1
|
Taylor R, Buonocore A, Fracasso A. Saccadic "inhibition" unveils the late influence of image content on oculomotor programming. Exp Brain Res 2024; 242:2281-2294. [PMID: 39080097 PMCID: PMC11422452 DOI: 10.1007/s00221-024-06890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/04/2024] [Indexed: 09/26/2024]
Abstract
Image content is prioritized in the visual system. Faces are a paradigmatic example, receiving preferential processing along the visual pathway compared to other visual stimuli. Moreover, face prioritization manifests also in behavior. People tend to look at faces more frequently and for longer periods, and saccadic reaction times can be faster when targeting a face as opposed to a phase-scrambled control. However, it is currently not clear at which stage image content affects oculomotor planning and execution. It can be hypothesized that image content directly influences oculomotor signal generation. Alternatively, the image content could exert its influence on oculomotor planning and execution at a later stage, after the image has been processed. Here we aim to disentangle these two alternative hypotheses by measuring the frequency of saccades toward a visual target when the latter is followed by a visual transient in the central visual field. Behaviorally, this paradigm leads to a reduction in saccade frequency that happens about 90 ms after any visual transient event, also known as saccadic "inhibition". In two experiments, we measured occurrence of saccades in visually guided saccades as well as microsaccades during fixation, using face and noise-matched visual stimuli. We observed that while the reduction in saccade occurrence was similar for both stimulus types, face stimuli lead to a prolonged reduction in eye movements. Moreover, saccade kinematics were altered by both stimulus types, showing an amplitude reduction without change in peak velocity for the earliest saccades. Taken together, our experiments imply that face stimuli primarily affect the later stages of the behavioral phenomenon of saccadic "inhibition". We propose that while some stimulus features are processed at an early stage and can quickly influence eye movements, a delayed signal conveying image content information is necessary to further inhibit/delay activity in the oculomotor system to trigger eye movements.
Collapse
Affiliation(s)
- Rebecca Taylor
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT, UK
- School of Psychology and Neuroscience, University of Glasgow, Hillhead Street 62, Glasgow, G12 8QE5, Scotland, UK
| | - Antimo Buonocore
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, 80135, Italy
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Hillhead Street 62, Glasgow, G12 8QE5, Scotland, UK.
| |
Collapse
|
2
|
Smith ES, Crawford TJ. The inhibitory effect of a recent distractor: singleton vs. multiple distractors. Exp Brain Res 2024; 242:1745-1759. [PMID: 38819649 PMCID: PMC11208228 DOI: 10.1007/s00221-024-06846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
In the complex interplay between sensory and cognitive processes, the brain must sift through a flood of sensory data to pinpoint relevant signals. This selective mechanism is crucial for the effective control of behaviour, by allowing organisms to focus on important tasks and blocking out distractions. The Inhibition of a Recent Distractor (IRD) Task examines this selection process by exploring how inhibiting distractors influences subsequent eye movements towards an object in the visual environment. In a series of experiments, research by Crawford et al. (2005a) demonstrated a delayed response to a target appearing at the location that was previously occupied by a distractor, demonstrating a legacy inhibition exerted by the distractor on the spatial location of the upcoming target. This study aimed to replicate this effect and to investigate any potential constraints when multiple distractors are presented. Exploring whether the effect is observed in more ecologically relevant scenarios with multiple distractors is crucial for assessing the extent to which it can be applied to a broader range of environments. Experiment 1 successfully replicated the effect, showing a significant IRD effect only with a single distractor. Experiments 2-5 explored a number of possible explanations for this phenomenon.
Collapse
Affiliation(s)
- Eleanor S Smith
- Centre for Ageing Research, Department of Psychology, Lancaster University, Lancaster, LA1 4YF, England
| | - Trevor J Crawford
- Centre for Ageing Research, Department of Psychology, Lancaster University, Lancaster, LA1 4YF, England.
| |
Collapse
|
3
|
Khademi F, Zhang T, Baumann MP, Buonocore A, Malevich T, Yu Y, Hafed ZM. Visual feature tuning properties of stimulus-driven saccadic inhibition in macaque monkeys. J Neurophysiol 2023; 130:1282-1302. [PMID: 37818591 DOI: 10.1152/jn.00289.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Saccadic inhibition refers to a short-latency transient cessation of saccade generation after visual sensory transients. This oculomotor phenomenon occurs with a latency that is consistent with a rapid influence of sensory responses, such as stimulus-induced visual bursts, on oculomotor control circuitry. However, the neural mechanisms underlying saccadic inhibition are not well understood. Here, we exploited the fact that macaque monkeys experience robust saccadic inhibition to test the hypothesis that inhibition time and strength exhibit systematic visual feature tuning properties to a multitude of visual feature dimensions commonly used in vision science. We measured saccades in three monkeys actively controlling their gaze on a target, and we presented visual onset events at random times. Across seven experiments, the visual onsets tested size, spatial frequency, contrast, orientation, motion direction, and motion speed dependencies of saccadic inhibition. We also investigated how inhibition might depend on the behavioral relevance of the appearing stimuli. We found that saccadic inhibition starts earlier, and is stronger, for large stimuli of low spatial frequencies and high contrasts. Moreover, saccadic inhibition timing depends on motion direction and orientation, with earlier inhibition systematically occurring for horizontally drifting vertical gratings. On the other hand, saccadic inhibition is stronger for faster motions and when the appearing stimuli are subsequently foveated. Besides documenting a range of feature tuning dimensions of saccadic inhibition to the properties of exogenous visual stimuli, our results establish macaque monkeys as an ideal model system for unraveling the neural mechanisms underlying a ubiquitous oculomotor phenomenon in visual neuroscience.NEW & NOTEWORTHY Visual onsets dramatically reduce saccade generation likelihood with very short latencies. Such latencies suggest that stimulus-induced visual responses, normally jump-starting perceptual and scene analysis processes, can also directly impact the decision of whether to generate saccades or not, causing saccadic inhibition. Consistent with this, we found that changing the appearance of the visual onsets systematically alters the properties of saccadic inhibition. These results constrain neurally inspired models of coordination between saccade generation and exogenous sensory stimulation.
Collapse
Affiliation(s)
- Fatemeh Khademi
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tong Zhang
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Matthias P Baumann
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples, Italy
| | - Tatiana Malevich
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Yue Yu
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
4
|
Fracasso A, Buonocore A, Hafed ZM. Peri-Saccadic Orientation Identification Performance and Visual Neural Sensitivity Are Higher in the Upper Visual Field. J Neurosci 2023; 43:6884-6897. [PMID: 37640553 PMCID: PMC10573757 DOI: 10.1523/jneurosci.1740-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Visual neural processing is distributed among a multitude of sensory and sensory-motor brain areas exhibiting varying degrees of functional specializations and spatial representational anisotropies. Such diversity raises the question of how perceptual performance is determined, at any one moment in time, during natural active visual behavior. Here, exploiting a known dichotomy between the primary visual cortex (V1) and superior colliculus (SC) in representing either the upper or lower visual fields, we asked whether peri-saccadic orientation identification performance is dominated by one or the other spatial anisotropy. Humans (48 participants, 29 females) reported the orientation of peri-saccadic upper visual field stimuli significantly better than lower visual field stimuli, unlike their performance during steady-state gaze fixation, and contrary to expected perceptual superiority in the lower visual field in the absence of saccades. Consistent with this, peri-saccadic superior colliculus visual neural responses in two male rhesus macaque monkeys were also significantly stronger in the upper visual field than in the lower visual field. Thus, peri-saccadic orientation identification performance is more in line with oculomotor, rather than visual, map spatial anisotropies.SIGNIFICANCE STATEMENT Different brain areas respond to visual stimulation, but they differ in the degrees of functional specializations and spatial anisotropies that they exhibit. For example, the superior colliculus (SC) both responds to visual stimulation, like the primary visual cortex (V1), and controls oculomotor behavior. Compared with the primary visual cortex, the superior colliculus exhibits an opposite pattern of upper/lower visual field anisotropy, being more sensitive to the upper visual field. Here, we show that human peri-saccadic orientation identification performance is better in the upper compared with the lower visual field. Consistent with this, monkey superior colliculus visual neural responses to peri-saccadic stimuli follow a similar pattern. Our results indicate that peri-saccadic perceptual performance reflects oculomotor, rather than visual, map spatial anisotropies.
Collapse
Affiliation(s)
- Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QE, Scotland, United Kingdom
| | - Antimo Buonocore
- Department of Educational, Psychological and Communication Sciences, Suor Orsola Benincasa University, Naples 80135, Italy
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen 72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen 72076, Germany
| |
Collapse
|
5
|
Shan Y, Edelman JA. The reduction of saccadic inhibition by distractor repetition. J Neurophysiol 2023; 130:619-627. [PMID: 37465890 PMCID: PMC10637648 DOI: 10.1152/jn.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/26/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
When visual distractors are presented far from the goal of an impending voluntary saccadic eye movement, saccade execution will occur less frequently about 90 ms after distractor appearance, a phenomenon known as saccadic inhibition. However, it is also known that neural responses in visual and visuomotor areas of the brain will be attenuated if a visual stimulus appears several times in the same location in rapid succession. In particular, such visual adaptation can affect neurons in the mammalian superior colliculus (SC). As the SC is known to be intimately involved in the production of saccadic eye movements, and thus perhaps in saccadic inhibition, we used a memory-guided saccade task to test whether saccadic inhibition in humans would diminish if a distractor appeared several times in quick succession. We found that distractor repetition reduced saccadic inhibition considerably when distractors appeared opposite in space to the goal of the impending saccade. In addition, when three distractors appeared in quick succession but in different, spatially disparate locations, with only the final distractor appearing opposite the saccade goal, saccadic inhibition was reduced by an intermediate level, suggesting that its reduction due to distractor inhibition spatially generalizes. This suggests that distractor suppression can help reduce the impact that suddenly appearing visual stimuli have on purposive eye movement behavior.NEW & NOTEWORTHY This work combines approaches studying saccadic inhibition and visual adaptation to demonstrate that saccadic inhibition is largely eliminated with stimulus repetition. This is likely to be the largest demonstrated effect of visual stimulus context on saccadic inhibition. It also provides evidence for the existence of a mechanism that acts to suppress the effect of frequently appearing visual stimuli on purposive eye movement behavior in dynamic visual environments.
Collapse
Affiliation(s)
- Yijing Shan
- Doctoral Program in Biology, The Graduate Center of The City University of New York, New York, New York, United States
| | - Jay A Edelman
- Department of Biology, The City College of The City University of New York, New York, New York, United States
- Doctoral Program in Psychology, The Graduate Center of The City University of New York, New York, New York, United States
| |
Collapse
|
6
|
Orczyk JJ, Barczak A, O'Connell MN, Kajikawa Y. Saccadic inhibition during free viewing in macaque monkeys. J Neurophysiol 2023; 129:356-367. [PMID: 36629324 PMCID: PMC9902227 DOI: 10.1152/jn.00225.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
Through the process of saccadic inhibition, visual events briefly suppress eye movements including microsaccades. In humans, saccadic inhibition has been shown to occur in response to the presentation of parafoveal or peripheral visual distractors during fixation and target-directed saccades and to physical changes of behaviorally relevant visual objects. In monkeys performing tasks that controlled eye movements, saccadic inhibition of microsaccades and target-directed saccades has been shown. Using eye data from three previously published studies, we investigated how saccade rate changed while monkeys were presented with visual stimuli under conditions with loose or no viewing demands. In two conditions, animals passively sat while an LED lamp flashed or screen-wide images appeared in front of them. In the third condition, images were repeated semiperiodically while animals had to maintain their gaze within a wide rectangular area and detect oddballs. Despite animals not being required to maintain fixation or make saccades to particular targets, the onset of visual events led to a temporary reduction of saccade rate across all conditions. Interestingly, saccadic inhibition was found at image offsets as well. These results show that saccadic inhibition occurs in monkeys during free viewing.NEW & NOTEWORTHY We investigated the time courses of saccade rate following visual stimuli during three conditions of free viewing in macaque monkeys. Under all conditions, saccade rate decreased transiently after the onset of visual stimuli. These results suggest that saccadic inhibition occurs during free viewing.
Collapse
Affiliation(s)
- John J Orczyk
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Annamaria Barczak
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Monica N O'Connell
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Psychiatry, New York University School of Medicine, New York, New York
| | - Yoshinao Kajikawa
- Translational Neuroscience, Center for Biological Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Psychiatry, New York University School of Medicine, New York, New York
| |
Collapse
|
7
|
Vencato V, Harwood M, Madelain L. Saccadic initiation biased by fixational activity. Vision Res 2022; 201:108117. [PMID: 36031689 DOI: 10.1016/j.visres.2022.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 02/23/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023]
Abstract
Both the gap and overlap paradigm may reveal the interaction between fixating and moving the eyes, but the effects of the overlap paradigm have not been fully characterized yet. Here we present a series of experiments probing how an overlap paradigm, combined with the manipulation of stimuli durations, saliency and transient changes might modulate saccadic reaction time distributions. We recorded saccadic reaction time in four participants in six experiments in which a saccade-target appeared at a pseudo-random amplitude after a fixation period. First, we parametrically manipulated the duration of the overlap using a range of intervals (from 0 to 200 ms). In a second experiment we probed the interaction of various foreperiod intervals (i.e. the duration of the fixation period prior to saccade-target onset) and overlap using two overlap intervals (20 or 140 ms). In two additional experiments we manipulated either the stimuli sizes or their contrast ratio in overlap paradigms (20 or 140 ms). Lastly, we introduced a visual transient during the overlap interval via two manipulations (both with a range of SOA): either a distractor ring appeared around the fixation-target, or a dynamic random noise patch replaced the fixation-target. Results show reliable modifications in the latency distributions depending on the overlap interval as well as idiosyncratic differences. Additional experimental manipulations also affected the latency distributions revealing strong interacting inhibitory processes. We conclude that the effects of overlap intervals may combine with the influence of other stimuli properties affecting decision process.
Collapse
Affiliation(s)
- Valentina Vencato
- Center for Neural Science, New York University, New York 10003, New York
| | | | - Laurent Madelain
- UMR 9193‑SCALab, CNRS, Univ. Lille, 59000 Lille, France; Institut de Neurosciences de la Timone, UMR 7289, CNRS, Faculté de Médecine de la Timone, Aix Marseille Université, 27 Bd Jean Moulin, Marseille 13005, France
| |
Collapse
|
8
|
Hedge C, Powell G, Bompas A, Sumner P. Strategy and processing speed eclipse individual differences in control ability in conflict tasks. J Exp Psychol Learn Mem Cogn 2022; 48:1448-1469. [PMID: 34591554 PMCID: PMC9899369 DOI: 10.1037/xlm0001028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/08/2022]
Abstract
Response control or inhibition is one of the cornerstones of modern cognitive psychology, featuring prominently in theories of executive functioning and impulsive behavior. However, repeated failures to observe correlations between commonly applied tasks have led some theorists to question whether common response conflict processes even exist. A challenge to answering this question is that behavior is multifaceted, with both conflict and nonconflict processes (e.g., strategy, processing speed) contributing to individual differences. Here, we use a cognitive model to dissociate these processes; the diffusion model for conflict tasks (Ulrich et al., 2015). In a meta-analysis of fits to seven empirical datasets containing combinations of the flanker, Simon, color-word Stroop, and spatial Stroop tasks, we observed weak (r < .05) zero-order correlations between tasks in parameters reflecting conflict processing, seemingly challenging a general control construct. However, our meta-analysis showed consistent positive correlations in parameters representing processing speed and strategy. We then use model simulations to evaluate whether correlations in behavioral costs are diagnostic of the presence or absence of common mechanisms of conflict processing. We use the model to impose known correlations for conflict mechanisms across tasks, and we compare the simulated behavior to simulations when there is no conflict correlation across tasks. We find that correlations in strategy and processing speed can produce behavioral correlations equal to, or larger than, those produced by correlated conflict mechanisms. We conclude that correlations between conflict tasks are only weakly informative about common conflict mechanisms if researchers do not control for strategy and processing speed. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
9
|
Seideman JA, Stanford TR, Salinas E. A conflict between spatial selection and evidence accumulation in area LIP. Nat Commun 2022; 13:4463. [PMID: 35915096 PMCID: PMC9343639 DOI: 10.1038/s41467-022-32209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
The lateral intraparietal area (LIP) contains spatially selective neurons that help guide eye movements and, according to numerous studies, do so by accumulating sensory evidence in favor of one choice (e.g., look left) or another (look right). To examine this functional link, we trained two monkeys on an urgent motion discrimination task, a task with which the evolution of both the recorded neuronal activity and the subject's choice can be tracked millisecond by millisecond. We found that while choice accuracy increased steeply with increasing sensory evidence, at the same time, the LIP selection signal became progressively weaker, as if it hindered performance. This effect was consistent with the transient deployment of spatial attention to disparate locations away from the relevant sensory cue. The results demonstrate that spatial selection in LIP is dissociable from, and may even conflict with, evidence accumulation during informed saccadic choices.
Collapse
Affiliation(s)
- Joshua A Seideman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA.
| |
Collapse
|
10
|
Shinn M, Lee D, Murray JD, Seo H. Transient neuronal suppression for exploitation of new sensory evidence. Nat Commun 2022; 13:23. [PMID: 35013222 PMCID: PMC8748884 DOI: 10.1038/s41467-021-27697-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
In noisy but stationary environments, decisions should be based on the temporal integration of sequentially sampled evidence. This strategy has been supported by many behavioral studies and is qualitatively consistent with neural activity in multiple brain areas. By contrast, decision-making in the face of non-stationary sensory evidence remains poorly understood. Here, we trained monkeys to identify and respond via saccade to the dominant color of a dynamically refreshed bicolor patch that becomes informative after a variable delay. Animals’ behavioral responses were briefly suppressed after evidence changes, and many neurons in the frontal eye field displayed a corresponding dip in activity at this time, similar to that frequently observed after stimulus onset but sensitive to stimulus strength. Generalized drift-diffusion models revealed consistency of behavior and neural activity with brief suppression of motor output, but not with pausing or resetting of evidence accumulation. These results suggest that momentary arrest of motor preparation is important for dynamic perceptual decision making. While evidence is constantly changing during real-world decisions, little is known about how the brain deals with such changes. Here, the authors show that the brain strategically suppresses motor output via the frontal eye fields in response to stimulus changes.
Collapse
Affiliation(s)
- Maxwell Shinn
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA.,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA
| | - Daeyeol Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.,Kavli Discovery Neuroscience Institute, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA.,Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John D Murray
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA. .,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA. .,Department of Physics, Yale University, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
| | - Hyojung Seo
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520, USA. .,Department of Psychiatry, Yale University, New Haven, CT, 06520, USA. .,Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
11
|
Salinas E, Stanford TR. Under time pressure, the exogenous modulation of saccade plans is ubiquitous, intricate, and lawful. Curr Opin Neurobiol 2021; 70:154-162. [PMID: 34818614 PMCID: PMC8688226 DOI: 10.1016/j.conb.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 11/21/2022]
Abstract
The choice of where to look next is determined by both exogenous (bottom-up) and endogenous (top-down) factors, but details of their interaction and distinct contributions to target selection have remained elusive. Recent experiments with urgent choice tasks, in which stimuli are evaluated while motor plans are already advancing, have greatly clarified these contributions. Specifically, exogenous modulations associated with stimulus detection act rapidly and briefly (∼25 ms) to automatically halt and/or boost ongoing motor plans as per spatial congruence rules. These stereotypical modulations explain, in quantitative detail, characteristic features of many saccadic tasks (e.g. antisaccade, countermanding, saccadic-inhibition, gap, and double-step). Thus, the same low-level visuomotor interactions contribute to diverse oculomotor phenomena traditionally attributed to different neural mechanisms.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA.
| | - Terrence R Stanford
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC, 27157-1010, USA
| |
Collapse
|
12
|
Buonocore A, Dietze N, McIntosh RD. Time-dependent inhibition of covert shifts of attention. Exp Brain Res 2021; 239:2635-2648. [PMID: 34216231 PMCID: PMC8354873 DOI: 10.1007/s00221-021-06164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Abstract
Visual transients can interrupt overt orienting by abolishing the execution of a planned eye movement due about 90 ms later, a phenomenon known as saccadic inhibition (SI). It is not known if the same inhibitory process might influence covert orienting in the absence of saccades, and consequently alter visual perception. In Experiment 1 (n = 14), we measured orientation discrimination during a covert orienting task in which an uninformative exogenous visual cue preceded the onset of an oriented probe by 140-290 ms. In half of the trials, the onset of the probe was accompanied by a brief irrelevant flash, a visual transient that would normally induce SI. We report a time-dependent inhibition of covert orienting in which the irrelevant flash impaired orientation discrimination accuracy when the probe followed the cue by 190 and 240 ms. The interference was more pronounced when the cue was incongruent with the probe location, suggesting an impact on the reorienting component of the attentional shift. In Experiment 2 (n = 12), we tested whether the inhibitory effect of the flash could occur within an earlier time range, or only within the later, reorienting range. We presented probes at congruent cue locations in a time window between 50 and 200 ms. Similar to Experiment 1, discrimination performance was altered at 200 ms after the cue. We suggest that covert attention may be susceptible to similar inhibitory mechanisms that generate SI, especially in later stages of attentional shifting (> 200 ms after a cue), typically associated with reorienting.
Collapse
Affiliation(s)
- Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, 72076, Tübingen, BW, Germany.
- Hertie Institute for Clinical Brain Research, Tübingen University, 72076, Tübingen, BW, Germany.
| | - Niklas Dietze
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University, 33501, Bielefeld, NRW, Germany
- Cluster of Excellence Cognitive Interaction Technology (CITEC), Bielefeld University, 33501, Bielefeld, NRW, Germany
| | - Robert D McIntosh
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Sullivan NJ, Huettel SA. Healthful choices depend on the latency and rate of information accumulation. Nat Hum Behav 2021; 5:1698-1706. [PMID: 34226708 DOI: 10.1038/s41562-021-01154-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/03/2021] [Indexed: 01/05/2023]
Abstract
The drift diffusion model provides a parsimonious explanation of decisions across neurobiological, psychological and behavioural levels of analysis. Although most drift diffusion model implementations assume that only a single value guides decisions, choices often involve multiple attributes that could make separable contributions to choice. Here we fit incentive-compatible dietary choices to a multi-attribute, time-dependent drift diffusion model, in which taste and health could differentially influence the evidence accumulation process. We find that these attributes shaped both the relative value signal and the latency of evidence accumulation in a manner consistent with participants' idiosyncratic preferences. Moreover, by using a dietary prime, we showed how a healthy choice intervention alters multi-attribute, time-dependent drift diffusion model parameters that in turn predict prime-dependent choices. Our results reveal that different decision attributes make separable contributions to the strength and timing of evidence accumulation, providing new insights into the construction of interventions to alter the processes of choice.
Collapse
Affiliation(s)
| | - Scott A Huettel
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Stanford TR, Salinas E. Urgent Decision Making: Resolving Visuomotor Interactions at High Temporal Resolution. Annu Rev Vis Sci 2021; 7:323-348. [PMID: 34171199 DOI: 10.1146/annurev-vision-100419-103842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Measuring when exactly perceptual decisions are made is crucial for defining how the activation of specific neurons contributes to behavior. However, in traditional, nonurgent visuomotor tasks, the uncertainty of this temporal measurement is very large. This is a problem not only for delimiting the capacity of perception, but also for correctly interpreting the functional roles ascribed to choice-related neuronal responses. In this article, we review psychophysical, neurophysiological, and modeling work based on urgent visuomotor tasks in which this temporal uncertainty can be effectively overcome. The cornerstone of this work is a novel behavioral metric that describes the evolution of the subject's perceptual judgment moment by moment, allowing us to resolve numerous perceptual events that unfold within a few tens of milliseconds. In this framework, the neural distinction between perceptual evaluation and motor selection processes becomes particularly clear, as the conclusion of one is not contingent on that of the other. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Terrence R Stanford
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; ,
| | - Emilio Salinas
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA; ,
| |
Collapse
|
15
|
Hafed ZM, Yoshida M, Tian X, Buonocore A, Malevich T. Dissociable Cortical and Subcortical Mechanisms for Mediating the Influences of Visual Cues on Microsaccadic Eye Movements. Front Neural Circuits 2021; 15:638429. [PMID: 33776656 PMCID: PMC7991613 DOI: 10.3389/fncir.2021.638429] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Visual selection in primates is intricately linked to eye movements, which are generated by a network of cortical and subcortical neural circuits. When visual selection is performed covertly, without foveating eye movements toward the selected targets, a class of fixational eye movements, called microsaccades, is still involved. Microsaccades are small saccades that occur when maintaining precise gaze fixation on a stationary point, and they exhibit robust modulations in peripheral cueing paradigms used to investigate covert visual selection mechanisms. These modulations consist of changes in both microsaccade directions and frequencies after cue onsets. Over the past two decades, the properties and functional implications of these modulations have been heavily studied, revealing a potentially important role for microsaccades in mediating covert visual selection effects. However, the neural mechanisms underlying cueing effects on microsaccades are only beginning to be investigated. Here we review the available causal manipulation evidence for these effects' cortical and subcortical substrates. In the superior colliculus (SC), activity representing peripheral visual cues strongly influences microsaccade direction, but not frequency, modulations. In the cortical frontal eye fields (FEF), activity only compensates for early reflexive effects of cues on microsaccades. Using evidence from behavior, theoretical modeling, and preliminary lesion data from the primary visual cortex and microstimulation data from the lower brainstem, we argue that the early reflexive microsaccade effects arise subcortically, downstream of the SC. Overall, studying cueing effects on microsaccades in primates represents an important opportunity to link perception, cognition, and action through unaddressed cortical-subcortical neural interactions. These interactions are also likely relevant in other sensory and motor modalities during other active behaviors.
Collapse
Affiliation(s)
- Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Masatoshi Yoshida
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antimo Buonocore
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Tatiana Malevich
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
- Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, Tübingen University, Tübingen, Germany
| |
Collapse
|
16
|
McSorley E, Cruickshank AG, McCloy R. Inhibition of saccade initiation improves saccade accuracy: The role of local and remote visual distractors in the control of saccadic eye movements. J Vis 2021; 21:17. [PMID: 33729451 PMCID: PMC7980046 DOI: 10.1167/jov.21.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
When a distractor appears close to the target location, saccades are less accurate. However, the presence of a further distractor, remote from those stimuli, increases the saccade response latency and improves accuracy. Explanations for this are either that the second, remote distractor impacts directly on target selection processes or that the remote distractor merely impairs the ability to initiate a saccade and changes the time at which unaffected target selection processes are accessed. In order to tease these two explanations apart, here we examine the relationship between latency and accuracy of saccades to a target and close distractor pair while a remote distractor appears at variable distance. Accuracy improvements are found to follow a similar pattern, regardless of the presence of the remote distractor, which suggests that the effect of the remote distractor is not the result of a direct impact on the target selection process. Our findings support the proposal that a remote distractor impairs the ability to initiate a saccade, meaning the competition between target and close distractor is accessed at a later time, thus resulting in more accurate saccades.
Collapse
Affiliation(s)
- Eugene McSorley
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Alice G Cruickshank
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| | - Rachel McCloy
- School of Psychology and Clinical Language Sciences, University of Reading, Berkshire, UK
| |
Collapse
|
17
|
Malevich T, Buonocore A, Hafed ZM. Dependence of the stimulus-driven microsaccade rate signature in rhesus macaque monkeys on visual stimulus size and polarity. J Neurophysiol 2020; 125:282-295. [PMID: 33427577 DOI: 10.1152/jn.00304.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microsaccades have a steady rate of occurrence during maintained gaze fixation, which gets transiently modulated by abrupt sensory stimuli. Such modulation, characterized by a rapid reduction in microsaccade frequency followed by a stronger rebound phase of high microsaccade rate, is often described as the microsaccadic rate signature, owing to its stereotyped nature. Here, we investigated the impacts of stimulus polarity (luminance increments or luminance decrements relative to background luminance) and size on the microsaccadic rate signature. We presented brief, behaviorally irrelevant visual flashes consisting of large or small, white or black stimuli over an otherwise gray image background. Both large and small stimuli caused robust early microsaccadic inhibition, but postinhibition microsaccade rate rebound was significantly delayed and weakened for large stimuli when compared with small ones. Critically, small black stimuli were associated with stronger modulations in the microsaccade rate signature than small white stimuli, particularly in the postinhibition rebound phase, and black stimuli also amplified the incidence of early stimulus-directed microsaccades. Our results demonstrate that the microsaccadic rate signature is sensitive to stimulus size and polarity, and they point to dissociable neural mechanisms underlying early microsaccadic inhibition after stimulus onset and later microsaccadic rate rebound at longer times thereafter. These results also demonstrate early access of oculomotor control circuitry to diverse sensory representations, particularly for momentarily inhibiting saccade generation with short latencies.NEW & NOTEWORTHY Microsaccade rate is transiently reduced after sudden stimulus onsets, and then strongly rebounds before returning to baseline. We explored the influence of stimulus polarity (black vs. white) and size on this "rate signature." Large stimuli caused more muted microsaccadic rebound than small ones, and microsaccadic rebound was also differentially affected by black versus white stimuli, particularly with small stimuli. These results suggest dissociated neural mechanisms for microsaccadic inhibition and rebound in the microsaccadic rate signature.
Collapse
Affiliation(s)
- Tatiana Malevich
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, Tuebingen University, Tuebingen, Germany
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Hertie Institute for Clinical Brain Research, Tuebingen University, Tuebingen, Germany
| |
Collapse
|
18
|
Tillman G, Van Zandt T, Logan GD. Sequential sampling models without random between-trial variability: the racing diffusion model of speeded decision making. Psychon Bull Rev 2020; 27:911-936. [PMID: 32424622 DOI: 10.3758/s13423-020-01719-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most current sequential sampling models have random between-trial variability in their parameters. These sources of variability make the models more complex in order to fit response time data, do not provide any further explanation to how the data were generated, and have recently been criticised for allowing infinite flexibility in the models. To explore and test the need of between-trial variability parameters we develop a simple sequential sampling model of N-choice speeded decision making: the racing diffusion model. The model makes speeded decisions from a race of evidence accumulators that integrate information in a noisy fashion within a trial. The racing diffusion does not assume that any evidence accumulation process varies between trial, and so, the model provides alternative explanations of key response time phenomena, such as fast and slow error response times relative to correct response times. Overall, our paper gives good reason to rethink including between-trial variability parameters in sequential sampling models.
Collapse
Affiliation(s)
- Gabriel Tillman
- School of Health and Life Sciences, Federation University, Ballarat, Australia.
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Trish Van Zandt
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Gordon D Logan
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
19
|
Bompas A, Campbell AE, Sumner P. Cognitive control and automatic interference in mind and brain: A unified model of saccadic inhibition and countermanding. Psychol Rev 2020; 127:524-561. [PMID: 31999149 PMCID: PMC7315827 DOI: 10.1037/rev0000181] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 11/08/2022]
Abstract
Countermanding behavior has long been seen as a cornerstone of executive control-the human ability to selectively inhibit undesirable responses and change plans. However, scattered evidence implies that stopping behavior is entangled with simpler automatic stimulus-response mechanisms. Here we operationalize this idea by merging the latest conceptualization of saccadic countermanding with a neural network model of visuo-oculomotor behavior that integrates bottom-up and top-down drives. This model accounts for all fundamental qualitative and quantitative features of saccadic countermanding, including neuronal activity. Importantly, it does so by using the same architecture and parameters as basic visually guided behavior and automatic stimulus-driven interference. Using simulations and new data, we compare the temporal dynamics of saccade countermanding with that of saccadic inhibition (SI), a hallmark effect thought to reflect automatic competition within saccade planning areas. We demonstrate how SI accounts for a large proportion of the saccade countermanding process when using visual signals. We conclude that top-down inhibition acts later, piggy-backing on the quicker automatic inhibition. This conceptualization fully accounts for the known effects of signal features and response modalities traditionally used across the countermanding literature. Moreover, it casts different light on the concept of top-down inhibition, its timing and neural underpinning, as well as the interpretation of stop-signal reaction time (RT), the main behavioral measure in the countermanding literature. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Aline Bompas
- Cardiff University Brain Research Imaging Centre-School of Psychology, Cardiff University
| | - Anne Eileen Campbell
- Cardiff University Brain Research Imaging Centre-School of Psychology, Cardiff University
| | - Petroc Sumner
- Cardiff University Brain Research Imaging Centre-School of Psychology, Cardiff University
| |
Collapse
|
20
|
Morgan P, Macken B, Toet A, Bompas A, Bray M, Rushton S, Jones D. Distraction for the eye and ear. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2020. [DOI: 10.1080/1463922x.2020.1712493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Philip Morgan
- HuFEx, School of Psychology, Cardiff University, Cardiff, UK
| | - Bill Macken
- HuFEx, School of Psychology, Cardiff University, Cardiff, UK
| | - Alexander Toet
- The Netherlands Organization for Applied Scientific Research
| | - Aline Bompas
- HuFEx, School of Psychology, Cardiff University, Cardiff, UK
| | - Mark Bray
- BAE Systems-Applied Intelligence Laboratories, London, UK
| | - Simon Rushton
- HuFEx, School of Psychology, Cardiff University, Cardiff, UK
| | - Dylan Jones
- HuFEx, School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
21
|
Benedetto A, Morrone MC. Visual sensitivity and bias oscillate phase-locked to saccadic eye movements. J Vis 2019; 19:15. [DOI: 10.1167/19.14.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Alessandro Benedetto
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Maria Concetta Morrone
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| |
Collapse
|
22
|
Salinas E, Steinberg BR, Sussman LA, Fry SM, Hauser CK, Anderson DD, Stanford TR. Voluntary and involuntary contributions to perceptually guided saccadic choices resolved with millisecond precision. eLife 2019; 8:46359. [PMID: 31225794 PMCID: PMC6645714 DOI: 10.7554/elife.46359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
In the antisaccade task, which is considered a sensitive assay of cognitive function, a salient visual cue appears and the participant must look away from it. This requires sensory, motor-planning, and cognitive neural mechanisms, but what are their unique contributions to performance, and when exactly are they engaged? Here, by manipulating task urgency, we generate a psychophysical curve that tracks the evolution of the saccadic choice process with millisecond precision, and resolve the distinct contributions of reflexive (exogenous) and voluntary (endogenous) perceptual mechanisms to antisaccade performance over time. Both progress extremely rapidly, the former driving the eyes toward the cue early on (∼100 ms after cue onset) and the latter directing them away from the cue ∼40 ms later. The behavioral and modeling results provide a detailed, dynamical characterization of attentional and oculomotor capture that is not only qualitatively consistent across participants, but also indicative of their individual perceptual capacities.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Benjamin R Steinberg
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Lauren A Sussman
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Sophia M Fry
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Christopher K Hauser
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Denise D Anderson
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
23
|
Cognitive Control of Saccadic Selection and Inhibition from within the Core Cortical Saccadic Network. J Neurosci 2019; 39:2497-2508. [PMID: 30683684 DOI: 10.1523/jneurosci.1419-18.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/10/2018] [Accepted: 12/11/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to select the task-relevant stimulus for a saccadic eye movement, while inhibiting saccades to task-irrelevant stimuli, is crucial for active vision. Here, we present a novel saccade-contingent behavioral paradigm and investigate the neural basis of the central cognitive functions underpinning such behavior, saccade selection, saccade inhibition, and saccadic choice, in female and male human participants. The paradigm allows for exceptionally well-matched contrasts, with task demands formalized with stochastic accumulation-to-threshold models. Using fMRI, we replicated the core cortical eye-movement network for saccade generation (frontal eye fields, posterior parietal cortex, and higher-level visual areas). However, in contrast to previously published tasks, saccadic selection and inhibition recruited only this core network. Brain-behavior analyses further showed that inhibition efficiency may be underpinned by white-matter integrity of tracts between key saccade-generating regions, and that inhibition efficiency is associated with right inferior frontal gyrus engagement, potentially implementing general-purpose inhibition. The core network, however, was insufficient for saccadic choice, which recruited anterior regions commonly attributed to saccadic action selection, including dorsolateral prefrontal cortex and anterior cingulate cortex. Jointly, the results indicate that extra-saccadic activity observed for free choice, and in previously published tasks probing saccadic control, is likely due to increased load on higher-level cognitive processes, and not saccadic selection per se, which is achieved within the canonical cortical eye movement network.SIGNIFICANCE STATEMENT The ability to selectively attend to, and to not attend to, parts of the world is crucial for successful action. Mapping the neural substrate of the key cognitive functions underlying such behavior, saccade selection and inhibition, is a challenge. Canonical tasks, often preceding the cognitive neuroscience revolution by decennia, were not designed to isolate single cognitive functions, and result in extremely widespread brain activity. We developed a novel behavioral paradigm, which demonstrates the following: (1) the cognitive control of saccades is achieved within key cortical saccadic brain regions; (2) individual variability in control efficiency is related to white-matter connectivity between the same regions; and (3) widespread activity in canonical tasks is likely related to higher-level cognitive demands and not saccadic control.
Collapse
|
24
|
Coe BC, Trappenberg T, Munoz DP. Modeling Saccadic Action Selection: Cortical and Basal Ganglia Signals Coalesce in the Superior Colliculus. Front Syst Neurosci 2019; 13:3. [PMID: 30814938 PMCID: PMC6381059 DOI: 10.3389/fnsys.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
The distributed nature of information processing in the brain creates a complex variety of decision making behavior. Likewise, computational models of saccadic decision making behavior are numerous and diverse. Here we present a generative model of saccadic action selection in the context of competitive decision making in the superior colliculus (SC) in order to investigate how independent neural signals may converge to interact and guide saccade selection, and to test if systematic variations can better replicate the variability in responses that are part of normal human behavior. The model was tasked with performing pro- and anti-saccades in order to replicate specific attributes of healthy human saccade behavior. Participants (ages 18-39) were instructed to either look toward (pro-saccade, well-practiced automated response) or away from (anti-saccade, combination of inhibitory and voluntary responses) a peripheral visual stimulus. They generated express and regular latency saccades in the pro-saccade task. In the anti-saccade task, correct reaction times were longer and participants occasionally looked at the stimulus (direction error) at either express or regular latencies. To gain a better understanding of the underlying neural processes that lead to saccadic action selection and response inhibition, we implemented 8 inputs inspired by systems neuroscience. These inputs reflected known sensory, automated, voluntary, and inhibitory components of cortical and basal ganglia activity that coalesces in the intermediate layers of the SC (SCi). The model produced bimodal reaction time distributions, where express and regular latency saccades had distinct modes, for both correct pro-saccades and direction errors in the anti-saccade task. Importantly, express and regular latency direction errors resulted from interactions of different inputs in the model. Express latency direction errors were due to a lack of pre-emptive fixation and inhibitory activity, which aloud sensory and automated inputs to initiate a stimulus-driven saccade. Regular latency errors occurred when the automated motor signals were stronger than the voluntary motor signals. While previous models have emulated fewer aspects of these behavioral findings, the focus of the simulations here is on the interaction of a wide variety of physiologically-based information integration producing a richer set of natural behavioral variability.
Collapse
Affiliation(s)
- Brian C. Coe
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | | | - Douglas P. Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
25
|
Eye Position Error Influence over "Open-Loop" Smooth Pursuit Initiation. J Neurosci 2019; 39:2709-2721. [PMID: 30709895 DOI: 10.1523/jneurosci.2178-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/15/2018] [Accepted: 01/13/2019] [Indexed: 11/21/2022] Open
Abstract
The oculomotor system integrates a variety of visual signals into appropriate motor plans, but such integration can have widely varying time scales. For example, smooth pursuit eye movements to follow a moving target are slower and longer lasting than saccadic eye movements and it has been suggested that initiating a smooth pursuit eye movement involves an obligatory "open-loop" interval in which new visual motion signals presumably cannot influence the ensuing motor plan for up to 100 ms after movement initiation. However, this view is contrary to the idea that the oculomotor periphery has privileged access to short-latency visual signals. Here, we show that smooth pursuit initiation is sensitive to visual inputs, even in open-loop intervals. We instructed male rhesus macaque monkeys to initiate saccade-free smooth pursuit eye movements and injected a transient, instantaneous eye position error signal at different times relative to movement initiation. We found robust short-latency modulations in eye velocity and acceleration, starting only ∼50 ms after transient signal occurrence and even during open-loop pursuit initiation. Critically, the spatial direction of the injected position error signal had predictable effects on smooth pursuit initiation, with forward errors increasing eye acceleration and backward errors reducing it. Catch-up saccade frequencies and amplitudes were also similarly altered ∼50 ms after transient signals, much like the well known effects on microsaccades during fixation. Our results demonstrate that smooth pursuit initiation is highly sensitive to visual signals and that catch-up saccade generation is reset after a visual transient.SIGNIFICANCE STATEMENT Smooth pursuit eye movements allow us to track moving objects. The first ∼100 ms of smooth pursuit initiation are characterized by smooth eye acceleration and are overwhelmingly described as being "open-loop"; that is, unmodifiable by new visual motion signals. We found that all phases of smooth pursuit, including the so-called open-loop intervals, are reliably modifiable by visual signals. We injected transient flashes resulting in very brief, spatially specific position error signals to smooth pursuit and observed very short-latency changes in smooth eye movements to minimize such errors. Our results highlight the flexibility of the oculomotor system in reacting to environmental events and suggest a functional role for the pervasiveness of visual sensitivity in oculomotor control brain regions.
Collapse
|
26
|
Hedge C, Powell G, Bompas A, Vivian-Griffiths S, Sumner P. Low and variable correlation between reaction time costs and accuracy costs explained by accumulation models: Meta-analysis and simulations. Psychol Bull 2018; 144:1200-1227. [PMID: 30265012 PMCID: PMC6195302 DOI: 10.1037/bul0000164] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022]
Abstract
The underpinning assumption of much research on cognitive individual differences (or group differences) is that task performance indexes cognitive ability in that domain. In many tasks performance is measured by differences (costs) between conditions, which are widely assumed to index a psychological process of interest rather than extraneous factors such as speed-accuracy trade-offs (e.g., Stroop, implicit association task, lexical decision, antisaccade, Simon, Navon, flanker, and task switching). Relatedly, reaction time (RT) costs or error costs are interpreted similarly and used interchangeably in the literature. All of this assumes a strong correlation between RT-costs and error-costs from the same psychological effect. We conducted a meta-analysis to test this, with 114 effects across a range of well-known tasks. Counterintuitively, we found a general pattern of weak, and often no, association between RT and error costs (mean r = .17, range -.45 to .78). This general problem is accounted for by the theoretical framework of evidence accumulation models, which capture individual differences in (at least) 2 distinct ways. Differences affecting accumulation rate produce positive correlation. But this is cancelled out if individuals also differ in response threshold, which produces negative correlations. In the models, subtractions between conditions do not isolate processing costs from caution. To demonstrate the explanatory power of synthesizing the traditional subtraction method within a broader decision model framework, we confirm 2 predictions with new data. Thus, using error costs or RT costs is more than a pragmatic choice; the decision carries theoretical consequence that can be understood through the accumulation model framework. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
|
27
|
Saccadic inhibition interrupts ongoing oculomotor activity to enable the rapid deployment of alternate movement plans. Sci Rep 2018; 8:14163. [PMID: 30242249 PMCID: PMC6155112 DOI: 10.1038/s41598-018-32224-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
Diverse psychophysical and neurophysiological results show that oculomotor networks are continuously active, such that plans for making the next eye movement are always ongoing. So, when new visual information arrives unexpectedly, how are those plans affected? At what point can the new information start guiding an eye movement, and how? Here, based on modeling and simulation results, we make two observations that are relevant to these questions. First, we note that many experiments, including those investigating the phenomenon known as "saccadic inhibition", are consistent with the idea that sudden-onset stimuli briefly interrupt the gradual rise in neural activity associated with the preparation of an impending saccade. And second, we show that this stimulus-driven interruption is functionally adaptive, but only if perception is fast. In that case, putting on hold an ongoing saccade plan toward location A allows the oculomotor system to initiate a concurrent, alternative plan toward location B (where a stimulus just appeared), deliberate (briefly) on the priority of each target, and determine which plan should continue. Based on physiological data, we estimate that the advantage of this strategy, relative to one in which any plan once initiated must be completed, is of several tens of milliseconds per saccade.
Collapse
|
28
|
Xu KZ, Mayse JD, Courtney S. Evidence for selective adjustments of inhibitory control in a variant of the stop signal task. Q J Exp Psychol (Hove) 2018; 72:818-831. [DOI: 10.1177/1747021818768721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability to inhibit actions inappropriate for the context is essential for meeting the shifting demands of complex environments. The stop signal task (SST) has been used in many previous studies to examine the interactions between go and stop responses in a cognitively demanding task involving attention, conflict resolution, and motor plan selection. The current study uses a variant of the SST, in which the continue signal instructs participants to proceed with the go response they were preparing. Reaction times (RTs) on continue trials were bimodally distributed, suggesting that an aspect of inhibition was involved in at least some of the trials. We investigated whether the cognitive processes delaying the generation of a behavioural response on continue trials are the same as for stop trials. We found improvement of stop signal reaction times (SSRTs) following stop trials, but the decrease in continue signal reaction times (CSRTs) was not significant. No improvement in either SSRT or CSRT was found following continue trials, suggesting that activation of the processes delaying the response on continue trials is insufficient to drive subsequent adjustments in SSRT or CSRT. In addition, go RTs only slowed following stop trials. These effects may suggest the presence of a selective learning process, which requires that the initial inhibition captured by SSRT and CSRT be combined with recognition of the stop signal specifically to affect subsequent performance.
Collapse
Affiliation(s)
- Kitty Z Xu
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Pinterest, Inc., San Francisco, CA, USA
| | - Jeffrey D Mayse
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Susan Courtney
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
29
|
Hauser CK, Zhu D, Stanford TR, Salinas E. Motor selection dynamics in FEF explain the reaction time variance of saccades to single targets. eLife 2018; 7:33456. [PMID: 29652247 PMCID: PMC5947991 DOI: 10.7554/elife.33456] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/12/2018] [Indexed: 01/26/2023] Open
Abstract
In studies of voluntary movement, a most elemental quantity is the reaction time (RT) between the onset of a visual stimulus and a saccade toward it. However, this RT demonstrates extremely high variability which, in spite of extensive research, remains unexplained. It is well established that, when a visual target appears, oculomotor activity gradually builds up until a critical level is reached, at which point a saccade is triggered. Here, based on computational work and single-neuron recordings from monkey frontal eye field (FEF), we show that this rise-to-threshold process starts from a dynamic initial state that already contains other incipient, internally driven motor plans, which compete with the target-driven activity to varying degrees. The ensuing conflict resolution process, which manifests in subtle covariations between baseline activity, build-up rate, and threshold, consists of fundamentally deterministic interactions, and explains the observed RT distributions while invoking only a small amount of intrinsic randomness. As we examine the space around us our eyes move in short steps, looking toward a new location about four times a second. Neurons in a region of the brain called the frontal eye field help initiate these eye movements, which are known as saccades. Each neuron contributes to a saccade with a specific direction and size. Before a saccade, the relevant neurons in the frontal eye field steadily increase their activity. When this activity reaches a critical threshold, the visual system issues a command to move the eyes in the appropriate direction. So a saccade that moves the eyes to the right requires a specific group of neurons to be strongly activated – but, at the same time, the neurons responsible for movement to the left need to be less active. Imagine that you have to move your eyes as quickly as possible to look at a spot of light that appears on a screen. Some of the time your eyes will start to move about 100 milliseconds after the light appears. But on other attempts, your eyes will not start moving until 300 milliseconds after the light came on. What causes this variability? To find out, Hauser et al. recorded from neurons in monkeys trained to perform such a task. When the spot of light appeared many different neurons were active, suggesting there is conflict between the plan that would move the eyes toward the target and plans to look at other locations. That is, when the target appears, the monkey is already thinking of looking somewhere. The time required to resolve this conflict depends on how far apart the target and the competing locations are from one another, and on how much the competing neurons have increased their activity before the target appears. Similar mechanisms are likely to operate when we sit at the dinner table and look for the salt shaker, for example, and so the results presented by Hauser et al. will help us to understand how we direct our attention to different points in space. Understanding how these processes work in more detail will help us to discern what happens when they go wrong, as occurs in attention deficit disorders like ADHD.
Collapse
Affiliation(s)
- Christopher K Hauser
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Dantong Zhu
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| | - Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, United States
| |
Collapse
|
30
|
Mégardon G, Sumner P. The fate of nonselected activity in saccadic decisions: distinct goal-related and history-related modulation. J Neurophysiol 2018; 119:608-620. [PMID: 29046422 DOI: 10.1152/jn.00254.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The global effect (GE) traditionally refers to the tendency of effectors (e.g., hand, eyes) to first land in between two nearby stimuli, forming a unimodal distribution. By measuring a shift of this distribution, recent studies used the GE to assess the presence of decision-related inputs on the motor map for eye movements. However, this method cannot distinguish whether one stimulus is inhibited or the other is facilitated and could not detect situations where both stimuli are inhibited or facilitated. Here, we detect deviations in the bimodal distribution of landing positions for remote stimuli and find that this bimodal GE reveals the presence, location, and polarity (facilitation or inhibition) of history-related and goal-related modulation of the nonselected activity (e.g., the distractor activity in correct trials, and the target activity in error trials). We tested, for different interstimulus distances, the effect of the rarity of double-stimulus trials and the difference between performing a discrimination task compared with free choice. Our work shows that the effect of rarity is symmetric and decreases with interstimulus distances, while the effect of goal-directed discrimination is asymmetric - occurring only when the distractor is selected for the saccade - and maintained across interstimulus distances. These results suggest that the former effect changes the response property of the motor map, while the latter specifically facilitates the target location. NEW & NOTEWORTHY Deviations in landing positions for saccades to targets and distractors reveal the presence, location and polarity of history-related or goal-related signals. Goal-directed discrimination appears to facilitate the target location, rather than inhibiting the distractor location, Rare occurrence of a choice appears to indiscriminately increase the neural response for both locations.
Collapse
Affiliation(s)
- Geoffrey Mégardon
- Cardiff University Brain Research Imagery Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom.,School of Psychology, Cardiff University , Cardiff , United Kingdom
| | - Petroc Sumner
- Cardiff University Brain Research Imagery Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom
| |
Collapse
|
31
|
Campbell AE, Chambers CD, Allen CPG, Hedge C, Sumner P. Impairment of manual but not saccadic response inhibition following acute alcohol intoxication. Drug Alcohol Depend 2017; 181:242-254. [PMID: 29054392 DOI: 10.1016/j.drugalcdep.2017.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alcohol impairs response inhibition; however, it remains contested whether such impairments affect a general inhibition system, or whether affected inhibition systems are embedded in, and specific to, each response modality. Further, alcohol-induced impairments have not been disambiguated between proactive and reactive inhibition mechanisms, and nor have the contributions of action-updating impairments to behavioural 'inhibition' deficits been investigated. METHODS Forty Participants (25 female) completed both a manual and a saccadic stop-signal reaction time (SSRT) task before and after a 0.8g/kg dose of alcohol and, on a separate day, before and after a placebo. Blocks in which participants were required to ignore the signal to stop or make an additional 'dual' response were included to obtain measures of proactive inhibition as well as updating of attention and action. RESULTS Alcohol increased manual but not saccadic SSRT. Proactive inhibition was weakly reduced by alcohol, but increases in the reaction times used to baseline this contrast prevent clear conclusions regarding response caution. Finally, alcohol also increased secondary dual response times of the dual task uniformly as a function of the delay between tasks, indicating an effect of alcohol on action-updating or execution. CONCLUSIONS The modality-specific effects of alcohol favour the theory that response inhibition systems are embedded within response modalities, rather than there existing a general inhibition system. Concerning alcohol, saccadic control appears relatively more immune to disruption than manual control, even though alcohol affects saccadic latency and velocity. Within the manual domain, alcohol affects multiple types of action updating, not just inhibition.
Collapse
Affiliation(s)
- Anne Eileen Campbell
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Christopher D Chambers
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Christopher P G Allen
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Craig Hedge
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Petroc Sumner
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
32
|
Buonocore A, Purokayastha S, McIntosh RD. Saccade Reorienting Is Facilitated by Pausing the Oculomotor Program. J Cogn Neurosci 2017; 29:2068-2080. [PMID: 28820676 DOI: 10.1162/jocn_a_01179] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
As we look around the world, selecting our targets, competing events may occur at other locations. Depending on current goals, the viewer must decide whether to look at new events or to ignore them. Two experimental paradigms formalize these response options: double-step saccades and saccadic inhibition. In the first, the viewer must reorient to a newly appearing target; in the second, they must ignore it. Until now, the relationship between reorienting and inhibition has been unexplored. In three experiments, we found saccadic inhibition ∼100 msec after a new target onset, regardless of the task instruction. Moreover, if this automatic inhibition is boosted by an irrelevant flash, reorienting is facilitated, suggesting that saccadic inhibition plays a crucial role in visual behavior, as a bottom-up brake that buys the time needed for decisional processes to act. Saccadic inhibition may be a ubiquitous pause signal that provides the flexibility for voluntary behavior to emerge.
Collapse
|
33
|
Aagten-Murphy D, Bays PM. Automatic and intentional influences on saccade landing. J Neurophysiol 2017; 118:1105-1122. [PMID: 28539394 DOI: 10.1152/jn.00141.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 11/22/2022] Open
Abstract
Saccadic eye movements enable us to rapidly direct our high-resolution fovea onto relevant parts of the visual world. However, while we can intentionally select a location as a saccade target, the wider visual scene also influences our executed movements. In the presence of multiple objects, eye movements may be "captured" to the location of a distractor object, or be biased toward the intermediate position between objects (the "global effect"). Here we examined how the relative strengths of the global effect and visual object capture changed with saccade latency, the separation between visual items and stimulus contrast. Importantly, while many previous studies have omitted giving observers explicit instructions, we instructed participants to either saccade to a specified target object or to the midpoint between two stimuli. This allowed us to examine how their explicit movement goal influenced the likelihood that their saccades terminated at either the target, distractor, or intermediate locations. Using a probabilistic mixture model, we found evidence that both visual object capture and the global effect co-occurred at short latencies and declined as latency increased. As object separation increased, capture came to dominate the landing positions of fast saccades, with reduced global effect. Using the mixture model fits, we dissociated the proportion of unavoidably captured saccades to each location from those intentionally directed to the task goal. From this we could extract the time course of competition between automatic capture and intentional targeting. We show that task instructions substantially altered the distribution of saccade landing points, even at the shortest latencies.NEW & NOTEWORTHY When making an eye movement to a target location, the presence of a nearby distractor can cause the saccade to unintentionally terminate at the distractor itself or the average position in between stimuli. With probabilistic mixture models, we quantified how both unavoidable capture and goal-directed targeting were influenced by changing the task and the target-distractor separation. Using this novel technique, we could extract the time course over which automatic and intentional processes compete for control of saccades.
Collapse
Affiliation(s)
- David Aagten-Murphy
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Paul M Bays
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
James S, Bell OA, Nazli MAM, Pearce RE, Spencer J, Tyrrell K, Paine PJ, Heaton TJ, Anderson S, Da Lio M, Gurney K. Target-distractor synchrony affects performance in a novel motor task for studying action selection. PLoS One 2017; 12:e0176945. [PMID: 28475622 PMCID: PMC5419578 DOI: 10.1371/journal.pone.0176945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/19/2017] [Indexed: 11/21/2022] Open
Abstract
The study of action selection in humans can present challenges of task design since our actions are usually defined by many degrees of freedom and therefore occupy a large action-space. While saccadic eye-movement offers a more constrained paradigm for investigating action selection, the study of reach-and-grasp in upper limbs has often been defined by more complex scenarios, not easily interpretable in terms of such selection. Here we present a novel motor behaviour task which addresses this by limiting the action space to a single degree of freedom in which subjects have to track (using a stylus) a vertical coloured target line displayed on a tablet computer, whilst ignoring a similarly oriented distractor line in a different colour. We ran this task with 55 subjects and showed that, in agreement with previous studies, the presence of the distractor generally increases the movement latency and directional error rate. Further, we used two distractor conditions according to whether the distractor’s location changes asynchronously or synchronously with the location of the target. We found that the asynchronous distractor yielded poorer performance than its synchronous counterpart, with significantly higher movement latencies and higher error rates. We interpret these results in an action selection framework with two actions (move left or right) and competing ‘action requests’ offered by the target and distractor. As such, the results provide insights into action selection performance in humans and supply data for directly constraining future computational models therein.
Collapse
Affiliation(s)
- Sebastian James
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in-silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Olivia A. Bell
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Muhammed A. M. Nazli
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Rachel E. Pearce
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Jonathan Spencer
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Katie Tyrrell
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
| | - Phillip J. Paine
- School of Mathematics and Statistics, The University of Sheffield, Sheffield, United Kingdom
| | - Timothy J. Heaton
- School of Mathematics and Statistics, The University of Sheffield, Sheffield, United Kingdom
| | - Sean Anderson
- Insigneo Institute for in-silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- Department of Automatic Control Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Mauro Da Lio
- Department of Industrial Engineering, Università degli Studi di Trento, Trento, Italy
| | - Kevin Gurney
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in-silico Medicine, The University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Bonnet C, Rusz J, Hanuška J, Dezortová M, Jírů F, Sieger T, Jech R, Klempíř J, Roth J, Bezdíček O, Serranová T, Dušek P, Uher T, Flammand-Roze C, Hájek M, Růžička E. GABA spectra and remote distractor effect in progressive supranuclear palsy: A pilot study. Rev Neurol (Paris) 2017; 173:225-229. [PMID: 28385472 DOI: 10.1016/j.neurol.2017.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/11/2017] [Accepted: 03/09/2017] [Indexed: 11/17/2022]
Abstract
Disturbances of the gamma-aminobutyric-acid (GABA) system have been suspected of contributing to the pathophysiology of progressive supranuclear palsy (PSP). The ability to rapidly resolve competitive action decisions, such as shifting the gaze to one particular stimulus rather than another, can be predicted by the concentration of GABA in the region of the frontal cortex relevant to eye movements. For this reason, our study measured GABA levels in seven PSP patients and eight healthy controls, using proton magnetic resonance spectroscopy, and assessed the relationship of these measurements to the remote distractor effect (RDE), an eye-movement paradigm investigating competitive action decisions. No significant differences were found in either frontal-eye-field GABA levels or RDE between PSP patients and controls.
Collapse
Affiliation(s)
- C Bonnet
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic; Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, 75013 Paris, France
| | - J Rusz
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic; Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
| | - J Hanuška
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic; Department of Neurosurgery, Hospital Na Homolce, Prague, Czech Republic
| | - M Dezortová
- MR-unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - F Jírů
- MR-unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - T Sieger
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic; Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
| | - R Jech
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic
| | - J Klempíř
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic
| | - J Roth
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic
| | - O Bezdíček
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic
| | - T Serranová
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic
| | - P Dušek
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic
| | - T Uher
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic
| | - C Flammand-Roze
- AP-HP, Hospital de Bicêtre, Department of Neurology, 94270 Paris, France
| | - M Hájek
- MR-unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - E Růžička
- Department of Neurology, Center of Clinical Neuroscience, Charles University, First Faculty of Medicine, General University Hospital, Kateřinská 30, Prague 2, 12000 Prague, Czech Republic.
| |
Collapse
|
36
|
Bompas A, Hedge C, Sumner P. Speeded saccadic and manual visuo-motor decisions: Distinct processes but same principles. Cogn Psychol 2017; 94:26-52. [PMID: 28254613 PMCID: PMC5388195 DOI: 10.1016/j.cogpsych.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022]
Abstract
Core architecture of visuo-motor selection model generalises across effectors. Hand and eyes show very different response times, but similar decision times. Longer non-decision time for visuo-manual responses accounts for longer response times. Stronger faster transient visual inputs for saccades account for different selection dynamics.
Action decisions are considered an emergent property of competitive response activations. As such, decision mechanisms are embedded in, and therefore may differ between, different response modalities. Despite this, the saccadic eye movement system is often promoted as a model for all decisions, especially in the fields of electrophysiology and modelling. Other research traditions predominantly use manual button presses, which have different response distribution profiles and are initiated by different brain areas. Here we tested whether core concepts of action selection models (decision and non-decision times, integration of automatic and selective inputs to threshold, interference across response options, noise, etc.) generalise from saccadic to manual domains. Using two diagnostic phenomena, the remote distractor effect (RDE) and ‘saccadic inhibition', we find that manual responses are also sensitive to the interference of visual distractors but to a lesser extent than saccades and during a shorter time window. A biologically-inspired model (DINASAUR, based on non-linear input dynamics) can account for both saccadic and manual response distributions and accuracy by simply adjusting the balance and relative timings of transient and sustained inputs, and increasing the mean and variance of non-decisional delays for manual responses. This is consistent with known neurophysiological and anatomical differences between saccadic and manual networks. Thus core decision principles appear to generalise across effectors, consistent with previous work, but we also conclude that key quantitative differences underlie apparent qualitative differences in the literature, such as effects being robustly reported in one modality and unreliable in another.
Collapse
Affiliation(s)
- Aline Bompas
- CUBRIC - School of Psychology, Cardiff University, Cardiff CF10 3AT, Wales, United Kingdom; INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Lyon F-69000, France.
| | - Craig Hedge
- CUBRIC - School of Psychology, Cardiff University, Cardiff CF10 3AT, Wales, United Kingdom
| | - Petroc Sumner
- CUBRIC - School of Psychology, Cardiff University, Cardiff CF10 3AT, Wales, United Kingdom
| |
Collapse
|
37
|
Buonocore A, Chen CY, Tian X, Idrees S, Münch TA, Hafed ZM. Alteration of the microsaccadic velocity-amplitude main sequence relationship after visual transients: implications for models of saccade control. J Neurophysiol 2017; 117:1894-1910. [PMID: 28202573 DOI: 10.1152/jn.00811.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 11/22/2022] Open
Abstract
Microsaccades occur during gaze fixation to correct for miniscule foveal motor errors. The mechanisms governing such fine oculomotor control are still not fully understood. In this study, we explored microsaccade control by analyzing the impacts of transient visual stimuli on these movements' kinematics. We found that such kinematics can be altered in systematic ways depending on the timing and spatial geometry of visual transients relative to the movement goals. In two male rhesus macaques, we presented peripheral or foveal visual transients during an otherwise stable period of fixation. Such transients resulted in well-known reductions in microsaccade frequency, and our goal was to investigate whether microsaccade kinematics would additionally be altered. We found that both microsaccade timing and amplitude were modulated by the visual transients, and in predictable manners by these transients' timing and geometry. Interestingly, modulations in the peak velocity of the same movements were not proportional to the observed amplitude modulations, suggesting a violation of the well-known "main sequence" relationship between microsaccade amplitude and peak velocity. We hypothesize that visual stimulation during movement preparation affects not only the saccadic "Go" system driving eye movements but also a "Pause" system inhibiting them. If the Pause system happens to be already turned off despite the new visual input, movement kinematics can be altered by the readout of additional visually evoked spikes in the Go system coding for the flash location. Our results demonstrate precise control over individual microscopic saccades and provide testable hypotheses for mechanisms of saccade control in general.NEW & NOTEWORTHY Microsaccadic eye movements play an important role in several aspects of visual perception and cognition. However, the mechanisms for microsaccade control are still not fully understood. We found that microsaccade kinematics can be altered in a systematic manner by visual transients, revealing a previously unappreciated and exquisite level of control by the oculomotor system of even the smallest saccades. Our results suggest precise temporal interaction between visual, motor, and inhibitory signals in microsaccade control.
Collapse
Affiliation(s)
- Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany; .,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Xiaoguang Tian
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| | - Saad Idrees
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tübingen University, Tübingen, Germany; and
| | - Thomas A Münch
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, Germany.,Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, Germany
| |
Collapse
|
38
|
Glaholt MG, Reingold EM. Perceptual enhancement as a result of a top-down attentional influence in a scene viewing task: Evidence from saccadic inhibition. Q J Exp Psychol (Hove) 2016; 71:1-9. [PMID: 27784206 DOI: 10.1080/17470218.2016.1245765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Prior research has shown that task instructions influence the locations and durations of eye fixations during scene viewing. These task-related changes in gaze patterns are likely to be associated with a top-down influence of attention. Presently we applied a saccadic-inhibition manipulation in order to detect another expected manifestation of top-down attention: perceptual enhancement. Participants viewed eight-item arrays containing photographs from two categories of scenes. Four of the photos depicted natural landscapes ("nature") and the other four depicted urban environments ("buildings"). Participants were instructed to memorize scenes from one of the categories in preparation for a later recognition memory test. During eye fixations the border around the fixated scene flickered briefly from black to white with a random interval between flickers ranging from 400 to 600 ms. We computed the likelihood of a saccade being initiated in the period following the flicker. Consistent with prior research, we found a strong saccadic inhibition effect with maximum saccadic inhibition occurring approximately 97 ms following the flicker. Importantly, the saccadic inhibition effect was stronger and longer lasting when the subject's eyes were fixated on a relevant scene compared to an irrelevant scene. These findings are consistent with perceptual enhancement as a result of top-down attention.
Collapse
Affiliation(s)
- Mackenzie G Glaholt
- a Department of Psychology , University of Toronto Mississauga , Mississauga , ON , Canada
- b Human Systems Integration Section, Defence Research and Development Canada , Toronto , ON , Canada
| | - Eyal M Reingold
- a Department of Psychology , University of Toronto Mississauga , Mississauga , ON , Canada
| |
Collapse
|
39
|
Buonocore A, McIntosh RD, Melcher D. Beyond the point of no return: effects of visual distractors on saccade amplitude and velocity. J Neurophysiol 2015; 115:752-62. [PMID: 26631151 DOI: 10.1152/jn.00939.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/28/2015] [Indexed: 11/22/2022] Open
Abstract
Visual transients, such as a bright flash, reduce the proportion of saccades executed, ∼60-125 ms after flash onset, a phenomenon known as saccadic inhibition (SI). Across three experiments, we apply a similar time-course analysis to the amplitudes and velocities of saccades. Alongside the expected reduction of saccade frequency in the key time period, we report two perturbations of the "main sequence": one before and one after the period of SI. First, saccades launched between 30 and 70 ms, following the flash, were hypometric, with peak speed exceeding that expected for a saccade of similar amplitude. This finding was in contrast to the common idea that saccades have passed a "point of no return," ∼60 ms before launching, escaping interference from distractors. The early hypometric saccades observed were not a consequence of spatial averaging between target and distractor locations, as they were found not only following a localized central flash (experiment 1) but also following a spatially generalized flash (experiment 2). Second, across experiments, saccades launched at 110 ms postflash, toward the end of SI, had normal amplitude but a peak speed higher than expected for that amplitude, suggesting increased collicular excitation at the time of launching. Overall, the results show that saccades that escape inhibition following a visual transient are not necessarily unaffected but instead, can reveal interference in spatial and kinematic measures.
Collapse
Affiliation(s)
- Antimo Buonocore
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and
| | - Robert D McIntosh
- Human Cognitive Neuroscience, Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - David Melcher
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy; and
| |
Collapse
|
40
|
Mégardon G, Tandonnet C, Sumner P, Guillaume A. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli. Front Comput Neurosci 2015; 9:128. [PMID: 26539103 PMCID: PMC4611141 DOI: 10.3389/fncom.2015.00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/02/2015] [Indexed: 11/13/2022] Open
Abstract
Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements.
Collapse
Affiliation(s)
- Geoffrey Mégardon
- School of Psychology, Cardiff UniversityCardiff, UK
- Laboratoire de Neurobiologie de la Cognition, UMR 6155, Centre National de la Recherche Scientifique, Aix-Marseille UniversitéMarseille, France
| | - Christophe Tandonnet
- Faculté de Psychologie et des Sciences de l'Education, Université de GenèveGenève, Switzerland
- Laboratoire de Psychologie Cognitive, UMR 7290, Centre National de la Recherche Scientifique, Aix-Marseille UniversitéMarseille, France
| | | | - Alain Guillaume
- Laboratoire de Neurobiologie de la Cognition, UMR 6155, Centre National de la Recherche Scientifique, Aix-Marseille UniversitéMarseille, France
- Department of Psychology, New York UniversityNew York, NY, USA
| |
Collapse
|
41
|
Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex. eLife 2015; 4:e04677. [PMID: 25942352 PMCID: PMC4415122 DOI: 10.7554/elife.04677] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using 'forced choices' (one target viable) was highly reliable when applied to 'free choices'. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed 'changes of mind': the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary 'indecision': delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice.
Collapse
Affiliation(s)
- Matthew T Kaufman
- Department of Electrical Engineering, Stanford University, Stanford, United States
| | - Mark M Churchland
- Department of Neuroscience, Columbia University Medical Center, New York, United States
| | - Stephen I Ryu
- Department of Electrical Engineering, Stanford University, Stanford, United States
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, United States
| |
Collapse
|
42
|
Disrupting saccadic updating: visual interference prior to the first saccade elicits spatial errors in the secondary saccade in a double-step task. Exp Brain Res 2015; 233:1893-905. [PMID: 25832623 DOI: 10.1007/s00221-015-4261-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
When we explore the visual environment around us, we produce sequences of very precise eye movements aligning the objects of interest with the most sensitive part of the retina for detailed visual processing. A copy of the impending motor command, the corollary discharge, is sent as soon as the first saccade in a sequence is ready to monitor the next fixation location and correctly plan the subsequent eye movement. Neurophysiological investigations have shown that chemical interference with the corollary discharge generates a distinct pattern of spatial errors on sequential eye movements, with similar results also from clinical and TMS studies. Here, we used saccadic inhibition to interfere with the temporal domain of the first of two subsequent saccades during a standard double-step paradigm. In two experiments, we report that the temporal interference on the primary saccade led to a specific error in the final landing position of the second saccade that was consistent with previous lesion and neurophysiological studies, but without affecting the spatial characteristics of the first eye movement. On the other hand, single-step saccades were differently influence by the flash, with a general undershoot, more pronounced for larger saccadic amplitude. These findings show that a flashed visual transient can disrupt saccadic updating in a double-step task, possibly due to the mismatch between the planned and the executed saccadic eye movement.
Collapse
|
43
|
Bompas A, Sumner P, Muthumumaraswamy SD, Singh KD, Gilchrist ID. The contribution of pre-stimulus neural oscillatory activity to spontaneous response time variability. Neuroimage 2015; 107:34-45. [PMID: 25482267 PMCID: PMC4306532 DOI: 10.1016/j.neuroimage.2014.11.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/14/2014] [Accepted: 11/30/2014] [Indexed: 11/17/2022] Open
Abstract
Large variability between individual response times, even in identical conditions, is a ubiquitous property of animal behavior. However, the origins of this stochasticity and its relation to action decisions remain unclear. Here we focus on the state of the perception-action network in the pre-stimulus period and its influence on subsequent saccadic response time and choice in humans. We employ magnetoencephalography (MEG) and a correlational source reconstruction approach to identify the brain areas where pre-stimulus oscillatory activity predicted saccadic response time to visual targets. We find a relationship between future response time and pre-stimulus power, but not phase, in occipital (including V1), parietal, posterior cingulate and superior frontal cortices, consistently across alpha, beta and low gamma frequencies, each accounting for between 1 and 4% of the RT variance. Importantly, these correlations were not explained by deterministic sources of variance, such as experimental factors and trial history. Our results further suggest that occipital areas mainly reflect short-term (trial to trial) stochastic fluctuations, while the frontal contribution largely reflects longer-term effects such as fatigue or practice. Parietal areas reflect fluctuations at both time scales. We found no evidence of lateralization: these effects were indistinguishable in both hemispheres and for both saccade directions, and non-predictive of choice - a finding with fundamental consequences for models of action decision, where independent, not coupled, noise is normally assumed.
Collapse
Affiliation(s)
- Aline Bompas
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, Hopital du Vinatier, 95 Boulevard Pinel, Bron, 69500, France.
| | - Petroc Sumner
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK
| | - Suresh D Muthumumaraswamy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; School of Pharmacy and Psychology, Auckland University, Private Bag 92019, Auckland, New Zealand
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK
| | - Iain D Gilchrist
- School of Experimental Psychology, University of Bristol, 12A Priory Road, Bristol BS7 8SW, UK
| |
Collapse
|
44
|
Harrison JJ, Sumner P, Dunn MJ, Erichsen JT, Freeman TCA. Quick phases of infantile nystagmus show the saccadic inhibition effect. Invest Ophthalmol Vis Sci 2015; 56:1594-600. [PMID: 25670485 PMCID: PMC4351650 DOI: 10.1167/iovs.14-15655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/29/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Infantile nystagmus (IN) is a pathological, involuntary oscillation of the eyes consisting of slow, drifting eye movements interspersed with rapid reorienting quick phases. The extent to which quick phases of IN are programmed similarly to saccadic eye movements remains unknown. We investigated whether IN quick phases exhibit 'saccadic inhibition,' a phenomenon typically related to normal targeting saccades, in which the initiation of the eye movement is systematically delayed by task-irrelevant visual distractors. METHODS We recorded eye position from 10 observers with early-onset idiopathic nystagmus while task-irrelevant distractor stimuli were flashed along the top and bottom of a large screen at ±10° eccentricity. The latency distributions of quick phases were measured with respect to these distractor flashes. Two additional participants, one with possible albinism and one with fusion maldevelopment nystagmus syndrome, were also tested. RESULTS All observers showed that a distractor flash delayed the execution of quick phases that would otherwise have occurred approximately 100 ms later, exactly as in the standard saccadic inhibition effect. The delay did not appear to differ between the two main nystagmus types under investigation (idiopathic IN with unidirectional and bidirectional jerk). CONCLUSIONS The presence of the saccadic inhibition effect in IN quick phases is consistent with the idea that quick phases and saccades share a common programming pathway. This could allow quick phases to take on flexible, goal-directed behavior, at odds with the view that IN quick phases are stereotyped, involuntary eye movements.
Collapse
Affiliation(s)
| | - Petroc Sumner
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Matt J. Dunn
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Jonathan T. Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
45
|
Harrison JJ, Freeman TCA, Sumner P. Saccadic compensation for reflexive optokinetic nystagmus just as good as compensation for volitional pursuit. J Vis 2015; 15:15.1.24. [PMID: 25624463 DOI: 10.1167/15.1.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The natural viewing behavior of moving observers ideally requires target-selecting saccades to be coordinated with automatic gaze-stabilizing eye movements such as optokinetic nystagmus. However, it is unknown whether saccade plans can compensate for reflexive movement of the eye during the variable saccade latency period, and it is unclear whether reflexive nystagmus is even accompanied by extraretinal signals carrying the eye movement information that could potentially underpin such compensation. We show that saccades do partially compensate for optokinetic nystagmus that displaces the eye during the saccade latency period. Moreover, this compensation is as good as for displacements due to voluntary smooth pursuit. In other words, the saccade system appears to be as well coordinated with reflexive nystagmus as it is with volitional pursuit, which in turn implies that extraretinal signals accompany nystagmus and are just as informative as those accompanying pursuit.
Collapse
Affiliation(s)
| | | | - Petroc Sumner
- School of Psychology, Cardiff University, Cardiff, UK Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Makovac E, Buonocore A, McIntosh RD. Audio-visual integration and saccadic inhibition. Q J Exp Psychol (Hove) 2015; 68:1295-305. [PMID: 25599266 DOI: 10.1080/17470218.2014.979210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Saccades operate a continuous selection between competing targets at different locations. This competition has been mostly investigated in the visual context, and it is well known that a visual distractor can interfere with a saccade toward a visual target. Here, we investigated whether multimodal, audio-visual targets confer stronger resilience against visual distraction. Saccades to audio-visual targets had shorter latencies than saccades to unisensory stimuli. This facilitation exceeded the level that could be explained by simple probability summation, indicating that multisensory integration had occurred. The magnitude of inhibition induced by a visual distractor was comparable for saccades to unisensory and multisensory targets, but the duration of the inhibition was shorter for multimodal targets. We conclude that multisensory integration can allow a saccade plan to be reestablished more rapidly following saccadic inhibition.
Collapse
Affiliation(s)
- Elena Makovac
- a Human Cognitive Neuroscience, Psychology , University of Edinburgh , Edinburgh , UK
| | | | | |
Collapse
|
47
|
Allen CPG, Sumner P, Chambers CD. The Timing and Neuroanatomy of Conscious Vision as Revealed by TMS-induced Blindsight. J Cogn Neurosci 2014; 26:1507-18. [DOI: 10.1162/jocn_a_00557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Following damage to the primary visual cortex, some patients exhibit “blindsight,” where they report a loss of awareness while retaining the ability to discriminate visual stimuli above chance. Transient disruption of occipital regions with TMS can produce a similar dissociation, known as TMS-induced blindsight. The neural basis of this residual vision is controversial, with some studies attributing it to the retinotectal pathway via the superior colliculus whereas others implicate spared projections that originate predominantly from the LGN. Here we contrasted these accounts by combining TMS with visual stimuli that either activate or bypass the retinotectal and magnocellular (R/M) pathways. We found that the residual capacity of TMS-induced blindsight occurs for stimuli that bypass the R/M pathways, indicating that such pathways, which include those to the superior colliculus, are not critical. We also found that the modulation of conscious vision was time and pathway dependent. TMS applied either early (0–40 msec) or late (280–320 msec) after stimulus onset modulated detection of stimuli that did not bypass R/M pathways, whereas during an intermediate period (90–130 msec) the effect was pathway independent. Our findings thus suggest a prominent role for the R/M pathways in supporting both the preparatory and later stages of conscious vision. This may help resolve apparent conflict in previous literature by demonstrating that the roles of the retinotectal and geniculate pathways are likely to be more nuanced than simply corresponding to the unconscious/conscious dichotomy.
Collapse
|
48
|
Salinas E, Scerra VE, Hauser CK, Costello MG, Stanford TR. Decoupling speed and accuracy in an urgent decision-making task reveals multiple contributions to their trade-off. Front Neurosci 2014; 8:85. [PMID: 24795559 PMCID: PMC4005963 DOI: 10.3389/fnins.2014.00085] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/02/2014] [Indexed: 12/31/2022] Open
Abstract
A key goal in the study of decision making is determining how neural networks involved in perception and motor planning interact to generate a given choice, but this is complicated due to the internal trade-off between speed and accuracy, which confounds their individual contributions. Urgent decisions, however, are special: they may range between random and fully informed, depending on the amount of processing time (or stimulus viewing time) available in each trial, but regardless, movement preparation always starts early on. As a consequence, under time pressure it is possible to produce a psychophysical curve that characterizes perceptual performance independently of reaction time, and this, in turn, makes it possible to pinpoint how perceptual information (which requires sensory input) modulates motor planning (which does not) to guide a choice. Here we review experiments in which, on the basis of this approach, the origin of the speed-accuracy trade-off becomes particularly transparent. Psychophysical, neurophysiological, and modeling results in the "compelled-saccade" task indicate that, during urgent decision making, perceptual information-if and whenever it becomes available-accelerates or decelerates competing motor plans that are already ongoing. This interaction affects both the reaction time and the probability of success in any given trial. In two experiments with reward asymmetries, we find that speed and accuracy can be traded in different amounts and for different reasons, depending on how the particular task contingencies affect specific neural mechanisms related to perception and motor planning. Therefore, from the vantage point of urgent decisions, the speed-accuracy trade-off is not a unique phenomenon tied to a single underlying mechanism, but rather a typical outcome of many possible combinations of internal adjustments within sensory-motor neural circuits.
Collapse
Affiliation(s)
- Emilio Salinas
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Veronica E Scerra
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Christopher K Hauser
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - M Gabriela Costello
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine Winston-Salem, NC, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine Winston-Salem, NC, USA
| |
Collapse
|
49
|
A unified comparison of stimulus-driven, endogenous mandatory and 'free choice' saccades. PLoS One 2014; 9:e88990. [PMID: 24586474 PMCID: PMC3930601 DOI: 10.1371/journal.pone.0088990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/13/2014] [Indexed: 12/05/2022] Open
Abstract
It has been claimed that saccades arising from the three saccade triggering modes–stimulus-driven, endogenous mandatory and ‘free choice’–are driven by distinct mechanisms. We tested this claim by instructing observers to saccade from a white or black fixation disc to a same polarity (white or black) disc flashed for 100 or 200 ms presented either alone (Exo), or together with an opposite (Endo) or same (EndoFC) polarity disc (blocked and mixed sessions). Target(s) and distractor were presented at three inter-stimulus intervals (ISIs) relative to the fixation offset (ISI: −200, 0, +200 ms) and were displayed at random locations within a 4°-to-6° eccentricity range. The statistical analysis showed a global saccade triggering mode effect on saccade reaction times (SRTs) with Endo and EndoFC SRTs longer by about 27 ms than Exo-triggered ones but no effect for the Endo-EndoFC comparison. SRTs depended on both ISI (the “gap-effect”), and target duration. Bimodal best fits of the SRT-distributions were found in 65% of cases with their count not different across the three triggering modes. Percentages of saccades in the ‘fast’ and ‘slow’ ranges of bimodal fits did not depend on the triggering modes either. Bimodality tests failed to assert a significant difference between these modes. An analysis of the timing of a putative inhibition by the distractor (Endo) or by the duplicated target (EndoFC) yielded no significant difference between Endo and EndoFC saccades but showed a significant shortening with ISI similar to the SRT shortening suggesting that the distractor-target mutual inhibition is itself inhibited by ‘fixation’ neurons. While other experimental paradigms may well sustain claims of distinct mechanisms subtending the three saccade triggering modes, as here defined reflexive and voluntary saccades appear to differ primarily in the effectiveness with which inhibitory processes slow down the initial fast rise of the saccade triggering signal.
Collapse
|
50
|
On the dissociation between microsaccade rate and direction after peripheral cues: microsaccadic inhibition revisited. J Neurosci 2013; 33:16220-35. [PMID: 24107954 DOI: 10.1523/jneurosci.2240-13.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microsaccades during fixation exhibit distinct time courses of frequency and direction modulations after stimulus onsets, but the mechanisms for these modulations are unresolved. On the one hand, microsaccade rate drops within <100 ms after stimulus onset, a phenomenon described as microsaccadic inhibition. On the other, the directions of the rare microsaccades that do occur during inhibition are, surprisingly, the most highly correlated with stimulus location. Here we show, using a combined computational and experimental approach, that these apparently dichotomous observations can simply result from a single mechanism: the phase resetting by stimulus onsets of ongoing microsaccadic oscillatory rhythms during fixation. Using experiments on monkeys and model simulations, we show that stimulus onsets act as countermanding stimuli, such as those in large saccadic countermanding tasks: they cancel an upcoming movement program and start a competing one, thus implementing phase resetting. We also show that the rare microsaccades occurring during microsaccadic inhibition are simply noncanceled movements in the countermanding framework and that they reflect the instantaneous state of visual representations expected in spatial maps representing stimuli. Remarkably, a dynamic interaction between the efficacy of the countermanding process and the metrics of the microsaccade being countermanded not only explains microsaccade rate changes, but it also predicts the time course patterns of microsaccade directions and amplitudes. Our parsimonious framework for understanding microsaccadic modulations around stimulus onsets allows analyzing microsaccades (and larger saccades) using the extensive toolkit of oscillatory dynamical systems often used for modeling spiking neurons, and it constrains neural models of microsaccade triggering.
Collapse
|