcripts of other active zone proteins that are important for function of active zones were also increased, while the transcripts from some other synaptic proteins were unchanged. Thus, our data suggest that CK2α might be important in regulating synaptic plasticity by modulating the transcription of BRP. Hence, we propose that CK2α is a novel regulator of the active zone protein, BRP, in Drosophila.
Collapse
Affiliation(s)
- Yogesh P Wairkar
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Blvd., Rte#1045, Galveston, TX 77555, United States.
| | | | | | | | | | | |
Collapse
|
19
|
Tamagnini F, Barker G, Warburton EC, Burattini C, Aicardi G, Bashir ZI. Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory. J Physiol 2013; 591:3963-79. [PMID: 23671159 PMCID: PMC3764640 DOI: 10.1113/jphysiol.2013.254862] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory.
Collapse
Affiliation(s)
- Francesco Tamagnini
- School of Physiology and Pharmacology, Medical Research Council Centre for Synaptic Plasticity, Bristol University, UK
| | | | | | | | | | | |
Collapse
|
20
|
Incontro S, Ciruela F, Ziff E, Hofmann F, Sánchez-Prieto J, Torres M. The type II cGMP dependent protein kinase regulates GluA1 levels at the plasma membrane of developing cerebellar granule cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1820-31. [PMID: 23545413 DOI: 10.1016/j.bbamcr.2013.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity.
Collapse
Affiliation(s)
- Salvatore Incontro
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
In the hippocampus, as in many other CNS areas, nitric oxide (NO) participates in synaptic plasticity, manifested as changes in pre- and/or postsynaptic function. While it is known that these changes are brought about by cGMP following activation of guanylyl cyclase-coupled NO receptors attempts to locate cGMP by immunocytochemistry in hippocampal slices in response to NO have failed to detect the cGMP elevation where expected, i.e. in the pyramidal neurones. Instead, astrocytes, unidentified varicose fibres and GABA-ergic nerve terminals are reported to be the prominent NO targets, raising the possibility that NO acts indirectly via other cells. We have re-investigated the distribution of cGMP generated in response to endogenous and exogenous NO in hippocampal slices using immunohistochemistry and new conditions designed to optimise cGMP accumulation and, hence, its detectability. The conditions included use of tissue from the developing rat hippocampus, a potent inhibitor of phosphodiesterase-2, and an allosteric enhancer of the NO-receptive guanylyl cyclase. Under these conditions, cGMP was formed in response to endogenous NO and was found in a population of pyramidal cell somata in area CA3 and subiculum as well as in structures described previously. The additional presence of exogenous NO resulted in hippocampal cGMP reaching the highest level recorded for brain tissue (1700 pmol/mg protein) and in cGMP immunolabelling throughout the pyramidal cell layer. Populations of axons and interneurones were also stained. According with these results, immunohistochemistry for the common NO receptor β1-subunit indicated widespread expression. A similar staining pattern for the α1-subunit with an antibody used previously in the hippocampus and elsewhere, however, proved to be artefactual. The results indicate that the targets of NO in the hippocampus are more varied and extensive than previous evidence had suggested and, in particular, that the pyramidal neurones participating in NO-dependent synaptic plasticity are direct NO targets.
Collapse
|
22
|
The role of phosphodiesterases in hippocampal synaptic plasticity. Neuropharmacology 2013; 74:86-95. [PMID: 23357335 DOI: 10.1016/j.neuropharm.2013.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/08/2013] [Accepted: 01/12/2013] [Indexed: 01/19/2023]
Abstract
Phosphodiesterases (PDEs) degrade cyclic nucleotides, signalling molecules that play important roles in synaptic plasticity and memory. Inhibition of PDEs may therefore enhance synaptic plasticity and memory as a result of elevated levels of these signalling molecules, and this has led to interest in PDE inhibitors as cognitive enhancers. The development of new mouse models in which PDE subtypes have been selectively knocked out and increasing selectivity of PDE antagonists means that this field is currently expanding. Roles for PDE2, 4, 5 and 9 in synaptic plasticity have so far been demonstrated and we review these studies here in the context of cyclic nucleotide signalling more generally. The role of other PDE families in synaptic plasticity has not yet been investigated, and this area promises to advance our understanding of cyclic nucleotide signalling in synaptic plasticity in the future. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
|
23
|
Abstract
cGMP-dependent protein kinases (cGK) are serine/threonine kinases that are widely distributed in eukaryotes. Two genes-prkg1 and prkg2-code for cGKs, namely, cGKI and cGKII. In mammals, two isozymes, cGKIα and cGKIβ, are generated from the prkg1 gene. The cGKI isozymes are prominent in all types of smooth muscle, platelets, and specific neuronal areas such as cerebellar Purkinje cells, hippocampal neurons, and the lateral amygdala. The cGKII prevails in the secretory epithelium of the small intestine, the juxtaglomerular cells, the adrenal cortex, the chondrocytes, and in the nucleus suprachiasmaticus. Both cGKs are major downstream effectors of many, but not all, signalling events of the NO/cGMP and the ANP/cGMP pathways. cGKI relaxes smooth muscle tone and prevents platelet aggregation, whereas cGKII inhibits renin secretion, chloride/water secretion in the small intestine, the resetting of the clock during early night, and endochondral bone growth. This chapter focuses on the involvement of cGKs in cardiovascular and non-cardiovascular processes including cell growth and metabolism.
Collapse
Affiliation(s)
- Franz Hofmann
- FOR 923, Institut für Pharmakologie und Toxikologie, der Technischen Universität München, Munich, Germany
| | | |
Collapse
|
24
|
Liddie S, Anderson KL, Paz A, Itzhak Y. The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol 2012; 26:1375-82. [PMID: 22596207 DOI: 10.1177/0269881112447991] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several phosphodiesterase inhibitors (PDEis) improve cognition, suggesting that an increase in brain cAMP and cGMP facilitates learning and memory. Since extinction of drug-seeking behavior requires associative learning, consolidation and formation of new memory, the present study investigated the efficacy of three different PDEis in the extinction of cocaine-induced conditioned place preference (CPP) in B6129S mice. Mice were conditioned by escalating doses of cocaine which was resistant to extinction by free exploration. Immediately following each extinction session mice received (a) saline/vehicle, (b) rolipram (PDE4 inhibitor), (c) BAY-73-6691 (PDE9 inhibitor) or (d) papaverine (PDE10A inhibitor). Mice that received saline/vehicle during extinction training showed no reduction in CPP for >10 days. BAY-73-6691 (a) dose-dependently increased cGMP in hippocampus and amygdala, (b) significantly facilitated extinction and (c) diminished the reinstatement of cocaine CPP. Rolipram, which selectively increased brain cAMP levels, and papaverine which caused increases in both cAMP and cGMP levels, had no significant effect on the extinction of cocaine CPP. The results suggest that increase in hippocampal and amygdalar cGMP levels via blockade of PDE9 has a prominent role in the consolidation of extinction learning.
Collapse
Affiliation(s)
- Shervin Liddie
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | |
Collapse
|
25
|
Kroker KS, Rast G, Giovannini R, Marti A, Dorner-Ciossek C, Rosenbrock H. Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP. Neuropharmacology 2012; 62:1964-74. [DOI: 10.1016/j.neuropharm.2011.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 01/19/2023]
|
26
|
Lin TY, Lu CW, Huang WJ, Wang SJ. Involvement of the cGMP pathway in the osthole-facilitated glutamate release in rat hippocampal nerve endings. Synapse 2011; 66:232-9. [PMID: 22045627 DOI: 10.1002/syn.21505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/03/2011] [Indexed: 11/11/2022]
Abstract
Osthole, an active constituent isolated from Cnidium monnieri (L.) Cusson, has previously been shown to have the capacity to increase depolarization-evoked glutamate release in rat hippocampal nerve terminals. As cGMP-dependent signaling cascade has been found to modulate glutamate release at the presynaptic level, the aim of this study was to further examine the role of cGMP signaling pathway in the regulation of osthole on glutamate release in hippocampal synaptosomes. Results showed that osthole dose-dependently increased intrasynaptosomal cGMP levels. The elevation of cGMP levels by osthole was prevented by the phosphodiesterase 5 inhibitor sildenafil but was insensitive to the guanylyl cyclase inhibitor ODQ. In addition, osthole-induced facilitation of 4-aminopyridine (4-AP)-evoked glutamate release was completely prevented by the cGMP-dependent protein kinase (PKG) inhibitors, KT5823, and Rp-8-Br-PET-cGMPS. Direct activation of PKG with 8-Br-cGMP or 8-pCPT-cGMP also occluded the osthole-mediated facilitation of 4-AP-evoked glutamate release. Furthermore, sildenafil exhibited a dose-dependent facilitation of 4-AP-evoked release of glutamate and occluded the effect of osthole on the 4-AP-evoked glutamate release. Collectively, our findings suggest that osthole-mediated facilitation of glutamate release involves the activation of cGMP/PKG-dependent pathway.
Collapse
Affiliation(s)
- Tzu Yu Lin
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan 220
| | | | | | | |
Collapse
|
27
|
Kelley JB, Anderson KL, Itzhak Y. Pharmacological modulators of nitric oxide signaling and contextual fear conditioning in mice. Psychopharmacology (Berl) 2010; 210:65-74. [PMID: 20224887 DOI: 10.1007/s00213-010-1817-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
RATIONALE Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) is a retrograde neuronal messenger that participates in synaptic plasticity, including late-phase long-term potentiation (LTP) and long-term memory (LTM) formation. Our recent studies have shown that nNOS knockout (KO) mice have a severe deficit in contextual fear conditioning compared to wild type (WT) counterparts (Kelley et al. 2009). OBJECTIVES Given the role of the nNOS gene in fear conditioning, we investigated whether systemic administration of modulators of NO signaling affect the formation of contextual and cued fear memories and the effects of these modulators on cyclic 3'5'-guanosine monophosphate (cGMP) levels in the hippocampus and amygdala. METHODS The preferential nNOS inhibitor S-methyl-L-thiocitrulline (SMTC; 10-200 mg/kg) was administered (IP) to WT mice, and the NO donor molsidomine (10 mg/kg) was administered (IP) to nNOS KO mice either 30 min pretraining or immediately posttraining. RESULTS Pretraining SMTC administration to WT mice impaired both short- and long-term memories of contextual (36% inhibition) but not cued fear conditioning. Pretraining molsidomine administration to nNOS KO mice improved their deficit in short- and long-term memories of contextual fear conditioning (46% increase). Posttraining drug administration had no effect on WT and nNOS KO mice. The systemic administration of SMTC dose-dependently decreased cGMP concentrations down to 25% of control, while molsidomine increased cGMP concentration (three- and five-fold) in amygdala and hippocampus, respectively. CONCLUSIONS These findings suggest that neuronal NO and its downstream second messenger cGMP are important for acquisition and subsequent consolidation of LTM of contextual fear conditioning.
Collapse
Affiliation(s)
- Jonathan B Kelley
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
28
|
Discrimination between cocaine-associated context and cue in a modified conditioned place preference paradigm: role of the nNOS gene in cue conditioning. Int J Neuropsychopharmacol 2010; 13:171-80. [PMID: 19775503 DOI: 10.1017/s1461145709990666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conditioned place preference (CPP) paradigm entails appetitive learning and is utilized to investigate the motivational effects of drug and natural reward in rodents. However, a typical CPP design does not allow dissociation between cue- and context-dependent appetitive learning. In humans, context and cues that had been associated with drug reward can elicit conditioned response and drug craving. Therefore, we investigated (a) methods by which to discriminate between cue- and context-dependent appetitive learning, and (b) the role of the neuronal nitric oxide synthase (nNOS) gene in appetitive learning. Wild-type (WT) and nNOS knockout (KO) mice were trained by cocaine (20 mg/kg) in a discrete context paired with a light cue (a compound context-cue stimulus). In test 1, approach behaviour to either the training context or to the cue in a novel context was determined. WT mice showed robust preference for both cocaine-associated context and cue. nNOS KO mice acquired approach behaviour for the cocaine-associated context but not cue. This finding suggests that the nNOS gene is required for cue-dependent appetitive learning. On the following day (test 2), mice were tested for approach behaviour to the compound context-cue stimulus. Context but not cue exposure in test 1 reduced approach behaviour to the compound context-cue stimulus in test 2, suggesting that repeated context but not cue exposures diminished the conditioned response. Hence, this modified CPP paradigm is useful for the investigation of approach behaviour for both drug-associated context and cue, and allows further investigation of mechanisms underlying cue- and context-dependent appetitive learning.
Collapse
|
29
|
Paul C, Stratil C, Hofmann F, Kleppisch T. cGMP-dependent protein kinase type I promotes CREB/CRE-mediated gene expression in neurons of the lateral amygdala. Neurosci Lett 2010; 473:82-6. [PMID: 20171263 DOI: 10.1016/j.neulet.2010.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 01/22/2010] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
Abstract
The process transforming newly learned information into stable long-term memory is called memory consolidation and, like the underlying long-term synaptic plasticity, critically depends on de novo RNA and protein synthesis. We have shown recently that the cGMP-dependent protein kinase Type I (cGKI) plays an important role for the consolidation of amygdala-dependent fear memory and long-term potentiation (LTP) in the lateral amygdala. Signalling downstream of cGKI at the level of transcriptional regulation remained unclear. A transcription factor of major importance for learning and memory is the cAMP-response element binding protein (CREB). The representation of fear memory in the lateral amygdala strikingly depends on the activity of CREB in individual neurons. Moreover, findings from in vitro experiments demonstrate CREB phosphorylation by cGK. In the hippocampus, CREB phosphorylation increases following activation of NO/cGMP signalling contributing to the late phase of LTP. To demonstrate a link from cGKI to activation of CREB and CREB-dependent transcription in neurons of the lateral amygdala as a possible mechanism for cGKI-mediated fear memory consolidation, we examined the effect of cGMP on activation of CREB/CRE using immunohistochemical staining specific for phospho-CREB and a reporter gene in control and cGKI-deficient mice, respectively. Supporting our hypothesis, marked CREB phosphorylation and CRE-mediated transcription was induced by cGMP in the lateral amygdala of control mice, but not in cGKI-deficient mice. It has been proposed that activation of cGKI is followed by its nuclear translocation that would allow direct phosphorylation of CREB. Therefore, we examined the cellular localisation of cGKI in neurons of the lateral amygdala in the presence of cGMP by double staining for cGKI and a nuclear marker in sections from areas showing prominent CREB phosphorylation, and did not observe prominent nuclear translocation of the enzyme. In summary, we provide evidence that cytosolic cGKI can support fear memory consolidation and LTP in neurons of the lateral amygdala via activation of CREB and CRE-dependent transcription.
Collapse
Affiliation(s)
- Cindy Paul
- Institut für Pharmakologie und Toxikologie der Technischen Universität München, Biedersteiner Strasse 29, 80802 München, Germany
| | | | | | | |
Collapse
|
30
|
Rapid and long-lasting increase in sites for synapse assembly during late-phase potentiation in rat hippocampal neurons. PLoS One 2009; 4:e7690. [PMID: 19893634 PMCID: PMC2767506 DOI: 10.1371/journal.pone.0007690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/12/2009] [Indexed: 01/07/2023] Open
Abstract
Long-term potentiation in hippocampal neurons has stages that correspond to the stages of learning and memory. Early-phase (10–30 min) potentiation is accompanied by rapid increases in clusters or puncta of presynaptic and postsynaptic proteins, which depend on actin polymerization but not on protein synthesis. We have now examined changes in pre- and postsynaptic puncta and structures during glutamate-induced late-phase (3 hr) potentiation in cultured hippocampal neurons. We find that (1) the potentiation is accompanied by long-lasting maintenance of the increases in puncta, which depends on protein synthesis, (2) most of the puncta and synaptic structures are very dynamic, continually assembling and disassembling at sites that are more stable than the puncta or structures themselves, (3) the increase in presynaptic puncta appears to be due to both rapid and more gradual increases in the number of sites where the puncta may form, and also to the stabilization of existing puncta, (4) under control conditions, puncta of postsynaptic proteins behave similarly to puncta of presynaptic proteins and share sites with them, and (5) the increase in presynaptic puncta is accompanied by a similar increase in presumably presynaptic structures, which may form at distinct as well as shared sites. The new sites could contribute to the transition between the early and late phase mechanisms of plasticity by serving as seeds for the formation and maintenance of new synapses, thus acting as local “tags” for protein synthesis-dependent synaptic growth during late-phase plasticity.
Collapse
|
31
|
Tegenge MA, Stern M, Bicker G. Nitric oxide and cyclic nucleotide signal transduction modulates synaptic vesicle turnover in human model neurons. J Neurochem 2009; 111:1434-46. [PMID: 19807845 DOI: 10.1111/j.1471-4159.2009.06421.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human Ntera2 (NT2) teratocarcinoma cell line can be induced to differentiate into post-mitotic neurons. Here, we report that the human NT2 neurons generated by a spherical aggregate cell culture method express increasing levels of typical pre-synaptic proteins (synapsin and synaptotagmin I) along the neurite depending on the length of in vitro culture. By employing an antibody directed against the luminal domain of synaptotagmin I and the fluorescent dye N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl)pyridinium dibromide, we show that depolarized NT2 neurons display calcium-dependent exo-endocytotic synaptic vesicle recycling. NT2 neurons express the neuronal isoform of neuronal nitric oxide synthase and soluble guanylyl cyclase (sGC), the major receptor for nitric oxide (NO). We tested whether NO signal transduction modulates synaptic vesicle turnover in human NT2 neurons. NO donors and cylic guanosine-monophosphate analogs enhanced synaptic vesicle recycling while a sGC inhibitor blocked the effect of NO donors. Two NO donors, sodium nitroprusside, and and N-Ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino) ethanamine evoked vesicle exocytosis which was partially blocked by the sGC inhibitor. The activator of adenylyl cyclase, forskolin, and a cAMP analog induced synaptic vesicle recycling and exocytosis via a parallel acting protein kinase A pathway. Our data from NT2 neurons suggest that NO/cyclic nucleotide signaling pathways may facilitate neurotransmitter release in human brain cells.
Collapse
Affiliation(s)
- Million Adane Tegenge
- Division of Cell Biology, Institute of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | |
Collapse
|
32
|
Abstract
The age of an experimental animal can be a critical variable, yet age matters are often overlooked within neuroscience. Many studies make use of young animals, without considering possible differences between immature and mature subjects. This is especially problematic when attempting to model traits or diseases that do not emerge until adulthood. In this commentary we discuss the reasons for this apparent bias in age of experimental animals, and illustrate the problem with a systematic review of published articles on long-term potentiation. Additionally, we review the developmental stages of a rat and discuss the difficulty of using the weight of an animal as a predictor of its age. Finally, we provide original data from our laboratory and review published data to emphasize that development is an ongoing process that does not end with puberty. Developmental changes can be quantitative in nature, involving gradual changes, rapid switches, or inverted U-shaped curves. Changes can also be qualitative. Thus, phenomena that appear to be unitary may be governed by different mechanisms at different ages. We conclude that selection of the age of the animals may be critically important in the design and interpretation of neurobiological studies.
Collapse
Affiliation(s)
- James Edgar McCutcheon
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
33
|
Kelley JB, Balda MA, Anderson KL, Itzhak Y. Impairments in fear conditioning in mice lacking the nNOS gene. Learn Mem 2009; 16:371-8. [PMID: 19470653 DOI: 10.1101/lm.1329209] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic plasticity, including the late phase of long-term potentiation (LTP) and formation of long-term memory (LTM). Evidence has implicated NO signaling in synaptic plasticity and LTM formation following fear conditioning, yet little is known about the role of the nNOS gene in fear learning. Using knockout (KO) mice with targeted mutation of the nNOS gene and their wild-type (WT) counterparts, the role of NO signaling in fear conditioning was investigated. Plasma levels of the stress hormone corticosterone were measured to determine the relationship between physiological and behavioral response to fear conditioning. Contextual fear learning was severely impaired in male and female nNOS KO mice compared with WT counterparts; cued fear learning was slightly impaired in nNOS KO mice. Sex-dependent differences in both contextual and cued fear learning were not observed in either genotype. Deficits in contextual fear learning in nNOS KO mice were partially overcome by multiple trainings. A relationship between increase in plasma corticosterone levels following footshock administration and the magnitude of contextual, but not cued freezing was also observed. Results suggest that the nNOS gene contributes more to optimal contextual fear learning than to cued fear learning, and therefore, inhibition of the nNOS enzyme may ameliorate context-dependent fear response.
Collapse
Affiliation(s)
- Jonathan B Kelley
- Division of Neuroscience, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.
Collapse
|
35
|
Abstract
The importance of cGMP-dependent protein kinase (PKG) to the modulation of behavioural phenotypes has become increasingly clear in recent decades. The effects of PKG on behaviour have been studied in diverse taxa from perspectives as varied as ethology, evolution, genetics and neuropharmacology. The genetic variation of the Drosophila melanogaster gene, foraging (for), has provided a fertile model for examining natural variation in a single major gene influencing behaviour. Concurrent studies in other invertebrates and mammals suggest that PKG is an important signalling molecule with varied influences on behaviour and a large degree of pleiotropy and plasticity. Comparing these cross-taxa effects suggests that there are several potentially overlapping behavioural modalities in which PKG signalling acts to influence behaviours which include feeding, learning, stress and biological rhythms. More in-depth comparative analyses across taxa of the similarities and differences of the influence of PKG on behaviour may provide powerful mechanistic explications of the evolution of behaviour.
Collapse
|
36
|
Activation of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II in response to Morris water maze learning in rats. Pharmacol Biochem Behav 2008; 92:260-6. [PMID: 19135080 DOI: 10.1016/j.pbb.2008.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 12/01/2008] [Accepted: 12/08/2008] [Indexed: 11/23/2022]
Abstract
This study investigates the interactive roles of nitric oxide (NO) and CaM-kinase II (calcium/calmodulin-dependent protein kinase II) in Morris water maze learning. In Experiment I, experimental rats received 5 days of training on a Morris water maze, where the controls were trained in the water maze with no spatial cue condition or were trained via a visually guided landmark condition. The experimental rats showed improvement in their rate of spatial learning in the water maze. The escape latencies were significantly correlated with the Ca2+-independent activity of the hippocampal CaM-kinase II. Moreover, there was a significant increase in the endogenous phosphorylation of neuronal NOS and CaM-kinase II in the experimental group when compared to the controls. The intra-hippocampal infusion of 7-NI, KN-93, or AP5 did disrupt water maze learning. SDS-PAGE analysis showed that these drugs significantly depressed phosphorylation of hippocampal NOS. The Ca2+-independent activity of hippocampal CaM-kinase II was significantly lower in the KN-93 or the AP5 infused group when compared to the controls. Although these depressed activities were not reversed by the infusion of NO donor (sodium nitroprusside, SNP), the rats' water maze learning behavior were ameliorated significantly. These results, taken together, indicate that the NOS activation is essential for water maze learning, which may be triggered via the CaM-kinase II activation in hippocampus.
Collapse
|
37
|
Differential role of the nNOS gene in the development of behavioral sensitization to cocaine in adolescent and adult B6;129S mice. Psychopharmacology (Berl) 2008; 200:509-19. [PMID: 18592222 DOI: 10.1007/s00213-008-1228-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Previous studies have suggested the involvement of neuronal nitric oxide synthase (nNOS) in the development of sensitization to psychostimulants. Ontogeny-dependent differences in the response to psychostimulants have been reported. OBJECTIVE The objectives were to investigate (a) the short- and long-term consequences of adolescent and adult cocaine exposure on behavioral sensitization and (b) the role of the nNOS gene in behavioral sensitization in adolescent and adult mice. MATERIALS AND METHODS Adolescent and adult wild type (WT) and nNOS knockout (KO) mice received saline or cocaine (20 mg/kg) for 5 days and then were challenged with cocaine (20 mg/kg) after a drug-free period of 10 or 30 days. Locomotor activity was recorded by infrared beam interruptions. nNOS immunoreactive (ir) neurons in the dorsal and ventral striatum were quantified 24 h after repeated administration of cocaine to adolescent and adult WT mice. RESULTS Repeated administration of cocaine to either WT or nNOS KO mice during adolescence resulted in locomotor sensitization, which persisted into adulthood. WT but not KO adult mice developed long-term sensitization to cocaine. Repeated cocaine administration resulted in a 96% increase in the expression of nNOS-ir neurons in the dorsal striatum of adult but not adolescent WT mice. CONCLUSIONS The nNOS gene is essential for the induction of behavioral sensitization to cocaine in adulthood but not in adolescence. The increased expression of nNOS-ir neurons in the dorsal striatum may underlie the induction of behavioral sensitization in adulthood. Thus, the NO-signaling pathway has an ontogeny-dependent role in the neuroplasticity underlying cocaine behavioral sensitization.
Collapse
|
38
|
Ota KT, Pierre VJ, Ploski JE, Queen K, Schafe GE. The NO-cGMP-PKG signaling pathway regulates synaptic plasticity and fear memory consolidation in the lateral amygdala via activation of ERK/MAP kinase. Learn Mem 2008; 15:792-805. [PMID: 18832566 DOI: 10.1101/lm.1114808] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent studies have shown that nitric oxide (NO) signaling plays a crucial role in memory consolidation of Pavlovian fear conditioning and in synaptic plasticity in the lateral amygdala (LA). In the present experiments, we examined the role of the cGMP-dependent protein kinase (PKG), a downstream effector of NO, in fear memory consolidation and long-term potentiation (LTP) at thalamic and cortical input pathways to the LA. In behavioral experiments, rats given intra-LA infusions of either the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibited dose-dependent impairments or enhancements of fear memory consolidation, respectively. In slice electrophysiology experiments, bath application of Rp-8-Br-PET-cGMPS or the guanylyl cyclase inhibitor LY83583 impaired LTP at thalamic, but not cortical inputs to the LA, while bath application of 8-Br-cGMP or the guanylyl cyclase activator YC-1 resulted in enhanced LTP at thalamic inputs to the LA. Interestingly, YC-1-induced enhancement of LTP in the LA was reversed by concurrent application of the MEK inhibitor U0126, suggesting that the NO-cGMP-PKG signaling pathway may promote synaptic plasticity and fear memory formation in the LA, in part by activating the ERK/MAPK signaling cascade. As a test of this hypothesis, we next showed that rats given intra-LA infusion of the PKG inhibitor Rp-8-Br-PET-cGMPS or the PKG activator 8-Br-cGMP exhibit impaired or enhanced activation, respectively, of ERK/MAPK in the LA after fear conditioning. Collectively, our findings suggest that an NO-cGMP-PKG-dependent form of synaptic plasticity at thalamic input synapses to the LA may underlie memory consolidation of Pavlovian fear conditioning, in part, via activation of the ERK/MAPK signaling cascade.
Collapse
Affiliation(s)
- Kristie T Ota
- Department of Psychology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
39
|
van der Staay FJ, Rutten K, Bärfacker L, DeVry J, Erb C, Heckroth H, Karthaus D, Tersteegen A, van Kampen M, Blokland A, Prickaerts J, Reymann KG, Schröder UH, Hendrix M. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology 2008; 55:908-18. [DOI: 10.1016/j.neuropharm.2008.07.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 07/01/2008] [Accepted: 07/04/2008] [Indexed: 02/05/2023]
|
40
|
Itzhak Y. Role of the NMDA Receptor and Nitric Oxide in Memory Reconsolidation of Cocaine-Induced Conditioned Place Preference in Mice. Ann N Y Acad Sci 2008; 1139:350-7. [DOI: 10.1196/annals.1432.051] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Abstract
As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and/or postsynaptic locations. Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered. Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission, particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for its spectacular evolutionary success.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WCIE 6BT, UK.
| |
Collapse
|
42
|
Abstract
Nitric oxide (NO) is a multifunctional messenger in the CNS that can signal both in antero- and retrograde directions across synapses. Many effects of NO are mediated through its canonical receptor, the soluble guanylyl cyclase, and the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). An increase of cGMP can also arise independently of NO via activation of membrane-bound particulate guanylyl cyclases by natriuretic peptides. The classical targets of cGMP are cGMP-dependent protein kinases (cGKs), cyclic nucleotide hydrolysing phosphodiesterases, and cyclic nucleotide-gated (CNG) cation channels. The NO/cGMP/cGK signalling cascade has been linked to the modulation of transmitter release and synaptic plasticity by numerous pharmacological and genetic studies. This review focuses on the role of NO as a retrograde messenger in long-term potentiation of transmitter release in the hippocampus. Presynaptic mechanisms of NO/cGMP/cGK signalling will be discussed with recently identified potential downstream components such as CaMKII, the vasodilator-stimulated phosphoprotein, and regulators of G protein signalling. NO has further been suggested to increase transmitter release through presynaptic clustering of a-synuclein. Alternative modes of NO/cGMP signalling resulting in inhibition of transmitter release and long-term depression of synaptic activity will also be addressed, as well as anterograde NO signalling in the cerebellum. Finally, emerging evidence for cGMP signalling through CNG channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels will be discussed.
Collapse
|
43
|
Chen GD, Peng ML, Wang PY, Lee SD, Chang HM, Pan SF, Chen MJ, Tung KC, Lai CY, Lin TB. Calcium/calmodulin-dependent kinase II mediates NO-elicited PKG activation to participate in spinal reflex potentiation in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2007; 294:R487-93. [PMID: 18046020 DOI: 10.1152/ajpregu.00600.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium/calmodulin protein kinase (CaMK)-dependent nitric oxide (NO) and the downstream intracellular messenger cGMP, which is activated by soluble guanylate cyclase (sGC), are believed to induce long-term changes in efficacy of synapses through the activation of protein kinase G (PKG). The aim of this study was to examine the involvement of the CaMKII-dependent NO/sGC/PKG pathway in a novel form of repetitive stimulation-induced spinal reflex potentiation (SRP). A single-pulse test stimulation (TS; 1/30 Hz) on the afferent nerve evoked a single action potential, while repetitive stimulation (RS; 1 Hz) induced a long-lasting SRP that was abolished by a selective Ca(2+)/CaMKII inhibitor, autocamtide 2-related inhibitory peptide (AIP). Such an inhibitory effect was reversed by a relative excess of nitric oxide synthase (NOS) substrate, L-arginine. In addition, the RS-induced SRP was abolished by pretreatment with the NOS inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME). The sGC activator, protoporphyrin IX (PPIX), reversed the blocking effect caused by L-NAME. On the other hand, a sGC blocker, 1H-[1, 2, 4]oxadiazolo[4, 3-alpha]quinoxalin-1-one (ODQ), abolished the RS-induced SRP. Intrathecal applications of the membrane-permeable cGMP analog, 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt monohydrate (8-Br-cGMP), reversed the blocking effect on the RS-induced SRP elicited by the ODQ. Our findings suggest that a CaMKII-dependent NO/sGC/PKG pathway is involved in the RS-induced SRP, which has pathological relevance to hyperalgesia and allodynia.
Collapse
Affiliation(s)
- Gin-Den Chen
- Department of Physiology, College of Medicine, Chung-Shan Medical University, No. 110 Chang-Kuo North Road Section 1, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Liu S, Fa M, Ninan I, Trinchese F, Dauer W, Arancio O. Alpha-synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. Eur J Neurosci 2007; 25:3583-96. [PMID: 17610578 DOI: 10.1111/j.1460-9568.2007.05569.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic plasticity involves a series of coordinate changes occurring both pre- and postsynaptically, of which alpha-synuclein is an integral part. We have investigated on mouse primary hippocampal neurons in culture whether redistribution of alpha-synuclein during plasticity involves retrograde signaling activation through nitric oxide (NO), cGMP, cGMP-dependent protein kinase (cGK) and calmodulin-dependent protein kinase II. We have found that deletion of the alpha-synuclein gene blocks both the long-lasting enhancement of evoked and miniature transmitter release and the increase in the number of functional presynaptic boutons evoked through the NO donor, DEA/NO, and the cGMP analog, 8-Br-cGMP. In agreement with these findings both DEA/NO and 8-Br-cGMP were capable of producing a long-lasting increase in number of clusters for alpha-synuclein through activation of soluble guanylyl cyclase, cGK and calcium/calmodulin-dependent protein kinase IIalpha. Thus, our results suggest that NO, cGMP, GMP-dependent protein kinase and calmodulin-dependent protein kinase II play a key role in the redistribution of alpha-synuclein during plasticity.
Collapse
Affiliation(s)
- Shumin Liu
- Department of Pathology, Taub Institute, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
45
|
Kaun KR, Hendel T, Gerber B, Sokolowski MB. Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem 2007; 14:342-9. [PMID: 17522025 PMCID: PMC1876758 DOI: 10.1101/lm.505807] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Animals must be able to find and evaluate food to ensure survival. The ability to associate a cue with the presence of food is advantageous because it allows an animal to quickly identify a situation associated with a good, bad, or even harmful food. Identifying genes underlying these natural learned responses is essential to understanding this ability. Here, we investigate whether natural variation in the foraging (for) gene in Drosophila melanogaster larvae is important in mediating associations between either an odor or a light stimulus and food reward. We found that for influences olfactory conditioning and that the mushroom bodies play a role in this for-mediated olfactory learning. Genotypes associated with high activity of the product of for, cGMP-dependent protein kinase (PKG), showed greater memory acquisition and retention compared with genotypes associated with low activity of PKG when trained with three conditioning trials. Interestingly, increasing the number of training trials resulted in decreased memory retention only in genotypes associated with high PKG activity. The difference in the dynamics of memory acquisition and retention between variants of for suggests that the ability to learn and retain an association may be linked to the foraging strategies of the two variants.
Collapse
Affiliation(s)
- Karla R. Kaun
- Department of Biology, University of Toronto, Mississauga, Ontario L5L-1C6, Canada
| | - Thomas Hendel
- Department of Genetics and Neurobiology, University of Wuerzburg, Biozentrum am Hubland, 97074 Wuerzburg, Germany
| | - Bertram Gerber
- Department of Genetics and Neurobiology, University of Wuerzburg, Biozentrum am Hubland, 97074 Wuerzburg, Germany
| | - Marla B. Sokolowski
- Department of Biology, University of Toronto, Mississauga, Ontario L5L-1C6, Canada
- Corresponding author.E-mail ; fax (905) 828-3792
| |
Collapse
|
46
|
Tan SE. Roles of hippocampal nitric oxide and calcium/calmodulin-dependent protein kinase II in inhibitory avoidance learning in rats. Behav Pharmacol 2007; 18:29-38. [PMID: 17218795 DOI: 10.1097/fbp.0b013e3280142636] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated the interactive roles of nitric oxide and calcium/calmodulin-dependent protein kinase II in inhibitory avoidance learning. In Experiment I, rats were trained on a one-trial step-through inhibitory avoidance learning task, whereas the controls were trained in a noncontingent stimulus-pairing condition. The experimental rats showed significantly higher retention scores than the control rats. Correspondingly, the rats in the experimental group showed significantly higher Ca2+-independent activity of the hippocampal calcium/calmodulin-dependent protein kinase II and a significant increase in the endogenous phosphorylation of neuronal nitric oxide synthase. The intrahippocampal infusion of 7-nitro-indazole, 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, or 2-amino-5-phosphonopentanoic acid disrupted inhibitory avoidance learning. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed that these drugs significantly depressed phosphorylation of hippocampal nitric oxide synthase. The Ca2+-independent activity of hippocampal calcium/calmodulin-dependent protein kinase II was significantly lower in the 2-[N-(2-hidroxyethyl)-N-(4-methoxy-benzenesulfonyl)]-amino-N-(4-chlorocinnamyl)-N-methylbenzylamine or the 2-amino-5-phosphonopentanoic acid-infused group compared with the controls. Although these depressed activities were not reversed by the infusion of a nitric oxide donor (sodium nitroprusside), this did significantly improve the rats' inhibitory avoidance deficit. These results, taken together, indicate that the nitric oxide synthase activation is essential for inhibitory avoidance learning, which may be triggered via the calcium/calmodulin-dependent protein kinase II activation in the hippocampus.
Collapse
Affiliation(s)
- Soon-Eng Tan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
47
|
Puzzo D, Palmeri A, Arancio O. Involvement of the nitric oxide pathway in synaptic dysfunction following amyloid elevation in Alzheimer's disease. Rev Neurosci 2007; 17:497-523. [PMID: 17180876 DOI: 10.1515/revneuro.2006.17.5.497] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amyloid-beta (Abeta), a peptide thought to play a crucial role in Alzheimer's disease (AD), has attracted scientific interest with the aim of characterizing the mechanisms by which it is involved in AD pathogenesis. Abeta has been found to markedly impair hippocampal long-term potentiation (LTP), a widely studied cellular model of synaptic plasticity that is thought to underlie learning and memory. The overall purpose of this review is to define the role of the nitric oxide (NO)/cGMP/cAMP-regulatory element binding (CREB) pathway in beta-amyloid-induced changes of basal neurotransmission and synaptic plasticity in the hippocampus, a structure within the temporal lobe of the brain critical for memory storage.
Collapse
Affiliation(s)
- Daniela Puzzo
- Department of Pathology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
| | | | | |
Collapse
|
48
|
Edwards TM, Rickard NS. New perspectives on the mechanisms through which nitric oxide may affect learning and memory processes. Neurosci Biobehav Rev 2007; 31:413-25. [PMID: 17188748 DOI: 10.1016/j.neubiorev.2006.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/01/2006] [Accepted: 11/02/2006] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) has been well established as a molecule necessary for memory consolidation. Interestingly, the majority of research has focused on only a single mechanism through which NO acts, namely the up-regulation of guanylate cyclase (GC). However, since NO and NO-derived reactive nitrogen species are capable of interacting with a broad array of enzymes, ion channels and receptors, a singular focus on GC appears short-sighted. Although NO inhibits the action of a number of molecules there are four, in addition to GC, which are up-regulated by the direct presence of NO, or NO-derived radicals, and implicated in memory processing. They are: cyclic nucleotide-gated channels; large conductance calcium-activated potassium channels; ryanodine receptor calcium release (RyR) channels; and the enzyme mono(ADP-ribosyl) transferase. This review presents evidence that not only are these four molecules worthy of investigation as GC-independent mechanisms through which NO may act, but that behavioural evidence already exists suggesting a relationship between NO and the RyR channel.
Collapse
Affiliation(s)
- T M Edwards
- School of Psychology, Psychiatry and Psychological Medicine, Monash University-Clayton, Wellington Road, Clayton, 3800 Vic., Australia.
| | | |
Collapse
|
49
|
Itzhak Y, Anderson KL. Memory reconsolidation of cocaine-associated context requires nitric oxide signaling. Synapse 2007; 61:1002-5. [PMID: 17853433 DOI: 10.1002/syn.20446] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent studies suggest that long-term memory (LTM) is labile because retrieval of such memories may undergo a reconsolidation process which is vulnerable to disruption. Nitric oxide (NO) is a retrograde messenger involved in synaptic plasticity and LTM. In the present study the role of NO in reconsolidation of LTM of cocaine-associate context was investigated in wild type (WT) and neuronal nitric oxide synthase (nNOS) deficient mice (knockout; KO). LTM of cocaine-associated context was established in both WT and nNOS KO mice by conditioned place preference learning. Subsequently, the retrieval of place preference in WT mice was challenged by either saline or the selective nNOS inhibitor 7-nitroindazole, and retrieval of place preference in KO mice was challenged by either saline or the NO-donor molsidomine. Results suggest that in the absence of nNOS activity, particularly during the reconsolidation phase, LTM of cocaine-associated context is extinguished.
Collapse
Affiliation(s)
- Yossef Itzhak
- Department of Psychiatry and Behavioral Science, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | |
Collapse
|
50
|
Straub VA, Grant J, O'Shea M, Benjamin PR. Modulation of serotonergic neurotransmission by nitric oxide. J Neurophysiol 2006; 97:1088-99. [PMID: 17135468 DOI: 10.1152/jn.01048.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) and serotonin (5-HT) are two neurotransmitters with important roles in neuromodulation and synaptic plasticity. There is substantial evidence for a morphological and functional overlap between these two neurotransmitter systems, in particular the modulation of 5-HT function by NO. Here we demonstrate for the first time the modulation of an identified serotonergic synapse by NO using the synapse between the cerebral giant cell (CGC) and the B4 neuron within the feeding network of the pond snail Lymnaea stagnalis as a model system. Simultaneous electrophysiological recordings from the pre- and postsynaptic neurons show that blocking endogenous NO production in the intact nervous system significantly reduces the B4 response to CGC activity. The blocking effect is frequency dependent and is strongest at low CGC frequencies. Conversely, bath application of the NO donor DEA/NONOate significantly enhances the CGC-B4 synapse. The modulation of the CGC-B4 synapse is mediated by the soluble guanylate cyclase (sGC)/cGMP pathway as demonstrated by the effects of the sGC antagonist 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). NO modulation of the CGC-B4 synapse can be mimicked in cell culture, where application of 5-HT puffs to isolated B4 neurons simulates synaptic 5-HT release. Bath application of diethylamine NONOate (DEA/NONOate) enhances the 5-HT induced response in the isolated B4 neuron. However, the cell culture experiment provided no evidence for endogenous NO production in either the CGC or B4 neuron suggesting that NO is produced by an alternative source. Thus we conclude that NO modulates the serotonergic CGC-B4 synapse by enhancing the postsynaptic 5-HT response.
Collapse
Affiliation(s)
- Volko A Straub
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|