1
|
Bae AJ, Ferger R, Peña JL. Auditory Competition and Coding of Relative Stimulus Strength across Midbrain Space Maps of Barn Owls. J Neurosci 2024; 44:e2081232024. [PMID: 38664010 PMCID: PMC11112643 DOI: 10.1523/jneurosci.2081-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/06/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
The natural environment challenges the brain to prioritize the processing of salient stimuli. The barn owl, a sound localization specialist, exhibits a circuit called the midbrain stimulus selection network, dedicated to representing locations of the most salient stimulus in circumstances of concurrent stimuli. Previous competition studies using unimodal (visual) and bimodal (visual and auditory) stimuli have shown that relative strength is encoded in spike response rates. However, open questions remain concerning auditory-auditory competition on coding. To this end, we present diverse auditory competitors (concurrent flat noise and amplitude-modulated noise) and record neural responses of awake barn owls of both sexes in subsequent midbrain space maps, the external nucleus of the inferior colliculus (ICx) and optic tectum (OT). While both ICx and OT exhibit a topographic map of auditory space, OT also integrates visual input and is part of the global-inhibitory midbrain stimulus selection network. Through comparative investigation of these regions, we show that while increasing strength of a competitor sound decreases spike response rates of spatially distant neurons in both regions, relative strength determines spike train synchrony of nearby units only in the OT. Furthermore, changes in synchrony by sound competition in the OT are correlated to gamma range oscillations of local field potentials associated with input from the midbrain stimulus selection network. The results of this investigation suggest that modulations in spiking synchrony between units by gamma oscillations are an emergent coding scheme representing relative strength of concurrent stimuli, which may have relevant implications for downstream readout.
Collapse
Affiliation(s)
- Andrea J Bae
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Roland Ferger
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - José L Peña
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
2
|
Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018; 12:60. [PMID: 30559653 PMCID: PMC6287086 DOI: 10.3389/fnsys.2018.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Oscillations are ubiquitous features of neuronal activity in sensory systems and are considered as a substrate for the integration of sensory information. Several studies have described oscillatory activity in the geniculate visual pathway, but little is known about this phenomenon in the extrageniculate visual pathway. We describe oscillations in evoked and background activity in the cat's superficial layers of the superior colliculus, a retinorecipient structure in the extrageniculate visual pathway. Extracellular single-unit activity was recorded during periods with and without visual stimulation under isoflurane anesthesia in the mixture of N2O/O2. Autocorrelation, FFT and renewal density analyses were used to detect and characterize oscillations in the neuronal activity. Oscillations were common in the background and stimulus-evoked activity. Frequency range of background oscillations spanned between 5 and 90 Hz. Oscillations in evoked activity were observed in about half of the cells and could appear in two forms —stimulus-phase-locked (10–100 Hz), and stimulus-phase-independent (8–100 Hz) oscillations. Stimulus-phase-independent and background oscillatory frequencies were very similar within activity of particular neurons suggesting that stimulus-phase-independent oscillations may be a form of enhanced “spontaneous” oscillations. Stimulus-phase-locked oscillations were present in responses to moving and flashing stimuli. In contrast to stimulus-phase-independent oscillations, the strength of stimulus-phase-locked oscillations was positively correlated with stimulus velocity and neuronal firing rate. Our results suggest that in the superficial layers of the superior colliculus stimulus-phase-independent oscillations may be generated by the same mechanism(s) that lie in the base of “spontaneous” oscillations, while stimulus-phase-locked oscillations may result from interactions within the intra-collicular network and/or from a phase reset of oscillations present in the background activity.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
3
|
Costa M, Piché M, Lepore F, Guillemot JP. Age-related audiovisual interactions in the superior colliculus of the rat. Neuroscience 2016; 320:19-29. [DOI: 10.1016/j.neuroscience.2016.01.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 11/29/2022]
|
4
|
Spatial synchronization of visual stimulus-evoked gamma frequency oscillations in the rat superior colliculus. Neuroreport 2016; 27:203-8. [PMID: 26735701 DOI: 10.1097/wnr.0000000000000525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the superior colliculus, visual stimuli can induce gamma frequency oscillations of neuronal activity. It has been shown that in cats, these oscillations are synchronized over distances of greater than 300 μm that may contribute toward visual information processing. We investigated the spatial properties of such oscillations in a rodent because the availability of molecular tools could enable future studies on the role of these oscillations in visual information processing. Using extracellular electrode array recordings in anesthetized rats, we found that visual stimuli-induced gamma and eta frequency (30-115 Hz) oscillations of the local field potential that were synchronized over distances of ∼ 600 μm. Multiple-unit events were phase locked to the local field potential signal and showed prominent oscillations during OFF responses. The rate of lower than 5 ms cross-electrode coincidences was in line with the response-corrected predictions for each electrode. These data suggest that the synchronized superior colliculus neuronal activity is largely network driven, whereas common synaptic inputs play a minor role.
Collapse
|
5
|
Zhang YY, Wang RB, Pan XC, Gong HQ, Liang PJ. Visual pattern discrimination by population retinal ganglion cells' activities during natural movie stimulation. Cogn Neurodyn 2014; 8:27-35. [PMID: 24465283 PMCID: PMC3890090 DOI: 10.1007/s11571-013-9266-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/21/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022] Open
Abstract
In the visual system, neurons often fire in synchrony, and it is believed that synchronous activities of group neurons are more efficient than single cell response in transmitting neural signals to down-stream neurons. However, whether dynamic natural stimuli are encoded by dynamic spatiotemporal firing patterns of synchronous group neurons still needs to be investigated. In this paper we recorded the activities of population ganglion cells in bullfrog retina in response to time-varying natural images (natural scene movie) using multi-electrode arrays. In response to some different brief section pairs of the movie, synchronous groups of retinal ganglion cells (RGCs) fired with similar but different spike events. We attempted to discriminate the movie sections based on temporal firing patterns of single cells and spatiotemporal firing patterns of the synchronous groups of RGCs characterized by a measurement of subsequence distribution discrepancy. The discrimination performance was assessed by a classification method based on Support Vector Machines. Our results show that different movie sections of the natural movie elicited reliable dynamic spatiotemporal activity patterns of the synchronous RGCs, which are more efficient in discriminating different movie sections than the temporal patterns of the single cells' spike events. These results suggest that, during natural vision, the down-stream neurons may decode the visual information from the dynamic spatiotemporal patterns of the synchronous group of RGCs' activities.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- />Institute for Cognitive Neurodynamics, East China University Science and Technology, Shanghai, 200237 China
| | - Ru-Bin Wang
- />Institute for Cognitive Neurodynamics, East China University Science and Technology, Shanghai, 200237 China
| | - Xiao-Chuan Pan
- />Institute for Cognitive Neurodynamics, East China University Science and Technology, Shanghai, 200237 China
| | - Hai-Qing Gong
- />School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Pei-Ji Liang
- />School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
6
|
Xiao L, Zhang PM, Wu S, Liang PJ. Response dynamics of bullfrog ON-OFF RGCs to different stimulus durations. J Comput Neurosci 2014; 37:149-60. [PMID: 24390227 DOI: 10.1007/s10827-013-0492-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/31/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
Stimulus duration is an important feature of visual stimulation. In the present study, response properties of bullfrog ON-OFF retinal ganglion cells (RGCs) in exposure to different visual stimulus durations were studied. By using a multi-electrode recording system, spike discharges from ON-OFF RGCs were simultaneously recorded, and the cells' ON and OFF responses were analyzed. It was found that the ON response characteristics, including response latency, spike count, as well as correlated activity and relative latency between pair-wise cells, were modulated by different light OFF intervals, while the OFF response characteristics were modulated by different light ON durations. Stimulus information carried by the ON and OFF responses was then analyzed, and it was found that information about different light ON durations was more carried by transient OFF response, whereas information about different light OFF intervals were more carried by transient ON response. Meanwhile, more than 80 % information about stimulus durations was carried by firing rate. These results suggest that ON-OFF RGCs are sensitive to different stimulus durations, and they can efficiently encode the information about visual stimulus duration by firing rate.
Collapse
Affiliation(s)
- Lei Xiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | | | | | | |
Collapse
|
7
|
Changes in Otx2 and parvalbumin immunoreactivity in the superior colliculus in the platelet-derived growth factor receptor-β knockout mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:848265. [PMID: 24319691 PMCID: PMC3844215 DOI: 10.1155/2013/848265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/30/2013] [Indexed: 12/11/2022]
Abstract
The superior colliculus (SC), a relay nucleus in the subcortical visual pathways, is implicated in socioemotional behaviors. Homeoprotein Otx2 and β subunit of receptors of platelet-derived growth factor (PDGFR-β) have been suggested to play an important role in development of the visual system and development and maturation of GABAergic neurons. Although PDGFR-β-knockout (KO) mice displayed socio-emotional deficits associated with parvalbumin (PV-)immunoreactive (IR) neurons, their anatomical bases in the SC were unknown. In the present study, Otx2 and PV-immunolabeling in the adult mouse SC were investigated in the PDGFR-β KO mice. Although there were no differences in distribution patterns of Otx2 and PV-IR cells between the wild type and PDGFR-β KO mice, the mean numbers of both of the Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. Furthermore, average diameters of Otx2- and PV-IR cells were significantly reduced in the PDGFR-β KO mice. These findings suggest that PDGFR-β plays a critical role in the functional development of the SC through its effects on Otx2- and PV-IR cells, provided specific roles of Otx2 protein and PV-IR cells in the development of SC neurons and visual information processing, respectively.
Collapse
|
8
|
Stimulus discrimination via responses of retinal ganglion cells and dopamine-dependent modulation. Neurosci Bull 2013; 29:621-32. [PMID: 23990220 DOI: 10.1007/s12264-013-1368-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/26/2013] [Indexed: 10/26/2022] Open
Abstract
Neighboring retinal ganglion cells (RGCs) fire with a high degree of correlation. It has been increasingly realized that visual perception of the environment relies on neuronal population activity to encode and transmit the information contained in stimuli. Understanding how neuronal population activity contributes to visual information processing is essential for understanding the mechanisms of visual coding. Here we simultaneously recorded spike discharges from groups of RGCs in bullfrog retina in response to visual patterns (checkerboard, horizontal grating, and full-field illumination) using a multi-electrode array system. To determine the role of synchronous activity mediated by gap junctions, we measured the correct classification rates of single cells' firing patterns as well as the synchronization patterns of multiple neurons. We found that, under normal conditions, RGC population activity exhibited distinct response features with exposure to different stimulus patterns and had a higher rate of correct stimulus discrimination than the activity of single cells. Dopamine (1 μmol/L) application did not significantly change the performance of single neuron activity, but enhanced the synchronization of the RGC population activity and decreased the rate of correct stimulus pattern discrimination. These findings suggest that the synchronous activity of RGCs plays an important role in the information coding of different types of visual patterns, and a dopamine-induced increase in synchronous activity weakens the population performance in pattern discrimination, indicating the potential role of the dopaminergic pathway in modulating the population coding process.
Collapse
|
9
|
Agmon A. A novel, jitter-based method for detecting and measuring spike synchrony and quantifying temporal firing precision. NEURAL SYSTEMS & CIRCUITS 2012; 2:5. [PMID: 22551243 PMCID: PMC3423071 DOI: 10.1186/2042-1001-2-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/02/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Precise spike synchrony, at the millisecond or even sub-millisecond time scale, has been reported in different brain areas, but its neurobiological meaning and its underlying mechanisms remain unknown or controversial. Studying these questions is complicated by the lack of a validated, well-normalized and robust index for quantifying synchrony. Previously used measures of synchrony are often improperly normalized and thereby are not comparable between different experimental conditions, are sensitive to variations in firing rate or to the firing rate differential between the two neurons, and/or rely on untenable assumptions of firing rate stationarity and Poisson statistics. I describe here a novel measure, the Jitter-Based Synchrony Index (JBSI), that overcomes these issues. RESULTS AND DISCUSSION The JBSI method is based on the introduction of virtual spike jitter. While previous implementations of the jitter method used it only to detect synchrony, the JBSI method also quantifies synchrony. Previous implementations of the jitter method used computationally intensive Monte Carlo simulations to generate surrogate spike trains, whereas the JBSI is computed analytically. The JBSI method does not assume any specific firing model, and does not require that the spike trains be locked to a repeating external stimulus. The JBSI can assume values from 1 (maximal possible synchrony) to -1 (minimal possible synchrony) and is therefore properly normalized. Using simulated Poisson spike trains with introduced controlled spike coincidences, I demonstrate that the JBSI is a linear measure of the spike coincidence rate, is independent of the mean firing frequency or the firing frequency differential between the two neurons, and is not sensitive to co-modulations in the firing rates of the two neurons. In contrast, several commonly used synchrony indices fail under one or more of these scenarios. I also demonstrate how the JBSI can be used to estimate the spike timing precision in the system. CONCLUSIONS The JBSI is a conceptually simple and computationally efficient method that can be used to compute the statistical significance of firing synchrony, to quantify synchrony as a well-normalized index, and to estimate the degree of temporal precision in the system.
Collapse
Affiliation(s)
- Ariel Agmon
- Department of Neurobiology and Anatomy and the Sensory Neuroscience Research Center, West Virginia University, Morgantown, WV, 26506-9303, USA.
| |
Collapse
|
10
|
Abstract
In this study, the spike discharges of one subtype of bullfrog retinal ganglion cells (dimming detectors) in response to repetitive full field light-OFF stimuli were recorded using multi-electrode arrays. Two different types of concerted activity (precise synchronization and correlated activity) could be distinguished. The nearby cells with overlapped receptive field areas often fired in synchrony, whereas the correlated activity was mainly observed from remote cell pairs with separated receptive fields. After the bicuculline application, the strength of the synchronized activity was increased whereas that of the correlated activity was decreased. These results suggest that the activation of GABAA-receptor-mediated inhibitory pathways differentially modulates the concerted firing of the ganglion cells.
Collapse
|
11
|
Harrison MT, Geman S. A rate and history-preserving resampling algorithm for neural spike trains. Neural Comput 2009; 21:1244-58. [PMID: 19018703 DOI: 10.1162/neco.2008.03-08-730] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Resampling methods are popular tools for exploring the statistical structure of neural spike trains. In many applications, it is desirable to have resamples that preserve certain non-Poisson properties, like refractory periods and bursting, and that are also robust to trial-to-trial variability. Pattern jitter is a resampling technique that accomplishes this by preserving the recent spiking history of all spikes and constraining resampled spikes to remain close to their original positions. The resampled spike times are maximally random up to these constraints. Dynamic programming is used to create an efficient resampling algorithm.
Collapse
Affiliation(s)
- Matthew T Harrison
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
12
|
Abstract
Oscillatory correlograms are widely used to study neuronal activity that shows a joint periodic rhythm. In most cases, the statistical analysis of cross-correlation histograms (CCH) features is based on the null model of independent processes, and the resulting conclusions about the underlying processes remain qualitative. Therefore, we propose a spike train model for synchronous oscillatory firing activity that directly links characteristics of the CCH to parameters of the underlying processes. The model focuses particularly on asymmetric central peaks, which differ in slope and width on the two sides. Asymmetric peaks can be associated with phase offsets in the (sub-) millisecond range. These spatiotemporal firing patterns can be highly consistent across units yet invisible in the underlying processes. The proposed model includes a single temporal parameter that accounts for this peak asymmetry. The model provides approaches for the analysis of oscillatory correlograms, taking into account dependencies and nonstationarities in the underlying processes. In particular, the auto- and the cross-correlogram can be investigated in a joint analysis because they depend on the same spike train parameters. Particular temporal interactions such as the degree to which different units synchronize in a common oscillatory rhythm can also be investigated. The analysis is demonstrated by application to a simulated data set.
Collapse
Affiliation(s)
- Gaby Schneider
- Department of Computer Science and Mathematics, J. W. Goethe University, Frankfurt (Main) 60325, Germany
| |
Collapse
|
13
|
Liu X, Zhou Y, Gong HQ, Liang PJ. Contribution of the GABAergic pathway(s) to the correlated activities of chicken retinal ganglion cells. Brain Res 2007; 1177:37-46. [PMID: 17919471 DOI: 10.1016/j.brainres.2007.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/26/2007] [Accepted: 07/01/2007] [Indexed: 10/23/2022]
Abstract
In the present study, the spatiotemporal pattern of chicken retinal ganglion cells' firing activity in response to full-field white light stimulation was investigated. Cross-correlation analysis showed that ganglion cells of sustained subtype fired in precise synchrony with their adjacent neurons of the same subtype (delay lag within 2 ms, narrow correlation). On the other hand, the activities of neighboring ganglion cells of transient subtype were correlated with distributed time lags (10-30 ms, medium correlation). Pharmacological studies demonstrated that the intensity of the medium correlations could be strengthened when exogenous GABA was applied and attenuated when GABA receptors were blocked by picrotoxin. Meanwhile, the GABAergic modulation on the narrow correlations was not consistent. These results suggest that, in the chicken retina, GABAergic pathway(s) are likely involved in the formation of medium correlations between ganglion cells. Neurons might fire at a lower rate but with higher level of synchronization to improve the efficiency of information transmission, with the mechanism involving the GABAergic inhibitory input.
Collapse
Affiliation(s)
- Xue Liu
- Department of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | | | | | | |
Collapse
|
14
|
Lu H, Hartmann MJ, Bower JM. Correlations Between Purkinje Cell Single-Unit Activity and Simultaneously Recorded Field Potentials in the Immediately Underlying Granule Cell Layer. J Neurophysiol 2005; 94:1849-60. [PMID: 15928051 DOI: 10.1152/jn.01275.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence from both anatomical and physiological studies suggests that the ascending segment of the granule cell axon provides a large, driving input to overlying Purkinje cells. In the current experiments, we used dual recording electrodes to simultaneously record spike activity of Purkinje cells and multiunit field potential activity in the directly underlying granule cell layer. These dual recordings were performed both during periods of spontaneous (“background”) firing and also after peripheral tactile stimulation. The results demonstrate that in the large majority of cases, there is a strong positive correlation between spontaneous Purkinje cell simple spikes and spontaneous activity in the immediately underlying granule cell layer. The strength of this correlation was dependent on both the firing rate of the Purkinje cell as well as on the rate of granule cell layer multiunit activity. In addition, for any given pair of recordings, the correlation seen during spontaneous activity accurately predicted the magnitude and time course of responses evoked by peripheral tactile stimulation. These results provide additional evidence that the synapses associated with the ascending segment of the granule cell axon have a substantial influence on Purkinje cell output. This relationship is considered in the context of our ongoing reevaluation of the physiological relationship between cerebellar granule and Purkinje cells.
Collapse
Affiliation(s)
- Huo Lu
- Division of Biology, California Institute of Technology, Pasadena, California, USA.
| | | | | |
Collapse
|
15
|
Selinger JV, Pancrazio JJ, Gross GW. Measuring synchronization in neuronal networks for biosensor applications. Biosens Bioelectron 2004; 19:675-83. [PMID: 14709385 DOI: 10.1016/s0956-5663(03)00267-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cultures of neurons can be grown on microelectrode arrays (MEAs), so that their spike and burst activity can be monitored. These activity patterns are quite sensitive to changes in the environment, such as chemical exposure, and hence the cultures can be used as biosensors. One key issue in analyzing the data from neuronal networks is how to quantify the level of synchronization among different units, which represent different neurons in the network. In this paper, we propose a synchronization metric, based on the statistical distribution of unit-to-unit correlation coefficients. We show that this synchronization metric changes significantly when the networks are exposed to bicuculline, strychnine, or 2,3-dioxo-6-nitro-l,2,3,4-tetrahydrobenzoquinoxaline-7-sulphonamide (NBQX). For that reason, this metric can be used to characterize pharmacologically induced changes in a network, either for research or for biosensor applications.
Collapse
Affiliation(s)
- Jonathan V Selinger
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Code 6900, 4555 Overlook Avenue, SW, Washington, DC 20375, USA.
| | | | | |
Collapse
|
16
|
Chen AH, Zhou Y, Gong HQ, Liang PJ. Firing rates and dynamic correlated activities of ganglion cells both contribute to retinal information processing. Brain Res 2004; 1017:13-20. [PMID: 15261094 DOI: 10.1016/j.brainres.2004.04.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2004] [Indexed: 11/16/2022]
Abstract
In the present study, the electrical activities of paired retinal ganglion cells, under full field light stimuli with a variety of chromatic configurations, were recorded from a small functioning piece of retina using multi-electrode array (MEA). Neurons that had increased firings at light-ON and -OFF transients and did not show color-opponent properties were investigated. Single neuronal analysis showed that firing rate of each individual neuron was dependent on the intensity of illumination. Multi-unit analyses revealed that adjacent neurons often fired in synchrony in response to light stimulation. However, in some cases, the strength of correlation between the paired neurons was higher when the retina was exposed to red or green light, and the correlation was attenuated when yellow or white light was given. This seems to suggest that the ensemble activity of non-color-opponent ganglion cells might partly participate in color-information processing, with the red- and green-pathway inputs influencing each other. Such arrangement reflects principle of parsimony: the firing rates of single neuron represent the luminance intensity, and the correlated activities may tell the brain about the color information.
Collapse
Affiliation(s)
- Ai-Hua Chen
- Shanghai Institute of Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, PR China
| | | | | | | |
Collapse
|
17
|
Edwards MD, White AM, Platt B. Characterisation of rat superficial superior colliculus neurones: firing properties and sensitivity to GABA. Neuroscience 2002; 110:93-104. [PMID: 11882375 DOI: 10.1016/s0306-4522(01)00558-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Physiological, pharmacological and morphological properties of superficial superior colliculus neurones (n=93) were characterised using whole-cell patch-clamp recordings in rat brain slices. Six cell types (narrow- and wide-field vertical, horizontal, piriform, marginal and stellate) were identified based on Lucifer Yellow labelling but no cell type-specific spike pattern could be identified. Resting membrane potentials were homogeneous (mean: -67.1 +/- 0.7 mV, n=48), and spike frequencies ranged from 10 to 70 Hz (80 pA current injection). About 66% of the cells displayed regular and sustained spike production, throughout all neuronal categories. Rebound spikes and spontaneous activity were observed frequently in all cell types. Synaptically evoked action potentials appeared as single spikes (mean amplitude: 76.0 +/- 3.2 mV, n=34) followed by a fast after-hyperpolarising potential (mean amplitude: 25.4 +/- 1.4 mV, n=34) and variable late potentials (late after-depolarising and/or -hyperpolarising). Pharmacologically, a characterisation using GABA and its subtype-specific agonists indicated a strong inhibitory influence of this transmitter system on >90% of cells. The GABA(A) receptor agonist, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (100 microM), caused a reversible hyperpolarisation (approximately 9 mV) and spike inhibition of all neurones studied. This was more pronounced for intrinsic than for synaptically evoked spikes. Assessment of the GABA(C) receptor agonist, cis-4-aminocrotonic acid (1 mM), also revealed a hyperpolarisation (approximately 3 mV) and an inhibitory action on firing, but this was not as potent and homogeneous, compared to the GABA(A) receptor agonist. Further, the GABA(B) receptor agonist, baclofen (50-100 microM), had more variable (hyperpolarising, depolarising or no change) effects on the membrane potential. It showed little modulation of current-induced action potentials but fully blocked synaptic spikes. Assessment of GABA receptor antagonist actions revealed the presence of weak tonic and strong phasic GABA(A) receptor-mediated inhibition in the superficial superior colliculus: application of the GABA(A) receptor antagonist, bicuculline (100 microM), led to a generally enhanced excitability and depolarisation (approximately 5 mV). Intrinsic firing was somewhat enhanced, but synaptic spiking was drastically potentiated and prolonged. In contrast, 1,2,5,6-tetrahydro-(pyridin-4-yl) methylphosphinic acid (TPMPA; 100 microM), the GABA(C) receptor antagonist, produced little effect on these physiological parameters. The GABA(B) receptor antagonist, CGP35348 (200 microM), caused a partial inhibition of late after-hyperpolarising potentials (approximately 30%). Uptake of GABA contributes little to endogenous inhibition in the superior colliculus slice preparation, as suggested by the action of GABA uptake inhibitors SKF89976 (50-100 microM) and nipecotic acid (200-500 microM), both had no obvious effect on physiological parameters. However, in the presence of these compounds, sub-maximal inhibitory actions of GABA were potentiated. In conclusion, different cell types in the superficial superior colliculus do not display distinct physiological properties and are subject to strong inhibitory modulation. We therefore suggest that signal processing in this brain region does not require cell type-specific encoding of information. In line with evidence provided by previous in vivo investigations, identification of visual stimuli and orientation responses appears to be realised via the network properties of the receptive fields that form topographic maps.
Collapse
Affiliation(s)
- M D Edwards
- Department of Biomedical Sciences, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
18
|
Endo T, Isa T. Functionally different AMPA-type glutamate receptors in morphologically identified neurons in rat superficial superior colliculus. Neuroscience 2002; 108:129-41. [PMID: 11738137 DOI: 10.1016/s0306-4522(01)00407-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the superficial superior colliculus, a center of sensory processing related to visual salience, glutamate is used as a major excitatory neurotransmitter. alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors include a Ca(2+)-impermeable, outwardly rectifying type (type I) and a Ca(2+)-permeable, inwardly rectifying type (type II). To study the contribution of these AMPA receptor subtypes to visual sensory processing in the superior colliculus, we investigated the expression of these two types of AMPA receptors in six morphologically identified subgroups of neurons in the superficial superior colliculus by whole-cell recording using slice preparations of young (17-23 days old) and adult (60-68 days old) rats. Both outwardly and inwardly rectifying current responses were observed to pressure applied 10 mM kainate, a non-desensitizing AMPA receptor agonist. These currents were completely abolished by the selective AMPA receptor antagonist 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7,8-methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine (100 microM). The type II receptor antagonist spermine (1 mM) suppressed inwardly rectifying responses. The degree of inward rectification was correlated with the ratio of suppression by spermine, and inversely correlated with estimated Ca(2+) permeability, indicating that the degree of rectification reflects the relative amount of co-expressed type I and type II receptors. An inwardly rectifying and spermine-sensitive AMPA component of excitatory postsynaptic currents was observed, suggesting involvement of type II receptors in synaptic transmission. Morphological analysis revealed that a substantial population of horizontal cells in both young and adult rats (n=31/53 and 15/17, respectively) and all wide field multipolar cells in adult rats (n=6) showed inwardly rectifying AMPA receptor responses. From these results we suggest that type I and type II AMPA receptors are co-expressed with varying ratios in individual neurons in the rat superficial superior colliculus, and that type II receptors are abundantly expressed in most horizontal cells and wide field multipolar cells. Since these neurons are putatively GABAergic inhibitory neurons and have wide dendritic trees, type II receptors may contribute to the regulation of remote inhibitory interaction in the visual field map in the the superficial superior colliculus.
Collapse
Affiliation(s)
- T Endo
- Department of Integrative Physiology, National Institute for Physiological Sciences, and the Graduate University for Advanced Studies, Myodaiji, 444-8585, Okazaki, Japan
| | | |
Collapse
|
19
|
Luksch H, Karten HJ, Kleinfeld D, Wessel R. Chattering and differential signal processing in identified motion-sensitive neurons of parallel visual pathways in the chick tectum. J Neurosci 2001; 21:6440-6. [PMID: 11487668 PMCID: PMC6763139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
At least three identified cell types in the stratum griseum centrale (SGC) of the chick optic tectum mediate separate pathways from the retina to different subdivisions of the thalamic nucleus rotundus. Two of these, SGC type I and type II, constitute the major direct inputs to rotundal subdivisions that process various aspects of visual information, e.g., motion and luminance changes. Here, we examined the responses of these cell types to somatic current injection and synaptic input. We used a brain slice preparation of the chick tectum and applied whole-cell patch recordings, restricted electrical stimulation of dendritic endings, and subsequent labeling with biocytin. Type I neurons responded with regular sequences of bursts ("chattering") to depolarizing current injection. Electrical stimulation of retinal afferents evoked a sharp-onset EPSP/burst response that was blocked with CNQX. The sharp-onset EPSP/burst response to synaptic stimulation persisted when the soma was hyperpolarized, thus suggesting the presence of dendritic spike generation. In contrast, the type II neurons responded to depolarizing current injection solely with an irregular sequence of individual spikes. Electrical stimulation of retinal afferents led to slow and long-lasting EPSPs that gave rise to one or several action potentials. In conclusion, the morphological distinct SGC type I and II neurons also have different response properties to retinal inputs. This difference is likely to have functional significance for the differential processing of visual information in the separate pathways from the retina to different subdivisions of the thalamic nucleus rotundus.
Collapse
Affiliation(s)
- H Luksch
- Institute of Biology II, Rheinisch-Westfälische Technische Hochschule Aachen, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|