1
|
Joseph DJ, Von Deimling M, Risbud R, McCoy AJ, Marsh ED. Loss of postnatal Arx transcriptional activity in parvalbumin interneurons reveals non-cell autonomous disturbances in CA1 pyramidal cells. Neuroscience 2024; 558:128-150. [PMID: 38788829 PMCID: PMC11381180 DOI: 10.1016/j.neuroscience.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Maintenance of proper electrophysiological and connectivity profiles in the adult brain may be a perturbation point in neurodevelopmental disorders (NDDs). How these profiles are maintained within mature circuits is unclear. We recently demonstrated that postnatal ablation of the Aristaless (Arx) homeobox gene in parvalbumin interneurons (PVIs) alone led to dysregulation of their transcriptome and alterations in their functional as well as network properties in the hippocampal cornu Ammoni first region (CA1). Here, we characterized CA1 pyramidal cells (PCs) responses in this conditional knockout (CKO) mouse to further understand the circuit mechanisms by which postnatal Arx expression regulates mature CA1 circuits. Field recordings of network excitability showed that CA1 PC ensembles were less excitable in response to unpaired stimulations but exhibited enhanced excitability in response to paired-pulse stimulations. Whole-cell voltage clamp recordings revealed a significant increase in the frequency of spontaneous inhibitory postsynaptic currents onto PCs. In contrast, excitatory drive from evoked synaptic transmission was reduced while that of inhibitory synaptic transmission was increased. Current clamp recordings showed increase excitability in several sub- and threshold membrane properties that correlated with an increase in voltage-gated Na+ current. Our data suggest that, in addition to cell-autonomous disruption in PVIs, loss of Arx postnatal transcriptional activity in PVIs led to complex dysfunctions in PCs in CA1 microcircuits. These non-cell autonomous effects are likely the product of breakdown in feedback and/or feedforward processes and should be considered as fundamental contributors to the circuit mechanisms of NDDs such as Arx-linked early-onset epileptic encephalopathies.
Collapse
Affiliation(s)
- Donald J Joseph
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Markus Von Deimling
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rashmi Risbud
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Almedia J McCoy
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric D Marsh
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Neurology and Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Fekete Z, Weisz F, Karlócai MR, Veres JM, Andrási T, Hájos N. Synaptic communication within the microcircuits of pyramidal neurons and basket cells in the mouse prefrontal cortex. J Physiol 2024. [PMID: 39418315 DOI: 10.1113/jp286284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Basket cells are inhibitory interneurons in cortical structures with the potential to efficiently control the activity of their postsynaptic partners. Although their contribution to higher order cognitive functions associated with the medial prefrontal cortex (mPFC) relies on the characteristics of their synaptic connections, the way that they are embedded into local circuits is still not fully uncovered. Here, we determined the synaptic properties of excitatory and inhibitory connections between pyramidal neurons (PNs), cholecystokinin-containing basket cells (CCKBCs) and parvalbumin-containing basket cells (PVBCs) in the mouse mPFC. By performing paired recordings, we revealed that PVBCs receive larger unitary excitatory postsynaptic currents from PNs with shorter latency and faster kinetic properties compared to events evoked in CCKBCs. Also, unitary inhibitory postsynaptic currents in PNs were more reliably evoked by PVBCs than by CCKBCs, yet the former connections showed profound short-term depression. Moreover, we demonstrated that CCKBCs and PVBCs in the mPFC are connected with each other. Because alterations in PVBC function have been linked to neurological and psychiatric conditions such as Alzheimer's disease and schizophrenia and CCKBC vulnerability might play a role in mood disorders, a deeper understanding of the general features of basket cell synapses could serve as a reference point for future investigations with therapeutic objectives. KEY POINTS: Cholecystokinin- (CCKBCs) and parvalbumin-expressing basket cells (PVBCs) have distinct passive and active membrane properties. Pyramidal neurons give rise to larger unitary excitatory postsynaptic currents in PVBCs compared to events in CCKBCs. Unitary inhibitory postsynaptic currents in pyramidal neurons are more reliably evoked by PVBCs than by CCKBCs. Basket cells form chemical synapses and gap junctions with their own cell type. The two basket cell types are connected with each other.
Collapse
Affiliation(s)
- Zsuzsanna Fekete
- Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Filippo Weisz
- Institute of Experimental Medicine, Budapest, Hungary
| | | | - Judit M Veres
- Institute of Experimental Medicine, Budapest, Hungary
| | - Tibor Andrási
- Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Indiana, USA
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Indiana, USA
| |
Collapse
|
3
|
Qiu H, Miraucourt LS, Petitjean H, Xu M, Theriault C, Davidova A, Soubeyre V, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Levesque-Damphousse P, Estall JL, Bourinet E, Sharif-Naeini R. Parvalbumin gates chronic pain through the modulation of firing patterns in inhibitory neurons. Proc Natl Acad Sci U S A 2024; 121:e2403777121. [PMID: 38916998 PMCID: PMC11228497 DOI: 10.1073/pnas.2403777121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Spinal cord dorsal horn inhibition is critical to the processing of sensory inputs, and its impairment leads to mechanical allodynia. How this decreased inhibition occurs and whether its restoration alleviates allodynic pain are poorly understood. Here, we show that a critical step in the loss of inhibitory tone is the change in the firing pattern of inhibitory parvalbumin (PV)-expressing neurons (PVNs). Our results show that PV, a calcium-binding protein, controls the firing activity of PVNs by enabling them to sustain high-frequency tonic firing patterns. Upon nerve injury, PVNs transition to adaptive firing and decrease their PV expression. Interestingly, decreased PV is necessary and sufficient for the development of mechanical allodynia and the transition of PVNs to adaptive firing. This transition of the firing pattern is due to the recruitment of calcium-activated potassium (SK) channels, and blocking them during chronic pain restores normal tonic firing and alleviates chronic pain. Our findings indicate that PV is essential for controlling the firing pattern of PVNs and for preventing allodynia. Developing approaches to manipulate these mechanisms may lead to different strategies for chronic pain relief.
Collapse
Affiliation(s)
- Haoyi Qiu
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Loïs S. Miraucourt
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Hugues Petitjean
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mengyi Xu
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Catherine Theriault
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Albena Davidova
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| | - Vanessa Soubeyre
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | - Luc Bauchet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier34295, France
| | | | - Jennifer L. Estall
- Institut de Recherches Cliniques de Montréal, Montreal, QCH2W 1R7, Canada
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier34000, France
| | - Reza Sharif-Naeini
- Department of Physiology, McGill University, Montreal, QCH3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QCH3A 2B4, Canada
| |
Collapse
|
4
|
Shao M, Yu H, Santhakumar V, Yu J. Antiepileptogenic and neuroprotective effect of mefloquine after experimental status epilepticus. Epilepsy Res 2023; 198:107257. [PMID: 37989006 DOI: 10.1016/j.eplepsyres.2023.107257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Acquired temporal lobe epilepsy (TLE) characterized by spontaneous recurrent seizures (SRS) and hippocampal inhibitory neuron dysfunction is often refractory to current therapies. Gap junctional or electrical coupling between inhibitory neurons has been proposed to facilitate network synchrony and intercellular molecular exchange suggesting a role in both seizures and neurodegeneration. While gap junction blockers can limit acute seizures, whether blocking neuronal gap junctions can modify development of chronic epilepsy has not been examined. This study examined whether mefloquine, a selective blocker of Connexin 36 gap junctions which are well characterized in inhibitory neurons, can limit epileptogenesis and related cellular and behavioral pathology in a model of acquired TLE. A single, systemic dose of mefloquine administered early after pilocarpine-induced status epilepticus (SE) in rat reduced both development of SRS and behavioral co-morbidities. Immunostaining for interneuron subtypes identified that mefloquine treatment likely reduced delayed inhibitory neuronal loss after SE. Uniquely, parvalbumin expressing neurons in the hippocampal dentate gyrus appeared relatively resistant to early cell loss after SE. Functionally, whole cell patch clamp recordings revealed that mefloquine treatment preserved inhibitory synaptic drive to projection neurons one week and one month after SE. These results demonstrate that mefloquine, a drug already approved for malaria prophylaxis, is potentially antiepileptogenic and can protect against progressive interneuron loss and behavioral co-morbidities of epilepsy.
Collapse
Affiliation(s)
- Mingting Shao
- Department of Neurosurgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Hang Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Jiandong Yu
- Department of Neurosurgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
5
|
Nagy-Pál P, Veres JM, Fekete Z, Karlócai MR, Weisz F, Barabás B, Reéb Z, Hájos N. Structural Organization of Perisomatic Inhibition in the Mouse Medial Prefrontal Cortex. J Neurosci 2023; 43:6972-6987. [PMID: 37640552 PMCID: PMC10586541 DOI: 10.1523/jneurosci.0432-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Perisomatic inhibition profoundly controls neural function. However, the structural organization of inhibitory circuits giving rise to the perisomatic inhibition in the higher-order cortices is not completely known. Here, we performed a comprehensive analysis of those GABAergic cells in the medial prefrontal cortex (mPFC) that provide inputs onto the somata and proximal dendrites of pyramidal neurons. Our results show that most GABAergic axonal varicosities contacting the perisomatic region of superficial (layer 2/3) and deep (layer 5) pyramidal cells express parvalbumin (PV) or cannabinoid receptor type 1 (CB1). Further, we found that the ratio of PV/CB1 GABAergic inputs is larger on the somatic membrane surface of pyramidal tract neurons in comparison with those projecting to the contralateral hemisphere. Our morphologic analysis of in vitro labeled PV+ basket cells (PVBC) and CCK/CB1+ basket cells (CCKBC) revealed differences in many features. PVBC dendrites and axons arborized preferentially within the layer where their soma was located. In contrast, the axons of CCKBCs expanded throughout layers, although their dendrites were found preferentially either in superficial or deep layers. Finally, using anterograde trans-synaptic tracing we observed that PVBCs are preferentially innervated by thalamic and basal amygdala afferents in layers 5a and 5b, respectively. Thus, our results suggest that PVBCs can control the local circuit operation in a layer-specific manner via their characteristic arborization, whereas CCKBCs rather provide cross-layer inhibition in the mPFC.SIGNIFICANCE STATEMENT Inhibitory cells in cortical circuits are crucial for the precise control of local network activity. Nevertheless, in higher-order cortical areas that are involved in cognitive functions like decision-making, working memory, and cognitive flexibility, the structural organization of inhibitory cell circuits is not completely understood. In this study we show that perisomatic inhibitory control of excitatory cells in the medial prefrontal cortex is performed by two types of basket cells endowed with different morphologic properties that provide inhibitory inputs with distinct layer specificity on cells projecting to disparate areas. Revealing this difference in innervation strategy of the two basket cell types is a key step toward understanding how they fulfill their distinct roles in cortical network operations.
Collapse
Affiliation(s)
- Petra Nagy-Pál
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Judit M Veres
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Fekete
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Mária R Karlócai
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Filippo Weisz
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Bence Barabás
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Zsófia Reéb
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Norbert Hájos
- Eötvös Loránd Research Network Institute of Experimental Medicine, 1083 Budapest, Hungary
- Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, Indiana 47405
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana 47405
| |
Collapse
|
6
|
Veres JM, Fekete Z, Müller K, Andrasi T, Rovira-Esteban L, Barabas B, Papp OI, Hajos N. Fear learning and aversive stimuli differentially change excitatory synaptic transmission in perisomatic inhibitory cells of the basal amygdala. Front Cell Neurosci 2023; 17:1120338. [PMID: 37731462 PMCID: PMC10507864 DOI: 10.3389/fncel.2023.1120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Inhibitory circuits in the basal amygdala (BA) have been shown to play a crucial role in associative fear learning. How the excitatory synaptic inputs received by BA GABAergic interneurons are influenced by memory formation, a network parameter that may contribute to learning processes, is still largely unknown. Here, we investigated the features of excitatory synaptic transmission received by the three types of perisomatic inhibitory interneurons upon cue-dependent fear conditioning and aversive stimulus and tone presentations without association. Acute slices were prepared from transgenic mice: one group received tone presentation only (conditioned stimulus, CS group), the second group was challenged by mild electrical shocks unpaired with the CS (unsigned unconditioned stimulus, unsigned US group) and the third group was presented with the CS paired with the US (signed US group). We found that excitatory synaptic inputs (miniature excitatory postsynaptic currents, mEPSCs) recorded in distinct interneuron types in the BA showed plastic changes with different patterns. Parvalbumin (PV) basket cells in the unsigned US and signed US group received mEPSCs with reduced amplitude and rate in comparison to the only CS group. Coupling the US and CS in the signed US group caused a slight increase in the amplitude of the events in comparison to the unsigned US group, where the association of CS and US does not take place. Excitatory synaptic inputs onto cholecystokinin (CCK) basket cells showed a markedly different change from PV basket cells in these behavioral paradigms: only the decay time was significantly faster in the unsigned US group compared to the only CS group, whereas the amplitude of mEPSCs increased in the signed US group compared to the only CS group. Excitatory synaptic inputs received by PV axo-axonic cells showed the least difference in the three behavioral paradigm: the only significant change was that the rate of mEPSCs increased in the signed US group when compared to the only CS group. These results collectively show that associative learning and aversive stimuli unpaired with CS cause different changes in excitatory synaptic transmission in BA perisomatic interneuron types, supporting the hypothesis that they play distinct roles in the BA network operations upon pain information processing and fear memory formation.
Collapse
Affiliation(s)
- Judit M. Veres
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Fekete
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Kinga Müller
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Tibor Andrasi
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Laura Rovira-Esteban
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Bence Barabas
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Orsolya I. Papp
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hajos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
7
|
Ma X, Miraucourt LS, Qiu H, Sharif-Naeini R, Khadra A. Modulation of SK Channels via Calcium Buffering Tunes Intrinsic Excitability of Parvalbumin Interneurons in Neuropathic Pain: A Computational and Experimental Investigation. J Neurosci 2023; 43:5608-5622. [PMID: 37451982 PMCID: PMC10401647 DOI: 10.1523/jneurosci.0426-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023] Open
Abstract
Parvalbumin-expressing interneurons (PVINs) play a crucial role within the dorsal horn of the spinal cord by preventing touch inputs from activating pain circuits. In both male and female mice, nerve injury decreases PVINs' output via mechanisms that are not fully understood. In this study, we show that PVINs from nerve-injured male mice change their firing pattern from tonic to adaptive. To examine the ionic mechanisms responsible for this decreased output, we used a reparametrized Hodgkin-Huxley type model of PVINs, which predicted (1) the firing pattern transition is because of an increased contribution of small conductance calcium-activated potassium (SK) channels, enabled by (2) impairment in intracellular calcium buffering systems. Analyzing the dynamics of the Hodgkin-Huxley type model further demonstrated that a generalized Hopf bifurcation differentiates the two types of state transitions observed in the transient firing of PVINs. Importantly, this predicted mechanism holds true when we embed the PVIN model within the neuronal circuit model of the spinal dorsal horn. To experimentally validate this hypothesized mechanism, we used pharmacological modulators of SK channels and demonstrated that (1) tonic firing PVINs from naive male mice become adaptive when exposed to an SK channel activator, and (2) adapting PVINs from nerve-injured male mice return to tonic firing on SK channel blockade. Our work provides important insights into the cellular mechanism underlying the decreased output of PVINs in the spinal dorsal horn after nerve injury and highlights potential pharmacological targets for new and effective treatment approaches to neuropathic pain.SIGNIFICANCE STATEMENT Parvalbumin-expressing interneurons (PVINs) exert crucial inhibitory control over Aβ fiber-mediated nociceptive pathways at the spinal dorsal horn. The loss of their inhibitory tone leads to neuropathic symptoms, such as mechanical allodynia, via mechanisms that are not fully understood. This study identifies the reduced intrinsic excitability of PVINs as a potential cause for their decreased inhibitory output in nerve-injured condition. Combining computational and experimental approaches, we predict a calcium-dependent mechanism that modulates PVINs' electrical activity following nerve injury: a depletion of cytosolic calcium buffer allows for the rapid accumulation of intracellular calcium through the active membranes, which in turn potentiates SK channels and impedes spike generation. Our results therefore pinpoint SK channels as potential therapeutic targets for treating neuropathic symptoms.
Collapse
Affiliation(s)
- Xinyue Ma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Loïs S Miraucourt
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Haoyi Qiu
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Reza Sharif-Naeini
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Anmar Khadra
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
8
|
Cell-Type Specific Inhibition Controls the High-Frequency Oscillations in the Medial Entorhinal Cortex. Int J Mol Sci 2022; 23:ijms232214087. [PMID: 36430563 PMCID: PMC9696652 DOI: 10.3390/ijms232214087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022] Open
Abstract
The medial entorhinal cortex (mEC) plays a critical role for spatial navigation and memory. While many studies have investigated the principal neurons within the entorhinal cortex, much less is known about the inhibitory circuitries within this structure. Here, we describe for the first time in the mEC a subset of parvalbumin-positive (PV+) interneurons (INs)-stuttering cells (STUT)-with morphological, intrinsic electrophysiological, and synaptic properties distinct from fast-spiking PV+ INs. In contrast to the fast-spiking PV+ INs, the axon of the STUT INs also terminated in layer 3 and showed subthreshold membrane oscillations at gamma frequencies. Whereas the synaptic output of the STUT INs was only weakly reduced by a μ-opioid agonist, their inhibitory inputs were strongly suppressed. Given these properties, STUT are ideally suited to entrain gamma activity in the pyramidal cell population of the mEC. We propose that activation of the μ-opioid receptors decreases the GABA release from the PV+ INs onto the STUT, resulting in disinhibition of the STUT cell population and the consequent increase in network gamma power. We therefore suggest that the opioid system plays a critical role, mediated by STUT INs, in the neural signaling and oscillatory network activity within the mEC.
Collapse
|
9
|
Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo. Nat Commun 2022; 13:6715. [PMID: 36344570 PMCID: PMC9640570 DOI: 10.1038/s41467-022-34520-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Neuronal plasticity has been shown to be causally linked to coincidence detection through dendritic spikes (dSpikes). We demonstrate the existence of SPW-R-associated, branch-specific, local dSpikes and their computational role in basal dendrites of hippocampal PV+ interneurons in awake animals. To measure the entire dendritic arbor of long thin dendrites during SPW-Rs, we used fast 3D acousto-optical imaging through an eccentric deep-brain adapter and ipsilateral local field potential recording. The regenerative calcium spike started at variable, NMDA-AMPA-dependent, hot spots and propagated in both direction with a high amplitude beyond a critical distance threshold (~150 µm) involving voltage-gated calcium channels. A supralinear dendritic summation emerged during SPW-R doublets when two successive SPW-R events coincide within a short temporal window (~150 ms), e.g., during more complex association tasks, and generated large dSpikes with an about 2.5-3-fold amplitude increase which propagated down to the soma. Our results suggest that these doublet-associated dSpikes can work as a dendritic-level temporal and spatial coincidence detector during SPW-R-related network computation in awake mice.
Collapse
|
10
|
Voss L, Bartos M, Elgueta C, Sauer JF. Interneuron function and cognitive behavior are preserved upon postnatal removal of Lhx6. Sci Rep 2022; 12:4923. [PMID: 35318414 PMCID: PMC8941127 DOI: 10.1038/s41598-022-09003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/09/2022] [Indexed: 11/22/2022] Open
Abstract
LIM homeobox domain transcription factor 6 (Lhx6) is crucial for the prenatal specification and differentiation of hippocampal GABAergic interneuron precursors. Interestingly, Lhx6 remains to be expressed in parvalbumin-positive hippocampal interneurons (PVIs) long after specification and differentiation have been completed, the functional implications of which remain elusive. We addressed the role of adult-expressed Lhx6 in the hippocampus by knocking down Lhx6 in adult mice (> 8 weeks old) using viral or transgenic expression of Cre-recombinase in Lhx6loxP/loxP mice. Late removal of Lhx6 did not affect the number of PVIs and had no impact on the morphological and physiological properties of PVIs. Furthermore, mice lacking Lhx6 in PVIs displayed normal cognitive behavior. Loss of Lhx6 only partially reduced the expression of Sox6 and Arx, downstream transcription factors that depend on Lhx6 during embryonic development of PVIs. Our data thus suggest that while Lhx6 is vitally important to drive interneuron transcriptional networks during early development, it becomes uncoupled from downstream effectors during postnatal life.
Collapse
Affiliation(s)
- Lars Voss
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marlene Bartos
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Claudio Elgueta
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Jonas-Frederic Sauer
- Institute of Physiology I, Medical Faculty, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Gradwell MA, Boyle KA, Browne TJ, Bell AM, Leonardo J, Peralta Reyes FS, Dickie AC, Smith KM, Callister RJ, Dayas CV, Hughes DI, Graham BA. Diversity of inhibitory and excitatory parvalbumin interneuron circuits in the dorsal horn. Pain 2022; 163:e432-e452. [PMID: 34326298 PMCID: PMC8832545 DOI: 10.1097/j.pain.0000000000002422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT Parvalbumin-expressing interneurons (PVINs) in the spinal dorsal horn are found primarily in laminae II inner and III. Inhibitory PVINs play an important role in segregating innocuous tactile input from pain-processing circuits through presynaptic inhibition of myelinated low-threshold mechanoreceptors and postsynaptic inhibition of distinct spinal circuits. By comparison, relatively little is known of the role of excitatory PVINs (ePVINs) in sensory processing. Here, we use neuroanatomical and optogenetic approaches to show that ePVINs comprise a larger proportion of the PVIN population than previously reported and that both ePVIN and inhibitory PVIN populations form synaptic connections among (and between) themselves. We find that these cells contribute to neuronal networks that influence activity within several functionally distinct circuits and that aberrant activity of ePVINs under pathological conditions is well placed to contribute to the development of mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mark A. Gradwell
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Kieran A. Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tyler J. Browne
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Andrew M. Bell
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacklyn Leonardo
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fernanda S. Peralta Reyes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kelly M. Smith
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J. Callister
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|
12
|
Ecker A, Bagi B, Vértes E, Steinbach-Németh O, Karlocai MR, Papp OI, Miklós I, Hájos N, Freund T, Gulyás AI, Káli S. Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3. eLife 2022; 11:71850. [PMID: 35040779 PMCID: PMC8865846 DOI: 10.7554/elife.71850] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated (‘replayed’), either in the same or reversed order, during bursts of activity (sharp wave-ripples [SWRs]) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated.
Collapse
|
13
|
Function and Plasticity of Electrical Synapses in the Mammalian Brain: Role of Non-Junctional Mechanisms. BIOLOGY 2022; 11:biology11010081. [PMID: 35053079 PMCID: PMC8773336 DOI: 10.3390/biology11010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023]
Abstract
Simple Summary Relevant brain functions, such as perception, organization of behavior, and cognitive processes, are the outcome of information processing by neural circuits. Within these circuits, communication between neurons mainly relies on two modalities of synaptic transmission: chemical and electrical. Moreover, changes in the strength of these connections, aka synaptic plasticity, are believed to underlie processes of learning and memory, and its dysfunction has been suggested to underlie a variety of neurological disorders. While the relevance of chemical transmission and its plastic changes are known in great detail, analogous mechanisms and functional impact of their electrical counterparts were only recently acknowledged. In this article, we review the basic physical principles behind electrical transmission between neurons, the plethora of functional operations supported by this modality of neuron-to-neuron communication, as well as the basic principles of plasticity at these synapses. Abstract Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals, they are mostly composed of the protein connexin36. Circuits of electrically coupled neurons are widespread in these animals. Plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations such as lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on the gap junction resistance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage and ligand gated channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here, we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.
Collapse
|
14
|
Jun R, Zhang W, Beacher NJ, Zhang Y, Li Y, Lin DT. Dysbindin-1, BDNF, and GABAergic Transmission in Schizophrenia. Front Psychiatry 2022; 13:876749. [PMID: 35815020 PMCID: PMC9258742 DOI: 10.3389/fpsyt.2022.876749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a psychiatric disorder characterized by hallucinations, anhedonia, disordered thinking, and cognitive impairments. Both genetic and environmental factors contribute to schizophrenia. Dysbindin-1 (DTNBP1) and brain-derived neurotrophic factor (BDNF) are both genetic factors associated with schizophrenia. Mice lacking Dtnbp1 showed behavioral deficits similar to human patients suffering from schizophrenia. DTNBP1 plays important functions in synapse formation and maintenance, receptor trafficking, and neurotransmitter release. DTNBP1 is co-assembled with 7 other proteins into a large protein complex, known as the biogenesis of lysosome-related organelles complex-1 (BLOC-1). Large dense-core vesicles (LDCVs) are involved in the secretion of hormones and neuropeptides, including BDNF. BDNF plays important roles in neuronal development, survival, and synaptic plasticity. BDNF is also critical in maintaining GABAergic inhibitory transmission in the brain. Two studies independently showed that DTNBP1 mediated activity-dependent BDNF secretion to maintain inhibitory transmission. Imbalance of excitatory and inhibitory neural activities is thought to contribute to schizophrenia. In this mini-review, we will discuss a potential pathogenetic mechanism for schizophrenia involving DTNBP1, BDNF, and inhibitory transmission. We will also discuss how these processes are interrelated and associated with a higher risk of schizophrenia development.
Collapse
Affiliation(s)
- Rachel Jun
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Nicholas J Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
15
|
Theta activity paradoxically boosts gamma and ripple frequency sensitivity in prefrontal interneurons. Proc Natl Acad Sci U S A 2021; 118:2114549118. [PMID: 34903668 DOI: 10.1073/pnas.2114549118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 11/18/2022] Open
Abstract
Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states. While fast-spiking neurons always exhibited a wide bandwidth of around 400 Hz, the response properties of spike-frequency adapting interneurons switched with the background input's statistics. Slowly fluctuating background activity, as typical for sleep or quiet wakefulness, dramatically boosted the neurons' sensitivity to gamma and ripple frequencies. We developed a time-resolved dynamic gain analysis and revealed rapid sensitivity modulations that enable neurons to periodically boost gamma oscillations and ripples during specific phases of ongoing low-frequency oscillations. This mechanism predicts these prefrontal interneurons to be exquisitely sensitive to high-frequency ripples, especially during brain states characterized by slow rhythms, and to contribute substantially to theta-gamma cross-frequency coupling.
Collapse
|
16
|
De Gregorio R, Chen X, Petit EI, Dobrenis K, Sze JY. Disruption of Transient SERT Expression in Thalamic Glutamatergic Neurons Alters Trajectory of Postnatal Interneuron Development in the Mouse Cortex. Cereb Cortex 2021; 30:1623-1636. [PMID: 31504267 DOI: 10.1093/cercor/bhz191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/29/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
In mice, terminal differentiation of subpopulations of interneurons occurs in late postnatal stages, paralleling the emergence of the adult cortical architecture. Here, we investigated the effects of altered initial cortical architecture on later interneuron development. We identified that a class of somatostatin (SOM)-expressing GABAergic interneurons undergoes terminal differentiation between 2nd and 3rd postnatal week in the mouse somatosensory barrel cortex and upregulates Reelin expression during neurite outgrowth. Our previous work demonstrated that transient expression (E15-P10) of serotonin uptake transporter (SERT) in thalamocortical projection neurons regulates barrel elaboration during cortical map establishment. We show here that in thalamic neuron SERT knockout mice, these SOM-expressing interneurons develop at the right time, reach correct positions and express correct neurochemical markers, but only 70% of the neurons remain in the adult barrel cortex. Moreover, those neurons that remain display altered dendritic patterning. Our data indicate that a precise architecture at the cortical destination is not essential for specifying late-developing interneuron identities, their cortical deposition, and spatial organization, but dictates their number and dendritic structure ultimately integrated into the cortex. Our study illuminates how disruption of temporal-specific SERT function and related key regulators during cortical map establishment can alter interneuron development trajectory that persists to adult central nervous system.
Collapse
Affiliation(s)
- Roberto De Gregorio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Xiaoning Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Emilie I Petit
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| |
Collapse
|
17
|
Ren Y, Liu Y, Luo M. Gap Junctions Between Striatal D1 Neurons and Cholinergic Interneurons. Front Cell Neurosci 2021; 15:674399. [PMID: 34168539 PMCID: PMC8217616 DOI: 10.3389/fncel.2021.674399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
The striatum participates in numerous important behaviors. Its principal projection neurons use GABA and peptides as neurotransmitters and interact extensively with interneurons, including cholinergic interneurons (ChIs) that are tonically active. Dissecting the interactions between projection neurons and ChIs is important for uncovering the role and mechanisms of the striatal microcircuits. Here, by combining several optogenetic tools with cell type-specific electrophysiological recordings, we uncovered direct electrical coupling between D1-type projection neurons and ChIs, in addition to the chemical transmission between these two major cell types. Optogenetic stimulation or inhibition led to bilateral current exchanges between D1 neurons and ChIs, which can be abolished by gap junction blockers. We further confirmed the presence of gap junctions through paired electrophysiological recordings and dye microinjections. Finally, we found that activating D1 neurons promotes basal activity of ChIs via gap junctions. Collectively, these results reveal the coexistence of the chemical synapse and gap junctions between D1 neurons and ChIs, which contributes to maintaining the tonically active firing patterns of ChIs.
Collapse
Affiliation(s)
- Yuqi Ren
- School of Life Sciences, Peking University, Beijing, China.,Peking University-Tsinghua University-NIBS Joint Graduate Program, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Beijing, China
| |
Collapse
|
18
|
Perumal MB, Latimer B, Xu L, Stratton P, Nair S, Sah P. Microcircuit mechanisms for the generation of sharp-wave ripples in the basolateral amygdala: A role for chandelier interneurons. Cell Rep 2021; 35:109106. [PMID: 33979609 PMCID: PMC9136954 DOI: 10.1016/j.celrep.2021.109106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/22/2021] [Accepted: 04/18/2021] [Indexed: 01/11/2023] Open
Abstract
Synchronized activity in neural circuits, detected as oscillations in the extracellular field potential, has been associated with learning and memory. Neural circuits in the basolateral amygdala (BLA), a mid-temporal lobe structure, generate oscillations in specific frequency bands to mediate emotional memory functions. However, how BLA circuits generate oscillations in distinct frequency bands is not known. Of these, sharp-waves (SWs) are repetitive, brief transitions that contain a low-frequency (<20 Hz) envelope, often coupled with ripples (100–300 Hz), have been associated with memory consolidation. Here, we show that SWs are retained in the BLA ex vivo and generated by local circuits. We demonstrate that an action potential in a chandelier interneuron is sufficient to initiate SWs through local circuits. Using a physiologically constrained model, we show that microcircuits organized as chandelier-interneuron-driven modules reproduce SWs and associated cellular events, revealing a functional role for chandelier interneurons and microcircuits for SW generation. Perumal et al. investigate circuits that generate network oscillations called sharp waves (SWs) in the basolateral amygdala. They show that discharge in a chandelier interneuron can initiate SW oscillations—a network activity associated with memory consolidation. They develop a network model with chandelier-interneuron-driven modular microcircuits for SW generation.
Collapse
Affiliation(s)
| | - Benjamin Latimer
- Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Li Xu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Stratton
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Satish Nair
- Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211 USA
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; Joint Center for Neuroscience and Neural Engineering and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, P.R. China.
| |
Collapse
|
19
|
Poulsen SB, Cheng L, Penton D, Kortenoeven MLA, Matchkov VV, Loffing J, Little R, Murali SK, Fenton RA. Activation of the kidney sodium chloride cotransporter by the β2-adrenergic receptor agonist salbutamol increases blood pressure. Kidney Int 2021; 100:321-335. [PMID: 33940111 DOI: 10.1016/j.kint.2021.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
The thiazide-sensitive sodium-chloride-cotransporter (NCC) in the kidney distal convoluted tubule (DCT) plays an essential role in sodium and potassium homeostasis. Here, we demonstrate that NCC activity is increased by the β2-adrenoceptor agonist salbutamol, a drug prevalently used to treat asthma. Relative to β1-adrenergic receptors, the β2-adrenergic receptors were greatly enriched in mouse DCT cells. In mice, administration of salbutamol increased NCC phosphorylation (indicating increased activity) within 30 minutes but also caused hypokalemia, which also increases NCC phosphorylation. In ex vivo kidney slices and isolated tubules, salbutamol increased NCC phosphorylation in the pharmacologically relevant range of 0.01-10 μM, an effect observed after 15 minutes and maintained at 60 minutes. Inhibition of the inwardly rectifying potassium channel (Kir) 4.1 or the downstream with-no-lysine kinases (WNKs) and STE20/SPS1-related proline alanine-rich kinase (SPAK) pathway greatly attenuated, but did not prevent, salbutamol-induced NCC phosphorylation. Salbutamol increased cAMP in tubules, kidney slices and mpkDCT cells (model of DCT). Phosphoproteomics indicated that protein phosphatase 1 (PP1) was a key upstream regulator of salbutamol effects. A role for PP1 and the PP1 inhibitor 1 (I1) was confirmed in tubules using inhibitors of PP1 or kidney slices from I1 knockout mice. On normal and high salt diets, salbutamol infusion increased systolic blood pressure, but this increase was normalized by thiazide suggesting a role for NCC. Thus, β2-adrenergic receptor signaling modulates NCC activity via I1/PP1 and WNK-dependent pathways, and chronic salbutamol administration may be a risk factor for hypertension.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - David Penton
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | | - Robert Little
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.
| |
Collapse
|
20
|
Matsuda YT, Miyamoto H, Joho RH, Hensch TK. K v3.1 channels regulate the rate of critical period plasticity. Neurosci Res 2021; 167:3-10. [PMID: 33872635 DOI: 10.1016/j.neures.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022]
Abstract
Experience-dependent plasticity within visual cortex is controlled by postnatal maturation of inhibitory circuits, which are both morphologically diverse and precisely connected. Gene-targeted disruption of the voltage-dependent potassium channel Kv3.1 broadens action potentials and reduces net inhibitory function of parvalbumin (PV)-positive GABA subtypes within the neocortex. In mice lacking Kv3.1, the rate of input loss from an eye deprived of vision was slowed two-fold, despite otherwise normal critical period timecourse and receptive field properties. Rapid ocular dominance plasticity was restored by local or systemic enhancement of GABAergic transmission with acute benzodiazepine infusion. Diazepam instead exacerbated a global suppression of slow-wave oscillations during sleep described previously in these mutant mice, which therefore did not account for the rescued plasticity. Rapid ocular dominance shifts closely reflected Kv3.1 gene dosage that prevented prolonged spike discharge of their target pyramidal cells in vivo or the spike amplitude decrement of fast-spiking cells during bouts of high-frequency firing in vitro. Late postnatal expression of this unique channel in fast-spiking interneurons thus subtly regulates the speed of critical period plasticity with implications for mental illnesses.
Collapse
Affiliation(s)
- Yoshi-Taka Matsuda
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan; Department of Child Studies, Shiraume Gakuen University, 1-830 Kodaira-shi, Tokyo, 187-8570 Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan; International Research Center for Neurointelligence, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Rolf H Joho
- Center for Basic Neuroscience, Univ. Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takao K Hensch
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan; International Research Center for Neurointelligence, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
21
|
Kortenoeven MLA, Cheng L, Wu Q, Fenton RA. An in vivo protein landscape of the mouse DCT during high dietary K + or low dietary Na + intake. Am J Physiol Renal Physiol 2021; 320:F908-F921. [PMID: 33779313 DOI: 10.1152/ajprenal.00064.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hormone aldosterone is essential for maintaining K+ and Na+ balance and controlling blood pressure. Aldosterone has different effects if it is secreted due to hypovolemia or hyperkalemia. The kidney distal convoluted tubule (DCT) is believed to play a central role in mediating the differential responses to aldosterone. To determine the alterations in the DCT that may be responsible for these effects, male mice with green fluorescent protein expression specifically in the DCT were maintained on diets containing low NaCl (hypovolemic state) or high potassium citrate (hyperkalemic state) for 4 days, and DCT cells were isolated using fluorescence-activated cell sorting. This pure population of DCT cells was subjected to analysis by liquid chromatography-coupled tandem mass spectrometry. Over 3,000 proteins were identified in the DCT, creating the first proteome of the mouse DCT. Of the identified proteins, 210 proteins were altered in abundance following a low-NaCl diet and 625 proteins following the high-K+ diet. Many of these changes were not detectable by analyzing whole kidney samples from the same animals. When comparing responses to high-K+ versus low-Na+ diets, protein translation, chaperone-mediated protein folding, and protein ubiquitylation were likely to be significantly altered in the DCT subsequent to a high-K+ diet. In conclusion, this study defines an in vivo protein landscape of the DCT in male mice following either a low-NaCl or a high-K+ diet and acts as an essential resource for the kidney research community.NEW & NOTEWORTHY The mineralocorticoid aldosterone, essential for maintaining body K+ and Na+ balance, has different effects if secreted due to hypovolemia or hyperkalemia. Here, we used proteomics to profile kidney distal convoluted tubule (DCT) cells isolated by a novel FACS approach from mice fed a low-Na+ diet (mimicking hypovolemia) or a high-K+ diet (mimicking hyperkalemia). The study provides the first in-depth proteome of the mouse DCT and insights into how it is physiologically regulated.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lei Cheng
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Arlt C, Häusser M. Microcircuit Rules Governing Impact of Single Interneurons on Purkinje Cell Output In Vivo. Cell Rep 2021; 30:3020-3035.e3. [PMID: 32130904 PMCID: PMC7059114 DOI: 10.1016/j.celrep.2020.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 01/05/2023] Open
Abstract
The functional impact of single interneurons on neuronal output in vivo and how interneurons are recruited by physiological activity patterns remain poorly understood. In the cerebellar cortex, molecular layer interneurons and their targets, Purkinje cells, receive excitatory inputs from granule cells and climbing fibers. Using dual patch-clamp recordings from interneurons and Purkinje cells in vivo, we probe the spatiotemporal interactions between these circuit elements. We show that single interneuron spikes can potently inhibit Purkinje cell output, depending on interneuron location. Climbing fiber input activates many interneurons via glutamate spillover but results in inhibition of those interneurons that inhibit the same Purkinje cell receiving the climbing fiber input, forming a disinhibitory motif. These interneuron circuits are engaged during sensory processing, creating diverse pathway-specific response functions. These findings demonstrate how the powerful effect of single interneurons on Purkinje cell output can be sculpted by various interneuron circuit motifs to diversify cerebellar computations.
Collapse
Affiliation(s)
- Charlotte Arlt
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Tholen LE, Bos C, Jansen PWTC, Venselaar H, Vermeulen M, Hoenderop JGJ, de Baaij JHF. Bifunctional protein PCBD2 operates as a co-factor for hepatocyte nuclear factor 1β and modulates gene transcription. FASEB J 2021; 35:e21366. [PMID: 33749890 DOI: 10.1096/fj.202002022r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Hepatocyte nuclear factor 1β (HNF1β) is an essential transcription factor in development of the kidney, liver, and pancreas. HNF1β-mediated transcription of target genes is dependent on the cell type and the development stage. Nevertheless, the regulation of HNF1β function by enhancers and co-factors that allow this cell-specific transcription is largely unknown. To map the HNF1β interactome we performed mass spectrometry in a mouse kidney inner medullary collecting duct cell line. Pterin-4a-carbinolamine dehydratase 2 (PCBD2) was identified as a novel interaction partner of HNF1β. PCBD2 and its close homolog PCBD1 shuttle between the cytoplasm and nucleus to exert their enzymatic and transcriptional activities. Although both PCBD proteins share high sequence identity (48% and 88% in HNF1 recognition helix), their tissue expression patterns are unique. PCBD1 is most abundant in kidney and liver while PCBD2 is also abundant in lung, spleen, and adipose tissue. Using immunolocalization studies and biochemical analysis we show that in presence of HNF1β the nuclear localization of PCBD1 and PCBD2 increases significantly. Promoter luciferase assays demonstrate that co-factors PCBD1 and PCBD2 differentially regulate the ability of HNF1β to activate the promoters of transcriptional targets important in renal electrolyte homeostasis. Deleting the N-terminal sequence of PCBD2, not found in PCBD1, diminished the differential effects of the co-factors on HNF1β activity. All together these results indicate that PCBD1 and PCBD2 can exert different effects on HNF1β-mediated transcription. Future studies should confirm whether these unique co-factor activities also apply to HNF1β-target genes involved in additional processes besides ion transport in the kidney.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Olde Hanhof CJA, Yousef Yengej FA, Rookmaaker MB, Verhaar MC, van der Wijst J, Hoenderop JG. Modeling Distal Convoluted Tubule (Patho)Physiology: An Overview of Past Developments and an Outlook Toward the Future. Tissue Eng Part C Methods 2021; 27:200-212. [PMID: 33544049 DOI: 10.1089/ten.tec.2020.0345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kidneys are essential for maintaining electrolyte homeostasis. Blood electrolyte composition is controlled by active reabsorption and secretion processes in dedicated segments of the kidney tubule. Specifically, the distal convoluted tubule (DCT) and connecting tubule are important for regulating the final excretion of sodium, magnesium, and calcium. Studies unravelling the specific function of these segments have greatly improved our understanding of DCT (patho)physiology. Over the years, experimental models used to study the DCT have changed and the field has advanced from early dissection studies with rats and rabbits to the use of various transgenic mouse models. Developments in dissection techniques and cell culture methods have resulted in immortalized mouse DCT cell lines and made it possible to specifically obtain DCT fragments for ex vivo studies. However, we still do not fully understand the complex (patho)physiology of this segment and there is need for advanced human DCT models. Recently, kidney organoids and tubuloids have emerged as new complex cell models that provide excellent opportunities for physiological studies, disease modeling, drug discovery, and even personalized medicine in the future. This review presents an overview of cell models used to study the DCT and provides an outlook on kidney organoids and tubuloids as model for DCT (patho)physiology. Impact statement This study provides a detailed overview of past and future developments on cell models used to study kidney (patho)physiology and specifically the distal convoluted tubule (DCT) segment. Hereby, we highlight the need for an advanced human cell model of this segment and summarize recent advances in the field of kidney organoids and tubuloids with a focus on DCT properties. The findings reported in this review are significant for future developments toward an advanced human model of the DCT that will help to increase our understanding of DCT (patho)physiology.
Collapse
Affiliation(s)
- Charlotte J A Olde Hanhof
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Janickova L, Schwaller B. Parvalbumin-Deficiency Accelerates the Age-Dependent ROS Production in Pvalb Neurons in vivo: Link to Neurodevelopmental Disorders. Front Cell Neurosci 2020; 14:571216. [PMID: 33132847 PMCID: PMC7549402 DOI: 10.3389/fncel.2020.571216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 12/26/2022] Open
Abstract
In neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD) and schizophrenia, impairment/malfunctioning of a subpopulation of interneurons expressing the calcium-binding protein parvalbumin (PV) -here termed Pvalb neurons- has gradually emerged as a possible cause. These neurons may represent a hub or point-of-convergence in the etiology of NDD. Increased oxidative stress associated with mitochondria impairment in Pvalb neurons is discussed as an essential step in schizophrenia etiology. Since PV downregulation is a common finding in ASD and schizophrenia individuals and PV-deficient (PV-/-) mice show a strong ASD-like behavior phenotype, we investigated the putative link between PV expression, alterations in mitochondria and oxidative stress. In a longitudinal study with 1, 3, and 6-months old PV-/- and wild type mice, oxidative stress was investigated in 9 Pvalb neuron subpopulations in the hippocampus, striatum, somatosensory cortex, medial prefrontal cortex, thalamic reticular nucleus (TRN) and cerebellum. In Pvalb neuron somata in the striatum and TRN, we additionally determined mitochondria volume and distribution at these three time points. In all Pvalb neuron subpopulations, we observed an age-dependent increase in oxidative stress and the increase strongly correlated with PV expression levels, but not with mitochondria density in these Pvalb neurons. Moreover, oxidative stress was elevated in Pvalb neurons of PV-/- mice and the magnitude of the effect was again correlated with PV expression levels in the corresponding wild type Pvalb neuron subpopulations. The PV-dependent effect was insignificant at 1 month and relative differences between WT and PV-/- Pvalb neurons were largest at 3 months. Besides the increase in mitochondria volume in PV's absence in TRN and striatal PV-/- Pvalb neurons fully present already at 1 month, we observed a redistribution of mitochondria from the perinuclear region toward the plasma membrane at all time points. We suggest that in absence of PV, slow Ca2+ buffering normally exerted by PV is compensated by a (mal)adaptive, mostly sub-plasmalemmal increase in mitochondria resulting in increased oxidative stress observed in 3- and 6-months old mice. Since PV-/- mice display core ASD-like symptoms already at 1 month, oxidative stress in Pvalb neurons is not a likely cause for their ASD-related behavior observed at this age.
Collapse
Affiliation(s)
| | - Beat Schwaller
- Department of Neurosciences amd Movement Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
26
|
Sanz‐Morello B, Pfisterer U, Winther Hansen N, Demharter S, Thakur A, Fujii K, Levitskii SA, Montalant A, Korshunova I, Mammen PPA, Kamenski P, Noguchi S, Aldana BI, Hougaard KS, Perrier J, Khodosevich K. Complex IV subunit isoform COX6A2 protects fast-spiking interneurons from oxidative stress and supports their function. EMBO J 2020; 39:e105759. [PMID: 32744742 PMCID: PMC7507454 DOI: 10.15252/embj.2020105759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.
Collapse
Affiliation(s)
- Berta Sanz‐Morello
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | - Samuel Demharter
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ashish Thakur
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Katsunori Fujii
- Department of PediatricsChiba University Graduate School of MedicineChibaJapan
| | | | - Alexia Montalant
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Pradeep PA Mammen
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Piotr Kamenski
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Satoru Noguchi
- Department of Neuromuscular ResearchNational Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Blanca Irene Aldana
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Karin Sørig Hougaard
- Section of Environmental HealthNational Research Centre for the Working EnvironmentCopenhagenDenmark
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
28
|
Janickova L, Rechberger KF, Wey L, Schwaller B. Absence of parvalbumin increases mitochondria volume and branching of dendrites in inhibitory Pvalb neurons in vivo: a point of convergence of autism spectrum disorder (ASD) risk gene phenotypes. Mol Autism 2020; 11:47. [PMID: 32517751 PMCID: PMC7285523 DOI: 10.1186/s13229-020-00323-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/27/2020] [Indexed: 01/01/2023] Open
Abstract
Background In fast firing, parvalbumin (PV)-expressing (Pvalb) interneurons, PV acts as an intracellular Ca2+ signal modulator with slow-onset kinetics. In Purkinje cells of PV−/− mice, adaptive/homeostatic mechanisms lead to an increase in mitochondria, organelles equally capable of delayed Ca2+ sequestering/buffering. An inverse regulation of PV and mitochondria likewise operates in cell model systems in vitro including myotubes, epithelial cells, and oligodendrocyte-like cells overexpressing PV. Whether such opposite regulation pertains to all Pvalb neurons is currently unknown. In oligodendrocyte-like cells, PV additionally decreases growth and branching of processes in a cell-autonomous manner. Methods The in vivo effects of absence of PV were investigated in inhibitory Pvalb neurons expressing EGFP, present in the somatosensory and medial prefrontal cortex, striatum, thalamic reticular nucleus, hippocampal regions DG, CA3, and CA1 and cerebellum of mice either wild-type or knockout (PV−/−) for the Pvalb gene. Changes in Pvalb neuron morphology and PV concentrations were determined using immunofluorescence, followed by 3D-reconstruction and quantitative image analyses. Results PV deficiency led to an increase in mitochondria volume and density in the soma; the magnitude of the effect was positively correlated with the estimated PV concentrations in the various Pvalb neuron subpopulations in wild-type neurons. The increase in dendrite length and branching, as well as thickness of proximal dendrites of selected PV−/− Pvalb neurons is likely the result of the observed increased density and length of mitochondria in these PV−/− Pvalb neuron dendrites. The increased branching and soma size directly linked to the absence of PV is assumed to contribute to the increased volume of the neocortex present in juvenile PV−/− mice. The extended dendritic branching is in line with the hypothesis of local hyperconnectivity in autism spectrum disorder (ASD) and ASD mouse models including PV−/− mice, which display all ASD core symptoms and several comorbidities including cortical macrocephaly at juvenile age. Conclusion PV is involved in most proposed mechanisms implicated in ASD etiology: alterations in Ca2+ signaling affecting E/I balance, changes in mitochondria structure/function, and increased dendritic length and branching, possibly resulting in local hyperconnectivity, all in a likely cell autonomous way.
Collapse
Affiliation(s)
- Lucia Janickova
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Karin Farah Rechberger
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Lucas Wey
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Beat Schwaller
- Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
29
|
Madden JF, Davis OC, Boyle KA, Iredale JA, Browne TJ, Callister RJ, Smith DW, Jobling P, Hughes DI, Graham BA. Functional and Molecular Analysis of Proprioceptive Sensory Neuron Excitability in Mice. Front Mol Neurosci 2020; 13:36. [PMID: 32477061 PMCID: PMC7232575 DOI: 10.3389/fnmol.2020.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Neurons located in dorsal root ganglia (DRG) are crucial for transmitting peripheral sensations such as proprioception, touch, temperature, and nociception to the spinal cord before propagating these signals to higher brain structures. To date, difficulty in identifying modality-specific DRG neurons has limited our ability to study specific populations in detail. As the calcium-binding protein parvalbumin (PV) is a neurochemical marker for proprioceptive DRG cells we used a transgenic mouse line expressing green fluorescent protein (GFP) in PV positive DRGs, to study the functional and molecular properties of putative proprioceptive neurons. Immunolabeled DRGs showed a 100% overlap between GFP positive (GFP+) and PV positive cells, confirming the PVeGFP mouse accurately labeled PV neurons. Targeted patch-clamp recording from isolated GFP+ and GFP negative (GFP−) neurons showed the passive membrane properties of the two groups were similar, however, their active properties differed markedly. All GFP+ neurons fired a single spike in response to sustained current injection and their action potentials (APs) had faster rise times, lower thresholds and shorter half widths. A hyperpolarization-activated current (Ih) was observed in all GFP+ neurons but was infrequently noted in the GFP− population (100% vs. 11%). For GFP+ neurons, Ih activation rates varied markedly, suggesting differences in the underlying hyperpolarization-activated cyclic nucleotide-gated channel (HCN) subunit expression responsible for the current kinetics. Furthermore, quantitative polymerase chain reaction (qPCR) showed the HCN subunits 2, 1, and 4 mRNA (in that order) was more abundant in GFP+ neurons, while HCN 3 was more highly expressed in GFP− neurons. Likewise, immunolabeling confirmed HCN 1, 2, and 4 protein expression in GFP+ neurons. In summary, certain functional properties of GFP+ and GFP− cells differ markedly, providing evidence for modality-specific signaling between the two groups. However, the GFP+ DRG population demonstrates considerable internal heterogeneity when hyperpolarization-activated cyclic nucleotide-gated channel (HCN channel) properties and subunit expression are considered. We propose this heterogeneity reflects the existence of different peripheral receptors such as tendon organs, muscle spindles or mechanoreceptors in the putative proprioceptive neuron population.
Collapse
Affiliation(s)
- Jessica F Madden
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Olivia C Davis
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacqueline A Iredale
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Douglas W Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
30
|
Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, Orsolits B, Molnár G, Heindl S, Schwarcz AD, Ujvári K, Környei Z, Tóth K, Szabadits E, Sperlágh B, Baranyi M, Csiba L, Hortobágyi T, Maglóczky Z, Martinecz B, Szabó G, Erdélyi F, Szipőcs R, Tamkun MM, Gesierich B, Duering M, Katona I, Liesz A, Tamás G, Dénes Á. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 2019; 367:528-537. [PMID: 31831638 DOI: 10.1126/science.aax6752] [Citation(s) in RCA: 395] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/14/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia-neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia-neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury-induced changes at somatic junctions triggered P2Y12 receptor-dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.
Collapse
Affiliation(s)
- Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Zsófia I László
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary.,Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Barbara Orsolits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Molnár
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Steffanie Heindl
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katinka Ujvári
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.,Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - László Csiba
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, Debrecen, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
| | - Zsófia Maglóczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Martinecz
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Róbert Szipőcs
- Institute for Solid State Physics and Optics of Wigner RCP, Budapest, Hungary
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Benno Gesierich
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany
| | - Marco Duering
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits of the Hungarian Academy of Sciences, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
31
|
Duan ZRS, Che A, Chu P, Modol L, Bollmann Y, Babij R, Fetcho RN, Otsuka T, Fuccillo MV, Liston C, Pisapia DJ, Cossart R, De Marco García NV. GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex. Neuron 2019; 105:75-92.e5. [PMID: 31780329 DOI: 10.1016/j.neuron.2019.10.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.
Collapse
Affiliation(s)
- Zhe Ran S Duan
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip Chu
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Modol
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Yannick Bollmann
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Takumi Otsuka
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
32
|
Smith KM, Browne TJ, Davis OC, Coyle A, Boyle KA, Watanabe M, Dickinson SA, Iredale JA, Gradwell MA, Jobling P, Callister RJ, Dayas CV, Hughes DI, Graham BA. Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn. eLife 2019; 8:49190. [PMID: 31713514 PMCID: PMC6908433 DOI: 10.7554/elife.49190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022] Open
Abstract
Nociceptive information is relayed through the spinal cord dorsal horn, a critical area in sensory processing. The neuronal circuits in this region that underpin sensory perception must be clarified to better understand how dysfunction can lead to pathological pain. This study used an optogenetic approach to selectively activate spinal interneurons that express the calcium-binding protein calretinin (CR). We show that these interneurons form an interconnected network that can initiate and sustain enhanced excitatory signaling, and directly relay signals to lamina I projection neurons. Photoactivation of CR interneurons in vivo resulted in a significant nocifensive behavior that was morphine sensitive, caused a conditioned place aversion, and was enhanced by spared nerve injury. Furthermore, halorhodopsin-mediated inhibition of these interneurons elevated sensory thresholds. Our results suggest that dorsal horn circuits that involve excitatory CR neurons are important for the generation and amplification of pain and identify these interneurons as a future analgesic target.
Collapse
Affiliation(s)
- Kelly M Smith
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia.,Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, United States.,Department of Neurobiology, University of Pittsburgh, Pittsburgh, United States
| | - Tyler J Browne
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Olivia C Davis
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - A Coyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kieran A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan
| | - Sally A Dickinson
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Jacqueline A Iredale
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Mark A Gradwell
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Robert J Callister
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - Christopher V Dayas
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Callaghan, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, Australia
| |
Collapse
|
33
|
Panthi S, Leitch B. The impact of silencing feed-forward parvalbumin-expressing inhibitory interneurons in the cortico-thalamocortical network on seizure generation and behaviour. Neurobiol Dis 2019; 132:104610. [PMID: 31494287 DOI: 10.1016/j.nbd.2019.104610] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Feed-forward inhibition (FFI) is an essential mechanism within the brain, to regulate neuronal firing and prevent runaway excitation. In the cortico-thalamocortical (CTC) network, fast spiking parvalbumin-expressing (PV+) inhibitory interneurons regulate the firing of pyramidal cells in the cortex and relay neurons in the thalamus. PV+ interneuron dysfunction has been implicated in several neurological disorders, including epilepsy. Previously, we demonstrated that loss of excitatory AMPA-receptors, specifically at synapses on PV+ interneurons in CTC feedforward microcircuits, occurs in the stargazer mouse model of absence epilepsy. These mice present with absence seizures characterized by spike and wave discharges (SWDs) on electroencephalogram (EEG) and concomitant behavioural arrest, similar to childhood absence epilepsy. The aim of the current study was to investigate the impact of loss of FFI within the CTC on absence seizure generation and behaviour using new Designer Receptor Exclusively Activated by Designer Drug (DREADD) technology. We crossed PV-Cre mice with Cre-dependent hM4Di DREADD strains of mice, which allowed Cre-recombinase-mediated restricted expression of inhibitory Gi-DREADDs in PV+ interneurons. We then tested the impact of global and focal (within the CTC network) silencing of PV+ interneurons. CNO mediated silencing of all PV+ interneurons by intraperitoneal injection caused the impairment of motor control, decreased locomotion and increased anxiety in a dose-dependent manner. Such silencing generated pathological oscillations similar to absence-like seizures. Focal silencing of PV+ interneurons within cortical or thalamic feedforward microcircuits, induced SWD-like oscillations and associated behavioural arrest. Epileptiform activity on EEG appeared significantly sooner after focal injection compared to peripheral injection of CNO. However, the mean duration of each oscillatory burst and spike frequency was similar, irrespective of mode of CNO delivery. No significant changes were observed in vehicle-treated or non-DREADD wild-type control animals. These data suggest that dysfunctional feed-forward inhibition in CTC microcircuits may be an important target for future therapy strategies for some patients with absence seizures. Additionally, silencing of PV+ interneurons in other brain regions may contribute to anxiety related neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Sandesh Panthi
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
34
|
Suk HJ, Boyden ES, van Welie I. Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods 2019; 326:108357. [PMID: 31336060 DOI: 10.1016/j.jneumeth.2019.108357] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022]
Abstract
Electrophysiology is the study of neural activity in the form of local field potentials, current flow through ion channels, calcium spikes, back propagating action potentials and somatic action potentials, all measurable on a millisecond timescale. Despite great progress in imaging technologies and sensor proteins, none of the currently available tools allow imaging of neural activity on a millisecond timescale and beyond the first few hundreds of microns inside the brain. The patch clamp technique has been an invaluable tool since its inception several decades ago and has generated a wealth of knowledge about the nature of voltage- and ligand-gated ion channels, sub-threshold and supra-threshold activity, and characteristics of action potentials related to higher order functions. Many techniques that evolve to be standardized tools in the biological sciences go through a period of transformation in which they become, at least to some degree, automated, in order to improve reproducibility, throughput and standardization. The patch clamp technique is currently undergoing this transition, and in this review, we will discuss various aspects of this transition, covering advances in automated patch clamp technology both in vitro and in vivo.
Collapse
Affiliation(s)
- Ho-Jun Suk
- Health Sciences and Technology, MIT, Cambridge, MA 02139, USA; Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA
| | - Edward S Boyden
- Media Lab, MIT, Cambridge, MA 02139, USA; McGovern Institute, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | | |
Collapse
|
35
|
Filice F, Blum W, Lauber E, Schwaller B. Inducible and reversible silencing of the Pvalb gene in mice: An in vitro and in vivo study. Eur J Neurosci 2019; 50:2694-2706. [PMID: 30883994 DOI: 10.1111/ejn.14404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Inducible and reversible regulation of gene expression is a powerful approach for unraveling gene functions. Here, we describe the generation of a system to efficiently downregulate in a reversible and inducible manner the Pvalb gene coding for the calcium-binding protein parvalbumin (PV) in mice. We made use of an IPTG-inducible short hairpin RNA to activate Pvalb transcript knockdown and subsequently downregulate PV. The downregulation was rapidly reversed after withdrawal of IPTG. In vitro and in vivo experiments revealed a decrease in PV expression of ≥50% in the presence of IPTG and full reversibility after IPTG removal. We foresee that the tightly regulated and reversible PV downregulation in mice in vivo will provide a new tool for the control of Pvalb transcript expression in a temporal manner. Because PV protein and PVALB transcript levels were found to be lower in the brain of patients with autism spectrum disorder and schizophrenia, the novel transgenic mouse line might serve as a model to investigate the putative role of PV in these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Federica Filice
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Walter Blum
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Emanuel Lauber
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Beat Schwaller
- Department of Neuroscience & Movements Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
36
|
Picard N, Takesian AE, Fagiolini M, Hensch TK. NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine response on cortical activity. Mol Psychiatry 2019; 24:828-838. [PMID: 30696941 PMCID: PMC6756203 DOI: 10.1038/s41380-018-0341-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses, but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the 2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibitory interneurons as a pivotal target of low-dose ketamine. Genetically deleting GluN2A receptors globally or selectively from PV interneurons abolished the rapid enhancement of visual cortical responses and gamma-band oscillations by ketamine. Moreover, during the follicular phase of the estrous cycle in female mice, the ketamine response was transiently attenuated along with a concomitant decrease of grin2A mRNA expression within PV interneurons. Thus, GluN2A receptors on PV interneurons mediate the immediate actions of low-dose ketamine treatment, and fluctuations in receptor expression across the estrous cycle may underlie sex-differences in drug efficacy.
Collapse
Affiliation(s)
- Nathalie Picard
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Anne E Takesian
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Michela Fagiolini
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Takao K Hensch
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Center for Brain Science, Department of Molecular Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA, 02138, USA.
| |
Collapse
|
37
|
Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat Commun 2019; 10:983. [PMID: 30816113 PMCID: PMC6395755 DOI: 10.1038/s41467-019-08873-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
In humans, gamma-band oscillations in the primary somatosensory cortex (S1) correlate with subjective pain perception. However, functional contributions to pain and the nature of underlying circuits are unclear. Here we report that gamma oscillations, but not other rhythms, are specifically strengthened independently of any motor component in the S1 cortex of mice during nociception. Moreover, mice with inflammatory pain show elevated resting gamma and alpha activity and increased gamma power in response to sub-threshold stimuli, in association with behavioral nociceptive hypersensitivity. Inducing gamma oscillations via optogenetic activation of parvalbumin-expressing inhibitory interneurons in the S1 cortex enhances nociceptive sensitivity and induces aversive avoidance behavior. Activity mapping identified a network of prefrontal cortical and subcortical centers whilst morphological tracing and pharmacological studies demonstrate the requirement of descending serotonergic facilitatory pathways in these pain-related behaviors. This study thus describes a mechanistic framework for modulation of pain by specific activity patterns in the S1 cortex. Gamma oscillations in somatosensory areas in humans correlate with pain perception and pain stimulus intensity, but could also reflect cognitive processes such as attention. Here the authors provide evidence in mice that these oscillations causally contribute to pain perception.
Collapse
|
38
|
Tokonami N, Takata T, Beyeler J, Ehrbar I, Yoshifuji A, Christensen EI, Loffing J, Devuyst O, Olinger EG. Uromodulin is expressed in the distal convoluted tubule, where it is critical for regulation of the sodium chloride cotransporter NCC. Kidney Int 2018; 94:701-715. [DOI: 10.1016/j.kint.2018.04.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/03/2018] [Accepted: 04/19/2018] [Indexed: 12/22/2022]
|
39
|
Traub RD, Whittington MA, Gutiérrez R, Draguhn A. Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions. Cell Tissue Res 2018; 373:671-691. [PMID: 30112572 DOI: 10.1007/s00441-018-2881-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/03/2018] [Indexed: 11/28/2022]
Abstract
There is considerable experimental evidence, anatomical and physiological, that gap junctions exist in the hippocampus. Electrical coupling through these gap junctions may be divided into three types: between principal neurons, between interneurons and at mixed chemical (glutamatergic)/electrical synapses. An approach, combining in vitro experimental with modeling techniques, sheds some light on the functional consequences of electrical coupling, for network oscillations and for seizures. Additionally, in vivo experiments, using mouse connexin knockouts, suggest that the presence of electrical coupling is important for optimal performance on selected behavioral tasks; however, the interpretation of such data, in cellular terms, has so far proven difficult. Given that invertebrate central pattern generators so often depend on both chemical and electrical synapses, our hypothesis is that hippocampus-mediated and -influenced behaviors will act likewise. Experiments, likely hard ones, will be required to test this intuition.
Collapse
Affiliation(s)
- Roger D Traub
- Department of Physical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA.
| | | | - Rafael Gutiérrez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados del IPN, Calzada de los Tenorios 235, 14330, Mexico City, Mexico.,Institut für Physiologie und Pathophysiologie, Universität Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Andreas Draguhn
- Institut für Physiologie und Pathophysiologie, Universität Heidelberg, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
40
|
Takesian AE, Bogart LJ, Lichtman JW, Hensch TK. Inhibitory circuit gating of auditory critical-period plasticity. Nat Neurosci 2018; 21:218-227. [PMID: 29358666 PMCID: PMC5978727 DOI: 10.1038/s41593-017-0064-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
Cortical sensory maps are remodeled during early life to adapt to the surrounding environment. Both sensory and contextual signals are important for induction of this plasticity, but how these signals converge to sculpt developing thalamocortical circuits remains largely unknown. Here we show that layer 1 (L1) of primary auditory cortex (A1) is a key hub where neuromodulatory and topographically organized thalamic inputs meet to tune the cortical layers below. Inhibitory interneurons in L1 send narrowly descending projections to differentially modulate thalamic drive to pyramidal and parvalbumin-expressing (PV) cells in L4, creating brief windows of intracolumnar activation. Silencing of L1 (but not VIP-expressing) cells abolishes map plasticity during the tonotopic critical period. Developmental transitions in nicotinic acetylcholine receptor (nAChR) sensitivity in these cells caused by Lynx1 protein can be overridden to extend critical-period closure. Notably, thalamocortical maps in L1 are themselves stable, and serve as a scaffold for cortical plasticity throughout life.
Collapse
Affiliation(s)
- Anne E Takesian
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Luke J Bogart
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jeff W Lichtman
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Takao K Hensch
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Center for Brain Science, Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
41
|
Wang S, Borst A, Zaslavsky N, Tishby N, Segev I. Efficient encoding of motion is mediated by gap junctions in the fly visual system. PLoS Comput Biol 2017; 13:e1005846. [PMID: 29206224 PMCID: PMC5730180 DOI: 10.1371/journal.pcbi.1005846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/14/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
Understanding the computational implications of specific synaptic connectivity patterns is a fundamental goal in neuroscience. In particular, the computational role of ubiquitous electrical synapses operating via gap junctions remains elusive. In the fly visual system, the cells in the vertical-system network, which play a key role in visual processing, primarily connect to each other via axonal gap junctions. This network therefore provides a unique opportunity to explore the functional role of gap junctions in sensory information processing. Our information theoretical analysis of a realistic VS network model shows that within 10 ms following the onset of the visual input, the presence of axonal gap junctions enables the VS system to efficiently encode the axis of rotation, θ, of the fly’s ego motion. This encoding efficiency, measured in bits, is near-optimal with respect to the physical limits of performance determined by the statistical structure of the visual input itself. The VS network is known to be connected to downstream pathways via a subset of triplets of the vertical system cells; we found that because of the axonal gap junctions, the efficiency of this subpopulation in encoding θ is superior to that of the whole vertical system network and is robust to a wide range of signal to noise ratios. We further demonstrate that this efficient encoding of motion by this subpopulation is necessary for the fly's visually guided behavior, such as banked turns in evasive maneuvers. Because gap junctions are formed among the axons of the vertical system cells, they only impact the system’s readout, while maintaining the dendritic input intact, suggesting that the computational principles implemented by neural circuitries may be much richer than previously appreciated based on point neuron models. Our study provides new insights as to how specific network connectivity leads to efficient encoding of sensory stimuli. Understanding sensory stimuli from the environment and deciding how best to respond to it behaviorally is essential for survival. What makes organisms efficient in encoding these sensory stimuli? This study provides a novel view on this unresolved issue using the visual system of the fly. We show that a specific synaptic connectivity manifested via gap junctions (GJs) among axons in the Vertical System (VS) network leads to particularly high encoding efficiency of the axis of rotation of the fly’s ego motion. Due to these GJs, triplets of VS neurons (the VS5-6-7 triplet), which connect to a downstream motor system, encode motion stimuli at an efficiency close to the physical limit; this efficient encoding is necessary for evasive maneuvers that are critical for the fly to escape predators. We then suggest why GJs in the VS network enable such high encoding efficiency.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Neurobiology, Hebrew University Jerusalem, Jerusalem, Israel
- * E-mail:
| | - Alexander Borst
- Max Planck Institute of Neurobiology, Martinstried, Munich, Germany
| | - Noga Zaslavsky
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University Jerusalem, Jerusalem, Israel
| | - Naftali Tishby
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University Jerusalem, Jerusalem, Israel
- Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idan Segev
- Department of Neurobiology, Hebrew University Jerusalem, Jerusalem, Israel
- Max Planck Institute of Neurobiology, Martinstried, Munich, Germany
| |
Collapse
|
42
|
Ikeda MZ, Krentzel AA, Oliver TJ, Scarpa GB, Remage-Healey L. Clustered organization and region-specific identities of estrogen-producing neurons in the forebrain of Zebra Finches (Taeniopygia guttata). J Comp Neurol 2017; 525:3636-3652. [PMID: 28758205 PMCID: PMC6035364 DOI: 10.1002/cne.24292] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023]
Abstract
A fast, neuromodulatory role for estrogen signaling has been reported in many regions of the vertebrate brain. Regional differences in the cellular distribution of aromatase (estrogen synthase) in several species suggest that mechanisms for neuroestrogen signaling differ between and even within brain regions. A more comprehensive understanding of neuroestrogen signaling depends on characterizing the cellular identities of neurons that express aromatase. Calcium-binding proteins such as parvalbumin and calbindin are molecular markers for interneuron subtypes, and are co-expressed with aromatase in human temporal cortex. Songbirds like the zebra finch have become important models to understand the brain synthesis of steroids like estrogens and the implications for neurobiology and behavior. Here, we investigated the regional differences in cytoarchitecture and cellular identities of aromatase-expressing neurons in the auditory and sensorimotor forebrain of zebra finches. Aromatase was co-expressed with parvalbumin in the caudomedial nidopallium (NCM) and HVC shelf (proper name) but not in the caudolateral nidopallium (NCL) or hippocampus. By contrast, calbindin was not co-expressed with aromatase in any region investigated. Notably, aromatase-expressing neurons were found in dense somato-somatic clusters, suggesting a coordinated release of local neuroestrogens from clustered neurons. Aromatase clusters were also more abundant and tightly packed in the NCM of males as compared to females. Overall, this study provides new insights into neuroestrogen regulation at the network level, and extends previous findings from human cortex by identifying a subset of aromatase neurons as putative inhibitory interneurons.
Collapse
Affiliation(s)
- Maaya Z Ikeda
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Amanda A Krentzel
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Tessa J Oliver
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Garrett B Scarpa
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Luke Remage-Healey
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
- Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
43
|
Gradwell MA, Boyle KA, Callister RJ, Hughes DI, Graham BA. Heteromeric α/β glycine receptors regulate excitability in parvalbumin-expressing dorsal horn neurons through phasic and tonic glycinergic inhibition. J Physiol 2017; 595:7185-7202. [PMID: 28905384 PMCID: PMC5709328 DOI: 10.1113/jp274926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 09/01/2017] [Indexed: 11/21/2022] Open
Abstract
Key points Spinal parvalbumin‐expressing interneurons have been identified as a critical source of inhibition to regulate sensory thresholds by gating mechanical inputs in the dorsal horn. This study assessed the inhibitory regulation of the parvalbumin‐expressing interneurons, showing that synaptic and tonic glycinergic currents dominate, blocking neuronal or glial glycine transporters enhances tonic glycinergic currents, and these manipulations reduce excitability. Synaptically released glycine also enhanced tonic glycinergic currents and resulted in decreased parvalbumin‐expressing interneuron excitability. Analysis of the glycine receptor properties mediating inhibition of parvalbumin neurons, as well as single channel recordings, indicates that heteromeric α/β subunit‐containing receptors underlie both synaptic and tonic glycinergic currents. Our findings indicate that glycinergic inhibition provides critical control of excitability in parvalbumin‐expressing interneurons in the dorsal horn and represents a pharmacological target to manipulate spinal sensory processing.
Abstract The dorsal horn (DH) of the spinal cord is an important site for modality‐specific processing of sensory information and is essential for contextually relevant sensory experience. Parvalbumin‐expressing inhibitory interneurons (PV+ INs) have functional properties and connectivity that enables them to segregate tactile and nociceptive information. Here we examine inhibitory drive to PV+ INs using targeted patch‐clamp recording in spinal cord slices from adult transgenic mice that express enhanced green fluorescent protein in PV+ INs. Analysis of inhibitory synaptic currents showed glycinergic transmission is the dominant form of phasic inhibition to PV+ INs. In addition, PV+ INs expressed robust glycine‐mediated tonic currents; however, we found no evidence for tonic GABAergic currents. Manipulation of extracellular glycine by blocking either, or both, the glial and neuronal glycine transporters markedly decreased PV+ IN excitability, as assessed by action potential discharge. This decreased excitability was replicated when tonic glycinergic currents were increased by electrically activating glycinergic synapses. Finally, we show that both phasic and tonic forms of glycinergic inhibition are mediated by heteromeric α/β glycine receptors. This differs from GABAA receptors in the dorsal horn, where different receptor stoichiometries underlie phasic and tonic inhibition. Together these data suggest both phasic and tonic glycinergic inhibition regulate the output of PV+ INs and contribute to the processing and segregation of tactile and nociceptive information. The shared stoichiometry for phasic and tonic glycine receptors suggests pharmacology is unlikely to be able to selectively target each form of inhibition in PV+ INs. Spinal parvalbumin‐expressing interneurons have been identified as a critical source of inhibition to regulate sensory thresholds by gating mechanical inputs in the dorsal horn. This study assessed the inhibitory regulation of the parvalbumin‐expressing interneurons, showing that synaptic and tonic glycinergic currents dominate, blocking neuronal or glial glycine transporters enhances tonic glycinergic currents, and these manipulations reduce excitability. Synaptically released glycine also enhanced tonic glycinergic currents and resulted in decreased parvalbumin‐expressing interneuron excitability. Analysis of the glycine receptor properties mediating inhibition of parvalbumin neurons, as well as single channel recordings, indicates that heteromeric α/β subunit‐containing receptors underlie both synaptic and tonic glycinergic currents. Our findings indicate that glycinergic inhibition provides critical control of excitability in parvalbumin‐expressing interneurons in the dorsal horn and represents a pharmacological target to manipulate spinal sensory processing.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - K A Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - D I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
44
|
Petersen CCH. Whole-Cell Recording of Neuronal Membrane Potential during Behavior. Neuron 2017; 95:1266-1281. [PMID: 28910617 DOI: 10.1016/j.neuron.2017.06.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022]
Abstract
Neuronal membrane potential is of fundamental importance for the mechanistic understanding of brain function. This review discusses progress in whole-cell patch-clamp recordings for low-noise measurement of neuronal membrane potential in awake behaving animals. Whole-cell recordings can be combined with two-photon microscopy to target fluorescently labeled neurons, revealing cell-type-specific membrane potential dynamics of retrogradely or genetically labeled neurons. Dual whole-cell recordings reveal behavioral modulation of membrane potential synchrony and properties of synaptic transmission in vivo. Optogenetic manipulations are also readily integrated with whole-cell recordings, providing detailed information about the effect of specific perturbations on the membrane potential of diverse types of neurons. Exciting developments for future behavioral experiments include dendritic whole-cell recordings and imaging, and use of the whole-cell recording pipette for single-cell delivery of drugs and DNA, as well as RNA expression profiling. Whole-cell recordings therefore offer unique opportunities for investigating the neuronal circuits and synaptic mechanisms driving membrane potential dynamics during behavior.
Collapse
Affiliation(s)
- Carl C H Petersen
- Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
McGregor C, Riordan A, Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front Neuroendocrinol 2017; 47:19-33. [PMID: 28673758 DOI: 10.1016/j.yfrne.2017.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a complex neuropsychiatric illness with marked sex differences. Women have later onset and lesser symptoms, which has led to the hypothesis that estrogens are protective in schizophrenia. Cognitive dysfunction is a hallmark of the disease and the symptom most correlated with functional outcome. Here we describe a number of mechanisms by which estrogens may be therapeutic in schizophrenia, with a focus on cognitive symptoms. We review the relationship between estrogens and brain derived neurotrophic factor, neuroinflammation, NMDA receptors, GABA receptors, and luteinizing hormone. Exploring these pathways may enable novel treatments for schizophrenia and a greater understanding of this devastating disease.
Collapse
Affiliation(s)
- Claire McGregor
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA.
| | - Alexander Riordan
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| | - Janice Thornton
- Department of Neuroscience, Oberlin College, 119 Woodland St, Oberlin, OH 44074, USA
| |
Collapse
|
46
|
Coulon P, Landisman CE. The Potential Role of Gap Junctional Plasticity in the Regulation of State. Neuron 2017; 93:1275-1295. [PMID: 28334604 DOI: 10.1016/j.neuron.2017.02.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/20/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022]
Abstract
Electrical synapses are the functional correlate of gap junctions and allow transmission of small molecules and electrical current between coupled neurons. Instead of static pores, electrical synapses are actually plastic, similar to chemical synapses. In the thalamocortical system, gap junctions couple inhibitory neurons that are similar in their biochemical profile, morphology, and electrophysiological properties. We postulate that electrical synaptic plasticity among inhibitory neurons directly interacts with the switching between different firing patterns in a state-dependent and type-dependent manner. In neuronal networks, electrical synapses may function as a modifiable resonance feedback system that enables stable oscillations. Furthermore, the plasticity of electrical synapses may play an important role in regulation of state, synchrony, and rhythmogenesis in the mammalian thalamocortical system, similar to chemical synaptic plasticity. Based on their plasticity, rich diversity, and specificity, electrical synapses are thus likely to participate in the control of consciousness and attention.
Collapse
Affiliation(s)
- Philippe Coulon
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA.
| | - Carole E Landisman
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA.
| |
Collapse
|
47
|
Mercer A, Thomson AM. Cornu Ammonis Regions-Antecedents of Cortical Layers? Front Neuroanat 2017; 11:83. [PMID: 29018334 PMCID: PMC5622992 DOI: 10.3389/fnana.2017.00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/08/2017] [Indexed: 12/13/2022] Open
Abstract
Studying neocortex and hippocampus in parallel, we are struck by the similarities. All three to four layered allocortices and the six layered mammalian neocortex arise in the pallium. All receive and integrate multiple cortical and subcortical inputs, provide multiple outputs and include an array of neuronal classes. During development, each cell positions itself to sample appropriate local and distant inputs and to innervate appropriate targets. Simpler cortices had already solved the need to transform multiple coincident inputs into serviceable outputs before neocortex appeared in mammals. Why then do phylogenetically more recent cortices need multiple pyramidal cell layers? A simple answer is that more neurones can compute more complex functions. The dentate gyrus and hippocampal CA regions-which might be seen as hippocampal antecedents of neocortical layers-lie side by side, albeit around a tight bend. Were the millions of cells of rat neocortex arranged in like fashion, the surface area of the CA pyramidal cell layers would be some 40 times larger. Even if evolution had managed to fold this immense sheet into the space available, the distances between neurones that needed to be synaptically connected would be huge and to maintain the speed of information transfer, massive, myelinated fiber tracts would be needed. How much more practical to stack the "cells that fire and wire together" into narrow columns, while retaining the mechanisms underlying the extraordinary precision with which circuits form. This demonstrably efficient arrangement presents us with challenges, however, not the least being to categorize the baffling array of neuronal subtypes in each of five "pyramidal layers." If we imagine the puzzle posed by this bewildering jumble of apical dendrites, basal dendrites and axons, from many different pyramidal and interneuronal classes, that is encountered by a late-arriving interneurone insinuating itself into a functional circuit, we can perhaps begin to understand why definitive classification, covering every aspect of each neurone's structure and function, is such a challenge. Here, we summarize and compare the development of these two cortices, the properties of their neurones, the circuits they form and the ordered, unidirectional flow of information from one hippocampal region, or one neocortical layer, to another.
Collapse
Affiliation(s)
- Audrey Mercer
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Alex M. Thomson
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
48
|
Tae HS, Smith KM, Phillips AM, Boyle KA, Li M, Forster IC, Hatch RJ, Richardson R, Hughes DI, Graham BA, Petrou S, Reid CA. Gabapentin Modulates HCN4 Channel Voltage-Dependence. Front Pharmacol 2017; 8:554. [PMID: 28871229 PMCID: PMC5566583 DOI: 10.3389/fphar.2017.00554] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 12/18/2022] Open
Abstract
Gabapentin (GBP) is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN) channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+) or calretinin positive (CR+) inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM) caused a hyperpolarizing shift in the voltage of half activation (V1/2) thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.
Collapse
Affiliation(s)
- Han-Shen Tae
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Kelly M Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia.,School of BioSciences, The University of Melbourne, ParkvilleVIC, Australia
| | - Kieran A Boyle
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Melody Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Ian C Forster
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert J Hatch
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Robert Richardson
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of GlasgowGlasgow, United Kingdom
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, University of Newcastle, CallaghanNSW, Australia.,Hunter Medical Research Institute, New Lambton HeightsNSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, ParkvilleVIC, Australia
| |
Collapse
|
49
|
Differential excitatory control of 2 parallel basket cell networks in amygdala microcircuits. PLoS Biol 2017; 15:e2001421. [PMID: 28542195 PMCID: PMC5443504 DOI: 10.1371/journal.pbio.2001421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/28/2017] [Indexed: 12/29/2022] Open
Abstract
Information processing in neural networks depends on the connectivity among excitatory and inhibitory neurons. The presence of parallel, distinctly controlled local circuits within a cortical network may ensure an effective and dynamic regulation of microcircuit function. By applying a combination of optogenetics, electrophysiological recordings, and high resolution microscopic techniques, we uncovered the organizing principles of synaptic communication between principal neurons and basket cells in the basal nucleus of the amygdala. In this cortical structure, known to be critical for emotional memory formation, we revealed the presence of 2 parallel basket cell networks expressing either parvalbumin or cholecystokinin. While the 2 basket cell types are mutually interconnected within their own category via synapses and gap junctions, they avoid innervating each other, but form synaptic contacts with axo-axonic cells. Importantly, both basket cell types have the similar potency to control principal neuron spiking, but they receive excitatory input from principal neurons with entirely diverse features. This distinct feedback synaptic excitation enables a markedly different recruitment of the 2 basket cell types upon the activation of local principal neurons. Our data suggest fundamentally different functions for the 2 parallel basket cell networks in circuit operations in the amygdala. The perisomatic region of neurons refers collectively to the membrane surface of the cell body or soma, proximal dendrites, and axon initial segment. This is a unique functional domain in which the activity of a neuron can be controlled in the most effective manner. In the cerebral cortex, the perisomatic region of excitatory principal cells is solely innervated by inhibitory interneurons, which can be divided into 3 functional groups: axo-axonic cells and 2 types of basket cells. The reason why 3 distinct types of inhibitory cells are specialized to control principal cell firing is still unknown. To reveal the possible differences in the role of the 3 interneuron types played in cortical operation, we have investigated the organizing principles of synaptic communication between principal cells and inhibitory cell types in the basal nucleus of the amygdala. In this cortical structure, known to be critical for affective behavior, we revealed that the 2 basket cell types avoid innervating each other but contact axo-axonic cells. Both basket cell types have a similar potency to control principal cell firing, but they receive excitatory input from principal cells with entirely distinct features. Our data suggest fundamentally different functions for the 2 parallel basket cell networks in amygdala operation.
Collapse
|
50
|
Barsy B, Szabó GG, Andrási T, Vikór A, Hájos N. Different output properties of perisomatic region-targeting interneurons in the basal amygdala. Eur J Neurosci 2017; 45:548-558. [PMID: 27977063 DOI: 10.1111/ejn.13498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/06/2023]
Abstract
The perisomatic region of principal neurons in cortical regions is innervated by three types of GABAergic interneuron, including parvalbumin-containing basket cells (PVBCs) and axo-axonic cells (AACs), as well as cholecystokinin and type 1 cannabinoid receptor-expressing basket cells (CCK/CB1BCs). These perisomatic inhibitory cell types can also be found in the basal nucleus of the amygdala, however, their output properties are largely unknown. Here, we performed whole-cell recordings in morphologically identified interneurons in slices prepared from transgenic mice, in which the GABAergic cells could be selectively targeted. Investigating the passive and active membrane properties of interneurons located within the basal amygdala revealed that the three interneuron types have distinct single-cell properties. For instance, the input resistance, spike rate, accommodation in discharge rate, or after-hyperpolarization width at the half maximal amplitude separated the three interneuron types. Furthermore, we performed paired recordings from interneurons and principal neurons to uncover the basic features of unitary inhibitory postsynaptic currents (uIPSCs). Although we found no difference in the magnitude of responses measured in the principal neurons, the uIPSCs originating from the distinct interneuron types differed in rise time, failure rate, latency, and short-term dynamics. Moreover, the asynchronous transmitter release induced by a train of action potentials was typical for the output synapses of CCK/CB1BCs. Our results suggest that, despite the similar uIPSC magnitudes originating from the three perisomatic inhibitory cell types, their distinct release properties together with the marked differences in their spiking characteristics may contribute to accomplish specific functions in amygdala network operation.
Collapse
Affiliation(s)
- Boglárka Barsy
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Gergely G Szabó
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Tibor Andrási
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Attila Vikór
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Norbert Hájos
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| |
Collapse
|