1
|
Furukawa R, Yoshikawa T, Murakami S, Tateno T. A piezoelectric micromachined ultrasound transducer combined with recording electrodes for acute brain preparations in vitro. J Neurosci Methods 2024; 403:110048. [PMID: 38151186 DOI: 10.1016/j.jneumeth.2023.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Ultrasound stimulation is used to noninvasively stimulate the local and deep areas of the brain. However, the detailed cellular mechanisms of neural activation are still unclear because studies on micro-stimulation at the cellular level are lacking. NEW METHOD To modulate neural activity at the cellular level, we developed a piezoelectric micromachined ultrasound transducer (PMUT), having circular diaphragms for application on acute brain slice preparations. To monitor neural activities, additionally, we fabricated recording microelectrodes onto the same PMUT device for closed-loop application. RESULTS To examine the PMUT-driven cellular responses of a brain slice, intracellular calcium signals in individual cells were measured using two calcium indicators. We successfully observed the intracellular responses triggered by the ultrasound of our novel PMUT. In addition, we performed recordings of local field potentials in a brain slice, demonstrating its usefulness as a simultaneous recording interface. COMPARISON WITH EXISTING METHOD(S) Conventional ultrasound stimulators are open-loop systems that risk inducing excessive neural activity because of the absence of neural activity monitoring. In contrast, our PMUT is packaged in a single device with both stimulation and sensor interface for neuromodulation. Further, there are no published reports on in vitro microdevices that can be used for ultrasound stimulation in rodent cortical slices that are several hundred micrometers thick, which maintain the cortical laminar structure and intrinsic neural networks. CONCLUSIONS Our findings suggest that this novel PMUT device has the potential for being a powerful tool for in vitro brain slice applications and effective closed loop ultrasound stimulation.
Collapse
Affiliation(s)
- Ryo Furukawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan.
| | - Takahiro Yoshikawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan.
| | - Shuichi Murakami
- Osaka Research Institute of Industrial Science and Technology, 2-7-1, Ayumino, Izumi, Osaka 594-1157, Japan.
| | - Takashi Tateno
- Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan.
| |
Collapse
|
2
|
Leng L, Zhuang K, Lin H, Ding J, Yang S, Yuan Z, Huang C, Chen G, Chen Z, Wang M, Wang H, Sun H, Li H, Chang H, Chen Z, Xu Q, Yuan T, Zhang J. Menin Reduces Parvalbumin Expression and is Required for the Anti-Depressant Function of Ketamine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305659. [PMID: 38044302 PMCID: PMC10837338 DOI: 10.1002/advs.202305659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Indexed: 12/05/2023]
Abstract
Dysfunction of parvalbumin (PV) neurons is closely involved in depression, however, the detailed mechanism remains unclear. Based on the previous finding that multiple endocrine neoplasia type 1 (Protein: Menin; Gene: Men1) mutation (G503D) is associated with a higher risk of depression, a Menin-G503D mouse model is generated that exhibits heritable depressive-like phenotypes and increases PV expression in brain. This study generates and screens a serial of neuronal specific Men1 deletion mice, and found that PV interneuron Men1 deletion mice (PcKO) exhibit increased cortical PV levels and depressive-like behaviors. Restoration of Menin, knockdown PV expression or inhibition of PV neuronal activity in PV neurons all can ameliorate the depressive-like behaviors of PcKO mice. This study next found that ketamine stabilizes Menin by inhibiting protein kinase A (PKA) activity, which mediates the anti-depressant function of ketamine. These results demonstrate a critical role for Menin in depression, and prove that Menin is key to the antidepressant function of ketamine.
Collapse
Affiliation(s)
- Lige Leng
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Kai Zhuang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Hui Lin
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Jinjun Ding
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030P. R. China
| | - Shangchen Yang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Ziqi Yuan
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Changquan Huang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Guimiao Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Zhenlei Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Mengdan Wang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Han Wang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Hao Sun
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Huifang Li
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - He Chang
- Department of GeriatricsXiang'an Hospital of Xiamen universityXiamenFujian361102P. R. China
| | - Zhenyi Chen
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| | - Qi Xu
- State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical CollegeNeuroscience CenterChinese Academy of Medical SciencesBeijing100730P. R. China
| | - Tifei Yuan
- Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghai200030P. R. China
| | - Jie Zhang
- Institute of NeuroscienceDepartment of AnesthesiologyThe First Affiliated Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361102P. R. China
| |
Collapse
|
3
|
Olkhova EA, Smith LA, Bradshaw C, Gorman GS, Erskine D, Ng YS. Neurological Phenotypes in Mouse Models of Mitochondrial Disease and Relevance to Human Neuropathology. Int J Mol Sci 2023; 24:ijms24119698. [PMID: 37298649 DOI: 10.3390/ijms24119698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Laura A Smith
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
4
|
Gray MM, Naik A, Ebner TJ, Carter RE. Altered brain state during episodic dystonia in tottering mice decouples primary motor cortex from limb kinematics. DYSTONIA 2023; 2:10974. [PMID: 37800168 PMCID: PMC10554815 DOI: 10.3389/dyst.2023.10974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Episodic Ataxia Type 2 (EA2) is a rare neurological disorder caused by a mutation in the CACNA1A gene, encoding the P/Q-type voltage-gated Ca2+ channel important for neurotransmitter release. Patients with this channelopathy exhibit both cerebellar and cerebral pathologies, suggesting the condition affects both regions. The tottering (tg/tg) mouse is the most commonly used EA2 model due to an orthologous mutation in the cacna1a gene. The tg/tg mouse has three prominent behavioral phenotypes: a dramatic episodic dystonia; absence seizures with generalized spike and wave discharges (GSWDs); and mild ataxia. We previously observed a novel brain state, transient low-frequency oscillations (LFOs) in the cerebellum and cerebral cortex under anesthesia. In this study, we examine the relationships among the dystonic attack, GSWDs, and LFOs in the cerebral cortex. Previous studies characterized LFOs in the motor cortex of anesthetized tg/tg mice using flavoprotein autofluorescence imaging testing the hypothesis that LFOs provide a mechanism for the paroxysmal dystonia. We sought to obtain a more direct understanding of motor cortex (M1) activity during the dystonic episodes. Using two-photon Ca2+ imaging to investigate neuronal activity in M1 before, during, and after the dystonic attack, we show that there is not a significant change in the activity of M1 neurons from baseline through the attack. We also conducted simultaneous, multi-electrode recordings to further understand how M1 cellular activity and local field potentials change throughout the progression of the dystonic attack. Neither putative pyramidal nor inhibitory interneuron firing rate changed during the dystonic attack. However, we did observe a near complete loss of GSWDs during the dystonic attack in M1. Finally, using spike triggered averaging to align simultaneously recorded limb kinematics to the peak Ca2+ response, and vice versa, revealed a reduction in the spike triggered average during the dystonic episodes. Both the loss of GSWDs and the reduction in the coupling suggest that, during the dystonic attack, M1 is effectively decoupled from other structures. Overall, these results indicate that the attack is not initiated or controlled in M1, but elsewhere in the motor circuitry. The findings also highlight that LFOs, GSWDs, and dystonic attacks represent three brain states in tg/tg mice.
Collapse
Affiliation(s)
- Madelyn M Gray
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Anant Naik
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Lin S, Huang L, Luo ZC, Li X, Jin SY, Du ZJ, Wu DY, Xiong WC, Huang L, Luo ZY, Song YL, Wang Q, Liu XW, Ma RJ, Wang ML, Ren CR, Yang JM, Gao TM. The ATP Level in the Medial Prefrontal Cortex Regulates Depressive-like Behavior via the Medial Prefrontal Cortex-Lateral Habenula Pathway. Biol Psychiatry 2022; 92:179-192. [PMID: 35489874 DOI: 10.1016/j.biopsych.2022.02.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Depression is the most common mental illness. Mounting evidence suggests that dysregulation of extracellular ATP (adenosine triphosphate) is involved in the pathophysiology of depression. However, the cellular and neural circuit mechanisms through which ATP modulates depressive-like behavior remain elusive. METHODS By use of ex vivo slice electrophysiology, chemogenetic manipulations, RNA interference, gene knockout, behavioral testing, and two depression mouse models, one induced by chronic social defeat stress and one caused by a IP3R2-null mutation, we systematically investigated the cellular and neural circuit mechanisms underlying ATP deficiency-induced depressive-like behavior. RESULTS Deficiency of extracellular ATP in both defeated susceptible mice and IP3R2-null mutation mice led to reduced GABAergic (gamma-aminobutyric acidergic) inhibition and elevated excitability in lateral habenula-projecting, but not dorsal raphe-projecting, medial prefrontal cortex (mPFC) neurons. Furthermore, the P2X2 receptor in GABAergic interneurons mediated ATP modulation of lateral habenula-projecting mPFC neurons and depressive-like behavior. Remarkably, chemogenetic activation of the mPFC-lateral habenula pathway induced depressive-like behavior in C57BL/6J mice, while inhibition of this pathway was sufficient to alleviate the behavioral impairment in both defeated susceptible and IP3R2-null mutant mice. CONCLUSIONS Overall, our study provides compelling evidence that ATP level in the mPFC is critically involved in regulating depressive-like behavior in a pathway-specific manner. These results shed new light on the mechanisms underlying depression and the antidepressant effect of ATP.
Collapse
Affiliation(s)
- Song Lin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Lang Huang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhou-Cai Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Li
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuo-Jun Du
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ding-Yu Wu
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wen-Chao Xiong
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Huang
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zheng-Yi Luo
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yun-Long Song
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xian-Wei Liu
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Rui-Jia Ma
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Meng-Ling Wang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chao-Ran Ren
- Physiology Department and Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Ferrer C, De Marco García NV. The Role of Inhibitory Interneurons in Circuit Assembly and Refinement Across Sensory Cortices. Front Neural Circuits 2022; 16:866999. [PMID: 35463203 PMCID: PMC9021723 DOI: 10.3389/fncir.2022.866999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Sensory information is transduced into electrical signals in the periphery by specialized sensory organs, which relay this information to the thalamus and subsequently to cortical primary sensory areas. In the cortex, microcircuits constituted by interconnected pyramidal cells and inhibitory interneurons, distributed throughout the cortical column, form the basic processing units of sensory information underlying sensation. In the mouse, these circuits mature shortly after birth. In the first postnatal week cortical activity is characterized by highly synchronized spontaneous activity. While by the second postnatal week, spontaneous activity desynchronizes and sensory influx increases drastically upon eye opening, as well as with the onset of hearing and active whisking. This influx of sensory stimuli is fundamental for the maturation of functional properties and connectivity in neurons allocated to sensory cortices. In the subsequent developmental period, spanning the first five postnatal weeks, sensory circuits are malleable in response to sensory stimulation in the so-called critical periods. During these critical periods, which vary in timing and duration across sensory areas, perturbations in sensory experience can alter cortical connectivity, leading to long-lasting modifications in sensory processing. The recent advent of intersectional genetics, in vivo calcium imaging and single cell transcriptomics has aided the identification of circuit components in emergent networks. Multiple studies in recent years have sought a better understanding of how genetically-defined neuronal subtypes regulate circuit plasticity and maturation during development. In this review, we discuss the current literature focused on postnatal development and critical periods in the primary auditory (A1), visual (V1), and somatosensory (S1) cortices. We compare the developmental trajectory among the three sensory areas with a particular emphasis on interneuron function and the role of inhibitory circuits in cortical development and function.
Collapse
|
7
|
Gerhard DM, Pothula S, Liu RJ, Wu M, Li XY, Girgenti MJ, Taylor SR, Duman CH, Delpire E, Picciotto M, Wohleb ES, Duman RS. GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions. J Clin Invest 2020; 130:1336-1349. [PMID: 31743111 DOI: 10.1172/jci130808] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
A single subanesthetic dose of ketamine, an NMDA receptor (NMDAR) antagonist, produces rapid and sustained antidepressant actions in depressed patients, addressing a major unmet need for the treatment of mood disorders. Ketamine produces a rapid increase in extracellular glutamate and synaptic formation in the prefrontal cortex, but the initial cellular trigger that initiates this increase and ketamine's behavioral actions has not been identified. To address this question, we used a combination of viral shRNA and conditional mutation to produce cell-specific knockdown or deletion of a key NMDAR subunit, GluN2B, implicated in the actions of ketamine. The results demonstrated that the antidepressant actions of ketamine were blocked by GluN2B-NMDAR knockdown on GABA (Gad1) interneurons, as well as subtypes expressing somatostatin (Sst) or parvalbumin (Pvalb), but not glutamate principle neurons in the medial prefrontal cortex (mPFC). Further analysis of GABA subtypes showed that cell-specific knockdown or deletion of GluN2B in Sst interneurons blocked or occluded the antidepressant actions of ketamine and revealed sex-specific differences that are associated with excitatory postsynaptic currents on mPFC principle neurons. These findings demonstrate that GluN2B-NMDARs on GABA interneurons are the initial cellular trigger for the rapid antidepressant actions of ketamine and show sex-specific adaptive mechanisms to GluN2B modulation.
Collapse
Affiliation(s)
- Danielle M Gerhard
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Santosh Pothula
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rong-Jian Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Min Wu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiao-Yuan Li
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seth R Taylor
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Catharine H Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | - Marina Picciotto
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eric S Wohleb
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Luo YX, Galaj E, Ma YY. Differential alterations of insular cortex excitability after adolescent or adult chronic intermittent ethanol administration in male rats. J Neurosci Res 2020; 99:649-661. [PMID: 33094531 DOI: 10.1002/jnr.24737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022]
Abstract
Adolescent alcohol drinking, primarily in the form of binge-drinking episodes, is a serious public health concern. Binge drinking in laboratory animals has been modeled by a procedure involving chronic intermittent ethanol (CIE) administration, as compared with chronic intermittent water (CIW). The prolonged effects of adolescent binge alcohol exposure in adults, such as high risk of developing alcohol use disorder, are severe but available treatments in the clinic are limited. One reason is the lack of sufficient understanding about the associated neuronal alterations. The involvement of the insular cortex, particularly the anterior agranular insula (AAI), has emerged as a critical region to explain neuronal mechanisms of substance abuse. This study was designed to evaluate the functional output of the AAI by measuring the intrinsic excitability of pyramidal neurons from male rats 2 or 21 days after adolescent or adult CIE treatment. Decreases in intrinsic excitability in AAI pyramidal neurons were detected 21 days, relative to 2 days, after adolescent CIE. Interestingly, the decreased intrinsic excitability in the AAI pyramidal neurons was observed 2 days after adult CIE, compared to adult CIW, but no difference was found between 2 versus 21 days after adult CIE. These data indicate that, although the AAI is influenced within a limited period after adult but not adolescent CIE, neuronal alterations in AAI are affected during the prolonged period of withdrawal from adolescent but not adult CIE. This may explain the prolonged vulnerability to mental disorders of subjects with an alcohol binge history during their adolescent stage.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Ewa Galaj
- Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
9
|
Regulation of Recurrent Inhibition by Asynchronous Glutamate Release in Neocortex. Neuron 2020; 105:522-533.e4. [DOI: 10.1016/j.neuron.2019.10.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 06/11/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023]
|
10
|
Rice HC, Marcassa G, Chrysidou I, Horré K, Young-Pearse TL, Müller UC, Saito T, Saido TC, Vassar R, de Wit J, De Strooper B. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener 2020; 15:3. [PMID: 31915042 PMCID: PMC6950898 DOI: 10.1186/s13024-019-0356-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/04/2022] Open
Abstract
The amyloid-β (Aβ) peptide, the primary constituent of amyloid plaques found in Alzheimer's disease (AD) brains, is derived from sequential proteolytic processing of the Amyloid Precursor Protein (APP). However, the contribution of different cell types to Aβ deposition has not yet been examined in an in vivo, non-overexpression system. Here, we show that endogenous APP is highly expressed in a heterogeneous subset of GABAergic interneurons throughout various laminae of the hippocampus, suggesting that these cells may have a profound contribution to AD plaque pathology. We then characterized the laminar distribution of amyloid burden in the hippocampus of an APP knock-in mouse model of AD. To examine the contribution of GABAergic interneurons to plaque pathology, we blocked Aβ production specifically in these cells using a cell type-specific knock-out of BACE1. We found that during early stages of plaque deposition, interneurons contribute to approximately 30% of the total plaque load in the hippocampus. The greatest contribution to plaque load (75%) occurs in the stratum pyramidale of CA1, where plaques in human AD cases are most prevalent and where pyramidal cell bodies and synaptic boutons from perisomatic-targeting interneurons are located. These findings reveal a crucial role of GABAergic interneurons in the pathology of AD. Our study also highlights the necessity of using APP knock-in models to correctly evaluate the cellular contribution to amyloid burden since APP overexpressing transgenic models drive expression in cell types according to the promoter and integration site and not according to physiologically relevant expression mechanisms.
Collapse
Affiliation(s)
- Heather C. Rice
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Present Address: Department of Biochemistry and Molecular Biology, Oklahoma Center for Geroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Gabriele Marcassa
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Iordana Chrysidou
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Katrien Horré
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tracy L. Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- UK-Dementia Research Institute at University College London, London, UK
| |
Collapse
|
11
|
Parrish RR, Codadu NK, Mackenzie-Gray Scott C, Trevelyan AJ. Feedforward inhibition ahead of ictal wavefronts is provided by both parvalbumin- and somatostatin-expressing interneurons. J Physiol 2019; 597:2297-2314. [PMID: 30784081 PMCID: PMC6462485 DOI: 10.1113/jp277749] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022] Open
Abstract
Key points There is a rapid interneuronal response to focal activity in cortex, which restrains laterally propagating activity, including spreading epileptiform activity. The interneuronal response involves intense activation of both parvalbumin‐ and somatostatin‐expressing interneurons. Interneuronal bursting is time‐locked to glutamatergic barrages in the pre‐ictal period. Ca2+ imaging using conditional expression of GCaMP6f provides an accurate readout of the evolving firing patterns in both types of interneuron. The activation profiles of the two interneuronal classes are temporally offset, with the parvalbumin population being activated first, and typically, at higher rates.
Abstract Previous work has described powerful restraints on laterally spreading activity in cortical networks, arising from a rapid feedforward interneuronal response to focal activity. This response is particularly prominent ahead of an ictal wavefront. Parvalbumin‐positive interneurons are considered to be critically involved in this feedforward inhibition, but it is not known what role, if any, is provided by somatostatin‐expressing interneurons, which target the distal dendrites of pyramidal cells. We used a combination of electrophysiology and cell class‐specific Ca2+ imaging in mouse brain slices bathed in 0 Mg2+ medium to characterize the activity profiles of pyramidal cells and parvalbumin‐ and somatostatin‐expressing interneurons during epileptiform activation. The GCaMP6f signal strongly correlates with the level of activity for both interneuronal classes. Both interneuronal classes participate in the feedfoward inhibition. This contrasts starkly with the pattern of pyramidal recruitment, which is greatly delayed. During these barrages, both sets of interneurons show intense bursting, at rates up to 300Hz, which is time‐locked to the glutamatergic barrages. The activity of parvalbumin‐expressing interneurons appears to peak early in the pre‐ictal period, and can display depolarizing block during the ictal event. In contrast, somatostatin‐expressing interneuronal activity peaks significantly later, and firing persists throughout the ictal events. Interictal events appear to be very similar to the pre‐ictal period, albeit with slightly lower firing rates. Thus, the inhibitory restraint arises from a coordinated pattern of activity in the two main classes of cortical interneurons. There is a rapid interneuronal response to focal activity in cortex, which restrains laterally propagating activity, including spreading epileptiform activity. The interneuronal response involves intense activation of both parvalbumin‐ and somatostatin‐expressing interneurons. Interneuronal bursting is time‐locked to glutamatergic barrages in the pre‐ictal period. Ca2+ imaging using conditional expression of GCaMP6f provides an accurate readout of the evolving firing patterns in both types of interneuron. The activation profiles of the two interneuronal classes are temporally offset, with the parvalbumin population being activated first, and typically, at higher rates.
Collapse
Affiliation(s)
- R Ryley Parrish
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Neela K Codadu
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | - Andrew J Trevelyan
- Institute of Neuroscience, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
12
|
Tricoire L, Drobac E, Tsuzuki K, Gallopin T, Picaud S, Cauli B, Rossier J, Lambolez B. Bioluminescence calcium imaging of network dynamics and their cholinergic modulation in slices of cerebral cortex from male rats. J Neurosci Res 2019; 97:414-432. [PMID: 30604494 DOI: 10.1002/jnr.24380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The activity of neuronal ensembles was monitored in neocortical slices from male rats using wide-field bioluminescence imaging of a calcium sensor formed with the fusion of green fluorescent protein and aequorin (GA) and expressed through viral transfer. GA expression was restricted to pyramidal neurons and did not conspicuously alter neuronal morphology or neocortical cytoarchitecture. Removal of extracellular magnesium or addition of GABA receptor antagonists triggered epileptiform flashes of variable amplitude and spatial extent, indicating that the excitatory and inhibitory networks were functionally preserved in GA-expressing slices. We found that agonists of muscarinic acetylcholine receptors largely increased the peak bioluminescence response to local electrical stimulation in layer I or white matter, and gave rise to a slowly decaying response persisting for tens of seconds. The peak increase involved layers II/III and V and did not result in marked alteration of response spatial properties. The persistent response involved essentially layer V and followed the time course of the muscarinic afterdischarge depolarizing plateau in layer V pyramidal cells. This plateau potential triggered spike firing in layer V, but not layer II/III pyramidal cells, and was accompanied by recurrent synaptic excitation in layer V. Our results indicate that wide-field imaging of GA bioluminescence is well suited to monitor local and global network activity patterns, involving different mechanisms of intracellular calcium increase, and occurring on various timescales.
Collapse
Affiliation(s)
- Ludovic Tricoire
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Estelle Drobac
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Keisuke Tsuzuki
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Thierry Gallopin
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Sandrine Picaud
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Bruno Cauli
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Jean Rossier
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), INSERM, CNRS, Sorbonne Universités, Paris, France
| |
Collapse
|
13
|
Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res 2018; 1695:18-30. [DOI: 10.1016/j.brainres.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022]
|
14
|
Age-dependent and region-specific alteration of parvalbumin neurons and perineuronal nets in the mouse cerebral cortex. Neurochem Int 2017; 112:59-70. [PMID: 29126935 DOI: 10.1016/j.neuint.2017.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Cognitive function declines with age. Such function depends on γ-oscillation in the frontal cortex. Pyramidal neurons, and the parvalbumin-expressing interneurons (PV neurons) that control them, are important for the generation of γ-oscillation. The mechanism by which cognitive function declines is unclear. Perineuronal nets (PNNs) mainly surround the soma and proximal dendrites and axon segments of PV neurons in the cerebral cortex. Previous evidence indicates that PNNs inhibit neural plasticity. If this is true, an increase in the number of neurons surrounded by PNNs or in the thickness or density of the PNNs around neurons could decrease plasticity in the cortex. To determine if an aging-related change in cortical PNNs occurs, we examined the influence of aging on PV neurons and whether Wisteria floribunda agglutinin-positive PNNs differ depending on the cortical area. The results showed that the number of PV neurons/mm2 did not change in many areas of the cortex as mice aged. In contrast, the number of neurons in the sensory cortex surrounded by PNNs increased as mice aged. Thus, with age, PNN density increases in some cortical areas but not in others. In addition, the expression level of PV protein in PV neurons decreased with aging in the whole cortex. We suggest that decreased expression of PV protein impairs fast spiking in PV neurons. We propose that PNNs surround more neurons as age increases. This aging-related increase in PNNs decreases plasticity in the cerebral cortex and reduces cognitive function. The first step in investigating this proposal would be to determine if PNN density increases with age.
Collapse
|
15
|
Albertson AJ, Bohannon AS, Hablitz JJ. HCN Channel Modulation of Synaptic Integration in GABAergic Interneurons in Malformed Rat Neocortex. Front Cell Neurosci 2017; 11:109. [PMID: 28469560 PMCID: PMC5396479 DOI: 10.3389/fncel.2017.00109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/30/2017] [Indexed: 12/02/2022] Open
Abstract
Cortical malformations are often associated with pharmaco-resistant epilepsy. Alterations in hyperpolarization-activated, cyclic nucleotide-gated, non-specific cation (HCN) channels have been shown to contribute to malformation associated hyperexcitability. We have recently demonstrated that expression of HCN channels and Ih current amplitudes are reduced in layer (L) 5 pyramidal neurons of rats with freeze lesion induced malformations. These changes were associated with an increased EPSP temporal summation. Here, we examine the effects of HCN channel inhibition on synaptic responses in fast spiking, presumptive basket cells and accommodating, presumptive Martinotti, GABAergic interneurons in slices from freeze lesioned animals. In control animals, fast spiking cells showed small sag responses which were reduced by the HCN channel antagonist ZD7288. Fast spiking cells in lesioned animals showed absent or reduced sag responses. The amplitude of single evoked EPSPs in fast spiking cells in the control group was not affected by HCN channel inhibition with ZD7288. EPSP ratios during short stimulus trains at 25 Hz were not significantly different between control and lesion groups. ZD7288 produced an increase in EPSP ratios in the control but not lesion groups. Under voltage clamp conditions, ZD7288 did not affect EPSC ratios. In the control group, accommodating interneurons showed robust sag responses which were significantly reduced by ZD7288. HCN channel inhibition increased EPSP ratios and area in controls but not the lesioned group. The results indicate that HCN channels differentially modulate EPSPs in different classes of GABAergic interneurons and that this control is reduced in malformed rat neocortex.
Collapse
Affiliation(s)
- Asher J Albertson
- Department of Neurobiology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Andrew S Bohannon
- Department of Neurobiology, University of Alabama at BirminghamBirmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
16
|
Farahmandfar M, Akbarabadi A, Bakhtazad A, Zarrindast MR. Recovery from ketamine-induced amnesia by blockade of GABA-A receptor in the medial prefrontal cortex of mice. Neuroscience 2017; 344:48-55. [DOI: 10.1016/j.neuroscience.2016.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/23/2016] [Accepted: 02/23/2016] [Indexed: 11/30/2022]
|
17
|
Williams SB, Hablitz JJ. Differential modulation of repetitive firing and synchronous network activity in neocortical interneurons by inhibition of A-type K(+) channels and Ih. Front Cell Neurosci 2015; 9:89. [PMID: 25852481 PMCID: PMC4364302 DOI: 10.3389/fncel.2015.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/26/2015] [Indexed: 12/04/2022] Open
Abstract
GABAergic interneurons provide the main source of inhibition in the neocortex and are important in regulating neocortical network activity. In the presence 4-aminopyridine (4-AP), CNQX, and D-APV, large amplitude GABAA-receptor mediated depolarizing responses were observed in the neocortex. GABAergic networks are comprised of several types of interneurons, each with its own protein expression pattern, firing properties, and inhibitory role in network activity. Voltage-gated ion channels, especially A-type K(+) channels, differentially regulate passive membrane properties, action potential (AP) waveform, and repetitive firing properties in interneurons depending on their composition and localization. HCN channels are known modulators of pyramidal cell intrinsic excitability and excitatory network activity. Little information is available regarding how HCN channels functionally modulate excitability of individual interneurons and inhibitory networks. In this study, we examined the effect of 4-AP on intrinsic excitability of fast-spiking basket cells (FS-BCs) and Martinotti cells (MCs). 4-AP increased the duration of APs in both FS-BCs and MCs. The repetitive firing properties of MCs were differentially affected compared to FS-BCs. We also examined the effect of Ih inhibition on synchronous GABAergic depolarizations and synaptic integration of depolarizing IPSPs. ZD 7288 enhanced the amplitude and area of evoked GABAergic responses in both cell types. Similarly, the frequency and area of spontaneous GABAergic depolarizations in both FS-BCs and MCs were increased in presence of ZD 7288. Synaptic integration of IPSPs in MCs was significantly enhanced, but remained unaltered in FS-BCs. These results indicate that 4-AP differentially alters the firing properties of interneurons, suggesting MCs and FS-BCs may have unique roles in GABAergic network synchronization. Enhancement of GABAergic network synchronization by ZD 7288 suggests that HCN channels attenuate inhibitory network activity.
Collapse
Affiliation(s)
| | - John J. Hablitz
- Department of Neurobiology, Civitan International Research Center and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, ALUSA
| |
Collapse
|
18
|
Womelsdorf T, Ardid S, Everling S, Valiante TA. Burst firing synchronizes prefrontal and anterior cingulate cortex during attentional control. Curr Biol 2014; 24:2613-21. [PMID: 25308081 DOI: 10.1016/j.cub.2014.09.046] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/21/2014] [Accepted: 09/16/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND It is widely held that single cells in anterior cingulate and lateral prefrontal cortex (ACC/PFC) coordinate their activity during attentional processes, although cellular activity that may underlie such coordination across ACC/PFC has not been identified. We thus recorded cells in five ACC/PFC subfields of macaques engaged in a selective attention task, characterized those spiking events that indexed attention, and identified how spiking of distinct cell populations synchronized between brain areas. RESULTS We found that cells in ACC/PFC increased the firing of brief 200 Hz spike bursts when subjects shifted attention and engaged in selective visual processing. In contrast to nonburst spikes, burst spikes synchronized over large distances to local field potentials at narrow beta (12-20 Hz) and at gamma (50-75 Hz) frequencies. Long-range burst synchronization was anatomically specific, functionally connecting those subfields in area 24 (ACC) and area 46 (PFC) that are key players of attentional control. By splitting cells into putative excitatory (pE) and inhibitory (pI) cells by their broad and narrow spikes, we identified that bursts of pI cells preceded and that bursts of pE cells followed in time periods of maximal beta coherent network activity. In contrast, gamma bursts were transient impulses with equal timing across cell classes. CONCLUSIONS These findings suggest that processes underlying burst firing and burst synchronization are candidate mechanisms to coordinate attention information across brain areas. We speculate that distinct burst-firing motifs realize beta and gamma synchrony to trigger versus maintain functional network states during goal-directed behavior.
Collapse
Affiliation(s)
- Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON M6J 1P3, Canada; Department of Physiology and Pharmacology, Centre for Functional and Metabolic Mapping, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5B7, Canada.
| | - Salva Ardid
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, ON M6J 1P3, Canada
| | - Stefan Everling
- Department of Physiology and Pharmacology, Centre for Functional and Metabolic Mapping, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5B7, Canada
| | - Taufik A Valiante
- Division of Fundamental Neurobiology, Toronto Western Research Institute, Toronto, ON M5T 2S8, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
19
|
Endocannabinoid modulation of cortical up-states and NREM sleep. PLoS One 2014; 9:e88672. [PMID: 24520411 PMCID: PMC3919802 DOI: 10.1371/journal.pone.0088672] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 11/20/2022] Open
Abstract
Up-/down-state transitions are a form of network activity observed when sensory input into the cortex is diminished such as during non-REM sleep. Up-states emerge from coordinated signaling between glutamatergic and GABAergic synapses and are modulated by systems that affect the balance between inhibition and excitation. We hypothesized that the endocannabinoid (EC) system, a neuromodulatory system intrinsic to the cortical microcircuitry, is an important regulator of up-states and sleep. To test this hypothesis, up-states were recorded from layer V/VI pyramidal neurons in organotypic cultures of wild-type or CB1R knockout (KO) mouse prefrontal cortex. Activation of the cannabinoid 1 receptor (CB1) with exogenous agonists or by blocking metabolism of endocannabinoids, anandamide or 2-arachidonoyl glycerol, increased up-state amplitude and facilitated action potential discharge during up-states. The CB1 agonist also produced a layer II/III-selective reduction in synaptic GABAergic signaling that may underlie its effects on up-state amplitude and spiking. Application of CB1 antagonists revealed that an endogenous EC tone regulates up-state duration. Paradoxically, the duration of up-states in CB1 KO cultures was increased suggesting that chronic absence of EC signaling alters cortical activity. Consistent with increased cortical excitability, CB1 KO mice exhibited increased wakefulness as a result of reduced NREM sleep and NREM bout duration. Under baseline conditions, NREM delta (0.5–4 Hz) power was not different in CB1 KO mice, but during recovery from forced sleep deprivation, KO mice had reduced NREM delta power and increased sleep fragmentation. Overall, these findings demonstrate that the EC system actively regulates cortical up-states and important features of NREM sleep such as its duration and low frequency cortical oscillations.
Collapse
|
20
|
Karlócai MR, Kohus Z, Káli S, Ulbert I, Szabó G, Máté Z, Freund TF, Gulyás AI. Physiological sharp wave-ripples and interictal events in vitro: what's the difference? ACTA ACUST UNITED AC 2014; 137:463-85. [PMID: 24390441 DOI: 10.1093/brain/awt348] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory consolidation, whereas epileptiform (interictal) events are thought to be damaging. It is essential to grasp the difference between physiological sharp wave-ripples and pathological interictal events to understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity generated intrinsically in the Cornu Ammonis region 3 of the mouse hippocampus in vitro, using four different types of intervention to induce epileptiform activity. As a result, sharp wave-ripples spontaneously occurring in Cornu Ammonis region 3 disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and some axo-axonic cells stopped firing as a result of a depolarization block at the climax of the events in high potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, pyramidal cells began firing maximally at this stage. To understand the underlying mechanism we measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be a crucial factor in the emergence of epileptiform events.
Collapse
Affiliation(s)
- Mária R Karlócai
- 1 Laboratory of Cerebral Cortex, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kubota Y. Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol 2013; 26:7-14. [PMID: 24650498 DOI: 10.1016/j.conb.2013.10.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 01/07/2023]
Abstract
The cerebral cortical microcircuit is composed of pyramidal and non-pyramidal cells and subcortical and cortico-cortical afferents. These constitute a complex wiring structure that remains poorly understood. At least ten non-pyramidal cell subtypes are known. These innervate different target neuronal domains, and have a key role in regulating cortical neuronal activity. Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the cerebral cortex, and most cortical inhibitory synapses originate from non-pyramidal cells. Therefore, investigating the morphological and functional wiring properties of GABAergic non-pyramidal cells is critical to understanding the functional architecture of the cortical microcircuitry. This review focuses on current understanding of the different roles of inhibitory GABAergic non-pyramidal cell subtypes in cortical functions.
Collapse
Affiliation(s)
- Yoshiyuki Kubota
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Tokyo, Japan.
| |
Collapse
|
22
|
Albertson AJ, Williams SB, Hablitz JJ. Regulation of epileptiform discharges in rat neocortex by HCN channels. J Neurophysiol 2013; 110:1733-43. [PMID: 23864381 PMCID: PMC3798942 DOI: 10.1152/jn.00955.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 07/17/2013] [Indexed: 11/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated, nonspecific cation (HCN) channels have a well-characterized role in regulation of cellular excitability and network activity. The role of these channels in control of epileptiform discharges is less thoroughly understood. This is especially pertinent given the altered HCN channel expression in epilepsy. We hypothesized that inhibition of HCN channels would enhance bicuculline-induced epileptiform discharges. Whole cell recordings were obtained from layer (L)2/3 and L5 pyramidal neurons and L1 and L5 GABAergic interneurons. In the presence of bicuculline (10 μM), HCN channel inhibition with ZD 7288 (20 μM) significantly increased the magnitude (defined as area) of evoked epileptiform events in both L2/3 and L5 neurons. We recorded activity associated with epileptiform discharges in L1 and L5 interneurons to test the hypothesis that HCN channels regulate excitatory synaptic inputs differently in interneurons versus pyramidal neurons. HCN channel inhibition increased the magnitude of epileptiform events in both L1 and L5 interneurons. The increased magnitude of epileptiform events in both pyramidal cells and interneurons was due to an increase in network activity, since holding cells at depolarized potentials under voltage-clamp conditions to minimize HCN channel opening did not prevent enhancement in the presence of ZD 7288. In neurons recorded with ZD 7288-containing pipettes, bath application of the noninactivating inward cationic current (Ih) antagonist still produced increases in epileptiform responses. These results show that epileptiform discharges in disinhibited rat neocortex are modulated by HCN channels.
Collapse
Affiliation(s)
- Asher J Albertson
- Department of Neurobiology, Civitan International Research Center, and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
23
|
Cadotte DW, Cohen-Adad J, Fehlings MG. Visualizing Integrative Functioning in the Human Brainstem and Spinal Cord With Spinal Functional Magnetic Resonance Imaging. Neurosurgery 2013; 60 Suppl 1:102-9. [DOI: 10.1227/01.neu.0000430767.87725.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Yamagata Y, Kaneko K, Kase D, Ishihara H, Nairn AC, Obata K, Imoto K. Regulation of ERK1/2 mitogen-activated protein kinase by NMDA-receptor-induced seizure activity in cortical slices. Brain Res 2013; 1507:1-10. [PMID: 23419897 DOI: 10.1016/j.brainres.2013.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Extracellular signal-regulated kinase 1/2 (ERK1/2) that belongs to a subfamily of mitogen-activated protein kinases (MAPKs) plays diverse roles in the central nervous system. Activation of ERK1/2 has been observed in various types of neuronal excitation, including seizure activity in vivo and in vitro, as well as in NMDA-receptor (NMDA-R)-dependent long-term potentiation in the hippocampus. On the other hand, recent studies in cultured neurons have shown that NMDA-R stimulation could result in either ERK1/2 activation or non-activation, depending on the pharmacological manipulations. To assess NMDA-R-dependent regulation of ERK1/2 activity in vivo, here we examined the effect of NMDA-R-induced seizure activity on ERK1/2 activation by using rat cortical slice preparations. NMDA-R-dependent seizure activity introduced by Mg2+ -free condition did not cause ERK1/2 activation. On the other hand, when picrotoxin was added to concurrently suppress GABAA-receptor-mediated inhibition, profound ERK1/2 activation occurred, which was accompanied by strong phospho-ERK1/2-staining in the superficial and deep cortical layer neurons. In this case, prolonged membrane depolarization and enhanced burst action potential firings, both of which were much greater than those in Mg2+ -free condition alone, were observed. Differential ERK1/2 activation was supported by the concurrent selective increase in phosphorylation of a substrate protein, phospho-site 4/5 of synapsin I. These results indicate that NMDA-R activation through a release from Mg2+ -blockade, which accompanies enhancement of both excitatory and inhibitory synaptic transmission, was not enough, but concurrent suppression of GABAergic inhibition, which leads to a selective increase in excitatory synaptic transmission, was necessary for robust ERK1/2 activation to occur within the cortical network.
Collapse
Affiliation(s)
- Yoko Yamagata
- Department of Information Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Gabbott P, Warner TA, Brown J, Salway P, Gabbott T, Busby S. Amygdala afferents monosynaptically innervate corticospinal neurons in rat medial prefrontal cortex. J Comp Neurol 2012; 520:2440-58. [PMID: 22247040 DOI: 10.1002/cne.23047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The amygdala provides the medial prefrontal cortex (mPFC; areas 25, 32, and 24b) with salient emotional information. This study investigated the synaptic connectivity of identified amygdalocortical boutons (ACBs; labeled anterogradely following injections of Phaseolus vulgaris leucoagglutinin into the basolateral nucleus of the amygdala), with the dendritic processes of identified layer 5 corticospinal neurons in the rat mPFC. The corticospinal (CS) neurons in the mPFC had been retrogradely labeled with rhodamine fluorescent latex microspheres and subsequently intracellularly filled with biotinylated lucifer yellow to visualize their basal and apical dendrites. Two main classes of mPFC CS neurons were identified. Type 1 cells had apical dendrites bearing numerous dendritic spines with radiate basal dendritic arbors. Type 2 cells possessed apical dendrites with greatly reduced spine densities and a broad range of basal dendritic tree morphologies. Identified ACBs made asymmetric synaptic junctions with labeled dendritic spines and the labeled apical and basal dendritic shafts of identified CS neurons. On average, eight ACBs were closely associated with the labeled basal dendritic arbors of type 1 CS neurons and five ACBs with type 2 CS basal dendrites. The mean Scholl distance of ACBs from CS somata (for both types 1 and 2 cells) was 66 μm-coinciding with a region containing the highest length density of CS neuron basal dendrites. These results indicate that neurons in the BLA can monosynaptically influence CS neurons in the mPFC that project to autonomic regions of the thoracic spinal cord and probably to other additional subcortical target regions, such as the lateral hypothalamus.
Collapse
Affiliation(s)
- Paul Gabbott
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
26
|
Trevelyan AJ, Schevon CA. How inhibition influences seizure propagation. Neuropharmacology 2012; 69:45-54. [PMID: 22722026 DOI: 10.1016/j.neuropharm.2012.06.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/30/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Inhibitory neuron behaviour is of fundamental importance to epileptic pathophysiology. When inhibition is compromised, such as by GABAergic blockade (Curtis et al., 1970; Connors, 1984; Traub and Miles, 1991) or by shifts in GABAergic reversal potential (Huberfeld et al., 2007), epileptiform discharges occur far more readily. Other studies have shown enhanced inhibition in vivo in the surrounding cortical territories associated with both focal pathological and physiological activity (Prince and Wilder, 1967; Dichter and Spencer, 1969a,b; Goldensohn and Salazar, 1986; Traub and Miles, 1991; Liang and Jones, 1997; Liang et al., 1998; Schwartz and Bonhoeffer, 2001). This gave rise to the concept of an "inhibitory restraint". This concept can explain the often confusing anatomical reorganizations seen in chronically epileptic brains (Sloviter, 1987; Cossart et al., 2001), indicating which changes might be pro-epileptic, and which oppose the epileptic state. It also may explain key electrophysiological features of epileptic seizures. Here we describe current knowledge about the restraint, gleaned mainly from acute pharmacological experiments in animals, both in vivo and in vitro, and speculate how this may alter our understanding of human seizure activity in clinical practice. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Andrew J Trevelyan
- Institute of Neuroscience, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
27
|
Lu CB, Wang ZH, Zhou YH, Vreugdenhil M. Temperature- and concentration-dependence of kainate-induced γ oscillation in rat hippocampal slices under submerged condition. Acta Pharmacol Sin 2012; 33:214-20. [PMID: 22266729 PMCID: PMC4010343 DOI: 10.1038/aps.2011.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/26/2011] [Indexed: 11/09/2022] Open
Abstract
AIM Fast neuronal network oscillation at the γ frequency band (γ oscillation: 30-80 Hz) has been studied extensively in hippocampal slices under interface recording condition. The aim of this study is to establish a method for recording γ oscillation in submerged hippocampal slices that allows simultaneously monitoring γ oscillation and the oscillation-related intracellular events, such as intracellular Ca(2+) concentration or mitochondrial membrane potentials. METHODS Horizontal hippocampal slices (thickness: 300 μm) of adult rats were prepared and placed in a submerged or an interface chamber. Extracellular field recordings were made in the CA3c pyramidal layer of the slices. Kainate, an AMPA/kainate receptor agonist, was applied via perfusion. Data analysis was performed off-line. RESULTS Addition of kainate (25-1000 nmol/L) induced γ oscillation in both the submerged and interface slices. Kainate increased the γ power in a concentration-dependent manner, but the duration of steady state oscillation was reduced at higher concentrations of kainate. Long-lasting γ oscillation was maintained at the concentrations of 100-300 nmol/L. Under submerged condition, γ oscillation was temperature-dependent, with the maximum power achieved at 29 °C. The induction of γ oscillation under submerged condition also required a fast rate of perfusion (5-7 mL/min) and showed a fast dynamic during development and after the washout. CONCLUSION The kainite-induced γ oscillation recorded in submerged rat hippocampal slices is useful for studying the intracellular events related to neuronal network activities and may represent a model to reveal the mechanisms underlying the normal neuronal synchronizations and diseased conditions.
Collapse
Affiliation(s)
- Cheng-biao Lu
- Department of Automation, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China.
| | | | | | | |
Collapse
|
28
|
Spontaneous Rhythmic Activity in the Adult Cerebral Cortex In Vitro. ISOLATED CENTRAL NERVOUS SYSTEM CIRCUITS 2012. [DOI: 10.1007/978-1-62703-020-5_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Fishell G, Rudy B. Mechanisms of inhibition within the telencephalon: "where the wild things are". Annu Rev Neurosci 2011; 34:535-67. [PMID: 21469958 DOI: 10.1146/annurev-neuro-061010-113717] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review, we first provide a historical perspective of inhibitory signaling from the discovery of inhibition through to our present understanding of the diversity and mechanisms by which GABAergic interneuron populations function in different parts of the telencephalon. This is followed by a summary of the mechanisms of inhibition in the CNS. With this as a starting point, we provide an overview describing the variations in the subtypes and origins of inhibitory interneurons within the pallial and subpallial divisions of the telencephalon, with a focus on the hippocampus, somatosensory, paleo/piriform cortex, striatum, and various amygdala nuclei. Strikingly, we observe that marked variations exist in the origin and numerical balance between GABAergic interneurons and the principal cell populations in distinct regions of the telencephalon. Finally we speculate regarding the attractiveness and challenges of establishing a unifying nomenclature to describe inhibitory neuron diversity throughout the telencephalon.
Collapse
Affiliation(s)
- Gord Fishell
- Smilow Neuroscience Program, Smilow Research Center, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
30
|
Igelström KM, Shirley CH, Heyward PM. Low-magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 2011; 106:2593-605. [PMID: 21832029 DOI: 10.1152/jn.00601.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Magnesium-free medium can be used in brain slice studies to enhance glutamate receptor function, but this manipulation causes seizure-like activity in many cortical areas. The rodent olfactory bulb (OB) slice is a popular preparation, and potentially ictogenic ionic conditions have often been used to study odor processing. We studied low Mg(2+)-induced epileptiform discharges in mouse OB slices using extracellular and whole cell electrophysiological recordings. Low-Mg(2+) medium induced two distinct types of epileptiform activity: an intraglomerular delta-frequency oscillation resembling slow sniff-induced activity and minute-long seizure-like events (SLEs) consisting of large negative-going field potentials accompanied by sustained depolarization of output neurons. SLEs were dependent on N-methyl-D-aspartate receptors and sodium currents and were facilitated by α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors. The events were initiated in the glomerular layer and propagated laterally through the external plexiform layer at a slow time scale. Our findings confirm that low-Mg(2+) medium should be used with caution in OB slices. Furthermore, the SLEs resembled the so-called slow direct current (DC) shift of clinical and experimental seizures, which has recently been recognized as being of great clinical importance. The OB slice may therefore provide a robust and unique in vitro model of acute seizures in which mechanisms of epileptiform DC shifts can be studied in isolation from fast oscillations.
Collapse
Affiliation(s)
- Kajsa M Igelström
- Dept. of Physiology, Univ. of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|
31
|
Menendez de la Prida L, Trevelyan AJ. Cellular mechanisms of high frequency oscillations in epilepsy: on the diverse sources of pathological activities. Epilepsy Res 2011; 97:308-17. [PMID: 21482073 DOI: 10.1016/j.eplepsyres.2011.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/20/2011] [Indexed: 11/19/2022]
Abstract
A major goal in epilepsy research is to understand the cellular basis of pathological forms of network oscillations, particularly those classified as high-frequency activity. What are the underlying mechanisms, and how do they arise? The topic of this review is the pattern of high-frequency oscillations that have been recorded in epileptic tissue, and how they might differ from physiological activity. We discuss recent experimental and clinical data with a major focus on the diverse sources of extracellular signals and the contribution of different neuronal populations, including GABAergic interneurons and glutamatergic principal cells.
Collapse
|
32
|
Nowak A, Mathieson HR, Chapman RJ, Janzsó G, Yanagawa Y, Obata K, Szabo G, King AE. Kv3.1b and Kv3.3 channel subunit expression in murine spinal dorsal horn GABAergic interneurones. J Chem Neuroanat 2011; 42:30-8. [PMID: 21440618 PMCID: PMC3161392 DOI: 10.1016/j.jchemneu.2011.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 12/30/2022]
Abstract
GABAergic interneurones, including those within spinal dorsal horn, contain one of the two isoforms of the synthesizing enzyme glutamate decarboxylase (GAD), either GAD65 or GAD67. The physiological significance of these two GABAergic phenotypes is unknown but a more detailed anatomical and functional characterization may help resolve this issue. In this study, two transgenic Green Fluorescent Protein (GFP) knock-in murine lines, namely GAD65-GFP and GAD67-GFP (Δneo) mice, were used to profile expression of Shaw-related Kv3.1b and Kv3.3 K(+)-channel subunits in dorsal horn interneurones. Neuronal expression of these subunits confers specific biophysical characteristic referred to as 'fast-spiking'. Immuno-labelling for Kv3.1b or Kv3.3 revealed the presence of both of these subunits across the dorsal horn, most abundantly in laminae I-III. Co-localization studies in transgenic mice indicated that Kv3.1b but not Kv3.3 was associated with GAD65-GFP and GAD67-GFP immunopositive neurones. For comparison the distributions of Kv4.2 and Kv4.3 K(+)-channel subunits which are linked to an excitatory neuronal phenotype were characterized. No co-localization was found between GAD-GFP +ve neurones and Kv4.2 or Kv4.3. In functional studies to evaluate whether either GABAergic population is activated by noxious stimulation, hindpaw intradermal injection of capsaicin followed by c-fos quantification in dorsal horn revealed co-expression c-fos and GAD65-GFP (quantified as 20-30% of GFP +ve population). Co-expression was also detected for GAD67-GFP +ve neurones and capsaicin-induced c-fos but at a much reduced level of 4-5%. These data suggest that whilst both GAD65-GFP and GAD67-GFP +ve neurones express Kv3.1b and therefore may share certain biophysical traits, their responses to peripheral noxious stimulation are distinct.
Collapse
Affiliation(s)
- A Nowak
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gabel LA. Layer I neocortical ectopia: cellular organization and local cortical circuitry. Brain Res 2011; 1381:148-58. [PMID: 21256119 DOI: 10.1016/j.brainres.2011.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/31/2022]
Abstract
Focal cortical dysplasia (FCD) are associated with neurological disorders and cognitive impairments in humans. Molecular layer ectopia, clusters of misplaced cells in layer I of the neocortex, have been identified in patients with developmental dyslexia and psychomotor retardation. Mouse models of this developmental disorder display behavioral impairments and increased seizure susceptibility. Although there is a correlation between cortical malformations and neurological dysfunction, little is known about the morphological and physiological properties of cells within cortical malformations. In the present study we used electrophysiological and immunocytochemical analyses to examine the distribution of neuronal and non-neuronal cell types within and surrounding layer I neocortical ectopia in NXSMD/EiJ mice. We show that cells within ectopia have membrane properties of both pyramidal and a variety of non-pyramidal cell types, including fast-spiking cells. Immunocytochemical analysis for different interneuronal subtypes demonstrates that ectopia contain nonpyramidal cells immunoreactive for calbindin-D28K (CALB), parvalbumin (PARV), and calretinin (CR). Ectopia also contains astrocytes, positive for glial fibrillary acidic protein (GFAP) and oligodendrocyte precursor cells positive for NG2 proteoglycan (NG2). Lastly, we provide electrophysiological and morphological evidence to demonstrate that cells within ectopia receive input from cells within layers I, upper and deeper II/III, and V and provide outputs to cells within deep layer II/III and layer V, but not layers I and upper II/III. These results indicate that ectopia contain cells of different lineages with diverse morphological and physiological properties, and appear to cause disruptions in local cortical circuitry.
Collapse
Affiliation(s)
- Lisa Ann Gabel
- Department of Psychology and Program in Neuroscience, Lafayette College, Easton, PA 18042, USA.
| |
Collapse
|
34
|
Toyoda T, Nomura H, Hashikawa K, Nonaka A, Matsuki N. Persistent neural activity regulates Arc/Arg3.1 transcription in the dentate gyrus. J Neurosci Res 2010; 88:3060-6. [DOI: 10.1002/jnr.22471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
A criterion for signal-based selection of wavelets for denoising intrafascicular nerve recordings. J Neurosci Methods 2010; 186:274-80. [DOI: 10.1016/j.jneumeth.2009.11.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 11/20/2022]
|
36
|
Hájos N, Ellender TJ, Zemankovics R, Mann EO, Exley R, Cragg SJ, Freund TF, Paulsen O. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur J Neurosci 2009; 29:319-27. [PMID: 19200237 PMCID: PMC2695157 DOI: 10.1111/j.1460-9568.2008.06577.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave–ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.
Collapse
Affiliation(s)
- Norbert Hájos
- Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, 1083 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Morshedi MM, Meredith GE. Differential laminar effects of amphetamine on prefrontal parvalbumin interneurons. Neuroscience 2007; 149:617-24. [PMID: 17931790 DOI: 10.1016/j.neuroscience.2007.07.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/01/2007] [Accepted: 07/19/2007] [Indexed: 11/18/2022]
Abstract
The increase in excitatory outflow from the medial prefrontal cortex is critical to the development of sensitization to amphetamine. There is evidence that psychostimulant-induced changes in dopamine-GABA interactions are key to understanding the behaviorally sensitized response. The objective of this study was to characterize the effects of different amphetamine paradigms on the Fos activation of GABAergic interneurons that contain parvalbumin in the medial prefrontal cortex. Although a sensitizing, repeated regimen of amphetamine induced Fos in all cortical layers, only layer V parvalbumin-immunolabeled cells were activated in the infralimbic and prelimbic cortices. Repeated amphetamine treatment was also associated with a loss of parvalbumin immunoreactivity in layer V, but only in the prelimbic cortex. An acute amphetamine injection to naive rats was associated with an increase in Fos, but in parvalbumin-positive neurons of the prelimbic cortex, where it was preferentially induced in layer III. These data indicate that distinct substrates mediate the response to repeated or acute amphetamine treatment. They also suggest that a sensitizing amphetamine regimen directs medial prefrontal cortex (mPFC) outflow, via changes in inhibitory neuron activation, toward subcortical centers important in reward.
Collapse
Affiliation(s)
- M M Morshedi
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | | |
Collapse
|
38
|
Castner SA, Williams GV. Tuning the engine of cognition: A focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain Cogn 2007; 63:94-122. [PMID: 17204357 DOI: 10.1016/j.bandc.2006.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/05/2006] [Accepted: 11/08/2006] [Indexed: 11/18/2022]
Abstract
The prefrontal cortex of the primate frontal lobes provides the capacity for judgment which can constantly adapt behavior in order to optimize its outcome. Adjudicating between long-term memory programs and prepotent responses, this capacity reviews all incoming information and provides an interpretation dependent on the events that have just occurred, the events that are predicted to happen, and the alternative response strategies that are available in the given situation. It has been theorized that this function requires two essential integrated components, a central executive which guides selective attention based on mechanisms of associative memory, as well as the second component, working memory buffers, in which information is held online, abstracted, and translated on a mental sketchpad of work in progress. In this review, we critically outline the evidence that the integration of these processes and, in particular, the induction and maintenance of persistent activity in prefrontal cortex and related networks, is dependent upon the interaction of dopamine D1 and glutamate NMDA receptor signaling at critical nodes within local circuits and distributed networks. We argue that this interaction is not only essential for representational memory, but also core to mechanisms of neuroadaptation and learning. Understanding its functional significance promises to reveal major new insights into prefrontal dysfunction in schizophrenia and, hence, to target a new generation of drugs designed to ameliorate the debilitating working memory deficits in this disorder.
Collapse
Affiliation(s)
- Stacy A Castner
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | |
Collapse
|
39
|
Devor A, Trevelyan A, Kleinfeld D. Is there a common origin to surround-inhibition as seen through electrical activity versus hemodynamic changes? Focus on "Duration-dependent response in SI to vibrotactile stimulation in squirrel monkey". J Neurophysiol 2007; 97:1880-2. [PMID: 17215499 DOI: 10.1152/jn.01218.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
Gao WJ. Acute clozapine suppresses synchronized pyramidal synaptic network activity by increasing inhibition in the ferret prefrontal cortex. J Neurophysiol 2006; 97:1196-208. [PMID: 17182915 DOI: 10.1152/jn.00400.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have indicated that impaired neural circuitry in the prefrontal cortex is a prominent feature of the neuropathology of schizophrenia. Clozapine is one of the most effective antipsychotic drugs used for this debilitating disease. Despite its effectiveness, the mechanism by which clozapine acts on prefrontal cortical circuitry remains poorly understood. In this study, in vitro multiple whole cell recordings were performed in slices of the ferret prefrontal cortex. Clozapine, which effectively inhibited the spontaneous synchronized network activities in the prefrontal neurons, achieved the suppressive effect by decreasing the recurrent excitation among pyramidal neurons and by enhancing the inhibitory inputs onto pyramidal cells through a likely network mechanism. Indeed, under the condition of disinhibition, the depressing effects were reversed and clozapine enhanced the recurrent excitation. These results suggest that the therapeutic actions of clozapine in alleviating the positive symptoms of schizophrenia are achieved, at least partially, through the readjustment of synaptic balance between the excitation and inhibition in the prefrontal cortical circuitry.
Collapse
Affiliation(s)
- Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
41
|
Gabbott PLA, Warner TA, Busby SJ. Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex. Neuroscience 2006; 139:1039-48. [PMID: 16527423 DOI: 10.1016/j.neuroscience.2006.01.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 01/03/2006] [Accepted: 01/16/2006] [Indexed: 11/21/2022]
Abstract
The projection from the basolateral nucleus of the amygdala (BLA) conveys information about the affective significance of sensory stimuli to the medial prefrontal cortex (mPFC). By using an anterograde tract-tracing procedure combined with immunocytochemistry and correlated light/electron microscopical examination, labeled BLA afferents to layers 2-6 of the rat mPFC are shown to establish asymmetrical synaptic contacts, not only with dendritic spines (approximately 95.7% of targets innervated), but also with the aspiny dendritic shafts and somata of multipolar parvalbumin immunopositive (PV+) neurons. A population of PV- dendritic shafts was also innervated. Labeled BLA synaptic input to identified PV+ structures occurred in layers 2-6 of mPFC. The results indicate that labeled BLA afferents predominantly contact the spiny processes of presumed pyramidal cells and also provide a direct and specific innervation to a sub-population of local circuit neurons in mPFC containing PV. Since PV+ cells include two significant classes of fast-spiking GABAergic inhibitory interneuron (basket and axo-axonic cells), these novel observations indicate that the amygdalocortical pathway in the rat has the ability to directly influence functionally strategic 'feed-forward' inhibitory mechanisms at the first stage of processing amygdalocortical information.
Collapse
Affiliation(s)
- P L A Gabbott
- Department of Biological Sciences, The Open University, Milton Keynes MK7 6AA, UK.
| | | | | |
Collapse
|
42
|
Golomb D, Shedmi A, Curtu R, Ermentrout GB. Persistent Synchronized Bursting Activity in Cortical Tissues With Low Magnesium Concentration: A Modeling Study. J Neurophysiol 2006; 95:1049-67. [PMID: 16236776 DOI: 10.1152/jn.00932.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We explore the mechanism of synchronized bursting activity with frequency of ∼10 Hz that appears in cortical tissues at low extracellular magnesium concentration [Mg2+]o. We hypothesize that this activity is persistent, namely coexists with the quiescent state and depends on slow N-methyl-d-aspartate (NMDA) conductances. To explore this hypothesis, we construct and investigate a conductance-based model of excitatory cortical networks. Population bursting activity can persist for physiological values of the NMDA decay time constant (∼100 ms). Neurons are synchronized at the time scale of bursts but not of single spikes. A reduced model of a cell coupled to itself can encompass most of this highly synchronized network behavior and is analyzed using the fast-slow method. Synchronized bursts appear for intermediate values of the NMDA conductance gNMDA if NMDA conductances are not too fast. Regular spiking activity appears for larger gNMDA. If the single cell is a conditional burster, persistent synchronized bursts become more robust. Weakly synchronized states appear for zero AMPA conductance gAMPA. Enhancing gAMPA increases both synchrony and the number of spikes within bursts and decreases the bursting frequency. Too strong gAMPA, however, prevents the activity because it enhances neuronal intrinsic adaptation. When [Mg2+]o is increased, higher gNMDA values are needed to maintain bursting activity. Bursting frequency decreases with [Mg2+]o, and the network is silent with physiological [Mg2+]o. Inhibition weakly decreases the bursting frequency if inhibitory cells receive enough NMDA-mediated excitation. This study explains the importance of conditional bursters in layer V in supporting epileptiform activity at low [Mg2+]o.
Collapse
Affiliation(s)
- David Golomb
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University, Be'er-Sheva, Israel.
| | | | | | | |
Collapse
|
43
|
Toledo-Rodriguez M, El Manira A, Wallén P, Svirskis G, Hounsgaard J. Cellular signalling properties in microcircuits. Trends Neurosci 2005; 28:534-40. [PMID: 16112756 DOI: 10.1016/j.tins.2005.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/29/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
Molecules and cells are the signalling elements in microcircuits. Recent studies have uncovered bewildering diversity in postsynaptic signalling properties in all areas of the vertebrate nervous system. Major effort is now being invested in establishing the specialized signalling properties at the cellular and molecular levels in microcircuits in specific brain regions. This review is part of the TINS Microcircuits Special Feature.
Collapse
Affiliation(s)
- Maria Toledo-Rodriguez
- Laboratory for Neural Microcircuitry, Brain Mind Institute, EPFL, Lausanne CH-1015, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Kawaguchi Y, Karube F, Kubota Y. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. ACTA ACUST UNITED AC 2005; 16:696-711. [PMID: 16107588 DOI: 10.1093/cercor/bhj015] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
To understand the dendritic differentiation in various types of cortical nonpyramidal cells, we analyzed quantitatively their dendritic branching and spine expression. The dendritic internode and interspine interval obeyed exponential distributions with type-specific decay constants. The initial branching pattern, internode interval and spine density at the light microscopic level divided nonpyramidal cells into three dendritic types, correlated with axonal, neurochemical and firing types. The initial branching pattern determined the overall vertical spread of dendrites. Basket cell subtypes with different firing and chemical expression patterns were distinct in the vertical and horizontal spatial spread, providing diverse input territories. Internode densities of dendritic spines, as well as those of axonal synaptic boutons, did not correlate with the tortuosities and intervals, suggesting a tendency to distribute synapses homogeneously over the arbor. Dendritic spines identified at the electron microscopic level were different in length and shape among subtypes. Although the density was lower than that of pyramidal cells, spines themselves were also composed of several morphological types such as mushroom and multihead ones, which were expressed differentially among subtypes. Correlation of dendritic branching characteristics with differences in spine structure suggests distinct ways to receive specific inputs among the subtypes.
Collapse
Affiliation(s)
- Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Aichi Okazaki 444-8787, Japan.
| | | | | |
Collapse
|
45
|
Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2005; 74:1-58. [PMID: 15381316 DOI: 10.1016/j.pneurobio.2004.05.006] [Citation(s) in RCA: 1128] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 05/04/2004] [Indexed: 12/17/2022]
Abstract
Mesocortical [corrected] dopamine (DA) inputs to the prefrontal cortex (PFC) play a critical role in normal cognitive process and neuropsychiatic pathologies. This DA input regulates aspects of working memory function, planning and attention, and its dysfunctions may underlie positive and negative symptoms and cognitive deficits associated with schizophrenia. Despite intense research, there is still a lack of clear understanding of the basic principles of actions of DA in the PFC. In recent years, there has been considerable efforts by many groups to understand the cellular mechanisms of DA modulation of PFC neurons. However, the results of these efforts often lead to contradictions and controversies. One principal feature of DA that is agreed by most researchers is that DA is a neuromodulator and is clearly not an excitatory or inhibitory neurotransmitter. The present article aims to identify certain principles of DA mechanisms by drawing on published, as well as unpublished data from PFC and other CNS sites to shed light on aspects of DA neuromodulation and address some of the existing controversies. Eighteen key features about DA modulation have been identified. These points directly impact on the end result of DA neuromodulation, and in some cases explain why DA does not yield identical effects under all experimental conditions. It will become apparent that DA's actions in PFC are subtle and depend on a variety of factors that can no longer be ignored. Some of these key factors include distinct bell-shaped dose-response profiles of postsynaptic DA effects, different postsynaptic responses that are contingent on the duration of DA receptor stimulation, prolonged duration effects, bidirectional effects following activation of D1 and D2 classes of receptors and membrane potential state and history dependence of subsequent DA actions. It is hoped that these factors will be borne in mind in future research and as a result a more consistent picture of DA neuromodulation in the PFC will emerge. Based on these factors, a theory is proposed for DA's action in PFC. This theory suggests that DA acts to expand or contract the breadth of information held in working memory buffers in PFC networks.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Physiology, MUSC, 173 Ashley Avenue, Suite 403, Charleston, SC 29425, USA.
| | | |
Collapse
|
46
|
Traub RD, Contreras D, Cunningham MO, Murray H, LeBeau FEN, Roopun A, Bibbig A, Wilent WB, Higley MJ, Whittington MA. Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 2004; 93:2194-232. [PMID: 15525801 DOI: 10.1152/jn.00983.2004] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To better understand population phenomena in thalamocortical neuronal ensembles, we have constructed a preliminary network model with 3,560 multicompartment neurons (containing soma, branching dendrites, and a portion of axon). Types of neurons included superficial pyramids (with regular spiking [RS] and fast rhythmic bursting [FRB] firing behaviors); RS spiny stellates; fast spiking (FS) interneurons, with basket-type and axoaxonic types of connectivity, and located in superficial and deep cortical layers; low threshold spiking (LTS) interneurons, which contacted principal cell dendrites; deep pyramids, which could have RS or intrinsic bursting (IB) firing behaviors, and endowed either with nontufted apical dendrites or with long tufted apical dendrites; thalamocortical relay (TCR) cells; and nucleus reticularis (nRT) cells. To the extent possible, both electrophysiology and synaptic connectivity were based on published data, although many arbitrary choices were necessary. In addition to synaptic connectivity (by AMPA/kainate, NMDA, and GABA(A) receptors), we also included electrical coupling between dendrites of interneurons, nRT cells, and TCR cells, and--in various combinations--electrical coupling between the proximal axons of certain cortical principal neurons. Our network model replicates several observed population phenomena, including 1) persistent gamma oscillations; 2) thalamocortical sleep spindles; 3) series of synchronized population bursts, resembling electrographic seizures; 4) isolated double population bursts with superimposed very fast oscillations (>100 Hz, "VFO"); 5) spike-wave, polyspike-wave, and fast runs (about 10 Hz). We show that epileptiform bursts, including double and multiple bursts, containing VFO occur in rat auditory cortex in vitro, in the presence of kainate, when both GABA(A) and GABA(B) receptors are blocked. Electrical coupling between axons appears necessary (as reported previously) for persistent gamma and additionally plays a role in the detailed shaping of epileptogenic events. The degree of recurrent synaptic excitation between spiny stellate cells, and their tendency to fire throughout multiple bursts, also appears critical in shaping epileptogenic events.
Collapse
Affiliation(s)
- Roger D Traub
- Department of Physiology, State University of New York, Downstate Medical Center, 450 Clarkson Ave., Box 31, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Berghuis P, Dobszay MB, Sousa KM, Schulte G, Mager PP, Härtig W, Görcs TJ, Zilberter Y, Ernfors P, Harkany T. Brain-derived neurotrophic factor controls functional differentiation and microcircuit formation of selectively isolated fast-spiking GABAergic interneurons. Eur J Neurosci 2004; 20:1290-306. [PMID: 15341601 DOI: 10.1111/j.1460-9568.2004.03561.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GABAergic interneurons with high-frequency firing, fast-spiking (FS) cells, form synapses on perisomatic regions of principal cells in the neocortex and hippocampus to control the excitability of cortical networks. Brain-derived neurotrophic factor (BDNF) is essential for the differentiation of multiple interneuron subtypes and the formation of their synaptic contacts. Here, we examined whether BDNF, alone or in conjunction with sustained KCl-induced depolarization, drives functional FS cell differentiation and the formation of inhibitory microcircuits. Homogeneous FS cell cultures were established by target-specific isolation using the voltage-gated potassium channel 3.1b subunit as the selection marker. Isolated FS cells expressed parvalbumin, were surrounded by perineuronal nets, formed immature inhibitory connections and generated slow action potentials at 12 days in vitro. Brain-derived neurotrophic factor (BDNF) promoted FS cell differentiation by increasing the somatic diameter, dendritic branching and the frequency of action potential firing. In addition, BDNF treatment led to a significant up-regulation of synaptophysin and vesicular GABA transporter expression, components of the synaptic machinery critical for GABA release, which was paralleled by an increase in synaptic strength. Long-term membrane depolarization alone was detrimental to dendritic branching. However, we observed that BDNF and KCl exerted additive effects, as reflected by the significantly accelerated maturation of synaptic contacts and high discharge frequencies, and was required for the formation of reciprocal connections between FS cells. Our results show that BDNF, along with membrane depolarization, is critical for FS cells to establish inhibitory circuitries during corticogenesis.
Collapse
Affiliation(s)
- Paul Berghuis
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Scheeles väg 1:A1, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fortin DA, Trettel J, Levine ES. Brief trains of action potentials enhance pyramidal neuron excitability via endocannabinoid-mediated suppression of inhibition. J Neurophysiol 2004; 92:2105-12. [PMID: 15175370 DOI: 10.1152/jn.00351.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Depolarization-induced suppression of inhibition (DSI) is a form of retrograde signaling at GABAergic synapses that is initiated by the calcium- and depolarization-dependent release of endocannabinoids from postsynaptic neurons. In the neocortex, pyramidal neurons (PNs) appear to use DSI as a mechanism for regulating somatic inhibition from a subpopulation of GABAergic inputs that express the type 1 cannabinoid receptor. Although postsynaptic control of afferent inhibition may directly influence the integrative properties of neocortical PNs, little is known about the patterns of activity that evoke endocannabinoid release and the impact such disinhibition may have on the excitability of PNs. Here we provide the first systematic survey of action potential (AP)-induced DSI in the neocortex. The magnitude and time course of DSI was directly related to the number and frequency of postsynaptic APs with significant suppression induced by a 20-Hz train containing as few as three APs. This AP-induced DSI was mediated by endocannabinoids as it was prevented by the cannabinoid receptor antagonist AM251 and potentiated by the endocannabinoid transport inhibitor AM404. We also explored the effects of endocannabinoid-mediated DSI on PN excitability. We found that single AP trains markedly increased PN responsiveness to excitatory synaptic inputs and promoted AP discharge by suppressing GABAergic inhibition. The time course of this effect paralleled DSI expression and was completely blocked by AM251. Taken together, our data suggest a role for endocannabinoids in regulating the output of cortical PNs.
Collapse
Affiliation(s)
- Dale A Fortin
- Dept. of Pharmacology, MC-6125, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT 06030, USA
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Mircea Steriade
- Laboratoire de Neurophysiologie, Faculté de Médecine, Université Laval, Québec, Canada G1K 7P4.
| |
Collapse
|
50
|
Wegner F, Härtig W, Bringmann A, Grosche J, Wohlfarth K, Zuschratter W, Brückner G. Diffuse perineuronal nets and modified pyramidal cells immunoreactive for glutamate and the GABAA receptor α1 subunit form a unique entity in rat cerebral cortex. Exp Neurol 2003; 184:705-14. [PMID: 14769362 DOI: 10.1016/s0014-4886(03)00313-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/27/2003] [Accepted: 06/16/2003] [Indexed: 10/27/2022]
Abstract
Perineuronal nets (PNs) consisting of polyanionic chondroitin sulfate proteoglycans (CSPG) and other extracellular matrix components create an exceptional microenvironment around certain types of neurons. In rat neocortex, three types of PNs can be distinguished after staining with Wisteria floribunda agglutinin (WFA) by their different morphological structure: lattice-like PNs associated with subpopulations of nonpyramidal neurons, weakly labeled PNs showing a pyramidal morphology, and diffuse PNs that possess a thick, strongly labeled matrix sheath located mainly in layer VIb above the white matter. The type of neuron surrounded by diffuse nets has not been described so far. This study is focused on the cytochemical and morphological characteristics of neurons associated with diffusely contoured PNs in rat parietal cortex using immunocytochemical staining, intracellular injection, and retrograde tracing methods. Cells surrounded by diffuse PNs were glutamate-immunoreactive in contrast to nonpyramidal, net-associated neurons that showed immunoreactivity for GABA, the calcium-binding protein parvalbumin and the potassium channel subunit Kv3.1b. Both groups of PN-ensheathed cells were mostly immunoreactive for the GABA(A) receptor alpha1 subunit. Lucifer Yellow-injected neurons surrounded by diffuse PNs displayed the morphological properties of modified pyramidal cells with intracortical main axons. Many neurons with diffuse PNs were retrogradely labeled over a long distance after Fluoro-Gold tracer injection in the parietal cortex, but remained unlabeled after intrathalamic injection. We conclude that neurons associated with diffuse PNs are a subpopulation of glutamatergic modified pyramidal cells that could act as excitatory long-range intracortically projecting neurons.
Collapse
Affiliation(s)
- Florian Wegner
- Paul Flechsig Institute for Brain Research, University of Leipzig, D-04109 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|