1
|
Paul S, Bhardwaj J, Binukumar BK. Cdk5-mediated oligodendrocyte myelin breakdown and neuroinflammation: Implications for the link between Type 2 Diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166986. [PMID: 38092158 DOI: 10.1016/j.bbadis.2023.166986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Oligodendrocytes, crucial myelinating glia in the central nervous system, play a vital role in maintaining axonal integrity and facilitating efficient nerve impulse conduction. The degradation of myelin in oligodendrocytes has been implicated in Alzheimer's disease (AD) and cognitive dysfunction. Interestingly, individuals with Type 2 Diabetes (T2D) have a significantly higher likelihood of developing cognitive impairment, possibly due to insulin resistance and glucose toxicity within the central nervous system (CNS). However, the precise relationship between these two disorders remains elusive. Our study proposes a potential link between T2D and AD, involving Cdk5-mediated breakdown of oligodendrocyte myelin and neuroinflammation. In the context of T2D, glucose toxicity in oligodendrocytes leads to heightened Cdk5 kinase activity and cPLA2 hyperactivation, resulting in chronic inflammation and myelin deterioration. This myelin breakdown in oligodendrocytes is thought to contribute to the development of AD and cognitive dysfunction. Notably, the administration of a Cdk5 inhibitor (TFP5) effectively alleviates neuroinflammation and myelin degradation. Moreover, our findings demonstrate heightened activity of Cdk5, cPLA2, and phospho-cPLA2 levels in the brain of a mouse model with Type 2 Diabetes (T2D). Hence, our findings suggest that targeting Cdk5 could be a promising therapeutic strategy to counteract AD pathogenesis in T2D-related conditions.
Collapse
Affiliation(s)
- Sangita Paul
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhi Bhardwaj
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - B K Binukumar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Xu L, Wang D, Zhao L, Yang Z, Liu X, Li X, Yuan T, Wang Y, Huang T, Bian N, He Y, Chen X, Tian B, Liu Z, Luo F, Si W, Gao G, Ji W, Niu Y, Wei J. C9orf72 poly(PR) aggregation in nucleus induces ALS/FTD-related neurodegeneration in cynomolgus monkeys. Neurobiol Dis 2023; 184:106197. [PMID: 37328037 DOI: 10.1016/j.nbd.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Poly(PR) is a dipeptide repeat protein comprising proline and arginine residues. It is one of the translational product of expanded G4C2 repeats in the C9orf72 gene, and its accumulation is contributing to the neuropathogenesis of C9orf72-associated amyotrophic lateral sclerosis and/or frontotemporal dementia (C9-ALS/FTD). In this study, we demonstrate that poly(PR) protein alone is sufficient to induce neurodegeneration related to ALS/FTD in cynomolgus monkeys. By delivering poly(PR) via AAV, we observed that the PR proteins were located within the nucleus of infected cells. The expression of (PR)50 protein, consisting of 50 PR repeats, led to increased loss of cortical neurons, cytoplasmic lipofuscin, and gliosis in the brain, as well as demyelination and loss of ChAT positive neurons in the spinal cord of monkeys. While, these pathologies were not observed in monkeys expressing (PR)5, a protein comprising only 5 PR repeats. Furthermore, the (PR)50-expressing monkeys exhibited progressive motor deficits, cognitive impairment, muscle atrophy, and abnormal electromyography (EMG) potentials, which closely resemble clinical symptoms seen in C9-ALS/FTD patients. By longitudinally tracking these monkeys, we found that changes in cystatin C and chitinase-1 (CHIT1) levels in the cerebrospinal fluid (CSF) corresponded to the phenotypic progression of (PR)50-induced disease. Proteomic analysis revealed that the major clusters of dysregulated proteins were nuclear-localized, and downregulation of the MECP2 protein was implicated in the toxic process of poly(PR). This research indicates that poly(PR) expression alone induces neurodegeneration and core phenotypes associated with C9-ALS/FTD in monkeys, which may provide insights into the mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Xu Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xinyue Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tingli Yuan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ye Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tianzhuang Huang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yuqun He
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Baohong Tian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zexian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fucheng Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Wei Si
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
3
|
Jabeur R, Corbel C, Loyer P, Le Parc A, Le Grand A, Comte A, Bach S, André-Leroux G, Sire O, Ben Mansour H, Le Tilly V. Identification of Novel Compounds Inhibiting the Kinase Activity of the CDK5/p25 Complex via Direct Binding to p25. Biochemistry 2023; 62:1452-1463. [PMID: 37074084 DOI: 10.1021/acs.biochem.2c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tamoxifen, the gold standard drug for endocrine therapy for breast cancer, modulates the phosphorylation status of the TAU protein in Alzheimer's disease by inhibiting CDK5 kinase activity. Its binding to p25 prevents CDK5/p25 complexation and hence a decrease of CDK5 activity. In breast tumors, this complex is involved in the proliferation and survival of cancer cells, as well as in the disease's prognosis. Still, the molecular stability of the CDK5/p25 complex following tamoxifen exposure in this cancer type has not yet been clearly deciphered. Here, we report the functional characterization of CDK5 and its p25 regulatory subunit in the absence and presence of tamoxifen. In addition, two novel inhibitors of the kinase activity of the CDK5/p25 complex are identified, both of which would reduce the risk of recurrence of estrogen receptor-positive (ER+) breast cancers and prevent drawbacks induced by tamoxifen exposure. Accordingly, 6His-CDK5 and 6His-p25 have been expressed and purified. Fluorescence anisotropy measurements have been used to assess that the two proteins do form an active complex, and thermodynamic parameters of their interaction were measured. It was also confirmed that tamoxifen directly binds to p25 and inhibits CDK5 kinase activity. Similar observations were obtained using 4-hydroxytamoxifen, an active metabolized form of tamoxifen. Two novel compounds have been identified here that harbor a benzofuran moiety and were shown to target directly p25, and their bindings resulted in decreased CDK5 kinase activity. This encouraging alternative opens the way to the ensuing chemical optimization of this scaffold. It also promises a more specific therapeutic approach that may both tackle the pathological signaling in breast cancer and provide a potential new drug for Alzheimer's disease.
Collapse
Affiliation(s)
- Riheb Jabeur
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | - Caroline Corbel
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Pascal Loyer
- Univ Rennes, INSERM, INRAE, Institut NuMeCan (Nutrition, Metabolisms and Cancer) UMR-A 1341, UMR-S 1241, F-35000 Rennes, France
| | | | | | - Arnaud Comte
- Compound Library, ICBMS UMR 5246 CNRS-Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
- Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening facility), Station Biologique de Roscoff, 29680 Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, 2520 Potchefstroom, South Africa
| | | | - Olivier Sire
- IRDL UMR CNRS 6027, Université Bretagne Sud, 56017 Vannes, France
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied on the Environment─APAE UR17ES32, Higher Institute of Applied Sciences and Technology, Mahdia, University of Monastir, TN5121 Monastir, Tunisia
| | | |
Collapse
|
4
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
5
|
Hung CM, Tsai TH, Lee KT, Hsu YC. Sulforaphane-Induced Cell Mitotic Delay and Inhibited Cell Proliferation via Regulating CDK5R1 Upregulation in Breast Cancer Cell Lines. Biomedicines 2023; 11:biomedicines11040996. [PMID: 37189614 DOI: 10.3390/biomedicines11040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Our research has revealed that sulforaphane (SFN) has chemopreventive properties and could be used in chemotherapy treatments. Further investigation is needed to understand the mechanisms behind sulforaphane's (SFN) antitumor activity in breast adenocarcinoma, as observed in our studies. This research looked into the effects of SFN on mitosis delay and cell cycle progression in MDA-MB-231 and ZR-75-1 cells, two types of triple-negative breast cancer adenocarcinoma.The proliferation of the cancer cells after SFN exposure was evaluated using MTT assay, DNA content and cell cycle arrest induction by flow cytometry, and expressions of cdc25c, CDK1, cyclin B1 and CDK5R1 were assessed through qRT-PCR and Western blot analysis. SFN was found to inhibit the growth of cancer cells. The accumulation of G2/M-phase cells in SFN-treated cells was attributed to CDK5R1. The disruption of the CDC2/cyclin B1 complex suggested that SFN may have antitumor effects on established breast adenocarcinoma cells. Our findings suggest that, in addition to its chemopreventive properties, SFN could be used as an anticancer agent for breast cancer, as it was found to inhibit growth and induce apoptosis of cancer cells.
Collapse
Affiliation(s)
- Chao-Ming Hung
- Department of General Surgery, E-Da Cancer Hospital, Kaohsiung 824, Taiwan
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kuan-Ting Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| |
Collapse
|
6
|
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16:951202. [PMID: 35966199 PMCID: PMC9368323 DOI: 10.3389/fncel.2022.951202] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-β protein formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chuncao Ao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinlun Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng
| |
Collapse
|
7
|
Cheng GWY, Mok KKS, Yeung SHS, Kofler J, Herrup K, Tse KH. Apolipoprotein E ε4 Mediates Myelin Breakdown by Targeting Oligodendrocytes in Sporadic Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:717-730. [PMID: 35779013 DOI: 10.1093/jnen/nlac054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.
Collapse
Affiliation(s)
- Gerald Wai-Yeung Cheng
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kingston King-Shi Mok
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Sunny Hoi-Sang Yeung
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
8
|
Takahashi M, Takasugi T, Kawakami A, Wei R, Ando K, Ohshima T, Hisanaga SI. Valproic Acid-Induced Anxiety and Depression Behaviors are Ameliorated in p39 Cdk5 Activator-Deficient Mice. Neurochem Res 2022; 47:2773-2779. [PMID: 35674931 DOI: 10.1007/s11064-022-03642-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Valproic acid (VPA) is a drug used for the treatment of epilepsy, seizures, migraines, and bipolar disorders. Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase activated by p35 or p39 in neurons and plays a role in a variety of neuronal functions, including psychiatric behaviors. We previously reported that VPA suppressed Cdk5 activity by reducing the expression of p35 in cultured cortical neurons, leaving p39 unchanged. In this study, we asked for the role of Cdk5 in VPA-induced anxiety and depression behaviors. Wild-type (WT) mice displayed increased anxiety and depression after chronic administration of VPA for 14 days, when the expression of p35 was decreased. To clarify their relationship, we used p39 knockout (KO) mice, in which p35 is the only Cdk5 activator. When p39 KO mice were treated chronically with VPA, unexpectedly, they exhibited fewer anxiety and depression behaviors than WT mice. The effects were p39 cdk5r2 gene-dosage dependent. Together, these results indicate that Cdk5-p39 plays a specific role in VPA-induced anxiety and depression behaviors.
Collapse
Affiliation(s)
- Miyuki Takahashi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan. .,Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan.
| | - Toshiyuki Takasugi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.,Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Asahimachi, Niigata, 951-8510, Japan
| | - Arisa Kawakami
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ran Wei
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.,Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku, Tokyo, 162-0056, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
9
|
Abstract
Cdk5 is a proline-directed serine/threonine protein kinase that governs a variety of cellular processes in neurons, the dysregulation of which compromises normal brain function. The mechanisms underlying the modulation of Cdk5, its modes of action, and its effects on the nervous system have been a great focus in the field for nearly three decades. In this review, we provide an overview of the discovery and regulation of Cdk5, highlighting recent findings revealing its role in neuronal/synaptic functions, circadian clocks, DNA damage, cell cycle reentry, mitochondrial dysfunction, as well as its non-neuronal functions under physiological and pathological conditions. Moreover, we discuss evidence underscoring aberrant Cdk5 activity as a common theme observed in many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
10
|
Hwang J, Namgung U. Phosphorylation of STAT3 by axonal Cdk5 promotes axonal regeneration by modulating mitochondrial activity. Exp Neurol 2020; 335:113511. [PMID: 33098871 DOI: 10.1016/j.expneurol.2020.113511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/14/2020] [Accepted: 10/17/2020] [Indexed: 01/03/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is involved in neural organization and synaptic functions in developing and adult brains, yet its role in axonal regeneration is not known well. Here, we characterize Cdk5 function for axonal regeneration after peripheral nerve injury. Levels of Cdk5 and p25 were elevated in sciatic nerve axons after injury. Cdk5 activity was concomitantly induced from injured nerve and increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) on the serine 727 residue. Pharmacological and genetic blockades of Cdk5 activity phosphorylating STAT3 resulted in the inhibition of axonal regeneration as evidenced by reduction of retrograde labeling of dorsal root ganglion (DRG) sensory neurons and spinal motor neurons and also of neurite outgrowth of preconditioned DRG neurons in culture. Cdk5 and STAT3 were found in mitochondrial membranes of the injured sciatic nerve. Cdk5-GFP, which was translocated into the mitochondria by the mitochondrial target sequence (MTS), induced STAT3 phosphorylation in transfected DRG neurons and was sufficient to induce neurite outgrowth. In the mitochondria, Cdk5 activity was positively correlated with increased mitochondrial membrane potential as measured by fluorescence intensity of JC-1 aggregates. Our data suggest that Cdk5 may play a role in modulating mitochondrial activity through STAT3 phosphorylation, thereby promoting axonal regeneration.
Collapse
Affiliation(s)
- Jinyeon Hwang
- Neurophysiology Laboratory, Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon 34520, South Korea
| | - Uk Namgung
- Neurophysiology Laboratory, Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon 34520, South Korea.
| |
Collapse
|
11
|
R-Ras GTPases Signaling Role in Myelin Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165911. [PMID: 32824627 PMCID: PMC7460555 DOI: 10.3390/ijms21165911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
Myelination is required for fast and efficient synaptic transmission in vertebrates. In the central nervous system, oligodendrocytes are responsible for creating myelin sheaths that isolate and protect axons, even throughout adulthood. However, when myelin is lost, the failure of remyelination mechanisms can cause neurodegenerative myelin-associated pathologies. From oligodendrocyte progenitor cells to mature myelinating oligodendrocytes, myelination is a highly complex process that involves many elements of cellular signaling, yet many of the mechanisms that coordinate it, remain unknown. In this review, we will focus on the three major pathways involved in myelination (PI3K/Akt/mTOR, ERK1/2-MAPK, and Wnt/β-catenin) and recent advances describing the crosstalk elements which help to regulate them. In addition, we will review the tight relation between Ras GTPases and myelination processes and discuss its potential as novel elements of crosstalk between the pathways. A better understanding of the crosstalk elements orchestrating myelination mechanisms is essential to identify new potential targets to mitigate neurodegeneration.
Collapse
|
12
|
Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer's Disease: Seeking Clarity in a Time of Uncertainty. Front Pharmacol 2020; 11:261. [PMID: 32265696 PMCID: PMC7105678 DOI: 10.3389/fphar.2020.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is recognized as a major health hazard that mostly affects people older than 60 years. AD is one of the biggest medical, economic, and social concerns to patients and their caregivers. AD was ranked as the 5th leading cause of global deaths in 2016 by the World Health Organization (WHO). Many drugs targeting the production, aggregation, and clearance of Aβ plaques failed to give any conclusive clinical outcomes. This mainly stems from the fact that AD is not a disease attributed to a single-gene mutation. Two hallmarks of AD, Aβ plaques and neurofibrillary tangles (NFTs), can simultaneously induce other AD etiologies where every pathway is a loop of consequential events. Therefore, the focus of recent AD research has shifted to exploring other etiologies, such as neuroinflammation and central hyperexcitability. Neuroinflammation results from the hyperactivation of microglia and astrocytes that release pro-inflammatory cytokines due to the neurological insults caused by Aβ plaques and NFTs, eventually leading to synaptic dysfunction and neuronal death. This review will report the failures and side effects of many anti-Aβ drugs. In addition, emerging treatments targeting neuroinflammation in AD, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and receptor-interacting serine/threonine protein kinase 1 (RIPK1), that restore calcium dyshomeostasis and microglia physiological function in clearing Aβ plaques, respectively, will be deliberately discussed. Other novel pharmacotherapy strategies in treating AD, including disease-modifying agents (DMTs), repurposing of medications used to treat non-AD illnesses, and multi target-directed ligands (MTDLs) are also reviewed. These approaches open new doors to the development of AD therapy, especially combination therapy that can cater for several targets simultaneously, hence effectively slowing or stopping AD.
Collapse
Affiliation(s)
- Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Faculty of Medicine, Department of Clinical Pharmacology, Menoufia University, Shebin El-Kom, Egypt
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chua Kien Hui
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
- Glycofood Sdn Bhd, Selangor, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Gilmour A, Poole-Warren L, Green RA. An Improved in vitro Model of Cortical Tissue. Front Neurosci 2019; 13:1349. [PMID: 31920510 PMCID: PMC6928009 DOI: 10.3389/fnins.2019.01349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Intracortical electrodes for brain-machine interfaces rely on intimate contact with tissues for recording signals and stimulating neurons. However, the long-term viability of intracortical electrodes in vivo is poor, with a major contributing factor being the development of a glial scar. In vivo approaches for evaluating responses to intracortical devices are resource intensive and complex, making statistically significant, high throughput data difficult to obtain. In vitro models provide an alternative to in vivo studies; however, existing approaches have limitations which restrict the translation of the cellular reactions to the implant scenario. Notably, there is no current robust model that includes astrocytes, microglia, oligodendrocytes and neurons, the four principle cell types, critical to the health, function and wound responses of the central nervous system (CNS). In previous research a co-culture of primary mouse mature mixed glial cells and immature neural precursor cells were shown to mimic several key properties of the CNS response to implanted electrode materials. However, the method was not robust and took up to 63 days, significantly affecting reproducibility and widespread use for assessing brain-material interactions. In the current research a new co-culture approach has been developed and evaluated using immunocytochemistry and quantitative polymerase chain reaction (qPCR). The resulting method reduced the time in culture significantly and the culture model was shown to have a genetic signature similar to that of healthy adult mouse brain. This new robust CNS culture model has the potential to significantly improve the capacity to translate in vitro data to the in vivo responses.
Collapse
Affiliation(s)
- Aaron Gilmour
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Menzies Health Institute Queensland, Griffiths University, Gold Coast, QLD, Australia
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Rylie A Green
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Zhai X, Liu C, Zhao B, Wang Y, Xu Z. Inactivation of Cyclin-Dependent Kinase 5 in Hair Cells Causes Hearing Loss in Mice. Front Mol Neurosci 2018; 11:461. [PMID: 30618612 PMCID: PMC6297389 DOI: 10.3389/fnmol.2018.00461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/29/2018] [Indexed: 12/30/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is abundantly expressed in post-mitotic cells including neurons. It is involved in multiple cellular events, such as cytoskeletal dynamics, signaling cascades, gene expression, and cell survival, et al. Dysfunction of CDK5 has been associated with a number of neurological disorders. Here we show that CDK5 is expressed in mouse cochlear hair cells, and CDK5 inactivation in hair cells causes hearing loss in mice. CDK5 inactivation has no effect on stereocilia development in the cochlear hair cells. However, it affects stereocilia maintenance, resulting in stereocilia disorganization and eventually stereocilia loss. Consistently, hair cell loss was significantly elevated by CDK5 inactivation. Despite that CDK5 has been shown to play important roles in synapse development and/or function, CDK5 inactivation does not affect the formation of ribbon synapses of cochlear hair cells. Further investigation showed that CDK5 inactivation causes reduced phosphorylation of ERM (ezrin, radixin, and moesin) proteins, which might contribute to the stereocilia deficits. Taken together, our data suggest that CDK5 plays pivotal roles in auditory hair cells, and CDK5 inactivation causes hearing loss in mice.
Collapse
Affiliation(s)
- Xiaoyan Zhai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Chengcheng Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Department of Otolaryngology-Head and Neck Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Bin Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shenzhen Research Institute of Shandong University, Shenzhen, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
15
|
Luo F, Tran AP, Xin L, Sanapala C, Lang BT, Silver J, Yang Y. Modulation of proteoglycan receptor PTPσ enhances MMP-2 activity to promote recovery from multiple sclerosis. Nat Commun 2018; 9:4126. [PMID: 30297691 PMCID: PMC6175851 DOI: 10.1038/s41467-018-06505-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by focal CNS inflammation leading to the death of oligodendrocytes (OLs) with subsequent demyelination, neuronal degeneration, and severe functional deficits. Inhibitory chondroitin sulfate proteoglycans (CSPGs) are increased in the extracellular matrix in the vicinity of MS lesions and are thought to play a critical role in myelin regeneration failure. We here show that CSPGs curtail remyelination through binding with their cognate receptor, protein tyrosine phosphatase σ (PTPσ) on oligodendrocyte progenitor cells (OPCs). We report that inhibition of CSPG/PTPσ signaling by systemically deliverable Intracellular Sigma Peptide (ISP), promotes OPC migration, maturation, remyelination, and functional recovery in animal models of MS. Furthermore, we report a downstream molecular target of PTPσ modulation in OPCs involving upregulation of the protease MMP-2 that allows OPCs to enzymatically digest their way through CSPGs. In total, we demonstrate a critical role of PTPσ/CSPG interactions in OPC remyelination in MS. Demyelination failure in multiple sclerosis (MS) may contribute to the disease progression. This study shows that chondroitin sulfate proteoglycans (CSPGs) can inhibit remyelination in an animal model of MS via CSPG binding with the receptor PTPσ on oligodendrocyte progenitor cells, and disruption of this interaction can promote recovery in the animal models of MS.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Amanda Phuong Tran
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Li Xin
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Chandrika Sanapala
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Bradley T Lang
- BioEnterprise, 11000 Cedar Avenue, Cleveland, OH, 44106, USA
| | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Yan Yang
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA. .,Center for Translational Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Luo F, Zhang J, Burke K, Romito-DiGiacomo RR, Miller RH, Yang Y. Oligodendrocyte-specific loss of Cdk5 disrupts the architecture of nodes of Ranvier as well as learning and memory. Exp Neurol 2018; 306:92-104. [PMID: 29729246 DOI: 10.1016/j.expneurol.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
Myelination of the central nervous system is important for normal motor and sensory neuronal function and recent studies also link it to efficient learning and memory. Cyclin-dependent kinase 5 (Cdk5) is required for normal oligodendrocyte development, myelination and myelin repair. Here we show that conditional deletion of Cdk5 by targeting with CNP (CNP;Cdk5 CKO) results in hypomyelination and disruption of the structural integrity of Nodes of Ranvier. In addition, CNP;Cdk5 CKO mice exhibited a severe impairment of learning and memory compared to controls that may reflect perturbed neuron-glial interactions. Co-culture of cortical neurons with CNP;Cdk5 CKO oligodendrocyte lineage cells resulted in a significant reduction in the density of neuronal dendritic spines. In short term fear-conditioning studies, CNP;Cdk5 CKO mice had decreased hippocampal levels of immediate early genes such as Arc and Fos, and lower levels of p-CREB and p-cofilin suggested these pathways are affected by the levels of myelination. The novel roles of Cdk5 in oligodendrocyte lineage cells may provide insights for helping understand the cognitive changes sometimes seen in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Fucheng Luo
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Jessie Zhang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Kathryn Burke
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Rita R Romito-DiGiacomo
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Robert H Miller
- Department of Anatomy and Regenerative Biology, George Washington University, Washington DC 20037, United States.
| | - Yan Yang
- Department of Neurology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States; Center for Translational Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
17
|
Tse KH, Cheng A, Ma F, Herrup K. DNA damage-associated oligodendrocyte degeneration precedes amyloid pathology and contributes to Alzheimer's disease and dementia. Alzheimers Dement 2018; 14:664-679. [PMID: 29328926 PMCID: PMC5938117 DOI: 10.1016/j.jalz.2017.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/18/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In looking for novel non-amyloid-based etiologies for Alzheimer's disease, we explore the hypothesis that age-related myelin loss is an attractive explanation for age-associated cognitive decline and dementia. METHODS We performed a meta-analysis of data in the National Alzheimer's Coordinating Center database accompanied by quantitative histopathology of myelin and oligodendrocytes (OLs) in frontal cortices of 24 clinically characterized individuals. Pathological findings were further validated in an Alzheimer's disease mouse model and in culture. RESULTS Myelin lesions increased with cognitive impairment in an amyloid-independent fashion with signs of degeneration appearing before neuronal loss. Myelinating OLs in the gray matter showed greater vulnerability than those in white matter, and the degenerative changes correlated with evidence of DNA damage. Similar results were found in myelinating OL cultures where DNA damage caused aberrant OL cell cycle re-entry and death. DISCUSSION We present the first comprehensive analysis of the cell biology of early myelin loss in sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Aifang Cheng
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Fulin Ma
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
18
|
Yue Y, Zhang L, Qu Y, Mu DZ. [Neuroprotective effects of oligodendrocyte precursor cells on white matter damage in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:326-331. [PMID: 29658460 PMCID: PMC7390025 DOI: 10.7499/j.issn.1008-8830.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
White matter damage, characterized by demyelination due to the damage of oligodendrocyte precursor cells (OPCs), is the most common type of brain damage in preterm infants. Survivors are often subject to long-term neurodevelopmental sequelae because of the lack of effective treatment. In recent years, it has been found that cell transplantation has the potential for the treatment of white matter damage. OPCs are frequently used cells in cell transplantation therapy. With abilities of migration and myelinization, OPCs are the best seed cells for the treatment of white matter damage. Several studies have found that OPCs may not only replace impaired cells to reconstruct the structure and function of white matter, but also inhibit neuronal apoptosis, promote the proliferation of endogenous neural stem cells, and enhance the repairment of the blood-brain barrier. However, the clinical application of OPC transplantation therapy faces many challenges, such as the effectiveness, risk of tumorigenesis and immune rejection. With reference to these studies, this article reviewed the development of myelination, the obtainment of OPCs, the therapeutic mechanism as well as application research, and analyzed the current challenges of OPC transplantation, in order to provide a new direction for clinical treatment of white matter damage in preterm infants.
Collapse
Affiliation(s)
- Yan Yue
- Department of Pediatrics, West China Second University Hospital/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| | | | | | | |
Collapse
|
19
|
Yang L, Guo Y, Huang M, Wu X, Li X, Chen G, Li Y, Bai J. Thioredoxin-1 Protects Spinal Cord from Demyelination Induced by Methamphetamine through Suppressing Endoplasmic Reticulum Stress and Inflammation. Front Neurol 2018; 9:49. [PMID: 29467717 PMCID: PMC5808126 DOI: 10.3389/fneur.2018.00049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 01/19/2023] Open
Abstract
Methamphetamine (METH) is a psychostimulant abused around the world. Emerging evidence indicates that METH causes brain damage. However, there are very few reports on METH-induced demyelination. Thioredoxin-1 (Trx-1) is a redox regulating protein and plays the roles in protecting neurons from various stresses. However, whether Trx-1 resists demyelination induced by METH has not been reported. In this study, we found that METH-induced thin myelin sheaths in spinal cord, whereas Trx-1 overexpression transgenic (TG) mice restored the myelin sheaths thickness. The expressions of myelin-associated glycoprotein, myelin basic protein, and cyclin-dependent kinase 5 were decreased by METH, whereas these alterations were blocked in Trx-1 TG mice. The expressions of procaspase-12 and procaspase-3 were decreased by METH, the expression of calpain1 was increased by METH, whereas the alterations were suppressed in Trx-1 TG mice. As same as, the expressions of the extracellular signal-regulated kinase, nuclear factor κB, tumor necrosis factor-alpha, and interleukin-1beta were induced by METH, which were suppressed in Trx-1 TG mice. These data suggest that Trx-1 may play a critical role in resisting the METH-mediated demyelination in spinal cord through regulating endoplasmic reticulum stress and inflammation pathways.
Collapse
Affiliation(s)
- Lihua Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China.,Medical School, Kunming University of Science and Technology, Kunming, China.,Narcotics Control School, Yunnan Police College, Kunming, China
| | - Yinli Guo
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Mengbin Huang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Wu
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiang Li
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Guobing Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ye Li
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
20
|
Prochazkova M, Hall B, Hu M, Okine T, Reukauf J, Binukumar BK, Amin ND, Roque E, Pant HC, Kulkarni A. Peripheral and orofacial pain sensation is unaffected by the loss of p39. Mol Pain 2017; 13:1744806917737205. [PMID: 28969475 PMCID: PMC5656108 DOI: 10.1177/1744806917737205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box. Our previous examination of the nociceptive role of the well-characterized Cdk5 activator p35 using mice that either lack or overexpress this regulatory subunit demonstrated that Cdk5/p35 activity affects mechanical, chemical, and thermal nociception. In contrast, the nociceptive role of Cdk5’s other less-studied activator p39 is unknown. Here, we report that the knockout of p39 in mice did not affect orofacial and peripheral nociception. The lack of any algesic response to nociceptive stimuli in the p39 knockout mice contrasts with the hypoalgesic effects that result from the deletion of p35. Our data demonstrate different and nonoverlapping roles of Cdk5 activators in the regulation of orofacial as well as peripheral nociception with a crucial role for Cdk5/p35 in pain signaling.
Collapse
Affiliation(s)
- Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Bradford Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Minghan Hu
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Tracy Okine
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Jennifer Reukauf
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - B K Binukumar
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D Amin
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Eva Roque
- Functional Genomics Section, National Institute of Dental and Craniofacial Research
| | - Harish C Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | | |
Collapse
|
21
|
Ascensión AM, Arrospide-Elgarresta M, Izeta A, Araúzo-Bravo MJ. NaviSE: superenhancer navigator integrating epigenomics signal algebra. BMC Bioinformatics 2017; 18:296. [PMID: 28587674 PMCID: PMC5461685 DOI: 10.1186/s12859-017-1698-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background Superenhancers are crucial structural genomic elements determining cell fate, and they are also involved in the determination of several diseases, such as cancer or neurodegeneration. Although there are pipelines which use independent pieces of software to predict the presence of superenhancers from genome-wide chromatin marks or DNA-interaction protein binding sites, there is not yet an integrated software tool that processes automatically algebra combinations of raw data sequencing into a comprehensive final annotated report of predicted superenhancers. Results We have developed NaviSE, a user-friendly streamlined tool which performs a fully-automated parallel processing of genome-wide epigenomics data from sequencing files into a final report, built with a comprehensive set of annotated files that are navigated through a graphic user interface dynamically generated by NaviSE. NaviSE also implements an ‘epigenomics signal algebra’ that allows the combination of multiple activation and repression epigenomics signals. NaviSE provides an interactive chromosomal landscaping of the locations of superenhancers, which can be navigated to obtain annotated information about superenhancer signal profile, associated genes, gene ontology enrichment analysis, motifs of transcription factor binding sites enriched in superenhancers, graphs of the metrics evaluating the superenhancers quality, protein-protein interaction networks and enriched metabolic pathways among other features. We have parallelised the most time-consuming tasks achieving a reduction up to 30% for a 15 CPUs machine. We have optimized the default parameters of NaviSE to facilitate its use. NaviSE allows different entry levels of data processing, from sra-fastq files to bed files; and unifies the processing of multiple replicates. NaviSE outperforms the more time-consuming processes required in a non-integrated pipeline. Alongside its high performance, NaviSE is able to provide biological insights, predicting cell type specific markers, such as SOX2 and ZIC3 in embryonic stem cells, CDK5R1 and REST in neurons and CD86 and TLR2 in monocytes. Conclusions NaviSE is a user-friendly streamlined solution for superenhancer analysis, annotation and navigation, requiring only basic computer and next generation sequencing knowledge. NaviSE binaries and documentation are available at: https://sourceforge.net/projects/navise-superenhancer/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1698-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex M Ascensión
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Mikel Arrospide-Elgarresta
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|