1
|
Goncharuk O, Savosko S, Tykhomyrov A, Guzyk M, Medvediev V, Tsymbaliuk V, Chaikovsky Y. Matrix Metalloproteinase-9 is Involved in the Fibrotic Process in Denervated Muscles after Sciatic Nerve Trauma and Recovery. J Neurol Surg A Cent Eur Neurosurg 2023; 84:116-122. [PMID: 34496416 DOI: 10.1055/s-0041-1731750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fibrosis of the injured muscles is a problem of recovery from trauma and denervation. The aim of the work was to investigate the interconnection of matrix metalloproteinase-9 (ММР-9) activity in denervated muscles with fibrosis and to estimate its role in nerve restoration by the epineurial suture, fibrin-based glue, and polyethylene glycol hydrogel. The activity of matrix metalloproteinases was estimated by gelatin zymography. Collagen density in muscles was determined histochemically. An increased level of the active MMP-9 is associated with the fibrous changes in the denervated skeletal muscles and after an epineurial suture. The use of fibrin glue and polyethylene glycol hydrogel resulted in a lower level of collagen and ММР-9 activity, which may be a therapeutic target in the treatment of neuromuscular lesions, and has value in fibrosis analysis following microsurgical intervention for peripheral nerve reconstruction.
Collapse
Affiliation(s)
- Oleksii Goncharuk
- Department of Neurosurgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Serhii Savosko
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Artem Tykhomyrov
- Department of Neurosurgery, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
| | - Mykhailo Guzyk
- Department of Neurosurgery, Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine (NASU), Kyiv, Ukraine
| | - Volodymyr Medvediev
- Department of Neurosurgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Vitaliy Tsymbaliuk
- Department of Neurosurgery, Bogomolets National Medical University, Kyiv, Ukraine
| | - Yuri Chaikovsky
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
2
|
Ramesh PA, Dhandapani R, Bagewadi S, Zennifer A, Radhakrishnan J, Sethuraman S, Subramanian A. Reverse engineering of an anatomically equivalent nerve conduit. J Tissue Eng Regen Med 2021; 15:998-1011. [PMID: 34551457 DOI: 10.1002/term.3245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/29/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
Reconstruction of peripheral nervous tissue remains challenging in critical-sized defects due to the lack of Büngner bands from the proximal to the distal nerve ends. Conventional nerve guides fail to bridge the large-sized defect owing to the formation of a thin fibrin cable. Hence, in the present study, an attempt was made to reverse engineer the intricate epi-, peri- and endo-neurial tissues using Fused Deposition Modeling based 3D printing. Bovine serum albumin protein nanoflowers (NF) exhibiting Viburnum opulus 'Roseum' morphology were ingrained into 3D printed constructs without affecting its secondary structure to enhance the axonal guidance from proximal to distal ends of denuded nerve ends. Scanning electron micrographs confirmed the uniform distribution of protein NF in 3D printed constructs. The PC-12 cells cultured on protein ingrained 3D printed scaffolds demonstrated cytocompatibility, improved cell adhesion and extended neuronal projections with significantly higher intensities of NF-200 and tubulin expressions. Further suture-free fixation designed in the current 3D printed construct aids facile implantation of printed conduits to the transected nerve ends. Hence the protein ingrained 3D printed construct would be a promising substitute to treat longer peripheral nerve defects as its structural equivalence of endo- and perineurial organization along with the ingrained protein NF promote the neuronal extension towards the distal ends by minimizing axonal dispersion.
Collapse
Affiliation(s)
- Preethy Amruthavarshini Ramesh
- Tissue Engineering and Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Ramya Dhandapani
- Tissue Engineering and Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Shambhavi Bagewadi
- Tissue Engineering and Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Allen Zennifer
- Tissue Engineering and Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Janani Radhakrishnan
- Tissue Engineering and Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Swaminathan Sethuraman
- Tissue Engineering and Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Anuradha Subramanian
- Tissue Engineering and Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials, ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
3
|
Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Transection is Driven by Cellular Intravitreal Sciatic Nerve Grafts. Cells 2020; 9:cells9061335. [PMID: 32471105 PMCID: PMC7349876 DOI: 10.3390/cells9061335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
Neurotrophic factors (NTF) secreted by Schwann cells in a sciatic nerve (SN) graft promote retinal ganglion cell (RGC) axon regeneration after either transplantation into the vitreous body of the eye or anastomosis to the distal stump of a transected optic nerve. In this study, we investigated the neuroprotective and growth stimulatory properties of SN grafts in which Schwann cells had been killed (acellular SN grafts, ASN) or remained intact (cellular SN grafts, CSN). We report that both intravitreal (ivit) implanted and optic nerve anastomosed CSN promote RGC survival and when simultaneously placed in both sites, they exert additive RGC neuroprotection. CSN and ASN were rich in myelin-associated glycoprotein (MAG) and axon growth-inhibitory ligand common to both the central nervous system (CNS) and peripheral nervous system (PNS) myelin. The penetration of the few RGC axons regenerating into an ASN at an optic nerve transection (ONT) site is limited into the proximal perilesion area, but is increased >2-fold after ivit CSN implantation and increased 5-fold into a CSN optic nerve graft after ivit CSN implantation, potentiated by growth disinhibition through the regulated intramembranous proteolysis (RIP) of p75NTR (the signalling trans-membrane moiety of the nogo-66 trimeric receptor that binds MAG and associated suppression of RhoGTP). Mϋller cells/astrocytes become reactive after all treatments and maximally after simultaneous ivit and optic nerve CSN/ASN grafting. We conclude that simultaneous ivit CSN plus optic nerve CSN support promotes significant RGC survival and axon regeneration into CSN optic nerve grafts, despite being rich in axon growth inhibitory molecules. RGC axon regeneration is probably facilitated through RIP of p75NTR, which blinds axons to myelin-derived axon growth-inhibitory ligands present in optic nerve grafts.
Collapse
|
4
|
Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 2020; 68:1375-1395. [PMID: 32045043 DOI: 10.1002/glia.23785] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.
Collapse
Affiliation(s)
- Sara E Jager
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Lone T Pallesen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Harley
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
5
|
Wang H, Zhang P, Yu J, Zhang F, Dai W, Yi S. Matrix metalloproteinase 7 promoted Schwann cell migration and myelination after rat sciatic nerve injury. Mol Brain 2019; 12:101. [PMID: 31791378 PMCID: PMC6889483 DOI: 10.1186/s13041-019-0516-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Schwann cells experience de-differentiation, proliferation, migration, re-differentiation and myelination, and participate in the repair and regeneration of injured peripheral nerves. Our previous sequencing analysis suggested that the gene expression level of matrix metalloproteinase 7 (MMP7), a Schwann cell-secreted proteolytic enzyme, was robustly elevated in rat sciatic nerve segments after nerve injury. However, the biological roles of MMP7 are poorly understood. Here, we exposed primary cultured Schwann cells with MMP7 recombinant protein and transfected siRNA against MMP7 into Schwann cells to examine the effect of exogenous and endogenous MMP7. Meanwhile, the effects of MMP7 in nerve regeneration after sciatic nerve crush in vivo were observed. Furthermore, RNA sequencing and bioinformatic analysis of Schwann cells were conducted to show the molecular mechanism behind the phenomenon. In vitro studies showed that MMP7 significantly elevated the migration rate of Schwann cells but did not affect the proliferation rate of Schwann cells. In vivo studies demonstrated that increased level of MMP7 contributed to Schwann cell migration and myelin sheaths formation after peripheral nerve injury. MMP7-mediated genetic changes were revealed by sequencing and bioinformatic analysis. Taken together, our current study demonstrated the promoting effect of MMP7 on Schwann cell migration and peripheral nerve regeneration, benefited the understanding of cellular and molecular mechanisms underlying peripheral nerve injury, and thus might facilitate the treatment of peripheral nerve regeneration in clinic.
Collapse
Affiliation(s)
- Hongkui Wang
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Ping Zhang
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jun Yu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Fuchao Zhang
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wenzhao Dai
- Faculty of Brain Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sheng Yi
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Philips C, Cornelissen M, Carriel V. Evaluation methods as quality control in the generation of decellularized peripheral nerve allografts. J Neural Eng 2019; 15:021003. [PMID: 29244032 DOI: 10.1088/1741-2552/aaa21a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the high incidence of peripheral nerve injuries and the low success ratio of surgical treatments are driving research to the generation of novel alternatives to repair critical nerve defects. In this sense, tissue engineering has emerged as a possible alternative with special attention to decellularization techniques. Tissue decellularization offers the possibility to obtain a cell-free, natural extracellular matrix (ECM), characterized by an adequate 3D organization and proper molecular composition to repair different tissues or organs, including peripheral nerves. One major problem, however, is that there are no standard quality control methods to evaluate decellularized tissues. Therefore, in this review, a brief description of current strategies for peripheral nerve repair is given, followed by an overview of different decellularization methods used for peripheral nerves. Furthermore, we extensively discuss the available and currently used methods to demonstrate the success of tissue decellularization in terms of the cell removal, preservation of essential ECM molecules and maintenance or modification of biomechanical properties. Finally, orientative guidelines for the evaluation of decellularized peripheral nerve allografts are proposed.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
7
|
Idini M, Wieringa P, Rocchiccioli S, Nieddu G, Ucciferri N, Formato M, Lepedda A, Moroni L. Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomater 2019; 96:188-202. [PMID: 31265920 DOI: 10.1016/j.actbio.2019.06.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Nerve fibers of the peripheral nervous system (PNS) have a remarkable ability to regenerate up to an almost complete recovery of normal function following a crush or a Sunderland Type II injury. This process is governed by glial cells, known as Schwann cells, through their unique capacity to dedifferentiate into cells that drive the healing process. Despite that many progresses have occurred in restorative medicine and microsurgery, the regenerative process after a severe lesion of a major nerve trunk (e.g., Sunderland Types III-V) is often incomplete and functional recovery is unsatisfactory. In this aspect, it is known that glycosaminoglycans (GAGs) of the extracellular matrix are involved in proliferation, synaptogenesis, neural plasticity, and regeneration of the PNS. Here, we developed poly(caprolactone) (PCL) fibrous scaffolds functionalized with GAGs, which allowed us to assess their influence on the adhesion, proliferation, and differentiation of Schwann cells. We found that both aligned and random fiber scaffolds functionalized with GAGs resulted in increased cell proliferation on day 1. In addition, aligned functionalized scaffolds also resulted in increased GAG presence on day 1, probably because of cell extracellular matrix (ECM) formation and an increased syndecan-4 expression on day 7. A different modification and activation of Schwann cells in the presence of GAG versus no-GAG scaffolds was underlined by proteomic comparative analysis, where a general downregulation of the expression of intracellular/structural and synthetic proteins was shown on day 7 for GAG-functionalized scaffolds with regard to the nonfunctionalized ones. In conclusion, we have shown that GAG-functionalized scaffolds are effective in modulating Schwann cell behavior in terms of adhesion, proliferation, and differentiation and should be considered in strategies to improve PNS repair. STATEMENT OF SIGNIFICANCE: Nerve fibers functional recovery following a severe trauma of the Peripheral Nervous System (PNS) still represents a huge challenge for neurosurgery nowadays. In this respect, tissue engineering is committed to develop new constructs able to guide Schwann cells by mimicking the natural extracellular matrix environment. To this purpose, we successfully fabricated polycaprolactone (PCL) scaffolds with two well-defined fiber deposition patterns, functionalized with glycosaminoglycans (GAGs) and assessed for their potential as support for Schwann cells adhesion, growth and differentiation, by both classical biochemistry and LC-MS-based proteomic profiling. By this way, we showed that PCL-GAGs scaffolds could represent a promising artificial substrate that closely mimics the recently established pattern of Schwann cells migration into the regenerating nerve and, therefore, it should be considered in strategies to improve PNS repair.
Collapse
Affiliation(s)
- Michela Idini
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Nadia Ucciferri
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marilena Formato
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Antonio Lepedda
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Lorenzo Moroni
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy; Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands.
| |
Collapse
|
8
|
Han S, Kim DH, Sung J, Yang H, Park JW, Youn I. Electrical stimulation accelerates neurite regeneration in axotomized dorsal root ganglion neurons by increasing MMP-2 expression. Biochem Biophys Res Commun 2019; 508:348-353. [PMID: 30503336 DOI: 10.1016/j.bbrc.2018.11.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/25/2018] [Indexed: 01/08/2023]
Abstract
Electrical stimulation (ES) can be useful for promoting the regeneration of injured axons, but the mechanism underlying its positive effects is largely unknown. The current study aimed to investigate whether ES could enhance the regeneration of injured neurites in dorsal root ganglion explants and regulate the MMP-2 expression level, which is correlated with regeneration. Significantly increased neurite regeneration and MMP-2 expression was observed in the ES group compared with the sham group. However, an MMP inhibitor significantly decreased this ES-induced neurite regeneration. Our data suggest that the positive effect of ES on neurite regeneration could likely be mediated by an increase in MMP-2 expression, thereby promoting the regeneration of injured neurites.
Collapse
Affiliation(s)
- Sungmin Han
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea
| | - Dong Hwee Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joohwan Sung
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hwasun Yang
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea
| | - Jong Woong Park
- Department of Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Inchan Youn
- Biomedical Research Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02791, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
9
|
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 2018; 173:102-121. [PMID: 30579784 DOI: 10.1016/j.pneurobio.2018.12.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Neuroinflammation has positive and negative effects. This review focuses on the roles of macrophage in the PNS. Transection of PNS axons leads to degeneration and clearance of the distal nerve and to changes in the region of the axotomized cell bodies. In both locations, resident and infiltrating macrophages are found. Macrophages enter these areas in response to expression of the chemokine CCL2 acting on the macrophage receptor CCR2. In the distal nerve, macrophages and other phagocytes are involved in clearance of axonal debris, which removes molecules that inhibit nerve regeneration. In the cell body region, macrophage trigger the conditioning lesion response, a process in which neurons increase their regeneration after a prior lesion. In mice in which the genes for CCL2 or CCR2 are deleted, neither macrophage infiltration nor the conditioning lesion response occurs in dorsal root ganglia (DRG). Macrophages exist in different phenotypes depending on their environment. These phenotypes have different effects on axonal clearance and neurite outgrowth. The mechanism by which macrophages affect neuronal cell bodies is still under study. Overexpression of CCL2 in DRG in uninjured animals leads to macrophage accumulation in the ganglia and to an increase in the growth potential of DRG neurons. This increased growth requires activation of neuronal STAT3. In contrast, in acute demyelinating neuropathies, macrophages are involved in stripping myelin from peripheral axons. The molecular mechanisms that trigger macrophage action after trauma and in autoimmune disease are receiving increased attention and should lead to avenues to promote regeneration and protect axonal integrity.
Collapse
Affiliation(s)
- Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA.
| | - Franklin D Echevarria
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA
| |
Collapse
|
10
|
Remacle AG, Hullugundi SK, Dolkas J, Angert M, Chernov AV, Strongin AY, Shubayev VI. Acute- and late-phase matrix metalloproteinase (MMP)-9 activity is comparable in female and male rats after peripheral nerve injury. J Neuroinflammation 2018; 15:89. [PMID: 29558999 PMCID: PMC5859418 DOI: 10.1186/s12974-018-1123-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/08/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In the peripheral nerve, pro-inflammatory matrix metalloproteinase (MMP)-9 performs essential functions in the acute response to injury. Whether MMP-9 activity contributes to late-phase injury or whether MMP-9 expression or activity after nerve injury is sexually dimorphic remains unknown. METHODS Patterns of MMP-9 expression, activity and excretion were assessed in a model of painful peripheral neuropathy, sciatic nerve chronic constriction injury (CCI), in female and male rats. Real-time Taqman RT-PCR for MMP-9 and its endogenous inhibitor, tissue inhibitor of metalloproteinase-1 (TIMP-1) of nerve samples over a 2-month time course of CCI was followed by gelatin zymography of crude nerve extracts and purified MMP-9 from the extracts using gelatin Sepharose-beads. MMP excretion was determined using protease activity assay of urine in female and male rats with CCI. RESULTS The initial upsurge in nerve MMP-9 expression at day 1 post-CCI was superseded more than 100-fold at day 28 post-CCI. The high level of MMP-9 expression in late-phase nerve injury was accompanied by the reduction in TIMP-1 level. The absence of MMP-9 in the normal nerve and the presence of multiple MMP-9 species (the proenzyme, mature enzyme, homodimers, and heterodimers) was observed at day 1 and day 28 post-CCI. The MMP-9 proenzyme and mature enzyme species dominated in the early- and late-phase nerve injury, consistent with the high and low level of TIMP-1 expression, respectively. The elevated nerve MMP-9 levels corresponded to the elevated urinary MMP excretion post-CCI. All of these findings were comparable in female and male rodents. CONCLUSION The present study offers the first evidence for the excessive, uninhibited proteolytic MMP-9 activity during late-phase painful peripheral neuropathy and suggests that the pattern of MMP-9 expression, activity, and excretion after peripheral nerve injury is universal in both sexes.
Collapse
Affiliation(s)
- Albert G Remacle
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, CA, 92037, USA
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0629, USA.,VA San Diego Healthcare System, La Jolla, San Diego, CA, 92037, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0629, USA.,VA San Diego Healthcare System, La Jolla, San Diego, CA, 92037, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0629, USA.,VA San Diego Healthcare System, La Jolla, San Diego, CA, 92037, USA
| | - Andrei V Chernov
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, CA, 92037, USA
| | - Alex Y Strongin
- Infectious and Inflammatory Disease Center/Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, CA, 92037, USA.
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093-0629, USA. .,VA San Diego Healthcare System, La Jolla, San Diego, CA, 92037, USA.
| |
Collapse
|
11
|
Hong S, Remacle AG, Shiryaev SA, Choi W, Hullugundi SK, Dolkas J, Angert M, Nishihara T, Yaksh TL, Strongin AY, Shubayev VI. Reciprocal relationship between membrane type 1 matrix metalloproteinase and the algesic peptides of myelin basic protein contributes to chronic neuropathic pain. Brain Behav Immun 2017; 60:282-292. [PMID: 27833045 PMCID: PMC5214638 DOI: 10.1016/j.bbi.2016.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Myelin basic protein (MBP) is an auto-antigen able to induce intractable pain from innocuous mechanical stimulation (mechanical allodynia). The mechanisms provoking this algesic MBP activity remain obscure. Our present study demonstrates that membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) releases the algesic MBP peptides from the damaged myelin, which then reciprocally enhance the expression of MT1-MMP in nerve to sustain a state of allodynia. Specifically, MT1-MMP expression and activity in rat sciatic nerve gradually increased starting at day 3 after chronic constriction injury (CCI). Inhibition of the MT1-MMP activity by intraneural injection of the function-blocking human DX2400 monoclonal antibody at day 3 post-CCI reduced mechanical allodynia and neuropathological signs of Wallerian degeneration, including axon demyelination, degeneration, edema and formation of myelin ovoids. Consistent with its role in allodynia, the MT1-MMP proteolysis of MBP generated the MBP69-86-containing epitope sequences in vitro. In agreement, the DX2400 therapy reduced the release of the MBP69-86 epitope in CCI nerve. Finally, intraneural injection of the algesic MBP69-86 and control MBP2-18 peptides differentially induced MT1-MMP and MMP-2 expression in the nerve. With these data we offer a novel, self-sustaining mechanism of persistent allodynia via the positive feedback loop between MT1-MMP and the algesic MBP peptides. Accordingly, short-term inhibition of MT1-MMP activity presents a feasible pharmacological approach to intervene in this molecular circuit and the development of neuropathic pain.
Collapse
Affiliation(s)
- Sanghyun Hong
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, Catholic University of Korea, Seoul, South Korea
| | - Albert G Remacle
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sergei A Shiryaev
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Wonjun Choi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA; Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, South Korea
| | - Swathi K Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tasuku Nishihara
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Alex Y Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
12
|
Kundu J, Michaelson A, Talbot K, Baranov P, Young MJ, Carrier RL. Decellularized retinal matrix: Natural platforms for human retinal progenitor cell culture. Acta Biomater 2016; 31:61-70. [PMID: 26621699 DOI: 10.1016/j.actbio.2015.11.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Tissue decellularization strategies have enabled engineering of scaffolds that preserve native extracellular matrix (ECM) structure and composition. In this study, we developed decellularized retina (decell-retina) thin films. We hypothesized that these films, mimicking the retina niche, would promote human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. Retinas isolated from bovine eyes were decellularized using 1% w/v sodium dodecyl sulfate (SDS) and pepsin digested. The resulting decell-retina was biochemically assayed for composition and cast dried to develop thin films. Attachment, viability, morphology, proliferation and gene expression of hRPC cultured on the films were studied in vitro. Biochemical analyses of decell-retina compared to native retina indicated the bulk of DNA (94%) was removed, while the majority of sulfated GAGs (55%), collagen (83%), hyaluronic acid (87%), and key growth factors were retained. The decell-retina films supported hRPC attachment and growth, with cell number increasing 1.5-fold over a week. RT-PCR analysis revealed hRPC expression of rhodopsin, rod outer membrane, neural retina-specific leucine zipper neural and cone-rod homeobox gene on decell-retina films, indicating photoreceptor development. In conclusion, novel decell-retina films show promise as potential substrates for culture and/or transplantation of retinal progenitor cells to treat retinal degenerative disorders. STATEMENT OF SIGNIFICANCE In this study, we report the development of a novel biomaterial, based on decellularized retina (decell-retina) that mimics the retina niche and promotes human retinal progenitor cell (hRPC) attachment, proliferation and differentiation. We estimated, for the first time, the amounts of collagen I, GAGs and HA present in native retina, as well as the decell-retina. We demonstrated that retinas can be decellularized using ionic detergents and can be processed into mechanically stable thin films, which can act as substrates for culturing hRPCs. Rhodopsin, ROM1, NRL and CRX gene expression on the decell-retina films indicated photoreceptor development from RPCs. These results support the potential of decell-retina as a cell delivery platform to treat and manage retinal degenerative disease like AMD.
Collapse
|
13
|
Abdul-Muneer PM, Pfister BJ, Haorah J, Chandra N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol Neurobiol 2015; 53:6106-6123. [PMID: 26541883 DOI: 10.1007/s12035-015-9520-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide. Studies revealed that the pathogenesis of TBI involves upregulation of MMPs. MMPs form a large family of closely related zinc-dependent endopeptidases, which are primarily responsible for the dynamic remodulation of the extracellular matrix (ECM). Thus, they are involved in several normal physiological processes like growth, development, and wound healing. During pathophysiological conditions, MMPs proteolytically degrade various components of ECM and tight junction (TJ) proteins of BBB and cause BBB disruption. Impairment of BBB causes leakiness of the blood from circulation to brain parenchyma that leads to microhemorrhage and edema. Further, MMPs dysregulate various normal physiological processes like angiogenesis and neurogenesis, and also they participate in the inflammatory and apoptotic cascades by inducing or regulating the specific mediators and their receptors. In this review, we explore the roles of MMPs in various physiological/pathophysiological processes associated with neurological complications, with special emphasis on TBI.
Collapse
Affiliation(s)
- P M Abdul-Muneer
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Namas Chandra
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
14
|
Kajbafzadeh AM, Khorramirouz R, Akbarzadeh A, Sabetkish S, Sabetkish N, Saadat P, Tehrani M. A novel technique for simultaneous whole-body and multi-organ decellularization: umbilical artery catheterization as a perfusion-based method in a sheep foetus model. Int J Exp Pathol 2015; 96:116-32. [PMID: 26031202 DOI: 10.1111/iep.12124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/09/2015] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to develop a method to generate multi-organ acellular matrices. Using a foetal sheep model have developed a method of systemic pulsatile perfusion via the umbilical artery which allows for simultaneous multi-organ decellularization. Twenty sheep foetuses were systemically perfused with Triton X-100 and sodium dodecyl sulphate. Following completion of the whole-body decellularization, multiple biopsy samples were taken from different parts of 21 organs to ascertain complete cell component removal in the preserved extracellular matrices. Both the natural and decellularized organs were subjected to several examinations. The samples were obtained from the skin, eye, ear, nose, throat, cardiovascular, respiratory, gastrointestinal, urinary, musculoskeletal, central nervous and peripheral nervous systems. The histological results depicted well-preserved extracellular matrix (ECM) integrity and intact vascular structures, without any evidence of residual cellular materials, in all decellularized bioscaffolds. Scanning electron microscope (SEM) and biochemical properties remained intact, similar to their age-matched native counterparts. Preservation of the collagen structure was evaluated by a hydroxyproline assay. Dense organs such as bone and muscle were also completely decellularized, with a preserved ECM structure. Thus, as shown in this study, several organs and different tissues were decellularized using a perfusion-based method, which has not been previously accomplished. Given the technical challenges that exist for the efficient generation of biological scaffolds, the current results may pave the way for obtaining a variety of decellularized scaffolds from a single donor. In this study, there have been unique responses to the single acellularization protocol in foetuses, which may reflect the homogeneity of tissues and organs in the developing foetal body.
Collapse
Affiliation(s)
- Abdol-Mohammad Kajbafzadeh
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Reza Khorramirouz
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Aram Akbarzadeh
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Shabnam Sabetkish
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Nastaran Sabetkish
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Paria Saadat
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| | - Mona Tehrani
- Pediatric Urology Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran (IRI)
| |
Collapse
|
15
|
Stratton JA, Shah PT, Kumar R, Stykel MG, Shapira Y, Grochmal J, Guo GF, Biernaskie J, Midha R. The immunomodulatory properties of adult skin-derived precursor Schwann cells: implications for peripheral nerve injury therapy. Eur J Neurosci 2015; 43:365-75. [DOI: 10.1111/ejn.13006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/11/2015] [Accepted: 06/23/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Jo Anne Stratton
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Prajay T. Shah
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Ranjan Kumar
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Morgan G. Stykel
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Yuval Shapira
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
| | - Joey Grochmal
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Gui Fang Guo
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Jeff Biernaskie
- Comparative Biology and Experimental Medicine; University of Calgary; 3330 Hospital Drive NW Calgary AB T2N 4N1 Canada
- Hotchkiss Brain Institute; Calgary AB Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences; University of Calgary; Calgary AB Canada
- Hotchkiss Brain Institute; Calgary AB Canada
- Cumming School of Medicine; University of Calgary; Calgary AB Canada
| |
Collapse
|
16
|
Spinal Glia Division Contributes to Conditioning Lesion-Induced Axon Regeneration Into the Injured Spinal Cord: Potential Role of Cyclic AMP-Induced Tissue Inhibitor of Metalloproteinase-1. J Neuropathol Exp Neurol 2015; 74:500-11. [PMID: 25933384 DOI: 10.1097/nen.0000000000000192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regeneration of sensory neurons after spinal cord injury depends on the function of dividing neuronal-glial antigen 2 (NG2)-expressing cells. We have shown that increases in the number of dividing NG2-positive cells through short-term pharmacologic inhibition of matrix metalloproteinases contributes to recovery after spinal cord injury. A conditioning sciatic nerve crush (SNC) preceding spinal cord injury stimulates central sensory axon regeneration via the intraganglionic action of cyclic adenosine monophosphate. Here, using bromodeoxyuridine, mitomycin (mitosis inhibitor), and cholera toxin B tracer, we demonstrate that SNC-induced division of spinal glia is related to the spinal induction of tissue inhibitor of metalloproteinase-1 and contributes to central sensory axon growth into the damaged spinal cord. Dividing cells were mainly NG2-positive and Iba1-positive and included myeloid NG2-positive populations. The cells dividing in response to SNC mainly matured into oligodendrocytes and microglia within the injured spinal cord. Some postmitotic cells remained NG2-reactive and were associated with regenerating fibers. Moreover, intraganglionic tissue inhibitor of metalloproteinase-1 expression was induced after administration of SNC or cyclic adenosine monophosphate analog (dbcAMP) to dorsal root ganglia in vivo and in primary adult dorsal root ganglia cultures. Collectively, these findings support a novel model whereby a cyclic adenosine monophosphate-activated regeneration program induced in sensory neurons by a conditioning peripheral nerve lesion uses tissue inhibitor of metalloproteinase-1 to protect against short-term proteolysis, enabling glial cell division and promoting axon growth into the damaged CNS.
Collapse
|
17
|
Wen J, Sun D, Tan J, Young W. A consistent, quantifiable, and graded rat lumbosacral spinal cord injury model. J Neurotrauma 2015; 32:875-92. [PMID: 25313633 PMCID: PMC4492780 DOI: 10.1089/neu.2013.3321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study is to develop a rat lumbosacral spinal cord injury (SCI) model that causes consistent motoneuronal loss and behavior deficits. Most SCI models focus on the thoracic or cervical spinal cord. Lumbosacral SCI accounts for about one third of human SCI but no standardized lumbosacral model is available for evaluating therapies. Twenty-six adult female Sprague-Dawley rats were randomized to three groups: sham (n=9), 25 mm (n=8), and 50 mm (n=9). Sham rats had laminectomy only, while 25 mm and 50 mm rats were injured by dropping a 10 g rod from a height of 25 mm or 50 mm, respectively, onto the L4-5 spinal cord at the T13/L1 vertebral junction. We measured footprint length (FL), toe spreading (TS), intermediate toe spreading (ITS), and sciatic function index (SFI) from walking footprints, and static toe spreading (STS), static intermediate toe spreading (SITS), and static sciatic index (SSI) from standing footprints. At six weeks, we assessed neuronal and white matter loss, quantified axons, diameter, and myelin thickness in the peroneal and tibial nerves, and measured cross-sectional areas of tibialis anterior and gastrocnemius muscle fibers. The result shows that peroneal and tibial motoneurons were respectively distributed in 4.71 mm and 5.01 mm columns in the spinal cord. Dropping a 10-g weight from 25 mm or 50 mm caused 1.5 mm or 3.75 mm gaps in peroneal and tibial motoneuronal columns, respectively, and increased spinal cord white matter loss. Fifty millimeter contusions significantly increased FL and reduced TS, ITS, STS, SITS, SFI, and SSI more than 25 mm contusions, and resulted in smaller axon and myelinated axon diameters in tibial and peroneal nerves and greater atrophy of gastrocnemius and anterior tibialis muscles, than 25 mm contusions. This model of lumbosacral SCI produces consistent and graded loss of white matter, motoneuronal loss, peripheral nerve axonal changes, and anterior tibialis and gastrocnemius muscles atrophy in rats.
Collapse
Affiliation(s)
- Junxiang Wen
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey.,2 Department of Orthopaedics, Tongji University School of Medicine , Shanghai, China
| | - Dongming Sun
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey
| | - Jun Tan
- 2 Department of Orthopaedics, Tongji University School of Medicine , Shanghai, China
| | - Wise Young
- 1 Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey , Piscataway, New Jersey
| |
Collapse
|
18
|
Nishihara T, Remacle AG, Angert M, Shubayev I, Shiryaev SA, Liu H, Dolkas J, Chernov AV, Strongin AY, Shubayev VI. Matrix metalloproteinase-14 both sheds cell surface neuronal glial antigen 2 (NG2) proteoglycan on macrophages and governs the response to peripheral nerve injury. J Biol Chem 2014; 290:3693-707. [PMID: 25488667 DOI: 10.1074/jbc.m114.603431] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain.
Collapse
Affiliation(s)
- Tasuku Nishihara
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037, Department of Anesthesiology and Resuscitology, Ehime University, Toon, Ehime 791-0295, Japan
| | - Albert G Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Mila Angert
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Igor Shubayev
- Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Sergey A Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Huaqing Liu
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Jennifer Dolkas
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037
| | - Andrei V Chernov
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Alex Y Strongin
- Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Veronica I Shubayev
- From the Departments of Anesthesiology, University of California, San Diego, La Jolla, California 92093, Veterans Affairs San Diego Healthcare System, La Jolla, California 92037,
| |
Collapse
|
19
|
Lamarca A, Gella A, Martiañez T, Segura M, Figueiro-Silva J, Grijota-Martinez C, Trullas R, Casals N. Uridine 5'-triphosphate promotes in vitro Schwannoma cell migration through matrix metalloproteinase-2 activation. PLoS One 2014; 9:e98998. [PMID: 24905332 PMCID: PMC4048211 DOI: 10.1371/journal.pone.0098998] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
In response to peripheral nerve injury, Schwann cells adopt a migratory phenotype and modify the extracellular matrix to make it permissive for cell migration and axonal re-growth. Uridine 5′-triphosphate (UTP) and other nucleotides are released during nerve injury and activate purinergic receptors expressed on the Schwann cell surface, but little is known about the involvement of purine signalling in wound healing. We studied the effect of UTP on Schwannoma cell migration and wound closure and the intracellular signaling pathways involved. We found that UTP treatment induced Schwannoma cell migration through activation of P2Y2 receptors and through the increase of extracellular matrix metalloproteinase-2 (MMP-2) activation and expression. Knockdown P2Y2 receptor or MMP-2 expression greatly reduced wound closure and MMP-2 activation induced by UTP. MMP-2 activation evoked by injury or UTP was also mediated by phosphorylation of all 3 major mitogen-activated protein kinases (MAPKs): JNK, ERK1/2, and p38. Inhibition of these MAPK pathways decreased both MMP-2 activation and cell migration. Interestingly, MAPK phosphorylation evoked by UTP exhibited a biphasic pattern, with an early transient phosphorylation 5 min after treatment, and a late and sustained phosphorylation that appeared at 6 h and lasted up to 24 h. Inhibition of MMP-2 activity selectively blocked the late, but not the transient, phase of MAPK activation. These results suggest that MMP-2 activation and late MAPK phosphorylation are part of a positive feedback mechanism to maintain the migratory phenotype for wound healing. In conclusion, our findings show that treatment with UTP stimulates in vitro Schwannoma cell migration and wound repair through a MMP-2-dependent mechanism via P2Y2 receptors and MAPK pathway activation.
Collapse
Affiliation(s)
- Aloa Lamarca
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Alejandro Gella
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- * E-mail:
| | - Tania Martiañez
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Mònica Segura
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Joana Figueiro-Silva
- Neurobiology Unit, Institut d′Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d′Investigacions Biomèdiques Pi i Sunyer, Barcelona, Spain
| | - Carmen Grijota-Martinez
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Ramón Trullas
- Neurobiology Unit, Institut d′Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d′Investigacions Biomèdiques Pi i Sunyer, Barcelona, Spain
| | - Núria Casals
- Department of Basic Sciences, Facultat de Medicina, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
20
|
Khuong HT, Kumar R, Senjaya F, Grochmal J, Ivanovic A, Shakhbazau A, Forden J, Webb A, Biernaskie J, Midha R. Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol 2014; 254:168-79. [PMID: 24440805 DOI: 10.1016/j.expneurol.2014.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/23/2022]
Abstract
Previous work has shown that infusion of skin-derived precursors pre-differentiated into Schwann cells (SKP-SCs) can remyelinate injured and regenerating axons, and improve indices of axonal regeneration and electrophysiological parameters in rodents. We hypothesized that SKP-SC therapy would improve behavioral outcomes following nerve injury repair and tested this in a pre-clinical trial in 90 rats. A model of sciatic nerve injury and acellular graft repair was used to compare injected SKP-SCs to nerve-derived Schwann cells or media, and each was compared to the gold standard nerve isograft repair. In a second experiment, rats underwent right tibial nerve transection and received either acute or delayed direct nerve repair, with injections of either 1) SKP-SCs distal to the repair site, 2) carrier medium alone, or 3) dead SKP-SCs, and were followed for 4, 8 or 17weeks. For delayed repairs, both transected nerve ends were capped and repaired 11weeks later, along with injections of cells or media as above, and followed for 9 additional weeks (total of 20weeks). Rats were serially tested for skilled locomotion and a slip ratio was calculated for the horizontal ladder-rung and tapered beam tasks. Immediately after nerve injury and with chronic denervation, slip ratios were dramatically elevated. In the GRAFT repair study, the SKP-SC treated rats showed statistically significant improvement in ladder rung as compared to all other groups, and exhibited the greatest similarity to the sham controls on the tapered beam by study termination. In the ACUTE repair arm, the SKP-SC group showed marked improvement in ladder rung slip ratio as early as 5weeks after surgery, which was sustained for the duration of the experiment. Groups that received media and dead SKP-SCs improved with significantly slower progression. In the DELAYED repair arm, the SKP-SC group became significantly better than other groups 7weeks after the repair, while the media and the dead SKP-SCs showed no significant improvement in slip ratios. On histomorphometrical analysis, SKP-SC group showed significantly increased mean axon counts while the percent myelin debris was significantly lower at both 4 and 8weeks, suggesting that a less inhibitory micro-environment may have contributed to accelerated axonal regeneration. For delayed repair, mean axon counts were significantly higher in the SKP-SC group. Compound action potential amplitudes and muscle weights were also improved by cell therapy. In conclusion, SKP-SC therapy improves behavioral recovery after acute, chronic and nerve graft repair beyond the current standard of microsurgical nerve repair.
Collapse
Affiliation(s)
- Helene T Khuong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada; Service de Neurochirurgie, Département des Sciences Neurologiques, CHU-de Québec (Hôpital de l'Enfant-Jésus), Centre de Recherché du CHU-de Québec, Canada; Division de Neurochirurgie, Département de Chirurgie, Université Laval, 1401, 18e rue, Québec, Québec G1J 1Z4, Canada
| | - Ranjan Kumar
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Ferry Senjaya
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Joey Grochmal
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Aleksandra Ivanovic
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Antos Shakhbazau
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Joanne Forden
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Aubrey Webb
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Jeffrey Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada
| | - Rajiv Midha
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N4N1, Canada.
| |
Collapse
|
21
|
Sukumaran P, Löf C, Pulli I, Kemppainen K, Viitanen T, Törnquist K. Significance of the transient receptor potential canonical 2 (TRPC2) channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion. Mol Cell Endocrinol 2013; 374:10-21. [PMID: 23578584 DOI: 10.1016/j.mce.2013.03.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 02/06/2023]
Abstract
Mammalian transient receptor potential (TRP) channels are involved in many physiologically important processes. Here, we have studied the significance of the TRPC2 channel in the regulation of rat thyroid FRTL-5 cell proliferation, migration, adhesion and invasion, using stable TRPC2 (shTRPC2) knock-down cells. In the shTRPC2 cells, proliferation was decreased due to a prolonged G1/S cell cycle phase. The tumor suppressor p53 and the cyclin-dependant kinase inhibitors p27 and p21 were upregulated. Cell invasion, adhesion and migration were also attenuated in shTRPC2 cells, probably due to decreased activity of both Rac and calpain, and a decreased secretion and activity of matrix metalloproteinase 2. The attenuated proliferation, migration, invasion and ATP-evoked calcium entry was mimicked by overexpressing a non-conducting, truncated TRPC2 (TRPC2-DN) in wild type cells, and was reversed by overexpression of TRPC2-GFP in shTRPC2 cells. In conclusion, TRPC2 is an important regulator of rat thyroid cell function.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Biosciences, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
22
|
Christie K, Zochodne D. Peripheral axon regrowth: New molecular approaches. Neuroscience 2013; 240:310-24. [DOI: 10.1016/j.neuroscience.2013.02.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
|
23
|
Fredrich M, Zeber AC, Hildebrandt H, Illing RB. Differential molecular profiles of astrocytes in degeneration and re-innervation after sensory deafferentation of the adult rat cochlear nucleus. Eur J Neurosci 2013; 38:2041-56. [PMID: 23581580 DOI: 10.1111/ejn.12200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Abstract
Ablating the cochlea causes total sensory deafferentation of the cochlear nucleus. Over the first postoperative week, degeneration of the auditory nerve and its synaptic terminals in the cochlear nucleus temporally overlaps with its re-innervation by axon collaterals of medial olivocochlear neurons. At the same time, astrocytes increase in size and density. We investigated the time courses of the expression of ezrin, polysialic acid, matrix metalloprotease-9 and matrix metalloprotease-2 within these astrocytes during the first week following cochlear ablation. All four proteins are known to participate in degeneration, regeneration, or both, following injury of the central nervous system. In a next step, stereotaxic injections of kainic acid were made into the ventral nucleus of the trapezoid body prior to cochlear ablation to destroy the neurons that re-innervate the deafferented cochlear nucleus by axon collaterals developing growth-associated protein 43 immunoreactivity. This experimental design allowed us to distinguish between molecular processes associated with degeneration and those associated with re-innervation. Under these conditions, astrocytic growth and proliferation showed an unchanged deafferentation-induced pattern. Similarly, the distribution and amount of ezrin and matrix metalloprotease-9 in astrocytes after cochlear ablation developed in the same way as under cochlear ablation alone. In sharp contrast, the astrocytic expression of polysialic acid and matrix metalloprotease-2 normally invoked by cochlear ablation collapsed when re-innervation of the cochlear nucleus was inhibited by lesioning medial olivocochlear neurons with kainic acid. In conclusion, re-innervation, including axonal growth and synaptogenesis, seems to prompt astrocytes to recompose their molecular profile, paving the way for tissue reorganisation after nerve degeneration and loss of synaptic contacts.
Collapse
Affiliation(s)
- Michaela Fredrich
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianst 5, Freiburg 79106, Germany.
| | | | | | | |
Collapse
|
24
|
Cua RC, Lau LW, Keough MB, Midha R, Apte SS, Yong VW. Overcoming neurite-inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. Glia 2013; 61:972-84. [PMID: 23554135 DOI: 10.1002/glia.22489] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/06/2013] [Indexed: 11/07/2022]
Abstract
Acute trauma to the central nervous system (CNS) can result in permanent damage and loss of function related to the poor regeneration of injured axons. Injured axons encounter several barriers to regeneration, such as the glial scar at the injury site. The glial scar contains extracellular matrix (ECM) macromolecules deposited by reactive astrocytes in response to injury. The scar ECM is rich in chondroitin sulfate proteoglycans (CSPGs), macromolecules that inhibit axonal growth. CSPGs consist of a core protein with attachment sites for glycosaminoglycan (GAG) chains. An extensive literature demonstrates that enzymatic removal of the GAG chains by chondroitinase ABC permits some axonal regrowth; however, the remaining intact core proteins also possess inhibitory domains. Because metalloproteinases can degrade core proteins of CSPGs, we have evaluated five matrix metalloproteinases (MMPs) and a related protease-a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)-for their capacity to overcome CSPG inhibition of neuritic growth in culture. The metalloproteinases were selected for their known expression after CNS injuries. Of the MMPs, MMP-3, -7 and -8 reduced or abolished inhibition of neurite outgrowth on a purified CSPG substrate and on an astrocyte-derived ECM. ADAMTS-4 also attenuated CSPG inhibition of neurites and had the additional benefits of neither degrading laminin nor causing neurotoxicity. The efficacy of ADAMTS-4 matched that of blocking the EGFR signaling previously reported to mediate CSPG inhibition. These findings highlight ADAMTS-4 as a superior protease for overcoming CSPG inhibition of axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Rowena C Cua
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Kim YH, Kwon HJ, Kim DS. Matrix metalloproteinase 9 (MMP-9)-dependent processing of βig-h3 protein regulates cell migration, invasion, and adhesion. J Biol Chem 2012; 287:38957-69. [PMID: 23019342 DOI: 10.1074/jbc.m112.357863] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell migration is critically involved in inflammation, cancer, and development. In this study, transforming growth factor-β-induced protein (βig-h3) was identified as a substrate of matrix metalloproteinase-9 (MMP-9) by site-directed mutagenesis. βig-h3 has two cleavage sites with the consensus sequence Pro-Xaa-Xaa-Hy-(Ser/Thr) (Hy is a hydrophobic amino acid) (PGSFT beginning at amino acid 135 and PPMGT beginning at amino acid 501). Using recombinant human βig-h3 and MMP-9, βig-h3 from βig-h3-transfected HEK293F cells, and MMP-9 from MMP-9-transfected HEK293F cells, human macrophages, and neutrophils, we found that MMP-9 proteolytically cleaves βig-h3. Cleavage leads to the loss of its adhesive property and its release from extracellular matrix proteins, collagen IV, and fibronectin. Spheroids formed by increased cell-cell interactions were observed in βig-h3-transfected HEK293F cells but not in vehicle-transfected HEK293F cells. In human glioma U87MG cells, MMP-9 constitutive overexpression resulted in endogenous βig-h3 cleavage. βig-h3 cleavage by MMP-9 led to increased cell invasion, and βig-h3 knockdown also resulted in increased cell invasion. The βig-h3 fragment cleaved by MMP-9 could bind to the surface of macrophages, and it may play a role as a peptide chemoattractant by inducing macrophage migration via focal adhesion kinase/Src-mediated signal activation. Thus, intact βig-h3 is responsible for cell migration inhibition, cell-cell contact, and cell-extracellular matrix interaction. Experimental evidence indicates that MMP-9-cleaved βig-h3 plays a role in MMP-9-mediated tumor cell and macrophage migration.
Collapse
Affiliation(s)
- Yeon Hyang Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | | | | |
Collapse
|
26
|
Abstract
This review provides an overview of selected aspects of peripheral nerve regeneration and potential avenues to explore therapeutically. The overall coordinated and orchestrated pattern of recovery from peripheral nerve injury has a beauty of execution and progress that rivals all other forms of neurobiology. It involves changes at the level of the perikaryon, coordination with important peripheral glial partners, the Schwann cells, a controlled inflammatory response, and growth that overcomes surprising intrinsic roadblocks. Both regenerative axon growth and collateral sprouting encompass fascinating aspects of this story. Better understanding of peripheral nerve regeneration may also lead to enhanced central nervous system recovery.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Abstract
This is a brief review of several novel strategies for therapeutic approaches to axonal damage in peripheral neuropathies. Although not comprehensive, the review addresses the challenges in axonal regrowth, newly identified roadblocks to regeneration and the concept of collateral reinnervation to restore lost neurological function.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Department of Clinical Neurosciences, The Hotchkiss Brain Institute, University of Calgary, AB, Canada.
| |
Collapse
|
28
|
Kim Y, Remacle AG, Chernov AV, Liu H, Shubayev I, Lai C, Dolkas J, Shiryaev SA, Golubkov VS, Mizisin AP, Strongin AY, Shubayev VI. The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration. PLoS One 2012; 7:e33664. [PMID: 22438979 PMCID: PMC3306282 DOI: 10.1371/journal.pone.0033664] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/14/2012] [Indexed: 02/07/2023] Open
Abstract
Background Myelinating Schwann cells (mSCs) form myelin in the peripheral nervous system. Because of the works by us and others, matrix metalloproteinase-9 (MMP-9) has recently emerged as an essential component of the Schwann cell signaling network during sciatic nerve regeneration. Methodology/Principal Findings In the present study, using the genome-wide transcriptional profiling of normal and injured sciatic nerves in mice followed by extensive bioinformatics analyses of the data, we determined that an endogenous, specific MMP-9 inhibitor [tissue inhibitor of metalloproteinases (TIMP)-1] was a top up-regulated gene in the injured nerve. MMP-9 capture followed by gelatin zymography and Western blotting of the isolated samples revealed the presence of the MMP-9/TIMP-1 heterodimers and the activated MMP-9 enzyme in the injured nerve within the first 24 h post-injury. MMP-9 and TIMP-1 co-localized in mSCs. Knockout of the MMP-9 gene in mice resulted in elevated numbers of de-differentiated/immature mSCs in the damaged nerve. Our comparative studies using MMP-9 knockout and wild-type mice documented an aberrantly enhanced proliferative activity and, accordingly, an increased number of post-mitotic Schwann cells, short internodes and additional nodal abnormalities in remyelinated nerves of MMP-9 knockout mice. These data imply that during the first days post-injury MMP-9 exhibits a functionally important anti-mitogenic activity in the wild-type mice. Pharmacological inhibition of MMP activity suppressed the expression of Nav1.7/1.8 channels in the crushed nerves. Conclusion/Significance Collectively, our data established an essential role of the MMP-9/TIMP-1 axis in guiding the mSC differentiation and the molecular assembly of myelin domains in the course of the nerve repair process. Our findings of the MMP-dependent regulation of Nav channels, which we document here for the first time, provide a basis for therapeutic intervention in sensorimotor pathologies and pain.
Collapse
Affiliation(s)
- Youngsoon Kim
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Albert G. Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Andrei V. Chernov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Huaqing Liu
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Igor Shubayev
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Calvin Lai
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Vladislav S. Golubkov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Andrew P. Mizisin
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Alex Y. Strongin
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Matrix metalloproteinase inhibition enhances the rate of nerve regeneration in vivo by promoting dedifferentiation and mitosis of supporting schwann cells. J Neuropathol Exp Neurol 2010; 69:386-95. [PMID: 20448483 DOI: 10.1097/nen.0b013e3181d68d12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
After peripheral nerve injury, Schwann cells (SCs) vigorously divide to survive and produce a sufficient number of cells to accompany regenerating axons. Matrix metalloproteinases (MMPs) have emerged as modulators of SC signaling and mitosis. Using a 5-bromo-2-deoxyuridine (BrdU) incorporation assay, we previously found that a broad-spectrum MMP inhibitor (MMPi), GM6001 (or ilomastat), enhanced division of cultured primary SCs. Here, we tested the hypothesis that the ability of MMPi to stimulate SC mitosis may advance nerve regeneration in vivo. GM6001 administration immediately after rat sciatic nerve crush and daily thereafter produced increased nerve regeneration as determined by nerve pinch test and growth-associated protein 43 expression. The MMPi promoted endoneurial BrdU incorporation relative to vehicle control. The dividing cells were mainly SCs and were associated with growth-associated protein 43-positive regenerating axons. After MMP inhibition, myelin basic protein mRNA expression (determined by Taqman real-time quantitative polymerase chain reaction) and active mitosis of myelin-forming SCs were reduced, indicating that MMPs may suppress their dedifferentiation preceding mitosis. Intrasciatic injection of mitomycin,the inhibitor of SC mitosis, suppressed nerve regrowth, which was reversed by MMPi, suggesting that its effect on axonal growth promotion depends on its promitogenic action in SCs. These studies establish novel roles for MMPs in peripheral nerve repair via control of SC mitosis, differentiation, and myelin protein mRNA expression.
Collapse
|
30
|
Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci 2009; 16:108. [PMID: 19939265 PMCID: PMC2790452 DOI: 10.1186/1423-0127-16-108] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 11/25/2009] [Indexed: 01/27/2023] Open
Abstract
Neural tissue repair and regeneration strategies have received a great deal of attention because it directly affects the quality of the patient's life. There are many scientific challenges to regenerate nerve while using conventional autologous nerve grafts and from the newly developed therapeutic strategies for the reconstruction of damaged nerves. Recent advancements in nerve regeneration have involved the application of tissue engineering principles and this has evolved a new perspective to neural therapy. The success of neural tissue engineering is mainly based on the regulation of cell behavior and tissue progression through the development of a synthetic scaffold that is analogous to the natural extracellular matrix and can support three-dimensional cell cultures. As the natural extracellular matrix provides an ideal environment for topographical, electrical and chemical cues to the adhesion and proliferation of neural cells, there exists a need to develop a synthetic scaffold that would be biocompatible, immunologically inert, conducting, biodegradable, and infection-resistant biomaterial to support neurite outgrowth. This review outlines the rationale for effective neural tissue engineering through the use of suitable biomaterials and scaffolding techniques for fabrication of a construct that would allow the neurons to adhere, proliferate and eventually form nerves.
Collapse
Affiliation(s)
- Anuradha Subramanian
- Center for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India.
| | | | | |
Collapse
|
31
|
Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol 2009; 223:102-11. [PMID: 19505459 DOI: 10.1016/j.expneurol.2009.05.038] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 05/29/2009] [Accepted: 05/30/2009] [Indexed: 01/09/2023]
Abstract
Traumatic injury to the nervous system often results in life changing loss of neurological function. Spontaneous neural regeneration occurs rarely and the outcome of therapeutic intervention is most often unacceptable. An intensive effort is underway to improve methods and technologies for nervous system repair. To date, the most success has been attained in the outcomes of peripheral nerve restoration. The importance of the peripheral nerve sheaths in successful nerve regeneration has been long recognized. In particular, Schwann cells and their basal laminae play a central role in axon development, maintenance, physiology, and response to injury. The endoneurial basal lamina is rich in components that promote axonal growth. It is now evident that the bioactivities of these components are counterbalanced by various factors that impede axonal growth. The growth-promoting potential of peripheral nerve is realized in the degenerative processes that occur distal to a lesion. This potentiation involves precise spatiotemporal alterations in the balance of antagonistic regulators of axonal growth. Experimental alteration of nerve sheath composition can also potentiate nerve and improve key features of nerve regeneration. For instance, enzymatic degradation of inhibitory chondroitin sulfate proteoglycan mimics endogenous processes that potentiate degenerated nerve and improves the outcome of direct nerve repair and grafting in animal models. This review provides a perspective of the essential role that peripheral nerve sheaths play in regulating axonal regeneration and focuses on discoveries leading to the inception and development of novel therapies for nerve repair.
Collapse
Affiliation(s)
- David Muir
- Department of Pediatrics, Neurology Division, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA.
| |
Collapse
|
32
|
Lehmann HC, Köhne A, Bernal F, Jangouk P, Meyer Zu Hörste G, Dehmel T, Hartung HP, Previtali SC, Kieseier BC. Matrix metalloproteinase-2 is involved in myelination of dorsal root ganglia neurons. Glia 2009; 57:479-89. [PMID: 18814268 DOI: 10.1002/glia.20774] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Matrix metalloproteinases (MMPs) comprise a large family of endopeptidases that are capable of degrading all extracellular matrix components. There is increasing evidence that MMPs are not only involved in tissue destruction but may also exert beneficial effects during axonal regeneration and nerve remyelination. Here, we provide evidence that MMP-2 (gelatinase A) is associated with the physiological process of myelination in the peripheral nervous system (PNS). In a myelinating co-culture model of Schwann cells and dorsal root ganglia neurons, MMP-2 expression correlated with the degree of myelination as determined by immunocytochemistry, zymography, and immunosorbent assay. Modulation of MMP-2 activity by chemical inhibitors led to incomplete and aberrant myelin formation. In vivo MMP-2 expression was detected in the cerebrospinal fluid (CSF) of patients with Guillain-Barré syndrome as well as in CSF and sural nerve biopsies of patients with chronic inflammatory demyelinating polyneuropathy. Our findings suggest an important, previously unrecognized role for MMP-2 during myelination in the PNS. Endogenous or exogenous modulation of MMP-2 activity may be a relevant target to enhance regeneration in demyelinating diseases of the PNS.
Collapse
Affiliation(s)
- Helmar C Lehmann
- Department of Neurology, Heinrich-Heine-University, Moorenstrasse, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yong N, Guoping C. Upregulation of matrix metalloproteinase-9 dependent on hyaluronan synthesis after sciatic nerve injury. Neurosci Lett 2008; 444:259-63. [DOI: 10.1016/j.neulet.2008.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/28/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
34
|
Abstract
Matrix metalloproteinases (MMPs) are zinc endopeptidases composed of 23 members in humans, which belong to a subfamily of the metzincin superfamily. They play important roles in many pathophysiological events including development, organogenesis, angiogenesis, tissue remodeling and destruction, and cancer cell proliferation and progression by degradation of extracellular matrix (ECM) and non-ECM proteins and interaction with various molecules. Here, we present standard protocols for purification of native proMMPs (proMMP-1, -2, -3, -7, -9 and -10) and recombinant MT1-MMP (MMP-14) using conventional column chromatography. Purification steps comprise the initial common step [diethylaminoethyl (DEAE)-cellulose, Green A Dyematrex gel and gelatin-Sepharose columns], the second step for removal of nontarget proMMPs by immunoaffinity columns (anti-MMP-1 and/or anti-MMP-3 IgG-Sepharose columns) and the final step for further purification (IgG-Sepharose, DEAE-cellulose, Zn2+-chelate-Sepharose and/or gel filtration columns). Purified proMMPs and MMP are functionally active and suitable for biochemical analyses. The basic protocol for the purification from culture media takes approximately 7-10 d.
Collapse
Affiliation(s)
- Kazushi Imai
- Department of Biochemistry, Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | |
Collapse
|
35
|
Yong N, Guoping C. The role and mechanism of the up-regulation of fibrinolytic activity in painful peripheral nerve injury. Neurochem Res 2008; 34:587-92. [PMID: 18716863 DOI: 10.1007/s11064-008-9826-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
Peripheral nerve injury is followed by Wallerians degeneration (WD) and degradation and regeneration of the extracellular matrix (ECM) are very important events in these processes. We tested fibrinolytic activities and the expression level of tPA and uPA levels in chronic constriction injury (CCI) model. The presented data demonstrates that in the injury nerve of CCI model, the fibrinolytic activities is upregulated and main caused by the upregulation of tPA expression. We also find that the activities of tPA and MMP-9 are co-upregulated post-CCI, both at CCI site and proximal site. These results indicate that tPA activity may regulate the MMP-9 activity in injury nerve post-CCI.
Collapse
Affiliation(s)
- Nie Yong
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | |
Collapse
|
36
|
Ranasinghe HS, Williams CE, Christophidis LJ, Mitchell MD, Fraser M, Scheepens A. Proteolytic activity during cortical development is distinct from that involved in hypoxic ischemic injury. Neuroscience 2008; 158:732-44. [PMID: 18809469 DOI: 10.1016/j.neuroscience.2008.07.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 06/19/2008] [Accepted: 07/03/2008] [Indexed: 11/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in brain development and the etiology of adult cerebral injuries. In this study, we determined the MMP-2 and 9 responses following hypoxic ischemia (HI) injury in the developing brain. First, we characterized the developmental changes of MMP activity in the rat brain from embryonic day 18 (E18) to postnatal day 120 (P120). MMP-2 activity was high from E18 to P3 and decreased with age (P< or =0.001), while MMP-9 activity was not detectable. MMP-2 immunoreactivity was closely associated with differentiating cortical plate and subplate neurons. Next, we characterized the proteolytic changes after unilateral HI brain injury in 3- (P3) and 21- (P21) day-old rats. Zymography revealed that in the P21 rat brain, MMP-9 activity (150 and 92 kDa forms) was increased at 6 h and remained elevated 24 h post-injury in the ipsilateral injured hemisphere (P< or =0.001), whereas there was a gradual increase in MMP-2 (65 kDa) activity, reaching a peak at 5 days (P< or =0.001). Similarly, quantitative real time polymerase chain reaction (qRT-PCR) indicated significant elevations in MMP-9 and MMP-2 mRNA expression in the injured cortex (P< or =0.05) and hippocampus (P< or =0.05) at 1 and 5 days post-injury, respectively in the P21 rat brain. In the P3 rat brain, zymography results revealed that both pro (92 kDa) and cleaved (87 kDa) MMP-9 activities were upregulated in the ipsilateral injured hemisphere from 6 h to 1 day after injury (P< or =0.001). In contrast, cleaved MMP-2 (60 kDa) was only moderately upregulated at 6 h (P< or =0.01), while pro MMP-2 (65 kDa) levels were unaffected. MMP-9 mRNA expression was also increased at 6 h (P< or =0.05) following injury at P3, whereas MMP-2 expression remained unchanged compared with the uninjured contralateral hemisphere. Immunohistochemistry indicated that MMP-9 protein expression was localized predominantly to neurons and peri-vascular astrocytes in the affected regions at early time points, whereas MMP-2 was present on reactive astrocytes surrounding the infarct at later time points. Together, these results indicate that MMP-2 may be primarily associated with the development and differentiation of cortical plate neurons and wound recovery processes. Conversely, MMP-9 appeared to be associated with more acute processes during the period of lesion development.
Collapse
Affiliation(s)
- H S Ranasinghe
- Liggins Institute, University of Auckland, 2-6 Park Avenue, Grafton, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
37
|
Mizoguchi H, Yamada K, Nabeshima T. Neuropsychotoxicity of abused drugs: involvement of matrix metalloproteinase-2 and -9 and tissue inhibitor of matrix metalloproteinase-2 in methamphetamine-induced behavioral sensitization and reward in rodents. J Pharmacol Sci 2008; 106:9-14. [PMID: 18198472 DOI: 10.1254/jphs.fm0070139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. We have investigated the role of the MMP/TIMP system in methamphetamine (METH) dependence in rodents, in which the remodeling of neural circuits may be crucial. Repeated METH treatment induced behavioral sensitization, which was accompanied by an increase in MMP-2/-9/TIMP-2 activity in the brain. An antisense TIMP-2 oligonucleotide enhanced the sensitization, which was associated with a potentiation of the METH-induced release of dopamine in the nucleus accumbens (NAc). MMP-2/-9 inhibitors blocked the METH-induced behavioral sensitization and conditioned place preference (CPP), a measure of the rewarding effect of a drug, and reduced the METH-increased dopamine release in the NAc. In MMP-2- and MMP-9-deficient mice, METH-induced behavioral sensitization and CPP as well as dopamine release were attenuated. The MMP/TIMP system may be involved in METH-induced sensitization and reward by regulating extracellular dopamine levels.
Collapse
Affiliation(s)
- Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
38
|
Milward E, Kim KJ, Szklarczyk A, Nguyen T, Melli G, Nayak M, Deshpande D, Fitzsimmons C, Hoke A, Kerr D, Griffin JW, Calabresi PA, Conant K. Cleavage of myelin associated glycoprotein by matrix metalloproteinases. J Neuroimmunol 2007; 193:140-8. [PMID: 18063113 DOI: 10.1016/j.jneuroim.2007.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/12/2007] [Accepted: 11/02/2007] [Indexed: 01/03/2023]
Abstract
Derivative myelin associated glycoprotein (dMAG) results from proteolysis of transmembrane MAG and can inhibit axonal growth. We have tested the ability of certain matrix metalloproteinases (MMPs) elevated with inflammatory and demyelinating diseases to cleave MAG. We show MMP-2, MMP-7 and MMP-9, but not MMP-1, cleave recombinant human MAG. Cleavage by MMP-7 occurs at Leu 509, just distal to the transmembrane domain and, to a lesser extent, at Met 234. We also show that MMP-7 cleaves MAG expressed on the external surface of CHO cells, releasing fragments that accumulate in the medium over periods of up to 48 h or more and that are able to inhibit outgrowth by dorsal root ganglion (DRG) neurons. We conclude that MMPs may have the potential both to disrupt MAG dependent axon-glia communication and to generate bioactive fragments that can inhibit neurite growth.
Collapse
Affiliation(s)
- Elizabeth Milward
- School of Biomedical Sciences, The University of Newcastle and the Hunter Medical Research Institute, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jin EJ, Choi YA, Kyun Park E, Bang OS, Kang SS. MMP-2 functions as a negative regulator of chondrogenic cell condensation via down-regulation of the FAK-integrin beta1 interaction. Dev Biol 2007; 308:474-84. [PMID: 17604018 DOI: 10.1016/j.ydbio.2007.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 05/31/2007] [Accepted: 06/05/2007] [Indexed: 11/29/2022]
Abstract
Matrix metalloprotease-2 (MMP-2) has the capacity to degrade cartilage extracellular matrix molecules, the turnover of which is an essential event in chondrogenesis. Here, we investigated the functional role of MMP-2 in chondrogenesis of leg bud mesenchymal cells. Small interference RNA (siRNA)-mediated knockdown of mmp-2 promoted precartilage condensation and chondrogenesis. Treatment with bafilomycin A1, an MMP-2 activator, or GM6001, an MMP inhibitor, at the pre-condensation stage resulted in the inhibition or promotion of chondrogenesis, respectively. By comparison, treatment at the post-condensation stage had little or no effect on chondrogenesis. These results indicate that MMP-2 is involved in the regulation of cell condensation. Inhibition of MMP-2 activity by mmp-2 specific siRNA increased the protein level of fibronectin, and integrins alpha5 and beta1. The interaction between focal adhesion kinase (FAK) and integrin beta1 leading to tyrosine phosphorylation of FAK was also enhanced. Moreover, inactivation of p38MAPK down-regulated the level of MMP-2 mRNA and activity, and increased mesenchymal cell condensation in parallel with enhanced phosphorylation of FAK. Taken together, our data indicate that MMP-2 mediates the inhibitory signals of p38MAPK during mesenchymal cell condensation by functioning as a negative regulator of focal adhesion activity regulated by FAK via interactions with fibronectin through integrin beta1.
Collapse
Affiliation(s)
- Eun-Jung Jin
- Department of Biology, College of Natural Sciences (BK21), Daegu 702-701, Korea
| | | | | | | | | |
Collapse
|
40
|
Joshi S, Guleria RS, Pan J, Dipette D, Singh US. Heterogeneity in retinoic acid signaling in neuroblastomas: Role of matrix metalloproteinases in retinoic acid-induced differentiation. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1093-102. [PMID: 17611083 DOI: 10.1016/j.bbadis.2007.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 01/28/2023]
Abstract
Causes of retinoid resistance often observed in neuroblastomas are unknown. We studied all trans-retinoic acid (RA) signaling in neuroblastoma cells differing in N-myc levels in terms of neurite formation, expression of tissue transglutaminase, neuronal marker proteins, matrix metalloproteinases (MMPs), and activation of Rac1 and Cdc42. Poor invasiveness observed in SH-SY5Y, LA-N-5, and SMS-KCNR cells was associated with RA-induced neurite formation, Cdc42 activation and N-myc down regulation; expression of constitutively active Cdc42 down regulated N-myc expression and reduced invasion in RA-resistant SK-N-BE(2) and IMR32 cells. RA treatment for 24 h transiently increased invasion and expression of MMP9 in SH-SY5Y, LA-N-5 and MMP2 in SMS-KCNR cells. MMP inhibition prevented RA-induced neurite formation indicating a role in differentiation. Variation in RA signaling thus follows a defined pattern and relates to invasive potential. A defective RA signaling might result in retinoid resistance and unpredictable clinical outcome observed in some neuroblastomas.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Internal Medicine, The Texas A&M University System Health Science Center, Central Texas Veterans Health Care System, Scott & White Clinic, 1901 South 1st Street, Temple, TX 76504, USA
| | | | | | | | | |
Collapse
|
41
|
Mizoguchi H, Yamada K, Niwa M, Mouri A, Mizuno T, Noda Y, Nitta A, Itohara S, Banno Y, Nabeshima T. Reduction of methamphetamine-induced sensitization and reward in matrix metalloproteinase-2 and -9-deficient mice. J Neurochem 2007; 100:1579-88. [PMID: 17348864 DOI: 10.1111/j.1471-4159.2006.04288.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. Their activation and regulation are associated with synaptic physiology and pathology. Here, we investigated whether MMP-2 and MMP-9 are involved in the rewarding effects of and sensitization to methamphetamine (METH) in animals, in which the remodelling of neural circuits may play a crucial role. Repeated METH treatment induced behavioural sensitization, which was accompanied by an increase in MMP-2 and MMP-9 activity in the brain. In MMP-2- and MMP-9-deficient mice [MMP-2-(-/-) and MMP-9-(-/-)], METH-induced behavioural sensitization and conditioned place preference, a measure of the rewarding effect, as well as METH-increased dopamine release in the nucleus accumbens (NAc) were attenuated compared with those in wild-type mice. In contrast, infusion of purified human MMP-2 into the NAc significantly potentiated the METH-increased dopamine release. The [(3)H]dopamine uptake into striatal synaptosomes was reduced in wild-type mice after repeated METH treatment, but METH-induced changes in [(3)H]dopamine uptake were significantly attenuated in MMP-2-(-/-) and MMP-9-(-/-) mice. These results suggest that both MMP-2 and MMP-9 play a crucial role in METH-induced behavioural sensitization and reward by regulating METH-induced dopamine release and uptake in the NAc.
Collapse
Affiliation(s)
- Hiroyuki Mizoguchi
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pizzi MA, Crowe MJ. Matrix metalloproteinases and proteoglycans in axonal regeneration. Exp Neurol 2006; 204:496-511. [PMID: 17254568 DOI: 10.1016/j.expneurol.2006.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 12/13/2022]
Abstract
After an injury to the adult mammalian central nervous system (CNS), a variety of growth-inhibitory molecules are upregulated. A glial scar forms at the site of injury and is composed of numerous molecular substances, including chondroitin sulfate proteoglycans (CSPGs). These proteoglycans inhibit axonal growth in vitro and in vivo. Matrix metalloproteinases (MMPs) can degrade the core protein of some CSPGs as well as other growth-inhibitory molecules such as Nogo and tenascin-C. MMPs have been shown to facilitate axonal regeneration in the adult mammalian peripheral nervous system (PNS). This review will focus on the various roles of proteoglycans and MMPs within the injured nervous system. First, we will present a general background on the injured central nervous system and explore the roles that proteoglycans play in the injured PNS and CNS. Second, we will discuss the various functions of MMPs within the injured PNS and CNS. Special attention will be paid to the possibility of how MMPs might modify the growth-inhibitory extracellular environment of the injured adult mammalian spinal cord and facilitate axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Michael A Pizzi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA
| | | |
Collapse
|
43
|
Rüdiger HA, Beltrami G, Campanacci DA, Mela MM, Franchi A, Capanna R. Soft tissue sarcomas of the popliteal fossa: outcome and risk factors. Eur J Surg Oncol 2006; 33:512-7. [PMID: 17174515 DOI: 10.1016/j.ejso.2006.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 11/08/2006] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Limb salvage surgery of popliteal soft tissue sarcomas may be hampered due to the incomplete anatomical containment of this region and the vicinity of neurovascular structures. The scope of this study was to determine outcome and to define risk factors. PATIENTS AND METHODS 27 patients (53.3+/-15.8 y; 16/27 male) with popliteal soft tissue sarcomas were assessed. Mean follow-up was 40.9+/-33.8 months (48.5+/-36.7 months in surviving patients). 9/27 patients were included after prior treatment elsewhere (5 after intralesional resections and 4 local recurrences). The lesions were staged IB in 8/27 patients, IIB in 17/27 and III in 2/27. Immediate amputations were performed in 7/27 patients. 15/27 patients were subjected to radiation therapy (preoperative in 6/15 cases), 8/27 patients received chemotherapy (5/8 preoperatively). RESULTS Overall survival and disease-free survival at 5 y was 63.0% and 59.5%. Local recurrence occurred in 2 patients. 8/27 patients developed metastatic disease after 28.9+/-9.8 months. Survival (p=0.397) and disease-free survival (p=0.113) did not differ in patients after amputations vs limb salvage. Application of radiation therapy was associated with a better survival (p=0.003). Complications related to the surgical intervention were recorded in 2/27 patients, complications related to radiation therapy occurred in 6/15 patients. DISCUSSION Despite being extra-compartmental, popliteal sarcomas can be treated with a high rate of limb salvage while equal safety compared to amputations is maintained. Irradiation improved survival in our patient population. In cases with involvement of neurovascular structures, preoperative down-staging with radio or chemo-therapy may prevent amputation.
Collapse
Affiliation(s)
- H A Rüdiger
- Department of Orthopaedic Oncology, University of Florence, Careggi, Florence, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Fang Z, Forslund N, Takenaga K, Lukanidin E, Kozlova EN. Sensory neurite outgrowth on white matter astrocytes is influenced by intracellular and extracellular S100A4 protein. J Neurosci Res 2006; 83:619-26. [PMID: 16435390 DOI: 10.1002/jnr.20743] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The central nervous system (CNS) is considered a nonpermissive environment for axonal regeneration because of the presence of myelin and associated repulsive molecules. However, neural cells transplanted to the CNS preferably migrate and extend their fibers in white matter areas. We previously showed that white matter astrocytes in vivo express the calcium-binding protein S100A4, which is strongly up-regulated in areas of white matter degeneration. To investigate the role of white matter astrocytes and their specific protein S100A4 in axonal regeneration, we developed white matter astrocyte cultures with strong S100A4 expression and grew dissociated adult dorsal root ganglion (DRG) cells on top of astrocytes for 24 hr. By using small interfering S100A4 RNA, we were able to eliminate S100A4 expression and compare growth of DRG cell neurites on S100A4-silenced and S100A4-expressing astrocytes. In addition, we studied whether extracellular S100A4 has an effect on neurite growth from adult DRG cells cultured on S100A4-expressing white matter astrocytes. Our data show that white matter astrocytes are permissive for neurite growth, although high levels of S100A4 in white matter astrocytes have a negative effect on this growth. Extracellular application of S100A4 induced extensive growth of DRG cell neurites on white matter astrocytes. These findings suggest that white matter astrocytes are able to support axonal regeneration and, furthermore, that administration of extracellular S100A4 provides strong additional support for axonal regeneration.
Collapse
Affiliation(s)
- Z Fang
- Department of Neuroscience, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
45
|
Song HK, Toste B, Ahmann K, Hoffman-Kim D, Palmore GTR. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: A new platform for characterizing neurite extension in complex environments. Biomaterials 2006; 27:473-84. [PMID: 16112728 DOI: 10.1016/j.biomaterials.2005.06.030] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 11/29/2022]
Abstract
This paper describes a method for preparing substrates with micropatterns of positive guidance cues for the purpose of stimulating the growth of neurons. This method uses an oxidizing potential, applied to a micropattern of indium tin oxide in the presence of pyrrole and polyglutamic acid, to electrodeposit a matrix consisting of polypyrrole doped with polyglutamic acid. The resulting matrix subsequently can be modified with positive guidance cues via standard amide coupling reactions. Cells adhered to the micropatterned substrates can be stimulated electrically by the underlying electrodeposited matrix while they are in contact with positive guidance cues. This method can be extended to include both positive and negative guidance cues in a variety of combinations. To demonstrate the suitability of this method in the context of nerve guidance, dorsal root ganglia were grown in the presence of a micropatterned substrate whose surface was modified with molecules such as polylysine, laminin, or both. Cell adhesion and neurite extension were found to occur almost exclusively in areas where positive guidance cues were attached. This method is easy to execute and is of general utility for fundamental studies on the behavior of neurons in the presence of complex combinations of guidance cues as well as advanced bioelectronic devices such as neuronal networks.
Collapse
Affiliation(s)
- H-K Song
- Division of Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | |
Collapse
|
46
|
Leone L, De Stefano ME, Del Signore A, Petrucci TC, Paggi P. Axotomy of sympathetic neurons activates the metalloproteinase-2 enzymatic pathway. J Neuropathol Exp Neurol 2005; 64:1007-17. [PMID: 16254495 DOI: 10.1097/01.jnen.0000187053.59018.3c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have previously shown that intraganglionic synapse disassembly consequent on superior cervical ganglion (SCG) neuron axotomy was preceded by the loss of the dystroglycan beta subunit (beta-DG) localized at the postsynaptic specializations. Because DG, a transmembrane molecular complex bridging the extracellular matrix to the cortical cytoskeleton, could be a physiological target of metalloproteinases (MMPs) 2 and 9, we investigated their possible involvement in the injury-induced intraganglionic synapse disassembly. In rat SCG, only MMP-2 was present and localized in both neurons and nonneuronal cells. After ganglion neuron axotomy, both MMP-2 activity and protein level increased, whereas the level of its mRNA was unchanged, suggesting prominent MMP-2 posttranslational regulation. mRNA and protein levels of the enzymes involved in the MMP-2 activation pathway, the membrane-type 1-MMP (MT1-MMP), and the tissue inhibitor of metalloproteinase-2 (TIMP-2) also increased after injury with a time course that correlated with that of MMP-2 activation. In addition, postganglionic nerve crush induced an increase in the beta-DG 30-kDa fragment produced by the MMP-dependent degradation of DG. These data suggest that MMP-2 activated during SCG neuron reaction to axotomy may degrade postsynaptic DG, contributing to the disruption of the molecular bridge between pre- and postsynaptic elements and disassembly of the intraganglionic synapses.
Collapse
Affiliation(s)
- Lucia Leone
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Ahmet Höke
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Path 509, Baltimore, MD 21287, USA.
| |
Collapse
|
48
|
Shubayev VI, Angert M, Dolkas J, Campana WM, Palenscar K, Myers RR. TNFalpha-induced MMP-9 promotes macrophage recruitment into injured peripheral nerve. Mol Cell Neurosci 2005; 31:407-15. [PMID: 16297636 PMCID: PMC4431648 DOI: 10.1016/j.mcn.2005.10.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 09/09/2005] [Accepted: 10/17/2005] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) is an extracellular protease that is induced hours after injury to peripheral nerve. This study shows that MMP-9 gene deletion and neutralization with MMP-9 antibody reduce macrophage content in injured wild-type nerves. In mice with delayed Wallerian degeneration (WldS), MMP-9 and tumor necrosis factor alpha (TNFalpha) decline in association with the reduced macrophage recruitment to injured nerve that characterizes this strain of mice. We further determined that TNFalpha acts as an MMP-9 inducer by establishing increased MMP-9 levels after TNFalpha injection in rat sciatic nerve in vivo and primary Schwann cells in vitro. We found reduced MMP-9 expression in crushed TNFalpha knockout nerves that was rescued with exogenous TNFalpha. Finally, local application of MMP-9 on TNFalpha-/- nerves increased macrophage recruitment to the lesion. These data suggest that TNFalpha lies upstream of MMP-9 in the pathway of macrophage recruitment to injured peripheral nerve.
Collapse
|
49
|
Mun-Bryce S, Wilkerson A, Pacheco B, Zhang T, Rai S, Wang Y, Okada Y. Depressed cortical excitability and elevated matrix metalloproteinases in remote brain regions following intracerebral hemorrhage. Brain Res 2005; 1026:227-34. [PMID: 15488484 DOI: 10.1016/j.brainres.2004.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 11/30/2022]
Abstract
The absence of cortical responses to external stimuli is a dubious clinical sign during the first 1-2 days of brain injury. We previously showed that the amplitude of the somatic evoked potential (SEP) in the swine is diminished at the infarct site and perihematomal surround within the first 6 h of collagenase-induced intracerebral hemorrhage (ICH). We now report that this depressed SEP persists during the subchronic (48 h) period of ICH in the swine not only within the injured primary somatosensory (SI) cortex, but also in the contralateral homotopic SI cortex. This impairment of sensory responsiveness was accompanied by increases in various matrix metalloproteinases (MMPs) in different brain regions. By 24 h, a marked rise in MMP-9, an inflammatory marker, was detected in the white matter of the ipsilesional SI and secondary somatosensory cortex (SII), and in the contralesional SI gray matter, as compared to saline-injected controls. A subsequent increase in MMP-9 level was found in the ipsilesional SI and SII gray matter, and in the contralesional SI white matter by 48 h (P<0.05). By 7 days, significant levels of MMP-9 were detected only in the ipsilesional SI white and gray matter tissues. In contrast, the elevation of MMP-2, a marker of degeneration, was delayed until 7 days post-ICH in the ipsilesional SII gray matter. A significant rise in MMP-9 was also noted in CA1 of the ipsilesional and contralesional hemispheres during 1-2 days. Our MMP assay shows that the depressed cortical excitability seen in the contralateral SI cortex is a manifestation of the broad effect of a focal ICH that produces inflammatory and degenerative processes not only in the region adjacent to the focal ICH site, but also in remote regions that are functionally connected to the site of focal ICH.
Collapse
Affiliation(s)
- Sheila Mun-Bryce
- Department of Neurology, University of New Mexico Health Science Center, 915 Camino de Salud, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Grimpe B, Pressman Y, Lupa MD, Horn KP, Bunge MB, Silver J. The role of proteoglycans in Schwann cell/astrocyte interactions and in regeneration failure at PNS/CNS interfaces. Mol Cell Neurosci 2005; 28:18-29. [PMID: 15607938 DOI: 10.1016/j.mcn.2004.06.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 11/19/2022] Open
Abstract
In the dorsal root entry zone (DREZ) peripheral sensory axons fail to regenerate past the peripheral nervous system/central nervous system (PNS/CNS) interface. Additionally, in the spinal cord, central fibers that regenerate into Schwann cell (SC) bridges can enter but do not exit at the distal Schwann cell/astrocyte (AC) boundary. At both interfaces where limited mixing of the two cell types occurs, one can observe an up-regulation of inhibitory chondroitin sulfate proteoglycans (CSPGs). We treated confrontation Schwann cell/astrocyte cultures with the following: (1) a deoxyribonucleic acid (DNA) enzyme against the glycosaminoglycan (GAG)-chain-initiating enzyme, xylosyltransferase-1 (XT-1), (2) a control DNA enzyme, and (3) chondroitinase ABC (Ch'ase ABC) to degrade the GAG chains. Both techniques for reducing CSPGs allowed Schwann cells to penetrate deeply into the territory of the astrocytes. After adding sensory neurons to the assay, the axons showed different growth behaviors depending upon the glial cell type that they first encountered during regeneration. Our results help to explain why regeneration fails at PNS/CNS glial boundaries.
Collapse
Affiliation(s)
- Barbara Grimpe
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|