1
|
Socha J, Grochecki P, Marszalek-Grabska M, Skrok A, Smaga I, Slowik T, Prazmo W, Kotlinski R, Filip M, Kotlinska JH. Cannabidiol Protects against the Reinstatement of Oxycodone-Induced Conditioned Place Preference in Adolescent Male but Not Female Rats: The Role of MOR and CB1R. Int J Mol Sci 2024; 25:6651. [PMID: 38928357 PMCID: PMC11204276 DOI: 10.3390/ijms25126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Aleksandra Skrok
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wojciech Prazmo
- Breast Surgery Department, Provincial Specialist Hospital, Al. Krasnicka 100, 20-718 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Lwowska 60, 35-301 Rzeszow, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| |
Collapse
|
2
|
Asano T, Takemoto H, Horita T, Tokutake T, Izuo N, Mochizuki T, Nitta A. Sleep disturbance after cessation of cannabis administration in mice. Neuropsychopharmacol Rep 2023; 43:505-512. [PMID: 36905178 PMCID: PMC10739061 DOI: 10.1002/npr2.12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Cannabis withdrawal syndrome (CWS) in humans is characterized by various somatic symptoms, including sleep disturbances. In the present study, we investigated sleep alterations in mice after the cessation of arachidonylcyclopropylamide (ACPA), a cannabinoid type 1 receptor agonist, administration. ACPA-administered mice (ACPA mice) displayed an increased number of rearings after the cessation of ACPA administration compared to saline-administered mice (Saline mice). Moreover, the number of rubbings was also decreased in ACPA mice compared with those of the control mice. Electroencephalography (EEG) and electromyography (EMG) were measured for 3 days after the cessation of ACPA administration. During ACPA administration, there was no difference in the relative amounts of total sleep and wake time between ACPA and Saline mice. However, ACPA-induced withdrawal decreased total sleep time during the light period in ACPA mice after ACPA cessation. These results suggest that ACPA cessation induces sleep disturbances in the mouse model of CWS.
Collapse
Affiliation(s)
- Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Hiroki Takemoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tomoya Horita
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tomohiro Tokutake
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Takatoshi Mochizuki
- Department of BiologyGraduate School of Science & Engineering, University of ToyamaToyamaJapan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| |
Collapse
|
3
|
Mohammad Aghaei A, Saali A, Canas MA, Weleff J, D'Souza DC, Angarita GA, Bassir Nia A. Dysregulation of the endogenous cannabinoid system following opioid exposure. Psychiatry Res 2023; 330:115586. [PMID: 37931479 PMCID: PMC10842415 DOI: 10.1016/j.psychres.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/05/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Rates of opioid-related deaths and overdoses in the United States are at record-high levels. Thus, novel neurobiological targets for the treatment of OUD are greatly needed. Given the close interaction between the endogenous opioid system and the endocannabinoid system (ECS), targeting the ECS may have therapeutic potential in OUD. The various components of the ECS, including cannabinoid receptors, their lipid-derived endogenous ligands (endocannabinoids [eCBs]), and the related enzymes, present potential targets for developing new medications in OUD treatment. The purpose of this paper is to review the clinical and preclinical literature on the dysregulation of the ECS after exposure to opioids. We review the evidence of ECS dysregulation across various study types, exposure protocols, and measurement protocols and summarize the evidence for dysregulation of ECS components at specific brain regions. Preclinical research has shown that opioids disrupt various ECS components that are region-specific. However, the results in the literature are highly heterogenous and sometimes contradictory, possibly due to variety of different methods used. Further research is needed before a confident conclusion could be made on how exposure to opioids can affect ECS components in various brain regions.
Collapse
Affiliation(s)
- Ardavan Mohammad Aghaei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Alexandra Saali
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | | | - Jeremy Weleff
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States; VA Connecticut Healthcare System, West Haven, CT, United States
| | - Gustavo A Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States
| | - Anahita Bassir Nia
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, United States.
| |
Collapse
|
4
|
Freeman-Striegel L, Hamilton J, Kannappan R, Bell T, Robison L, Thanos PK. Chronic Δ9-tetrahydrocannabinol treatment has dose-dependent effects on open field exploratory behavior and [ 3H] SR141716A receptor binding in the rat brain. Life Sci 2023:121825. [PMID: 37270168 DOI: 10.1016/j.lfs.2023.121825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
AIMS Acute and chronic Δ9-THC exposure paradigms affect the body differently. More must be known about the impact of chronic Δ9-THC on cannabinoid-1 (CB1R) and mu-opioid (MOR) receptor levels in the brain. The present study examined chronic Δ9-THC's effects on CB1R and MOR levels and locomotor activity. MAIN METHODS Adolescent Sprague-Dawley rats were given daily intraperitoneal injections of Δ9-THC [0.75mg/kg (low dose or LD) or 2.0 mg/kg (high dose or HD)] or vehicle for 24 days, and locomotion in the open field was tested after the first and fourth weeks of chronic Δ9-THC exposure. Brains were harvested at the end of treatment. [3H] SR141716A and [3H] DAMGO autoradiography assessed CB1R and MOR levels, respectively. KEY FINDINGS Relative to each other, chronic HD rats showed reduced vertical plane (VP) entries and time, while LD rats had increased VP entries and time for locomotion, as assessed by open-field testing; no effects were found relative to the control. Autoradiography analyses showed that HD Δ9-THC significantly decreased CB1R binding relative to LD Δ9-THC in the cingulate (33%), primary motor (42%), secondary motor (33%) somatosensory (38%), rhinal (38%), and auditory (50%) cortices; LD Δ9-THC rats displayed elevated binding in the primary motor (33% increase) and hypothalamic (33 % increase) regions compared with controls. No significant differences were observed in MOR binding for the LD or HD compared to the control. SIGNIFICANCE These results demonstrate that chronic Δ9-THC dose-dependently altered CB1R levels throughout the brain and locomotor activity in the open field.
Collapse
Affiliation(s)
- Lily Freeman-Striegel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - John Hamilton
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Renuka Kannappan
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Tyler Bell
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Lisa Robison
- Department of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America; Department of Psychology, University at Buffalo, Buffalo, New York, United States of America.
| |
Collapse
|
5
|
Yilmaz S. Impaired biological rhythm in men with methamphetamine use disorder: the relationship with sleep quality and depression. JOURNAL OF SUBSTANCE USE 2022. [DOI: 10.1080/14659891.2022.2098847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Seda Yilmaz
- Department of Psychiatry, Istinye University, Elazığ Medical Park Hospital, Elazığ, Turkey
| |
Collapse
|
6
|
Metz VG, da Rosa JLO, Rossato DR, Burger ME, Pase CS. Cannabidiol treatment prevents drug reinstatement and the molecular alterations evoked by amphetamine on receptors and enzymes from dopaminergic and endocannabinoid systems in rats. Pharmacol Biochem Behav 2022; 218:173427. [PMID: 35810923 DOI: 10.1016/j.pbb.2022.173427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
In psychostimulant drug addiction, relapse is the most concerning outcome to be managed, considering there is no approved treatment for this neuropsychiatric condition. Here, we investigated the effects of the CBD treatment on the relapse behavior triggered by stress, after being submitted to the amphetamine (AMPH)-induced conditioned place preference (CPP) in rats. To elucidate the mechanisms of action underlying the CBD treatment, we evaluated the neuroadaptations on dopaminergic and endocannabinoid targets in the ventral striatum (VS) and ventral tegmental area (VTA) of the brain. Animals received d,l-AMPH (4 mg/kg, i.p.) or vehicle in the CPP paradigm for 8 days. Following the first CPP test, animals were treated with CBD (10 mg/kg, i.p.) or its vehicle for 5 days and subsequently submitted to forced swim stress protocol to induce AMPH-CPP relapse. Behavioral findings showed that CBD treatment prevented AMPH-reinstatement, also exerting anxiolytic activity. At the molecular level, in the VTA, CBD restored the CB1R levels decreased by AMPH-exposure, increased NAPE-PLD, and decreased FAAH levels. In the VS, the increase of D1R and D2R, as well as the decrease of DAT levels induced by AMPH were restored by CBD treatment. The current outcomes evidence a substantial preventive action of the CBD on the AMPH-reinstatement evoked by stress, also involving neuroadaptations in both dopaminergic and endocannabinoid systems in brain areas closely involved in the addiction. Although further studies are needed, these findings support the therapeutic potential of CBD in AMPH-relapse prevention.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
7
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
8
|
Kesner AJ, Mateo Y, Abrahao KP, Ramos-Maciel S, Pava MJ, Gracias AL, Paulsen RT, Carlson HB, Lovinger DM. Changes in striatal dopamine release, sleep, and behavior during spontaneous Δ-9-tetrahydrocannabinol abstinence in male and female mice. Neuropsychopharmacology 2022; 47:1537-1549. [PMID: 35478010 PMCID: PMC9205922 DOI: 10.1038/s41386-022-01326-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Withdrawal symptoms are observed upon cessation of cannabis use in humans. Although animal studies have examined withdrawal symptoms following exposure to delta-9-tetrahydrocannabinol (THC), difficulties in obtaining objective measures of spontaneous withdrawal using paradigms that mimic cessation of use in humans have slowed research. The neuromodulator dopamine (DA) is affected by chronic THC treatment and plays a role in many behaviors related to human THC withdrawal symptoms. These symptoms include sleep disturbances that often drive relapse, and emotional behaviors like irritability and anhedonia. We examined THC withdrawal-induced changes in striatal DA release and the extent to which sleep disruption and behavioral maladaptation manifest during abstinence in a mouse model of chronic THC exposure. Using a THC treatment regimen known to produce tolerance, we measured electrically elicited DA release in acute brain slices from different striatal subregions during early and late THC abstinence. Long-term polysomnographic recordings from mice were used to assess vigilance state and sleep architecture before, during, and after THC treatment. We additionally assessed how behaviors that model human withdrawal symptoms are altered by chronic THC treatment in early and late abstinence. We detected altered striatal DA release, sleep disturbances that mimic clinical observations, and behavioral maladaptation in mice following tolerance to THC. Altered striatal DA release, sleep, and affect-related behaviors associated with spontaneous THC abstinence were more consistently observed in male mice. These findings provide a foundation for preclinical study of directly translatable non-precipitated THC withdrawal symptoms and the neural mechanisms that affect them.
Collapse
Affiliation(s)
- Andrew J Kesner
- National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, NIH, Bethesda, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Yolanda Mateo
- National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Karina P Abrahao
- Departamento de Psicobiologia, Universidade Federal de São Paulo, Campus São Paulo, São Paulo, SP, Brazil
| | - Stephanie Ramos-Maciel
- National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, NIH, Bethesda, MD, USA
| | | | - Alexa L Gracias
- National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Riley T Paulsen
- National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, NIH, Bethesda, MD, USA
| | - Hartley B Carlson
- National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, NIH, Bethesda, MD, USA
| | - David M Lovinger
- National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, NIH, Bethesda, MD, USA.
| |
Collapse
|
9
|
Augustin SM, Lovinger DM. Synaptic changes induced by cannabinoid drugs and cannabis use disorder. Neurobiol Dis 2022; 167:105670. [DOI: 10.1016/j.nbd.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022] Open
|
10
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Navarro D, López-Picón F, Morcuende Á, Femenía T, Manzanares J. Biomarkers of the Endocannabinoid System in Substance Use Disorders. Biomolecules 2022; 12:biom12030396. [PMID: 35327588 PMCID: PMC8946268 DOI: 10.3390/biom12030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Despite substance use disorders (SUD) being one of the leading causes of disability and mortality globally, available therapeutic approaches remain ineffective. The difficulty in accurately characterizing the neurobiological mechanisms involved with a purely qualitative diagnosis is an obstacle to improving the classification and treatment of SUD. In this regard, identifying central and peripheral biomarkers is essential to diagnosing the severity of drug dependence, monitoring therapeutic efficacy, predicting treatment response, and enhancing the development of safer and more effective pharmacological tools. In recent years, the crucial role that the endocannabinoid system (ECS) plays in regulating the reinforcing and motivational properties of drugs of abuse has been described. This has led to studies characterizing ECS alterations after exposure to various substances to identify biomarkers with potential diagnostic, prognostic, or therapeutic utility. This review aims to compile the primary evidence available from rodent and clinical studies on how the ECS components are modified in the context of different substance-related disorders, gathering data from genetic, molecular, functional, and neuroimaging experimental approaches. Finally, this report concludes that additional translational research is needed to further characterize the modifications of the ECS in the context of SUD, and their potential usefulness in the necessary search for biomarkers.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - María S. García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Francisco López-Picón
- PET Preclinical Imaging Laboratory, Turku PET Centre, University of Turku, 20520 Turku, Finland;
| | - Álvaro Morcuende
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
| | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda. de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain; (F.N.); (M.S.G.-G.); (A.G.); (D.N.); (Á.M.); (T.F.)
- Departamento de Medicina Clínica, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Universidad Miguel Hernández, 03010 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965-919-248
| |
Collapse
|
11
|
Kesner AJ, Lovinger DM. Cannabis use, abuse, and withdrawal: Cannabinergic mechanisms, clinical, and preclinical findings. J Neurochem 2021; 157:1674-1696. [PMID: 33891706 PMCID: PMC9291571 DOI: 10.1111/jnc.15369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Cannabis sativa is the most widely used illicit drug in the world. Its main psychoactive component is delta-9-tetrahydrocannabinol (THC), one of over 100 phytocannabinoid compounds produced by the cannabis plant. THC is the primary compound that drives cannabis abuse potential and is also used and prescribed medically for therapeutic qualities. Despite its therapeutic potential, a significant subpopulation of frequent cannabis or THC users will develop a drug use syndrome termed cannabis use disorder. Individuals suffering from cannabis use disorder exhibit many of the hallmarks of classical addictions including cravings, tolerance, and withdrawal symptoms. Currently, there are no efficacious treatments for cannabis use disorder or withdrawal symptoms. This makes both clinical and preclinical research on the neurobiological mechanisms of these syndromes ever more pertinent. Indeed, basic research using animal models has provided valuable evidence of the neural molecular and cellular actions of cannabis that mediate its behavioral effects. One of the main components being central action on the cannabinoid type-one receptor and downstream intracellular signaling related to the endogenous cannabinoid system. Back-translational studies have provided insight linking preclinical basic and behavioral biology research to better understand symptoms observed at the clinical level. This narrative review aims to summarize major research elucidating the molecular, cellular, and behavioral manifestations of cannabis/THC use that play a role in cannabis use disorder and withdrawal.
Collapse
Affiliation(s)
- Andrew J. Kesner
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| | - David M. Lovinger
- Laboratory for Integrative NeuroscienceNational Institute on Alcohol Abuse and AlcoholismCenter on Compulsive BehaviorsNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
12
|
The role of cannabinoid 1 receptor in the nucleus accumbens on tramadol induced conditioning and reinstatement. Life Sci 2020; 260:118430. [PMID: 32931800 DOI: 10.1016/j.lfs.2020.118430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
AIMS Previous investigations demonstrated that tramadol, as a painkiller, similar to morphine induces tolerance and dependence. Furthermore, the cannabinoid receptor 1 (CB1R) located in the nucleus accumbens (NAc) plays a critical role in morphine-induced conditioning. Therefore, the main objective of this study was to evaluate the role of NAc CB1R in tramadol induced conditioning and reinstatement. MAIN METHODS In the present experiment, the effect of NAc CB1 receptors on tramadol induced conditioning was tested by microinjecting of arachidonylcyclopropylamide (ACPA, CB1R agonist) and AM 251 (CB1R inverse agonist) in the NAc during tramadol-induced conditioning in the adult male Wistar rats. In addition, the role of NAc CB1R in the reinstatement was also evaluated by injecting ACPA and AM 251 after a 10-days extinction period. KEY FINDINGS The obtained data revealed that the administration of tramadol (1,2, and 4 mg/kg, ip) dose-dependently produced conditioned place preference (CPP). Moreover, intra-NAc administration of ACPA (0.25, 0.5, and 1 μg/rat) dose-dependently induced conditioning, while the administration of AM-251 (30, 60, and 120 ng/rat) induced a significant aversion. In addition, the administration of a non-effective dose of AM251 during tramadol conditioning inhibited conditioning induced by tramadol. On the other hand, the administration of ACPA after extinction induced a significant reinstatement. Notably, the locomotor activity did not change among groups. SIGNIFICANCE Previous studies have shown that tramadol-induced CPP occurs through μ-opioid receptors. The data obtained in the current study indicated that CB1R located in the NAc is involved in mediating conditioning induced by tramadol. Besides, CB1R also plays a vital role in the reinstatement of tramadol-conditioned animals. It might be due to the effect of opioids on enhancing the level of CB1R.
Collapse
|
13
|
Abbasi-Habashi S, Ghasemzadeh Z, Rezayof A. Morphine improved stress-induced amnesia and anxiety through interacting with the ventral hippocampal endocannabinoid system in rats. Brain Res Bull 2020; 164:407-414. [PMID: 32937186 DOI: 10.1016/j.brainresbull.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
The present study aimed to investigate the possible role of the ventral hippocampal (VH) cannabinoid CB1 receptors in the improving effect of morphine on stress-induced memory formation impairment and anxiety. A step-through type passive avoidance task and a hole-board test were used to measure memory formation and anxiety-like exploratory behavior, respectively. The results showed that the exposure to 10-min stress immediately after the successful training phase impaired memory formation and also produced anxiogenic-like exploratory behaviour in adult male Wistar rats. Moreover, morphine administration before stress exposure improved the adverse effects of stress on memory formation and exploratory behaviour. After training, intra-VH microinjection of cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.01-0.05 μg/rat) enhanced the response of an ineffective dose of morphine (0.5 mg/kg for memory; 5 mg/kg for anxiety, i.p.) on memory impairment and anxiogenic-like exploratory behaviour induced by acute stress. Intra-VH microinjection of the higher dose of WIN 55,212-2 alone impaired memory formation. Post-training microinjection of a cannabinoid CB1 receptor antagonist/inverse agonist, AM-251 (100-150 ng/rat) into the VH attenuated the response of an effective dose of morphine (5 mg/kg for memory; 6 mg/kg for anxiety, i.p.) in stress-exposed rats. Taken together, the present results showed that morphine administration could improve stress-induced memory impairment and anxiety in the rats exposed to the inescapable acute stress. Interestingly, the improving effect of morphine on the adverse effect of stress on memory formation and anxiety-like exploratory behaviour may be mediated through the VH endocannabinoid CB1/CB2 receptors mechanism.
Collapse
Affiliation(s)
- Sima Abbasi-Habashi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
14
|
Karama S, Lal S. Tardive dyskinesia following brief exposure to risperidone—a case study. Eur Psychiatry 2020; 19:391-2. [PMID: 15363485 DOI: 10.1016/j.eurpsy.2004.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/21/2004] [Accepted: 01/26/2004] [Indexed: 11/30/2022] Open
|
15
|
Blithikioti C, Miquel L, Batalla A, Rubio B, Maffei G, Herreros I, Gual A, Verschure P, Balcells‐Oliveró M. Cerebellar alterations in cannabis users: A systematic review. Addict Biol 2019; 24:1121-1137. [PMID: 30811097 DOI: 10.1111/adb.12714] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/18/2023]
Abstract
Cannabis is the most used illicit substance in the world. As many countries are moving towards decriminalization, it is crucial to determine whether and how cannabis use affects human brain and behavior. The role of the cerebellum in cognition, emotion, learning, and addiction is increasingly recognized. Because of its high density in CB1 receptors, it is expected to be highly affected by cannabis use. The aim of this systematic review is to investigate how cannabis use affects cerebellar structure and function, as well as cerebellar-dependent behavioral tasks. Three databases were searched for peer-reviewed literature published until March 2018. We included studies that focused on cannabis effects on cerebellar structure, function, or cerebellar-dependent behavioral tasks. A total of 348 unique records were screened, and 40 studies were included in the qualitative synthesis. The most consistent findings include (1) increases in cerebellar gray matter volume after chronic cannabis use, (2) alteration of cerebellar resting state activity after acute or chronic use, and (3) deficits in memory, decision making, and associative learning. Age of onset and higher exposure to cannabis use were frequently associated with increased cannabis-induced alterations. Chronic cannabis use is associated with alterations in cerebellar structure and function, as well as with deficits in behavioral paradigms that involve the cerebellum (eg, eyeblink conditioning, memory, and decision making). Future studies should consider tobacco as confounding factor and use standardized methods for assessing cannabis use. Paradigms exploring the functional activity of the cerebellum may prove useful as monitoring tools of cannabis-induced impairment.
Collapse
Affiliation(s)
- Chrysanthi Blithikioti
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| | - Laia Miquel
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| | - Albert Batalla
- Department of Psychiatry, Brain Center Rudolf MagnusUniversity Medical Center Utrecht Utrecht the Netherlands
- Nijmegen Institute for Scientist‐Practitioners in Addiction (NISPA)Radboud University Nijmegen The Netherlands
| | - Belen Rubio
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Giovanni Maffei
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Ivan Herreros
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Antoni Gual
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| | - Paul Verschure
- Laboratory of Synthetic Perceptive, Emotive and Cognitive SystemsInstitute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
- ICREAInstitucio Catalana de Recerca I Estudis Avançats, Passeig Lluis Companys Barcelona Spain
| | - Mercedes Balcells‐Oliveró
- Grup de Recerca en Addiccions Clínic (GRAC)Institut Clínic de Neurociències Barcelona Spain
- IDIBAPSInstitut d'Investigacions Biomèdiques August Pi i Sunyer Barcelona Spain
- Hospital ClínicUniversitat de Barcelona Barcelona Spain
| |
Collapse
|
16
|
Tomaselli G, Vallée M. Stress and drug abuse-related disorders: The promising therapeutic value of neurosteroids focus on pregnenolone-progesterone-allopregnanolone pathway. Front Neuroendocrinol 2019; 55:100789. [PMID: 31525393 DOI: 10.1016/j.yfrne.2019.100789] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The pregnenolone-progesterone-allopregnanolone pathway is receiving increasing attention in research on the role of neurosteroids in pathophysiology, particularly in stress-related and drug use disorders. These disorders involve an allostatic change that may result from deficiencies in allostasis or adaptive responses, and may be downregulated by adjustments in neurotransmission by neurosteroids. The following is an overview of findings that assess how pregnenolone and/or allopregnanolone concentrations are altered in animal models of stress and after consumption of alcohol or cannabis-type drugs, as well as in patients with depression, anxiety, post-traumatic stress disorder or psychosis and/or in those diagnosed with alcohol or cannabis use disorders. Preclinical and clinical evidence shows that pregnenolone and allopregnanolone, operating according to a different or common pharmacological profile involving GABAergic and/or endocannabinoid system, may be relevant biomarkers of psychiatric disorders for therapeutic purposes. Hence, ongoing clinical trials implicate synthetic analogs of pregnenolone or allopregnanolone, and also modulators of neurosteroidogenesis.
Collapse
Affiliation(s)
- Giovanni Tomaselli
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France
| | - Monique Vallée
- INSERM U1215, Neurocentre Magendie, Group "Physiopathology and Therapeutic Approaches of Stress-Related Disease", 146 Rue Léo Saignat, 33000 Bordeaux, France; University of Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
17
|
Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, Wang GJ. Cannabis Addiction and the Brain: a Review. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2019; 17:169-182. [PMID: 32021587 DOI: 10.1176/appi.focus.17204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
(©Zehra A, Liuck, Manza P, Wiers CE, Volkow ND Wergh J, 2018. Reprinted with permission from Journal of Neuroimmune Pharmacology (2018) 13:438-452).
Collapse
|
18
|
Enhancing effects of acute exposure to cannabis smoke on working memory performance. Neurobiol Learn Mem 2018; 157:151-162. [PMID: 30521850 DOI: 10.1016/j.nlm.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022]
Abstract
Numerous preclinical studies show that acute cannabinoid administration impairs cognitive performance. Almost all of this research has employed cannabinoid injections, however, whereas smoking is the preferred route of cannabis administration in humans. The goal of these experiments was to systematically determine how acute exposure to cannabis smoke affects working memory performance in a rat model. Adult male (n = 15) and female (n = 16) Long-Evans rats were trained in a food-motivated delayed response working memory task. Prior to test sessions, rats were exposed to smoke generated by burning different numbers of cannabis or placebo cigarettes, using a within-subjects design. Exposure to cannabis smoke had no effect on male rats' performance, but surprisingly, enhanced working memory accuracy in females, which tended to perform less accurately than males under baseline conditions. In addition, cannabis smoke enhanced working memory accuracy in a subgroup of male rats that performed comparably to the worst-performing females. Exposure to placebo smoke had no effect on performance, suggesting that the cannabinoid content of cannabis smoke was critical for its effects on working memory. Follow-up experiments showed that acute administration of either Δ9-tetrahydrocannabinol (0.0, 0.3, 1.0, 3.0 mg/kg) or the cannabinoid receptor type 1 antagonist rimonabant (0.0, 0.2, 0.6, 2.0 mg/kg) impaired working memory performance. These results indicate that differences in the route, timing, or dose of cannabinoid administration can yield distinct cognitive outcomes, and highlight the need for further investigation of this topic.
Collapse
|
19
|
The role of (E)-6-chloro-3-(3-methyl-1-phenyl-1H-pyrazol-5-yl)-2-styrylquinazolin-4(3H)-one in the modulation of cannabinoidergic system. A pilot study. Pharmacol Rep 2018; 70:1124-1132. [DOI: 10.1016/j.pharep.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 02/01/2023]
|
20
|
Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, Wang GJ. Cannabis Addiction and the Brain: a Review. J Neuroimmune Pharmacol 2018; 13:438-452. [PMID: 29556883 PMCID: PMC6223748 DOI: 10.1007/s11481-018-9782-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Cannabis is the most commonly used substance of abuse in the United States after alcohol and tobacco. With a recent increase in the rates of cannabis use disorder (CUD) and a decrease in the perceived risk of cannabis use, it is imperative to assess the addictive potential of cannabis. Here we evaluate cannabis use through the neurobiological model of addiction proposed by Koob and Volkow. The model proposes that repeated substance abuse drives neurobiological changes in the brain that can be separated into three distinct stages, each of which perpetuates the cycle of addiction. Here we review previous research on the acute and long-term effects of cannabis use on the brain and behavior, and find that the three-stage framework of addiction applies to CUD in a manner similar to other drugs of abuse, albeit with some slight differences. These findings highlight the urgent need to conduct research that elucidates specific neurobiological changes associated with CUD in humans.
Collapse
Affiliation(s)
- Amna Zehra
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Jamie Burns
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Hutchison RD, Ford BM, Franks LN, Wilson CD, Yarbrough AL, Fujiwara R, Su MK, Fernandez D, James LP, Moran JH, Patton AL, Fantegrossi WE, Radominska-Pandya A, Prather PL. Atypical Pharmacodynamic Properties and Metabolic Profile of the Abused Synthetic Cannabinoid AB-PINACA: Potential Contribution to Pronounced Adverse Effects Relative to Δ 9-THC. Front Pharmacol 2018; 9:1084. [PMID: 30319418 PMCID: PMC6168621 DOI: 10.3389/fphar.2018.01084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/06/2018] [Indexed: 01/12/2023] Open
Abstract
Recreational use of marijuana is associated with few adverse effects, but abuse of synthetic cannabinoids (SCBs) can result in anxiety, psychosis, chest pain, seizures and death. To potentially explain higher toxicity associated with SCB use, we hypothesized that AB-PINACA, a common second generation SCB, exhibits atypical pharmacodynamic properties at CB1 cannabinoid receptors (CB1Rs) and/or a distinct metabolic profile when compared to Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive cannabinoid present in marijuana. Liquid chromatography tandem mass spectrometry (LC/MS) identified AB-PINACA and monohydroxy metabolite(s) as primary phase I metabolites (4OH-AB-PINACA and/or 5OH-AB-PINACA) in human urine and serum obtained from forensic samples. In vitro experiments demonstrated that when compared to Δ9-THC, AB-PINACA exhibits similar affinity for CB1Rs, but greater efficacy for G-protein activation and higher potency for adenylyl cyclase inhibition. Chronic treatment with AB-PINACA also results in greater desensitization of CB1Rs (e.g., tolerance) than Δ9-THC. Importantly, monohydroxy metabolites of AB-PINACA retain affinity and full agonist activity at CB1Rs. Incubation of 4OH-AB-PINACA and 5OH-AB-PINACA with human liver microsomes (HLMs) results in limited glucuronide formation when compared to that of JWH-018-M2, a major monohydroxylated metabolite of the first generation SCB JWH-018. Finally, AB-PINACA and 4OH-AB-PINACA are active in vivo, producing CB1R-mediated hypothermia in mice. Taken collectively, the atypical pharmacodynamic properties of AB-PINACA at CB1Rs relative to Δ9-THC (e.g., higher potency/efficacy and greater production of desensitization), coupled with an unusual metabolic profile (e.g., production of metabolically stable active phase I metabolites) may contribute to the pronounced adverse effects observed with abuse of this SCB compared to marijuana.
Collapse
Affiliation(s)
- Rachel D Hutchison
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lirit N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Catheryn D Wilson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mark K Su
- New York City Poison Control Center, New York, NY, United States
| | | | - Laura P James
- Translational Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Amy L Patton
- PinPoint Testing, LLC, Little Rock, AR, United States
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
22
|
Keeley RJ, Bye C, Trow J, McDonald RJ. Adolescent THC exposure does not sensitize conditioned place preferences to subthreshold d-amphetamine in male and female rats. F1000Res 2018; 7:342. [PMID: 29770212 PMCID: PMC5920568 DOI: 10.12688/f1000research.14029.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The acute effects of marijuana consumption on brain physiology and behaviour are well documented, but the long-term effects of its chronic use are less well known. Chronic marijuana use during adolescence is of increased interest, given that the majority of individuals first use marijuana during this developmental stage , and adolescent marijuana use is thought to increase the susceptibility to abusing other drugs when exposed later in life. It is possible that marijuana use during critical periods in adolescence could lead to increased sensitivity to other drugs of abuse later on. To test this, we chronically administered ∆ 9-tetrahydrocannabinol (THC) to male and female Long-Evans (LER) and Wistar (WR) rats directly after puberty onset. Rats matured to postnatal day 90 before being exposed to a conditioned place preference task (CPP). A subthreshold dose of d-amphetamine, found not to induce place preference in drug naïve rats, was used as the unconditioned stimulus. The effect of d-amphetamine on neural activity was inferred by quantifying cfos expression in the nucleus accumbens and dorsal hippocampus following CPP training. Chronic exposure to THC post-puberty had no potentiating effect on a subthreshold dose of d-amphetamine to induce CPP. No differences in cfos expression were observed. These results show that chronic exposure to THC during puberty did not increase sensitivity to a sub-threshold dose of d-amphetamine in adult LER and WR rats. This supports the concept that THC may not sensitize the response to all drugs of abuse.
Collapse
Affiliation(s)
- Robin J Keeley
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
- National Institute on Drug Abuse, 251 Bayview blvd, Suite 200, Baltimore, MD, 21224, USA
| | - Cameron Bye
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Jan Trow
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J McDonald
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
23
|
Keeley RJ, Bye C, Trow J, McDonald RJ. Adolescent THC exposure does not sensitize conditioned place preferences to subthreshold d-amphetamine in male and female rats. F1000Res 2018; 7:342. [PMID: 29770212 PMCID: PMC5920568 DOI: 10.12688/f1000research.14029.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 09/29/2023] Open
Abstract
The acute effects of marijuana consumption on brain physiology and behaviour are well documented, but the long-term effects of its chronic use are less well known. Chronic marijuana use during adolescence is of increased interest, given that the majority of individuals first use marijuana during this developmental stage , and adolescent marijuana use is thought to increase the susceptibility to abusing other drugs when exposed later in life. It is possible that marijuana use during critical periods in adolescence could lead to increased sensitivity to other drugs of abuse later on. To test this, we chronically administered ∆ 9-tetrahydrocannabinol (THC) to male and female Long-Evans (LER) and Wistar (WR) rats directly after puberty onset. Rats matured to postnatal day 90 before being exposed to a conditioned place preference task (CPP). A subthreshold dose of d-amphetamine, found not to induce place preference in drug naïve rats, was used as the unconditioned stimulus. The effect of d-amphetamine on neural activity was inferred by quantifying cfos expression in the nucleus accumbens and dorsal hippocampus following CPP training. Chronic exposure to THC post-puberty had no potentiating effect on a subthreshold dose of d-amphetamine to induce CPP. No differences in cfos expression were observed. These results show that chronic exposure to THC during puberty did not increase sensitivity to d-amphetamine in adult LER and WR rats. This supports the concept that THC may not sensitize the response to all drugs of abuse.
Collapse
Affiliation(s)
- Robin J Keeley
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
- National Institute on Drug Abuse, 251 Bayview blvd, Suite 200, Baltimore, MD, 21224, USA
| | - Cameron Bye
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Jan Trow
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J McDonald
- University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
24
|
Scherma M, Satta V, Collu R, Boi MF, Usai P, Fratta W, Fadda P. Cannabinoid CB 1 /CB 2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia. Br J Pharmacol 2017; 174:2682-2695. [PMID: 28561272 DOI: 10.1111/bph.13892] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/27/2017] [Accepted: 05/23/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE Anorexia nervosa (AN) is a serious psychiatric condition characterized by excessive body weight loss and disturbed perceptions of body shape and size, often associated with excessive physical activity. There is currently no effective drug-related therapy of this disease and this leads to high relapse rate. Clinical data suggest that a promising therapy to treat and reduce reoccurrence of AN may be based on the use of drugs that target the endocannabinoid (EC) system, which appears dysregulated in AN patients. EXPERIMENTAL APPROACH The activity-based anorexia (ABA) rodent model mimics the severe body weight loss and increased physical activity, as well as the neuroendocrine disturbances (i.e. hypoleptinaemia and hypercortisolaemia) in AN. This study investigated whether cannabinoid agonists can effectively modify anorexic-like behaviours and neuroendocrine changes in rats subjected to a repeated ABA regime that mimics the human condition in which patients repeatedly undergo a recovery and illness cycle. KEY RESULTS Our data show that subchronic treatment with both the natural CB1 /CB2 receptor agonist Δ9 -tetrahydrocannabinol and the synthetic CB1 /CB2 receptor agonist CP-55,940 significantly reduced body weight loss and running wheel activity in ABA rats. These behavioural effects were accompanied by an increase in leptin signalling and a decrease in plasma levels of corticosterone. CONCLUSION AND IMPLICATIONS Taken together, our results further demonstrate the involvement of the EC system in AN pathophysiology and that strategies which modulate EC signalling are useful to treat this disorder, specifically in patients where physical hyperactivity plays a central role in its progression and maintenance.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Satta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Paolo Usai
- Department of Internal Medicine, University of Cagliari, Cagliari, Italy
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.,Centre of Excellence "Neurobiology of Dependence", University of Cagliari, Cagliari, Italy
| |
Collapse
|
25
|
Dang DK, Shin EJ, Mai AT, Jang CG, Nah SY, Jeong JH, Ledent C, Yamamoto T, Nabeshima T, Onaivi ES, Kim HC. Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice. Free Radic Biol Med 2017; 108:204-224. [PMID: 28363605 DOI: 10.1016/j.freeradbiomed.2017.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function. However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive. Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice. These increases were attenuated by CB1R antagonists (i.e., AM251 and rimonabant), an ERK inhibitor (U0126), or dopamine D2R antagonist (sulpiride). In addition, treatment with MA resulted in dopaminergic impairments, which were attenuated by CB1R knockout or CB1R antagonists (i.e., AM251 and rimonabant). Consistently, MA-induced oxidative stresses (i.e., protein oxidation, lipid peroxidation and reactive oxygen species) and pro-apoptotic changes (i.e., increases in Bax, cleaved PKCδ- and cleaved caspase 3-expression and decrease in Bcl-2 expression) were observed in the striatum of CB1R (+/+) mice. These toxic effects were attenuated by CB1R knockout or CB1R antagonists. Consistently, treatment with four high doses of CB1R agonists (i.e., WIN 55,212-2 36mg/kg and ACEA 16mg/kg) also resulted in significant oxidative stresses, pro-apoptotic changes, and dopaminergic impairments. Since CB1R co-immunoprecipitates PKCδ in the presence of MA or CB1R agonists, we applied PKCδ knockout mice to clarify the role of PKCδ in the neurotoxicity elicited by CB1Rs. CB1R agonist-induced toxic effects were significantly attenuated by CB1R knockout, CB1R antagonists or PKCδ knockout. Therefore, our results suggest that interaction between D2R, ERK and CB1R is critical for MA-induced dopaminergic neurotoxicity and that PKCδ mediates dopaminergic damage induced by high-doses of CB1R agonist.
Collapse
MESH Headings
- Animals
- Apoptosis
- Butadienes/pharmacology
- Cells, Cultured
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopamine/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/pharmacology
- Methamphetamine/administration & dosage
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurotoxicity Syndromes/genetics
- Neurotoxicity Syndromes/metabolism
- Nitriles/pharmacology
- Oxidative Stress
- Piperidines/pharmacology
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Dopamine D2/metabolism
- Rimonabant
- Sulpiride/pharmacology
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Anh-Thu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | | | - Tsuneyuki Yamamoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
26
|
Ford BM, Tai S, Fantegrossi WE, Prather PL. Synthetic Pot: Not Your Grandfather's Marijuana. Trends Pharmacol Sci 2017; 38:257-276. [PMID: 28162792 PMCID: PMC5329767 DOI: 10.1016/j.tips.2016.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/13/2016] [Indexed: 01/05/2023]
Abstract
In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB1 cannabinoid receptors, similar to those of Δ9-tetrahydrocannabinol (Δ9-THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ9-THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives.
Collapse
Affiliation(s)
- Benjamin M Ford
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sherrica Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
27
|
Todd SM, Zhou C, Clarke DJ, Chohan TW, Bahceci D, Arnold JC. Interactions between cannabidiol and Δ 9-THC following acute and repeated dosing: Rebound hyperactivity, sensorimotor gating and epigenetic and neuroadaptive changes in the mesolimbic pathway. Eur Neuropsychopharmacol 2017; 27:132-145. [PMID: 28043732 DOI: 10.1016/j.euroneuro.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive.
Collapse
Affiliation(s)
- Stephanie M Todd
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Cilla Zhou
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Dilara Bahceci
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
28
|
Heparin exerts anti-apoptotic effects on uterine explants by targeting the endocannabinoid system. Apoptosis 2016; 21:965-76. [PMID: 27364950 DOI: 10.1007/s10495-016-1269-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Miscarriage caused by Gram-negative bacteria infecting the female genital tract is one of the most common complications of human pregnancy. Intraperitoneal administration of LPS to 7-days pregnant mice induces embryo resorption after 24 h. Here, we show that LPS induced apoptosis on uterine explants from 7-days pregnant mice and that CB1 receptor was involved in this effect. On the other hand, heparin has been widely used for the prevention of pregnancy loss in women with frequent miscarriage with or without thrombophilia. Besides its anticoagulant properties, heparin exerts anti-inflammatory, immunomodulatory and anti-apoptotic effects. Here, we sought to investigate whether the administration of heparin prevented LPS-induced apoptosis in uterine explants from 7-days pregnant mice. We found that heparin enhanced cell survival in LPS-treated uterine explants and that this effect was mediated by increasing uterine FAAH activity. Taken together, our results point towards a novel mechanism involved in the protective effects of heparin.
Collapse
|
29
|
Hill SY, Jones BL, Steinhauer SR, Zezza N, Stiffler S. Longitudinal predictors of cannabis use and dependence in offspring from families at ultra high risk for alcohol dependence and in control families. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:383-95. [PMID: 26756393 PMCID: PMC5444658 DOI: 10.1002/ajmg.b.32417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 01/04/2016] [Indexed: 11/06/2022]
Abstract
Cannabis use is common among adolescents. Identification of the factors associated with continued heavy use into young adulthood and development of cannabis abuse and dependence is of considerable importance. The role of familial risk for addiction and an associated endophenotype, P300 amplitude, has not previously been related to cannabis use and dependence. A prospective longitudinal study spanning childhood and young adulthood provided the opportunity for exploring these factors, along with genetic variation, in the cannabis use behaviors of 338 young adult offspring from high and low familial risk for alcohol dependence families (ages 19-30). P300 data were collected multiple times in childhood. The association between young adult patterns of cannabis use or cannabis abuse/dependence was tested with genetic variation in the cannabinoid gene, CNR1, the ANKK1-DRD2 gene, and childhood developmental trajectories of P300. Young adult patterns of cannabis use was characterized by three patterns: (i) no use throughout; (ii) declining use from adolescence through young adulthood; and (iii) frequent use throughout. Following the low P300 trajectory in childhood predicted cannabis abuse and dependence by young adulthood. A four SNP ANKK1-DRD2 haplotype (G-G-G-C) was found to be significantly associated with the frequency of use patterns (P = 0.0008). Although CNR1 variation overall was not significantly associated with these patterns, among individuals with cannabis abuse/dependence the presence of one or both copies of the rs806368 A > G minor allele conferred a 5.4-fold increase (P = 0.003) in the likelihood that they would be in the frequent and persistent use group rather than the declining use group.
Collapse
Affiliation(s)
- Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Correspondence to: Shirley Y. Hill, Ph.D., Department of Psychiatry, University of Pittsburgh Medical Center, 3811 O’ Hara St. Pittsburgh, PA 15213.
| | - Bobby L. Jones
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Nicholas Zezza
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Scott Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
CB1 Cannabinoid Agonist (WIN55,212-2) Within the Basolateral Amygdala Induced Sensitization to Morphine and Increased the Level of μ-Opioid Receptor and c-fos in the Nucleus Accumbens. J Mol Neurosci 2016; 58:446-55. [DOI: 10.1007/s12031-016-0716-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
|
31
|
Molecular Mechanisms of Cannabis Signaling in the Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:123-47. [PMID: 26810000 DOI: 10.1016/bs.pmbts.2015.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cannabis has been cultivated and used by humans for thousands of years. Research for decades was focused on understanding the mechanisms of an illegal/addictive drug. This led to the discovery of the vast endocannabinoid system. Research has now shifted to understanding fundamental biological questions related to one of the most widespread signaling systems in both the brain and the body. Our understanding of cannabinoid signaling has advanced significantly in the last two decades. In this review, we discuss the state of knowledge on mechanisms of Cannabis signaling in the brain and the modulation of key brain neurotransmitter systems involved in both brain reward/addiction and psychiatric disorders. It is highly probable that various cannabinoids will be found to be efficacious in the treatment of a number of psychiatric disorders. However, while there is clearly much potential, marijuana has not been properly vetted by the medical-scientific evaluation process and there are clearly a range of potentially adverse side-effects-including addiction. We are at crossroads for research on endocannabinoid function and therapeutics (including the use of exogenous treatments such as Cannabis). With over 100 cannabinoid constituents, the majority of which have not been studied, there is much Cannabis research yet to be done. With more states legalizing both the medicinal and recreational use of marijuana the rigorous scientific investigation into cannabinoid signaling is imperative.
Collapse
|
32
|
Covey DP, Wenzel JM, Cheer JF. Cannabinoid modulation of drug reward and the implications of marijuana legalization. Brain Res 2015; 1628:233-43. [PMID: 25463025 PMCID: PMC4442758 DOI: 10.1016/j.brainres.2014.11.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
Abstract
Marijuana is the most popular illegal drug worldwide. Recent trends indicate that this may soon change; not due to decreased marijuana use, but to an amendment in marijuana's illegal status. The cannabinoid type 1 (CB1) receptor mediates marijuana's psychoactive and reinforcing properties. CB1 receptors are also part of the brain endocannabinoid (eCB) system and support numerous forms of learning and memory, including the conditioned reinforcing properties of cues predicting reward or punishment. This is accomplished via eCB-dependent alterations in mesolimbic dopamine function, which plays an obligatory role in reward learning and motivation. Presynaptic CB1 receptors control midbrain dopamine neuron activity and thereby shape phasic dopamine release in target regions, particularly the nucleus accumbens (NAc). By also regulating synaptic input to the NAc, CB1 receptors modulate NAc output onto downstream neurons of the basal ganglia motor circuit, and thereby support goal-directed behaviors. Abused drugs promote short- and long-term adaptations in eCB-regulation of mesolimbic dopamine function, and thereby hijack neural systems related to the pursuit of rewards to promote drug abuse. By pharmacologically targeting the CB1 receptors, marijuana has preferential access to this neuronal system and can potently alter eCB-dependent processing of reward-related stimuli. As marijuana legalization progresses, greater access to this drug should increase the utility of marijuana as a research tool to better understand the eCB system, which has the potential to advance cannabinoid-based treatments for drug addiction.
Collapse
Affiliation(s)
- Dan P Covey
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jennifer M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
33
|
Wakeford AGP, Flax SM, Pomfrey RL, Riley AL. Adolescent delta-9-tetrahydrocannabinol (THC) exposure fails to affect THC-induced place and taste conditioning in adult male rats. Pharmacol Biochem Behav 2015; 140:75-81. [PMID: 26577749 DOI: 10.1016/j.pbb.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/02/2015] [Accepted: 11/10/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Adolescent initiation of drug use has been linked to problematic drug taking later in life and may represent an important variable that changes the balance of the rewarding and/or aversive effects of abused drugs which may contribute to abuse vulnerability. The current study examined the effects of adolescent THC exposure on THC-induced place preference (rewarding effects) and taste avoidance (aversive effects) conditioning in adulthood. METHODS Forty-six male Sprague-Dawley adolescent rats received eight injections of an intermediate dose of THC (3.2mg/kg) or vehicle. After these injections, animals were allowed to mature and then trained in a combined CTA/CPP procedure in adulthood (PND ~90). Animals were given four trials of conditioning with intervening water-recovery days, a final CPP test and then a one-bottle taste avoidance test. RESULTS THC induced dose-dependent taste avoidance but did not produce place conditioning. None of these effects was impacted by adolescent THC exposure. CONCLUSIONS Adolescent exposure to THC had no effect on THC taste and place conditioning in adulthood. The failure to see an effect of adolescent exposure was addressed in the context of other research that has assessed exposure of drugs of abuse during adolescence on drug reactivity in adulthood.
Collapse
Affiliation(s)
- Alison G P Wakeford
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | - Shaun M Flax
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA
| | - Rebecca L Pomfrey
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA
| | - Anthony L Riley
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| |
Collapse
|
34
|
Tampus R, Yoon SS, de la Peña JB, Botanas CJ, Kim HJ, Seo JW, Jeong EJ, Jang CG, Cheong JH. Assessment of the Abuse Liability of Synthetic Cannabinoid Agonists JWH-030, JWH-175, and JWH-176. Biomol Ther (Seoul) 2015; 23:590-6. [PMID: 26535085 PMCID: PMC4624076 DOI: 10.4062/biomolther.2015.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 11/05/2022] Open
Abstract
The emergence and use of synthetic cannabinoids have greatly increased in recent years. These substances are easily dispensed over the internet and on the streets. Some synthetic cannabinoids were shown to have abuse liability and were subsequently regulated by authorities. However, there are compounds that are still not regulated probably due to the lack of abuse liability studies. In the present study, we assessed the abuse liability of three synthetic cannabinoids, namely JWH-030, JWH-175, and JWH-176. The abuse liability of these drugs was evaluated in two of the most widely used animal models for assessing the abuse potential of drugs, the conditioned place preference (CPP) and self-administration (SA) test. In addition, the open-field test was utilized to assess the effects of repeated (7 days) treatment and abrupt cessation of these drugs on the psychomotor activity of animals. Results showed that JWH-175 (0.5 mg/kg), but not JWH-030 or JWH-176 at any dose, significantly decreased the locomotor activity of mice. This alteration in locomotor activity was only evident during acute exposure to the drug and was not observed during repeated treatment and abstinence. Similarly, only JWH-175 (0.1 mg/kg) produced significant CPP in rats. On the other hand, none of the drugs tested was self-administered by rats. Taken together, the present results indicate that JWH-175, but not JWH-030 and JWH-176, may have abuse potential. More importantly, our findings indicate the complex psychopharmacological effects of synthetic cannabinoids and the need to closely monitor the production, dispensation, and use of these substances.
Collapse
Affiliation(s)
- Reinholdgher Tampus
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Seong Shoon Yoon
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Joung-Wook Seo
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Eun Ju Jeong
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Choon Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
35
|
Botanas CJ, de la Peña JB, Dela Pena IJ, Tampus R, Kim HJ, Yoon SS, Seo JW, Jeong EJ, Cheong JH. Evaluation of the abuse potential of AM281, a new synthetic cannabinoid CB1 receptor antagonist. Eur J Pharmacol 2015; 766:135-41. [PMID: 26450088 DOI: 10.1016/j.ejphar.2015.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/29/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Abstract
AM281 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) is a new synthetic cannabinoid CB1 receptor antagonist. Similar to other cannabinoid antagonists, AM281 has been suggested to have therapeutic indications. However, recent reports have suggested that cannabinoid CB1 receptor antagonists may share similar behavioral effects with other drugs of abuse such as cocaine and amphetamine. These reports cast doubts on the safety profile of AM281. Thus, in the present study we evaluated the abuse potential (rewarding and reinforcing effects) of AM281 through two of the most widely used animal models for assessing the abuse potential of drugs: the conditioned place preference (CPP) and self-administration (SA) tests. Experiments were performed in Sprague-Dawley rats in various dosages [CPP (0.1, 0.5 or 2.5mg/kg), SA (0.005, 0.025 or 0.1mg/kg/infusion)]. We also delved into the consequences of repeated drug exposure on the subsequent response to the drug. Thus, parallel experiments were carried out in rats pretreated with AM281 for 7 or 14 days. Our findings indicated that AM281, at any dose, did not induce CPP and SA in drug-naïve rats. Interestingly, significant CPP (0.5mg/kg of AM281), but not SA, was observed in 14 days pretreated rats. These observations suggest that AM281 per se has no or minimal rewarding and reinforcing properties, but alterations in neuronal functions and behavior due to repeated AM281 exposure may contribute in part to the abuse potential of this drug. In view of this finding, we advocate the careful use, monitoring, and dispensation of AM281.
Collapse
Affiliation(s)
- Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Irene Joy Dela Pena
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Reinholdgher Tampus
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea
| | - Seong Shoon Yoon
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 305-343, Republic of Korea
| | - Joung-Wook Seo
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 305-343, Republic of Korea
| | - Eun Ju Jeong
- Center for Safety Pharmacology, Korea Institute of Toxicology, Daejeon 305-343, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, School of Pharmacy, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815 Nowon-gu, Seoul 139-742, Republic of Korea.
| |
Collapse
|
36
|
Tai S, Hyatt WS, Gu C, Franks LN, Vasiljevik T, Brents LK, Prather PL, Fantegrossi WE. Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner. Pharmacol Res 2015; 102:22-32. [PMID: 26361728 DOI: 10.1016/j.phrs.2015.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/05/2015] [Accepted: 09/06/2015] [Indexed: 01/30/2023]
Abstract
These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs.
Collapse
Affiliation(s)
- S Tai
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - W S Hyatt
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - C Gu
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - L N Franks
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - T Vasiljevik
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - L K Brents
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - P L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - W E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
37
|
Tai S, Nikas SP, Shukla VG, Vemuri K, Makriyannis A, Järbe TU. Cannabinoid withdrawal in mice: inverse agonist vs neutral antagonist. Psychopharmacology (Berl) 2015; 232:2751-61. [PMID: 25772338 PMCID: PMC4504748 DOI: 10.1007/s00213-015-3907-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/28/2015] [Indexed: 12/19/2022]
Abstract
RATIONALE Previous reports shows rimonabant's inverse properties may be a limiting factor for treating cannabinoid dependence. To overcome this limitation, neutral antagonists were developed, to address mechanisms by which an inverse agonist and neutral antagonist elicit withdrawal. OBJECTIVE The objective of this study is to introduce an animal model to study cannabinoid dependence by incorporating traditional methodologies and profiling novel cannabinoid ligands with distinct pharmacological properties/modes of action by evaluating their pharmacological effects on CB1-receptor (CB1R) related physiological/behavioral endpoints. METHODS The cannabinergic AM2389 was acutely characterized in the tetrad (locomotor activity, analgesia, inverted screen/catalepsy bar test, and temperature), with some comparisons made to Δ(9)-tetrahydrocannabinol (THC). Tolerance was measured in mice repeatedly administered AM2389. Antagonist-precipitated withdrawal was characterized in cannabinoid-adapted mice induced by either centrally acting antagonists, rimonabant and AM4113, or an antagonist with limited brain penetration, AM6545. RESULTS In the tetrad, AM2389 was more potent and longer acting than THC, suggesting a novel approach for inducing dependence. Repeated administration of AM2389 led to tolerance by attenuating hypothermia that was induced by acute AM2389 administration. Antagonist-precipitated withdrawal signs were induced by rimonabant or AM4113, but not by AM6545. Antagonist-precipitated withdrawal was reversed by reinstating AM2389 or THC. CONCLUSIONS These findings suggest cannabinoid-precipitated withdrawal may not be ascribed to the inverse properties of rimonabant, but rather to rapid competition with the agonist at the CB1R. This withdrawal syndrome is likely centrally mediated, since only the centrally acting CB1R antagonists elicited withdrawal, i.e., such responses were absent after the purported peripherally selective CB1R antagonist AM6545.
Collapse
Affiliation(s)
- Sherrica Tai
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115-5000, USA,
| | | | | | | | | | | |
Collapse
|
38
|
Effects of co-administration of 2-arachidonylglycerol (2-AG) and a selective µ-opioid receptor agonist into the nucleus accumbens on high-fat feeding behaviors in the rat. Brain Res 2015; 1618:309-15. [PMID: 26100333 DOI: 10.1016/j.brainres.2015.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/26/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022]
Abstract
Previous research has demonstrated that the nucleus accumbens is a site where opioids and cannabinoids interact to alter feeding behavior. However, the influence of the endocannabinoid 2-arachidonylglycerol (2-AG) on the well-characterized model of intra-accumbens opioid driven high-fat feeding behavior has not been explored. The present experiments examined high-fat feeding associated behaviors produced by the interaction of 2-AG and the μ-opioid receptor agonist DAla(2),N,Me-Phe(4),Gly-ol(5)-enkaphalin (DAMGO) administered into the nucleus accumbens. Sprague-Dawley rats were implanted with bilateral cannulae aimed at the nucleus accumbens and were co-administered both a sub-threshold dose of 2-AG (0 or 0.25 μg/0.5 μl/side) and DAMGO (0, 0.025 μg or 0.25 μg/0.5 μl/side) in all dose combinations, and in a counterbalanced order. Animals were then immediately allowed a 2h-unrestricted access period to a palatable high-fat diet. Consumption, number and duration of food hopper entries, and locomotor activity were all monitored. DAMGO treatment led to an increase in multiple behaviors, including consumption, duration of food hopper entry, and locomotor activity. However, combined intra-accumbens administration of DAMGO and a subthreshold dose of 2-AG led to a significant increase in number of food hopper entries and locomotor activity, compared to DAMGO by itself. The results confirm that intra-accumbens administration of subthreshold dose of the endogenous cannabinoid 2-AG increases the DAMGO-induced approach and locomotor behaviors associated with high-fat feeding.
Collapse
|
39
|
Keeley RJ, Trow J, Bye C, McDonald RJ. Part II: Strain- and sex-specific effects of adolescent exposure to THC on adult brain and behaviour: Variants of learning, anxiety and volumetric estimates. Behav Brain Res 2015; 288:132-52. [PMID: 25591471 DOI: 10.1016/j.bbr.2015.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 12/20/2022]
Abstract
Marijuana is one of the most highly used psychoactive substances in the world, and its use typically begins during adolescence, a period of substantial brain development. Females across species appear to be more susceptible to the long-term consequences of marijuana use. Despite the identification of inherent differences between rat strains including measures of anatomy, genetics and behaviour, no studies to our knowledge have examined the long-term consequences of adolescent exposure to marijuana or its main psychoactive component, Δ(9)-tetrahydrocannabinol (THC), in males and females of two widely used rat strains: Long-Evans hooded (LER) and Wistar (WR) rats. THC was administered for 14 consecutive days following puberty onset, and once they reached adulthood, changes in behaviour and in the volume of associated brain areas were quantified. Rats were assessed in behavioural tests of motor, spatial and contextual learning, and anxiety. Some tasks showed effects of injection, since handled and vehicle groups were included as controls. Performance on all tasks, except motor learning, and the volume of associated brain areas were altered with injection or THC administration, although these effects varied by strain and sex group. Finally, analysis revealed treatment-specific correlations between performance and brain volumes. This study is the first of its kind to directly compare males and females of two rat strains for the long-term consequences of adolescent THC exposure. It highlights the importance of considering strain and identifies certain rat strains as susceptible or resilient to the effects of THC.
Collapse
Affiliation(s)
- R J Keeley
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada.
| | - J Trow
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| | - C Bye
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| | - R J McDonald
- University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 4N8, Canada
| |
Collapse
|
40
|
Laricchiuta D, Petrosini L. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors. Front Syst Neurosci 2014; 8:238. [PMID: 25565991 PMCID: PMC4273613 DOI: 10.3389/fnsys.2014.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
Approach and avoidance behaviors-the primary responses to the environmental stimuli of danger, novelty and reward-are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows responding to salient positive and negative stimuli.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Dynamic and Clinical Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| |
Collapse
|
41
|
Microinjection of WIN55,212-2 as A Cannabinoid Agonist into The Basolateral Amygdala Induces Sensitization to Morphine in Rats. Basic Clin Neurosci 2014; 5:295-302. [PMID: 27284394 PMCID: PMC4656935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
INTRODUCTION Previous studies have shown that the basolateral amygdale (BLA) is rich of CB1 cannabinoid receptors and involved in cannabinoid-induced antinociception. Also, it seems that there are functional interactions between the cannabinoid CB1 and opioid receptors in the process of sensitization to opiates. In the present study, we tried to examine the role of intra-BLA cannabinoid receptors on development of sensitization to morphine. METHODS In this study, seventy two adult male albino Wistar rats weighting 230-280 g were included. Antinociception response of subcutaneous (sc), administration of saline (1 ml/kg), and morphine (1 and 10 mg/kg) were measured by the tail-flick test in animals that were received subcutaneous administration of morphine (5 mg/kg) or saline (1 ml/kg) once a day for three days (sensitization period), followed by five days free of drug. The dose of 1 mg/kg of morphine was selected as the appropriate (ineffective) dose in the next stages of experiment for measuring analgesia in the tail-flick test in sensitive animals which previously received bilateral intra-BLA CB1 receptor agonist, WIN55, 212-2 (0.5, 1, 2 and 4 mM/0.3 μl/side), DMSO, or saline (0.3 μl/side) during sensitization period. RESULTS Bilateral intra-BLA administration of WIN55, 212-2, increased morphine-induced antinociception in ineffective dose, while this effect was not observed in the groups that received DMSO or saline. Our findings indicated that CB1 receptors within the BLA are involved in the sensitization to morphine. DISCUSSION It seems that glutamatergic projections from the BLA to the nucleus accumbens are involved in the development of morphine sensitization induced by cannabinoids.
Collapse
|
42
|
Laricchiuta D, Musella A, Rossi S, Centonze D. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli. Front Behav Neurosci 2014; 8:183. [PMID: 24904335 PMCID: PMC4032909 DOI: 10.3389/fnbeh.2014.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/04/2014] [Indexed: 01/23/2023] Open
Abstract
Rewarding effects have been related to enhanced dopamine (DA) release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS) (URB597, AM251) or DAergic system (haloperidol) were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1)-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty) and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597) or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Psicologia, Facoltà di Medicina e Psicologia, Università "Sapienza" di Roma Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Silvia Rossi
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Diego Centonze
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| |
Collapse
|
43
|
Terzian ALB, Micale V, Wotjak CT. Cannabinoid receptor type 1 receptors on GABAergic vs. glutamatergic neurons differentially gate sex-dependent social interest in mice. Eur J Neurosci 2014; 40:2293-8. [DOI: 10.1111/ejn.12561] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/07/2014] [Accepted: 02/17/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Ana Luisa B. Terzian
- Max-Planck Institute of Psychiatry; Research Group ‘Neural Plasticity’; Kraepelinstraße, 2-10 80804 Munich Germany
- Graduate School of Systemic Neurosciences; Ludwig-Maximilians Universität; Munich Germany
| | - Vincenzo Micale
- Max-Planck Institute of Psychiatry; Research Group ‘Neural Plasticity’; Kraepelinstraße, 2-10 80804 Munich Germany
- Central European Institute of Technology (CEITEC); Masaryk University; Brno Czech Republic
| | - Carsten T. Wotjak
- Max-Planck Institute of Psychiatry; Research Group ‘Neural Plasticity’; Kraepelinstraße, 2-10 80804 Munich Germany
| |
Collapse
|
44
|
Influence of pre-exposure to morphine on cannabinoid-induced impairment of spatial memory in male rats. Behav Brain Res 2013; 256:157-64. [DOI: 10.1016/j.bbr.2013.07.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 11/23/2022]
|
45
|
Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity? Life Sci 2013; 97:45-54. [PMID: 24084047 DOI: 10.1016/j.lfs.2013.09.017] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/10/2013] [Accepted: 09/19/2013] [Indexed: 02/01/2023]
Abstract
K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances.
Collapse
Affiliation(s)
- William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jeffery H Moran
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205, USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
46
|
Rashidy-Pour A, Pahlevani P, Vaziri A, Shaigani P, Zarepour L, Vafaei AA, Haghparast A. Involvement of CB1 receptors in the ventral tegmental area in the potentiation of morphine rewarding properties in acquisition but not expression in the conditioned place preference model. Behav Brain Res 2013; 247:259-67. [DOI: 10.1016/j.bbr.2013.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
47
|
Hyperactivity induced by the dopamine D2/D3 receptor agonist quinpirole is attenuated by inhibitors of endocannabinoid degradation in mice. Int J Neuropsychopharmacol 2013; 16:661-76. [PMID: 22647577 DOI: 10.1017/s1461145712000569] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The present study was designed to investigate the effect of pharmacological inhibition of endocannabinoid degradation on behavioural actions of the dopamine D2/D3 receptor agonist quinpirole in male C57Bl/6J mice. In addition, we studied the effects of endocannabinoid degradation inhibition on both cocaine-induced psychomotor activation and behavioural sensitization. We analysed the effects of inhibition of the two main endocannabinoid degradation enzymes: fatty acid amide hydrolase (FAAH), using inhibitor URB597 (1 mg/kg); monoacylglycerol lipase (MAGL), using inhibitor URB602 (10 mg/kg). Administration of quinpirole (1 mg/kg) caused a temporal biphasic response characterized by a first phase of immobility (0-50 min), followed by enhanced locomotion (next 70 min) that was associated with the introduction of stereotyped behaviours (stereotyped jumping and rearing). Pretreatment with both endocannabinoid degradation inhibitors did not affect the hypoactivity actions of quinpirole. However, this pretreatment resulted in a marked decrease in quinpirole-induced locomotion and stereotyped behaviours. Administration of FAAH or MAGL inhibitors did not attenuate the acute effects of cocaine. Furthermore, these inhibitors did not impair the acquisition of cocaine-induced behavioural sensitization or the expression of cocaine-induced conditioned locomotion. Only MAGL inhibition attenuated the expression of an already acquired cocaine-induced behavioural sensitization. These results suggest that pharmacological inhibition of endocannabinoid degradation might exert a negative feedback on D2/D3 receptor-mediated hyperactivity. This finding might be relevant for therapeutic approaches for either psychomotor disorders (dyskinesia, corea) or disorganized behaviours associated with dopamine-mediated hyperactivity.
Collapse
|
48
|
Molecular mechanisms of cannabinoid addiction. Curr Opin Neurobiol 2013; 23:487-92. [PMID: 23490548 DOI: 10.1016/j.conb.2013.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/16/2013] [Accepted: 02/04/2013] [Indexed: 12/13/2022]
Abstract
Cannabis is the world's most widely used illicit substance, with an estimated number of 119-224 million users worldwide. In recent years we assisted to an increased effort aimed to individuate the brain circuits underlying cannabis addiction and dependence. Similarly to other drugs of abuse, repeated exposure to cannabinoids causes brain neuroadaptations that persist long after drug effects, contribute to the negative affective states during withdrawal, and ultimately facilitate relapse. Recently, considerable progress has been made in understanding the cellular and molecular consequences of prolonged cannabis use, among which is the identification of specific set of transcriptional regulations that develop differently after chronic cannabinoids and in the abstinent brain.
Collapse
|
49
|
Tambaro S, Tomasi ML, Bortolato M. Long-term CB₁ receptor blockade enhances vulnerability to anxiogenic-like effects of cannabinoids. Neuropharmacology 2013; 70:268-77. [PMID: 23462228 DOI: 10.1016/j.neuropharm.2013.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/03/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022]
Abstract
Compelling evidence has documented the anxiolytic and mood-enhancing properties of cannabis. In susceptible users, however, consumption of this drug is conducive to panic, paranoia and dysphoria. We hypothesized that the up-regulation of CB₁ receptors (CB₁Rs) in select brain regions may enhance the vulnerability to cannabinoid-induced anxiety. To test this possibility, we assessed the behavioral impact of a potent cannabinoid agonist (CP55,940; 0.05-0.1 mg/kg, IP) on C57BL/6 male mice, respectively subjected to a prolonged pre-treatment of either the selective CB₁R antagonist/inverse agonist AM251 (1 mg/kg/day IP, for 21 days, followed by a 3-day clearance period before testing) or its vehicle (VEH1). Anxiety-like responses were studied in the novel open field, elevated plus maze (EPM) and social interaction assays. While CP55,940 induced anxiolytic-like effects in the EPM in VEH1-exposed animals, it elicited opposite actions in AM251-exposed mice. In this last group, CP55,940 also reduced rearing and social interaction in comparison to its vehicle (VEH2). The divergent effects of CP55,940 in AM251- and VEH1-pretreated animals were confirmed in 129SvEv mice. Immunoblotting analyses on brain samples of C57BL/6 mice revealed that AM251 pre-treatment caused a significant up-regulation of CB₁R expression in the prefrontal cortex and striatum, but also a down-regulation of these receptors in the hippocampus and midbrain. Notably, CB₁R levels in the prefrontal cortex were negatively correlated with anxiolysis-related indices in the EPM; furthermore, midbrain CB₁R expression was positively correlated with the total duration of social interaction. These results suggest that regional variations in brain CB₁R expression may differentially condition the behavioral effects of cannabinoids with respect to anxiety-related responses.
Collapse
|
50
|
Panlilio LV, Justinova Z, Goldberg SR. Inhibition of FAAH and activation of PPAR: new approaches to the treatment of cognitive dysfunction and drug addiction. Pharmacol Ther 2013; 138:84-102. [PMID: 23333350 DOI: 10.1016/j.pharmthera.2013.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022]
Abstract
Enhancing the effects of endogenously-released cannabinoid ligands in the brain might provide therapeutic effects more safely and effectively than administering drugs that act directly at the cannabinoid receptor. Inhibitors of fatty acid amide hydrolase (FAAH) prevent the breakdown of endogenous ligands for cannabinoid receptors and peroxisome proliferator-activated receptors (PPAR), prolonging and enhancing the effects of these ligands when they are naturally released. This review considers recent research on the effects of FAAH inhibitors and PPAR activators in animal models of addiction and cognition (specifically learning and memory). These studies show that FAAH inhibitors can produce potentially therapeutic effects, some through cannabinoid receptors and some through PPAR. These effects include enhancing certain forms of learning, counteracting the rewarding effects of nicotine and alcohol, relieving symptoms of withdrawal from cannabis and other drugs, and protecting against relapse-like reinstatement of drug self-administration. Since FAAH inhibition might have a wide range of therapeutic actions but might also share some of the adverse effects of cannabis, it is noteworthy that at least one FAAH-inhibiting drug (URB597) has been found to have potentially beneficial effects but no indication of liability for abuse or dependence. Although these areas of research are new, the preliminary evidence indicates that they might lead to improved therapeutic interventions and a better understanding of the brain mechanisms underlying addiction and memory.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA
| | | | | |
Collapse
|