1
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
Scarpellino G, Brunetti V, Berra-Romani R, De Sarro G, Guerra G, Soda T, Moccia F. The Unexpected Role of the Endothelial Nitric Oxide Synthase at the Neurovascular Unit: Beyond the Regulation of Cerebral Blood Flow. Int J Mol Sci 2024; 25:9071. [PMID: 39201757 PMCID: PMC11354477 DOI: 10.3390/ijms25169071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.
Collapse
Affiliation(s)
- Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (G.S.); (V.B.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Germano Guerra
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (G.D.S.); (T.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
3
|
Patitucci E, Lipp I, Stickland RC, Wise RG, Tomassini V. Changes in brain perfusion with training-related visuomotor improvement in MS. Front Mol Neurosci 2023; 16:1270393. [PMID: 38025268 PMCID: PMC10665528 DOI: 10.3389/fnmol.2023.1270393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. A better understanding of the mechanisms supporting brain plasticity in MS would help to develop targeted interventions to promote recovery. A total of 29 MS patients and 19 healthy volunteers underwent clinical assessment and multi-modal MRI acquisition [fMRI during serial reaction time task (SRT), DWI, T1w structural scans and ASL of resting perfusion] at baseline and after 4-weeks of SRT training. Reduction of functional hyperactivation was observed in MS patients following the training, shown by the stronger reduction of the BOLD response during task execution compared to healthy volunteers. The functional reorganization was accompanied by a positive correlation between improvements in task accuracy and the change in resting perfusion after 4 weeks' training in right angular and supramarginal gyri in MS patients. No longitudinal changes in WM and GM measures and no correlation between task performance improvements and brain structure were observed in MS patients. Our results highlight a potential role for CBF as an early marker of plasticity, in terms of functional (cortical reorganization) and behavioral (performance improvement) changes in MS patients that may help to guide future interventions that exploit preserved plasticity mechanisms.
Collapse
Affiliation(s)
- Eleonora Patitucci
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Ilona Lipp
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rachael Cecilia Stickland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
4
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
5
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Katauskis P, Ivanauskas F, Alaburda A. Mathematical Model of Synaptic Long-Term Potentiation as a Bistability in a Chain of Biochemical Reactions with a Positive Feedback. Acta Biotheor 2023; 71:16. [PMID: 37148358 DOI: 10.1007/s10441-023-09466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) is involved in synaptic long-term potentiation (LTP) by multiple signaling pathways. Here, we show that LTP of synaptic transmission can be explained as a feature of signal transduction-bistable behavior in a chain of biochemical reactions with positive feedback, formed by diffusion of NO to the presynaptic site and facilitating the release of glutamate (Glu). The dynamics of Glu, calcium (Ca2+) and NO is described by a system of nonlinear reaction-diffusion equations with modified Michaelis-Menten (MM) kinetics. Numerical investigation reveals that the chain of biochemical reactions analyzed can exhibit a bistable behavior under physiological conditions when production of Glu is described by MM kinetics and decay of NO is modeled by means of two enzymatic pathways with different kinetic properties. Our finding extends understanding of the role of NO in LTP: a short high-intensity stimulus is "memorized" as a long-lasting elevation of NO concentration. The conclusions obtained by analysis of the chain of biochemical reactions describing LTP can be generalized to other chains of interactions or for creating the logical elements for biological computers.
Collapse
Affiliation(s)
- Pranas Katauskis
- Institute of Applied Mathematics, Vilnius University, Naugarduko st. 24, 03225, Vilnius, Lithuania
| | - Feliksas Ivanauskas
- Institute of Computer Science, Vilnius University, Didlaukio st. 47, 08303, Vilnius, Lithuania
| | - Aidas Alaburda
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
7
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
8
|
Saitoh D, Suzuki A, Ieda N, Liu Z, Osakada Y, Fujitsuka M, Kawaguchi M, Nakagawa H. Photoinduced NO-release from polymer dots doped with an Ir(III) complex and N-methyl- N-nitroso-4-aminophenol. Org Biomol Chem 2023; 21:2983-2989. [PMID: 36942556 DOI: 10.1039/d3ob00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that plays a variety of functions in the human body, but it is difficult to use it in biological experiments or for therapeutic purposes because of its high reactivity and instability in the biological milieu. Consequently, photocontrollable NO releasers, which enable spatiotemporal control of NO release, have an important role in elucidating the functions of NO. Our group has developed visible-light-controllable NO-releasing molecules that contain a fluorescent dye structure as a light-harvesting antenna moiety and an N-nitrosoaminophenol structure as an NO-releasing moiety. Here, we aimed to construct an NO-generating system employing an intermolecular photoredox reaction between the two separate components, since this would simplify chemical synthesis and make it easier to examine various dyes as antennae. For this purpose, we constructed polymer nanoparticles doped with both N-methyl-N-nitroso-4-aminophenol (NAP, 1) and an Ir(III) antenna complex (2, 3 or 4) in order to dissolve in aqueous solution without a co-solvent. These polymer nanoparticles released NO upon photoirradiation in vitro in the purple (400-430 nm) or blue (400-460 nm) wavelength region to activate the doped Ir(III) complex.
Collapse
Affiliation(s)
- Daisuke Saitoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan.
| | - Ayumi Suzuki
- Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan.
| | - Zuoyue Liu
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan
| | - Yasuko Osakada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadagaoka, Suita, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan.
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Japan.
| |
Collapse
|
9
|
Abstract
eNOS (endothelial nitric oxide synthase) is critically important enzyme responsible for regulation of cardiovascular homeostasis. Under physiological conditions, constitutive eNOS activity and production of endothelial nitric oxide (NO) exert essential neurovascular protective functions. In this review, we first discuss the roles of endothelial NO in prevention of neuronal amyloid accumulation and formation of neurofibrillary tangles, hallmarks of Alzheimer disease pathology. Next, we review existing evidence suggesting that NO released from endothelium prevents activation of microglia, stimulates glycolysis in astrocytes, and increases biogenesis of mitochondria. We also address major risk factors for cognitive impairment including aging and ApoE4 (apolipoprotein 4) genotype with focus on their detrimental effects on eNOS/NO signaling. Relevant to this review, recent studies suggested that aged eNOS heterozygous mice are unique model of spontaneous cerebral small vessel disease. In this regard, we review contribution of dysfunctional eNOS to deposition of Aβ (amyloid-β) into blood vessel wall leading to development of cerebral amyloid angiopathy. We conclude that endothelial dysfunction manifested by the loss of neurovascular protective functions of NO may significantly contribute to development of cognitive impairment.
Collapse
Affiliation(s)
- Zvonimir S. Katusic
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Livius V. d’Uscio
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Tongrong He
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
10
|
Soda T, Brunetti V, Berra-Romani R, Moccia F. The Emerging Role of N-Methyl-D-Aspartate (NMDA) Receptors in the Cardiovascular System: Physiological Implications, Pathological Consequences, and Therapeutic Perspectives. Int J Mol Sci 2023; 24:ijms24043914. [PMID: 36835323 PMCID: PMC9965111 DOI: 10.3390/ijms24043914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate, mediate the slow component of excitatory neurotransmission in the central nervous system (CNS), and induce long-term changes in synaptic plasticity. NMDARs are non-selective cation channels that allow the influx of extracellular Na+ and Ca2+ and control cellular activity via both membrane depolarization and an increase in intracellular Ca2+ concentration. The distribution, structure, and role of neuronal NMDARs have been extensively investigated and it is now known that they also regulate crucial functions in the non-neuronal cellular component of the CNS, i.e., astrocytes and cerebrovascular endothelial cells. In addition, NMDARs are expressed in multiple peripheral organs, including heart and systemic and pulmonary circulations. Herein, we survey the most recent information available regarding the distribution and function of NMDARs within the cardiovascular system. We describe the involvement of NMDARs in the modulation of heart rate and cardiac rhythm, in the regulation of arterial blood pressure, in the regulation of cerebral blood flow, and in the blood-brain barrier (BBB) permeability. In parallel, we describe how enhanced NMDAR activity could promote ventricular arrhythmias, heart failure, pulmonary artery hypertension (PAH), and BBB dysfunction. Targeting NMDARs could represent an unexpected pharmacological strategy to reduce the growing burden of several life-threatening cardiovascular disorders.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Valentina Brunetti
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987613
| |
Collapse
|
11
|
Calis D, Hess M, Marchetta P, Singer W, Modro J, Nelissen E, Prickaerts J, Sandner P, Lukowski R, Ruth P, Knipper M, Rüttiger L. Acute deletion of the central MR/GR steroid receptor correlates with changes in LTP, auditory neural gain, and GC-A cGMP signaling. Front Mol Neurosci 2023; 16:1017761. [PMID: 36873102 PMCID: PMC9983609 DOI: 10.3389/fnmol.2023.1017761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
The complex mechanism by which stress can affect sensory processes such as hearing is still poorly understood. In a previous study, the mineralocorticoid (MR) and/or glucocorticoid receptor (GR) were deleted in frontal brain regions but not cochlear regions using a CaMKIIα-based tamoxifen-inducible Cre ERT2/loxP approach. These mice exhibit either a diminished (MRTMXcKO) or disinhibited (GRTMXcKO) auditory nerve activity. In the present study, we observed that mice differentially were (MRTMXcKO) or were not (GRTMXcKO) able to compensate for altered auditory nerve activity in the central auditory pathway. As previous findings demonstrated a link between central auditory compensation and memory-dependent adaptation processes, we analyzed hippocampal paired-pulse facilitation (PPF) and long-term potentiation (LTP). To determine which molecular mechanisms may impact differences in synaptic plasticity, we analyzed Arc/Arg3.1, known to control AMPA receptor trafficking, as well as regulators of tissue perfusion and energy consumption (NO-GC and GC-A). We observed that the changes in PPF of MRTMXcKOs mirrored the changes in their auditory nerve activity, whereas changes in the LTP of MRTMXcKOs and GRTMXcKOs mirrored instead the changes in their central compensation capacity. Enhanced GR expression levels in MRTMXcKOs suggest that MRs typically suppress GR expression. We observed that hippocampal LTP, GC-A mRNA expression levels, and ABR wave IV/I ratio were all enhanced in animals with elevated GR (MRTMXcKOs) but were all lower or not mobilized in animals with impaired GR expression levels (GRTMXcKOs and MRGRTMXcKOs). This suggests that GC-A may link LTP and auditory neural gain through GR-dependent processes. In addition, enhanced NO-GC expression levels in MR, GR, and MRGRTMXcKOs suggest that both receptors suppress NO-GC; on the other hand, elevated Arc/Arg3.1 levels in MRTMXcKOs and MRGRTMXcKOs but not GRTMXcKOs suggest that MR suppresses Arc/Arg3.1 expression levels. Conclusively, MR through GR inhibition may define the threshold for hemodynamic responses for LTP and auditory neural gain associated with GC-A.
Collapse
Affiliation(s)
- Dila Calis
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Morgan Hess
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Philine Marchetta
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Julian Modro
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, Netherlands
| | - Peter Sandner
- Bayer Health Care Pharmaceuticals, Global Drug Discovery Pharma Research Centre Wuppertal, Wuppertal, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Chen C, Bu L, Liu H, Rang Y, Huang H, Xiao X, Ou G, Liu C. Learning and memory impairment induced by 1,4-butanediol is regulated by ERK1/2-CREB-BDNF signaling pathways in PC12 cells. Metab Brain Dis 2022; 37:1451-1463. [PMID: 35348994 DOI: 10.1007/s11011-022-00963-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/14/2022] [Indexed: 01/03/2023]
Abstract
1,4-butanediol (1,4-BD) is a known γ-hydroxybutyric acid (GHB) precursor which affects the nervous system after ingestion, leading to uncontrolled behavioral consequences. In the present study, we investigated whether 1,4-BD induces oxidative stress and inflammation in PC12 cells and evaluated the toxic effects of 1,4-BD associates with learning and memory. CCK-8 results revealed a dose-effect relationship between the cell viability of PC12 cells and 1,4-BD when the duration of action was 2 h or 4 h. Assay kits results showed that 1,4-BD decreased the levels of Glutathione (GSH), Glutathione peroxidase (GSH-px), Superoxide dismutase (SOD), Acetylcholine (Ach) and increased the levels of Malondialdehyde (MDA), Nitric oxide (NO) and Acetylcholinesterase (AchE). Elisa kits results indicated that 1,4-BD decreased the levels of synaptophysin I (SYN-1), Postsynaptic density protein-95 (PSD-95), Growth associated protein-43 (GAP-43) and increased the levels of Tumor necrosis factor alpha (TNF-α) and Interleukin- 6 (IL-6). RT-PCR results showed that the mRNA levels of PSD-95, SYN-1 and GAP-43 were significantly decreased. The expression of phosphorylation extracellular signal-regulated protein kinase 1/2 (p-ERK1/2), phosphorylation cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) proteins were significantly decreased in PC12 cells by protein blotting. Overall, these results suggest that 1,4-BD may affect synaptic plasticity via the ERK1/2-CREB-BDNF pathway, leading to Ach release reduction and ultimately to learning and memory impairment. Furthermore, oxidative stress and inflammation induced by 1,4-BD may also result in learning and memory deficits. These findings will enrich the toxicity data of 1.4-BD associated with learning and memory impairment.
Collapse
Affiliation(s)
- Congying Chen
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Lingling Bu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Huiying Huang
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guang zhou, 510642, China.
| |
Collapse
|
13
|
Chaney R, Garnier P, Quirié A, Martin A, Prigent-Tessier A, Marie C. Region-Dependent Increase of Cerebral Blood Flow During Electrically Induced Contraction of the Hindlimbs in Rats. Front Physiol 2022; 13:811118. [PMID: 35492591 PMCID: PMC9040888 DOI: 10.3389/fphys.2022.811118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Elevation of cerebral blood flow (CBF) may contribute to the cerebral benefits of the regular practice of physical exercise. Surprisingly, while electrically induced contraction of a large muscular mass is a potential substitute for physical exercise to improve cognition, its effect on CBF remains to be investigated. Therefore, the present study investigated CBF in the cortical area representing the hindlimb, the hippocampus and the prefrontal cortex in the same anesthetized rats subjected to either acute (30 min) or chronic (30 min for 7 days) electrically induced bilateral hindlimb contraction. While CBF in the cortical area representing the hindlimb was assessed from both laser doppler flowmetry (LDFCBF) and changes in p-eNOSSer1177 levels (p-eNOSCBF), CBF was evaluated only from changes in p-eNOSSer1177 levels in the hippocampus and the prefrontal cortex. The contribution of increased cardiac output and increased neuronal activity to CBF changes were examined. Stimulation was associated with tachycardia and no change in arterial blood pressure. It increased LDFCBF with a time- and intensity-dependent manner as well as p-eNOSCBF in the area representing the hindlimb. By contrast, p-eNOSCBF was unchanged in the two other regions. The augmentation of LDFCBF was partially reduced by atenolol (a ß1 receptor antagonist) and not reproduced by the administration of dobutamine (a ß1 receptor agonist). Levels of c-fos as a marker of neuronal activation selectively increased in the area representing the hindlimb. In conclusion, electrically induced bilateral hindlimb contraction selectively increased CBF in the cortical area representing the stimulated muscles as a result of neuronal hyperactivity and increased cardiac output. The absence of CBF changes in cognition-related brain regions does not support flow-dependent neuroplasticity in the pro-cognitive effect of electrically induced contraction of a large muscular mass.
Collapse
Affiliation(s)
- Remi Chaney
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, Dijon, France.,Département Génie Biologique, IUT, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, Dijon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, Dijon, France
| |
Collapse
|
14
|
Giesen J, Mergia E, Koesling D, Russwurm M. Hippocampal AMPA- and NMDA-induced cGMP signals are mainly generated by NO-GC2 and are under tight control by PDEs 1 and 2. Eur J Neurosci 2021; 55:18-31. [PMID: 34902209 DOI: 10.1111/ejn.15564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
In the central nervous system, the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling cascade has an established role in fine-tuning of synaptic transmission. In the present study, we asked which isoform of NO-sensitive guanylyl cyclase, NO-GC1 or NO-GC2, is responsible for generation of N-methyl-d-aspartate (NMDA)- and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-induced cGMP signals and which of the phosphodiesterases (PDEs) is responsible for degradation. To this end, we performed live cell fluorescence measurements of primary hippocampal neurons isolated from NO-GC isoform-deficient mice. Although both isoforms contributed to the NMDA- and AMPA-induced cGMP signals, NO-GC2 clearly played the predominant role. Whereas under PDE-inhibiting conditions the cGMP levels elicited by both glutamatergic ligands were comparable, NMDA-induced cGMP signals were clearly higher than the AMPA-induced ones in the absence of PDE inhibitors. Thus, AMPA-induced cGMP signals are more tightly controlled by PDE-mediated degradation than NMDA-induced signals. In addition, these findings are compatible with the existence of at least two different pools of cGMP in both of which PDE1 and PDE2-known to be highly expressed in the hippocampus-are mainly responsible for cGMP degradation. The finding that distinct pools of cGMP are equipped with different amounts of PDEs highlights the importance of PDEs for the shape of NO-induced cGMP signals in the central nervous system.
Collapse
Affiliation(s)
- Jan Giesen
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Evanthia Mergia
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Doris Koesling
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Michael Russwurm
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Dremencov E, Jezova D, Barak S, Gaburjakova J, Gaburjakova M, Kutna V, Ovsepian SV. Trophic factors as potential therapies for treatment of major mental disorders. Neurosci Lett 2021; 764:136194. [PMID: 34433100 DOI: 10.1016/j.neulet.2021.136194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity. They also involve alterations in trophic factor signalling, including brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), glial cell-derived neurotrophic factor (GDNF), and others. In several major mental disorders, emerging data suggest protective and restorative effects of trophic factors in preclinical models, when applied on their own. Antidepressant outcomes of VGF and FGF2, for instance, were shown in experimental animals, while BDNF and GDNF prove useful in the treatment of addiction, schizophrenia, and autism spectrum disorders. The main challenge with the effective translation of these and other findings in the clinic is the knowledge gap in action mechanisms with potential risks, as well as the lack of effective platforms for validation under clinical settings. Herein, we review the state-of-the-art and advances in the therapeutic use of trophic factors in several major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Eliyahu Dremencov
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Segev Barak
- School of Psychological Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jana Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Kutna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
16
|
Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki A, Joghataei MT. Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neurosci 2021; 31:617-636. [PMID: 32739909 DOI: 10.1515/revneuro-2019-0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The molecular and chemical properties of neuronal nitric oxide synthase (nNOS) have made it a key mediator in many physiological functions and signaling transduction. The NOS monomer is inactive, but the dimer form is active. There are three forms of NOS, which are neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) nitric oxide synthase. nNOS regulates nitric oxide (NO) synthesis which is the mechanism used mostly by neurons to produce NO. nNOS expression and activation is regulated by some important signaling proteins, such as cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), calmodulin (CaM), heat shock protein 90 (HSP90)/HSP70. nNOS-derived NO has been implicated in modulating many physiological functions, such as synaptic plasticity, learning, memory, neurogenesis, etc. In this review, we have summarized recent studies that have characterized structural features, subcellular localization, and factors that regulate nNOS function. Finally, we have discussed the role of nNOS in the developing brain under a wide range of physiological conditions, especially long-term potentiation and depression.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Monireh Mohsenzadegan
- Department of Laboratory Sciences, Allied Medical College, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Komaki
- Department of Physiology, Medical College, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
17
|
Zhu HY, Hong FF, Yang SL. The Roles of Nitric Oxide Synthase/Nitric Oxide Pathway in the Pathology of Vascular Dementia and Related Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094540. [PMID: 33926146 PMCID: PMC8123648 DOI: 10.3390/ijms22094540] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia worldwide. It is caused by cerebrovascular disease, and patients often show severe impairments of advanced cognitive abilities. Nitric oxide synthase (NOS) and nitric oxide (NO) play vital roles in the pathogenesis of VaD. The functions of NO are determined by its concentration and bioavailability, which are regulated by NOS activity. The activities of different NOS subtypes in the brain are partitioned. Pathologically, endothelial NOS is inactivated, which causes insufficient NO production and aggravates oxidative stress before inducing cerebrovascular endothelial dysfunction, while neuronal NOS is overactive and can produce excessive NO to cause neurotoxicity. Meanwhile, inflammation stimulates the massive expression of inducible NOS, which also produces excessive NO and then induces neuroinflammation. The vicious circle of these kinds of damage having impacts on each other finally leads to VaD. This review summarizes the roles of the NOS/NO pathway in the pathology of VaD and also proposes some potential therapeutic methods that target this pathway in the hope of inspiring novel ideas for VaD therapeutic approaches.
Collapse
Affiliation(s)
- Han-Yan Zhu
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Queen Marry College, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
| | - Fen-Fang Hong
- Teaching Center, Department of Experimental, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
- Correspondence: (F.-F.H.); (S.-L.Y.)
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Correspondence: (F.-F.H.); (S.-L.Y.)
| |
Collapse
|
18
|
Süer C, Yıldız N, Barutçu Ö, Tan B, Dursun N. Long-term depression-related tau phosphorylation is enhanced by methylene blue in healthy rat hippocampus. Pharmacol Rep 2021; 73:828-840. [PMID: 33797746 DOI: 10.1007/s43440-021-00254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The present study examined whether inhibition of guanylate cyclase (GC) is associated with the plasticity-related microtubule-stabilizing protein tau phosphorylation in the dentate gyrus (DG) of hippocampal formation. METHODS To address this issue, methylene blue (MB 50 μM) or saline was infused into the DG starting from the induction of long-term potentiation (LTP) or depression (LTD) for 1 h. Then, protein phosphatase 1 alpha (PP1α), glycogen synthase kinase 3 beta (GSK3β), and tau total and phosphorylated protein levels were measured in these hippocampi using western blotting. LTP and LTD were induced by application of high- and low-frequency stimulation protocols (HFS and LFS), respectively. 5-min averages of the excitatory postsynaptic potential (EPSP) slopes and population spike amplitudes at the end of recording were averaged to measure the magnitude of LTP or LTD. RESULTS Low-frequency stimulation protocols was unable to phosphorylate thr181 and thr231epitopes of tau, but possessed kinase activity similar to the HFS in phosphorylation of ser396 and ser416 epitopes. MB infusion during LTD induction attenuated LTD, prevented EPSP/spike dissociation and increased tau phosphorylation at ser396 and ser416 epitopes, without changing tau phosphorylation at thr181 and thr231 epitopes. Neither LTP nor LTP-related tau phosphorylation state was changed by MB infusion. CONCLUSION Although MB can benefit to stabilize the balance between LTP and LTD, and to fix the increased spike wave discharges, it might trigger deregulation of tau phosphorylation, leading to the development of Alzheimer's disease by a mechanism that goes awry during induction of LTD. Thereby detailed studies to reveal more precise evidence for the use of MB in this disease are needed.
Collapse
Affiliation(s)
- Cem Süer
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurbanu Yıldız
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Özlem Barutçu
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey.
| | - Nurcan Dursun
- Department of Physiology, School of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
19
|
Lionetti V, Bollini S, Coppini R, Gerbino A, Ghigo A, Iaccarino G, Madonna R, Mangiacapra F, Miragoli M, Moccia F, Munaron L, Pagliaro P, Parenti A, Pasqua T, Penna C, Quaini F, Rocca C, Samaja M, Sartiani L, Soda T, Tocchetti CG, Angelone T. Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacol Res 2021; 168:105581. [PMID: 33781873 PMCID: PMC7997688 DOI: 10.1016/j.phrs.2021.105581] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
In-depth characterization of heart-brain communication in critically ill patients with severe acute respiratory failure is attracting significant interest in the COronaVIrus Disease 19 (COVID-19) pandemic era during intensive care unit (ICU) stay and after ICU or hospital discharge. Emerging research has provided new insights into pathogenic role of the deregulation of the heart-brain axis (HBA), a bidirectional flow of information, in leading to severe multiorgan disease syndrome (MODS) in patients with confirmed infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Noteworthy, HBA dysfunction may worsen the outcome of the COVID-19 patients. In this review, we discuss the critical role HBA plays in both promoting and limiting MODS in COVID-19. We also highlight the role of HBA as new target for novel therapeutic strategies in COVID-19 in order to open new translational frontiers of care. This is a translational perspective from the Italian Society of Cardiovascular Researches.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; UOSVD Anesthesia and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Raffaele Coppini
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Andrea Gerbino
- Department of Bioscience, Biotechnology and Biopharmaceuticals, University of Bari, Bari, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, Federico II University, Italy
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fabio Mangiacapra
- Unit of Cardiovascular Science, Campus Bio-Medico University, Rome, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy.
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Pasquale Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Astrid Parenti
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Teresa Pasqua
- Department of Health Science, University of Magna Graecia, Catanzaro, Italy
| | - Claudia Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, Hematology and Bone Marrow Transplantation, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - Michele Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - Laura Sartiani
- Department of NEUROFARBA, Center of Molecular Medicine, University of Firenze, 50139 Firenze, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlo Gabriele Tocchetti
- Interdepartmental Center of Clinical and Translational Research, Federico II University, Naples, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
20
|
Nitric oxide and the brain. Part 2: Effects following neonatal brain injury-friend or foe? Pediatr Res 2021; 89:746-752. [PMID: 32563184 DOI: 10.1038/s41390-020-1021-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
Nitric oxide (NO) has critical roles in a wide variety of key biologic functions and has intricate transport mechanisms for delivery to key distal tissues under normal conditions. However, NO also plays important roles during disease processes, such as hypoxia-ischemia, asphyxia, neuro-inflammation, and retinopathy of prematurity. The effects of exogenous NO on the developing neonatal brain remain controversial. Inhaled NO (iNO) can be neuroprotective or toxic depending on a variety of factors, including cellular redox state, underlying disease processes, duration of treatment, and dose. This review identifies key gaps in knowledge that should prompt further investigation into the possible role of iNO as a therapeutic agent after injury to the brain. IMPACT: NO is a key signal mediator in the neonatal brain with neuroprotective and neurotoxic properties. iNO, a commonly used medication, has significant effects on the neonatal brain. Dosing, duration, and timing of administration of iNO can affect the developing brain. This review article summarizes the roles of NO in association with various disease processes that impact neonates, such as brain hypoxia-ischemia, asphyxia, retinopathy of prematurity, and neuroinflammation. The impact of this review is that it clearly describes gaps in knowledge, and makes the case for further, targeted studies in each of the identified areas.
Collapse
|
21
|
Kopp-Scheinpflug C, Forsythe ID. Nitric Oxide Signaling in the Auditory Pathway. Front Neural Circuits 2021; 15:759342. [PMID: 34712124 PMCID: PMC8546346 DOI: 10.3389/fncir.2021.759342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/23/2021] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO) is of fundamental importance in regulating immune, cardiovascular, reproductive, neuromuscular, and nervous system function. It is rapidly synthesized and cannot be confined, it is highly reactive, so its lifetime is measured in seconds. These distinctive properties (contrasting with classical neurotransmitters and neuromodulators) give rise to the concept of NO as a "volume transmitter," where it is generated from an active source, diffuses to interact with proteins and receptors within a sphere of influence or volume, but limited in distance and time by its short half-life. In the auditory system, the neuronal NO-synthetizing enzyme, nNOS, is highly expressed and tightly coupled to postsynaptic calcium influx at excitatory synapses. This provides a powerful activity-dependent control of postsynaptic intrinsic excitability via cGMP generation, protein kinase G activation and modulation of voltage-gated conductances. NO may also regulate vesicle mobility via retrograde signaling. This Mini Review focuses on the auditory system, but highlights general mechanisms by which NO mediates neuronal intrinsic plasticity and synaptic transmission. The dependence of NO generation on synaptic and sound-evoked activity has important local modulatory actions and NO serves as a "volume transmitter" in the auditory brainstem. It also has potentially destructive consequences during intense activity or on spill-over from other NO sources during pathological conditions, when aberrant signaling may interfere with the precisely timed and tonotopically organized auditory system.
Collapse
Affiliation(s)
- Conny Kopp-Scheinpflug
- Neurobiology Laboratory, Division of Neurobiology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ian D Forsythe
- Auditory Neurophysiology Laboratory, Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
22
|
Tendilla-Beltrán H, Sanchez-Islas NDC, Marina-Ramos M, Leza JC, Flores G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog Neurobiol 2020; 199:101967. [PMID: 33271238 DOI: 10.1016/j.pneurobio.2020.101967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Prefrontal cortex (PFC) inflammatory imbalance, oxidative/nitrosative stress (O/NS) and impaired neuroplasticity in schizophrenia are thought to have neurodevelopmental origins. Animal models are not only useful to test this hypothesis, they are also effective to establish a relationship among brain disturbances and behavior with the atypical antipsychotics (AAPs) effects. Here we review data of PFC post-mortem and in vivo neuroimaging, human induced pluripotent stem cells (hiPSC), and peripheral blood studies of inflammatory, O/NS, and neuroplasticity alterations in the disease as well as about their modulation by AAPs. Moreover, we reviewed the PFC alterations and the AAP mechanisms beyond their canonical antipsychotic action in four neurodevelopmental animal models relevant to the study of schizophrenia with a distinct approach in the generation of schizophrenia-like phenotypes, but all converge in O/NS and altered neuroplasticity in the PFC. These animal models not only reinforce the neurodevelopmental risk factor model of schizophrenia but also arouse some novel potential therapeutic targets for the disease including the reestablishment of the antioxidant response by the perineuronal nets (PNNs) and the nuclear factor erythroid 2-related factor (Nrf2) pathway, as well as the dendritic spine dynamics in the PFC pyramidal cells.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Mauricio Marina-Ramos
- Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital, 12 de Octubre (Imas12), Madrid, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
23
|
Ieda N, Hotta Y, Yamauchi A, Nishikawa A, Sasamori T, Saitoh D, Kawaguchi M, Kimura K, Nakagawa H. Development of a Red-Light-Controllable Nitric Oxide Releaser to Control Smooth Muscle Relaxation in Vivo. ACS Chem Biol 2020; 15:2958-2965. [PMID: 33166443 DOI: 10.1021/acschembio.0c00601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We designed and synthesized a novel Si-rhodamine derivative, NORD-1, as a red-light-controllable nitric oxide (NO) releaser, on the basis of photoredox parameter analysis. Red-light-responsive NO release from NORD-1 was confirmed by ESR spin trapping and quantified with an NO electrode and by means of Griess assay. The NO release cross section (ε656 nm·ΦNO) of NORD-1 was calculated to be 3.65 × 102, which is larger than that of a previously reported yellowish-green-light-controllable NO releaser, NO-Rosa5. The photoresponsiveness of NO release from NORD-1 was precise and efficient enough to induce vasodilation ex vivo under Magnus test conditions. Finally, we showed that intracavernous pressure (ICP) could be controlled in rats in vivo with the combination of NORD-1 and a red-light source without increasing systemic blood pressure, which is a serious side effect of usual NO releasers, such as nitroglycerin and isopentyl nitrite. NORD-1 is expected to be a useful chemical tool for NO research, as well as a candidate agent to control the circulatory system.
Collapse
Affiliation(s)
- Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yuji Hotta
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Ayaka Yamauchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Atsushi Nishikawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takahiro Sasamori
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan
| | - Daisuke Saitoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Kazunori Kimura
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
24
|
Yu H, Ma L, Liu D, Wang Y, Pei X, Duan Z, Ma M, Zhang Y. Involvement of NMDAR/PSD-95/nNOS-NO-cGMP pathway in embryonic exposure to BPA induced learning and memory dysfunction of rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115055. [PMID: 32629208 DOI: 10.1016/j.envpol.2020.115055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), can lead to learning and memory impairment, but the underlying mechanism is poorly understood. Researchers have indicated that the N-methyl-D-aspartate receptor (NMDAR)/postsynaptic density protein 95 (PSD-95)/neuronal nitric oxide synthase (nNOS)-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway greatly contributes to learning and memory process. Pregnant rats were exposed to 0, 0.05, 0.5, 5 and 50 mg/kg/day BPA via oral gavage from gestational day (GD) 5 to GD 19. Morris water maze, transmission electron microscope, western blot, real time PCR, biochemical analysis and ELISA were used to analyze the changes in behavior, synaptic ultrastructure, protein and gene expression of NMDAR, PSD-95, nNOS, together with nNOS activity, NO (Nitrate reductase method) and cGMP levels of the rat pups at different growth stages. Results of this research displayed that exposure to 0.5 mg/kg/day BPA could damage the spatial learning ability of rats at postnatal day (PND) 56. However, spatial memory ability could be affected by exposure to BPA at doses up to 5 mg/kg/day. Moreover, the thickness of the postsynaptic density decreased after exposure to BPA at doses of 5 and 50 mg/kg/day. Levels of NR1, NR2A, PSD-95 protein and mRNA were downregulated to some extent after exposure to BPA, whereas the expression of NR2B increased at GD 20 but decreased at PND 21 and 56. Contrarily, the nNOS expression along with the enzyme activity were promoted after exposure to BPA. Meanwhile, the NO and cGMP levels were suppressed at GD 20 but promoted at PND 21 and 56. In conclusion, these results demonstrated that NMDAR/PSD-95/nNOS-NO-cGMP pathway could be affected by embryonic exposure to BPA, which may involve in the spatial learning and memory dysfunction of rats in later life.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China.
| | - Lin Ma
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China
| | - Di Liu
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China
| | - Yu Wang
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China
| | - Xiucong Pei
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China
| | - Zhiwen Duan
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China
| | - Mingyue Ma
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China
| | - Yumin Zhang
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
25
|
Dubey H, Gulati K, Ray A. Alzheimer's Disease: A Contextual Link with Nitric Oxide Synthase. Curr Mol Med 2020; 20:505-515. [PMID: 31782366 DOI: 10.2174/1566524019666191129103117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is a gasotransmitter with pleiotropic effects which has made a great impact on biology and medicine. A multidimensional neuromodulatory role of NO has been shown in the brain with specific reference to neurodegenerative disorders like Alzheimer's disease (AD) and cognitive dysfunction. It has been found that NO/cGMP signalling pathway has an important role in learning and memory. Initially, it was considered that indirectly NO exerted neurotoxicity in AD via glutamatergic excitotoxicity. However, considering the early development of cognitive functions involved in the learning memory process including long term potentiation and synaptic plasticity, NO has a crucial role. Increasing evidence uncovered the above facts that isoforms of NOS viz endothelial NO synthase (eNOS), neuronal NO synthase (nNOS) and inducible NO synthase (iNOS) having a variable expression in AD are mainly responsible for learning and memory activities. In this review, we focus on the role of NOS isoforms in AD parallel to NO. Further, this review provides convergent evidence that NO could provide a therapeutic avenue in AD via modulation of the relevant NOS expression.
Collapse
Affiliation(s)
- Harikesh Dubey
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Kavita Gulati
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Arunabha Ray
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| |
Collapse
|
26
|
Synthesis, evaluation, and biological applications of visible-light-controllable nitric oxide releasers. Methods Enzymol 2020. [PMID: 32560805 DOI: 10.1016/bs.mie.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitric oxide (NO) is biologically synthesized in human body and mediates various signal pathway. Because NO is too unstable to handle for biological assay, NO releasers had been developed for NO research. Among them, light-controllable NO releasers are quite useful tool because their NO release can be spatiotemporally controlled by light irradiation. This article shows how to synthesize visible-light controllable NO releasers based on N-nitrosoaminophenol structure, evaluate NO releasing efficiency in various methods, and apply them for biological experiments.
Collapse
|
27
|
Negri S, Faris P, Pellavio G, Botta L, Orgiu M, Forcaia G, Sancini G, Laforenza U, Moccia F. Group 1 metabotropic glutamate receptors trigger glutamate-induced intracellular Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. Cell Mol Life Sci 2020; 77:2235-2253. [PMID: 31473770 PMCID: PMC11104941 DOI: 10.1007/s00018-019-03284-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity causes an increase in local cerebral blood flow (CBF) to ensure local supply of oxygen and nutrients to the activated areas. The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-D-aspartate receptors to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO, thereby triggering NVC. Recent work suggested that endothelial Ca2+ signals could underpin NVC by recruiting the endothelial NO synthase. For instance, acetylcholine induced intracellular Ca2+ signals followed by NO release by activating muscarinic 5 receptors in hCMEC/D3 cells, a widely employed model of human brain microvascular endothelial cells. Herein, we sought to assess whether also glutamate elicits metabotropic Ca2+ signals and NO release in hCMEC/D3 cells. Glutamate induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) that was blocked by α-methyl-4-carboxyphenylglycine and phenocopied by trans-1-amino-1,3-cyclopentanedicarboxylic acid, which, respectively, block and activate group 1 metabotropic glutamate receptors (mGluRs). Accordingly, hCMEC/D3 expressed both mGluR1 and mGluR5 and the Ca2+ response to glutamate was inhibited by their pharmacological blockade with, respectively, CPCCOEt and MTEP hydrochloride. The Ca2+ response to glutamate was initiated by endogenous Ca2+ release from the endoplasmic reticulum and endolysosomal Ca2+ store through inositol-1,4,5-trisphosphate receptors and two-pore channels, respectively, and sustained by store-operated Ca2+ entry. In addition, glutamate induced robust NO release that was suppressed by pharmacological blockade of the accompanying increase in [Ca2+]i. These data demonstrate for the first time that glutamate may induce metabotropic Ca2+ signals in human brain microvascular endothelial cells. The Ca2+ response to glutamate is likely to support NVC during neuronal activity, thereby reinforcing the emerging role of brain microvascular endothelial cells in the regulation of CBF.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
- Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy.
| |
Collapse
|
28
|
Ivanova VO, Balaban PM, Bal NV. Modulation of AMPA Receptors by Nitric Oxide in Nerve Cells. Int J Mol Sci 2020; 21:ijms21030981. [PMID: 32024149 PMCID: PMC7038066 DOI: 10.3390/ijms21030981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a gaseous molecule with a large number of functions in living tissue. In the brain, NO participates in numerous intracellular mechanisms, including synaptic plasticity and cell homeostasis. NO elicits synaptic changes both through various multi-chain cascades and through direct nitrosylation of targeted proteins. Along with the N-methyl-d-aspartate (NMDA) glutamate receptors, one of the key components in synaptic functioning are α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors—the main target for long-term modifications of synaptic effectivity. AMPA receptors have been shown to participate in most of the functions important for neuronal activity, including memory formation. Interactions of NO and AMPA receptors were observed in important phenomena, such as glutamatergic excitotoxicity in retinal cells, synaptic plasticity, and neuropathologies. This review focuses on existing findings that concern pathways by which NO interacts with AMPA receptors, influences properties of different subunits of AMPA receptors, and regulates the receptors’ surface expression.
Collapse
|
29
|
Du CP, Wang M, Geng C, Hu B, Meng L, Xu Y, Cheng B, Wang N, Zhu QJ, Hou XY. Activity-Induced SUMOylation of Neuronal Nitric Oxide Synthase Is Associated with Plasticity of Synaptic Transmission and Extracellular Signal-Regulated Kinase 1/2 Signaling. Antioxid Redox Signal 2020; 32:18-34. [PMID: 31642335 DOI: 10.1089/ars.2018.7669] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aims: Neuronal nitric oxide synthase (nNOS) and nitric oxide (NO) signaling have been implicated in learning, memory, and underlying long-lasting synaptic plasticity. In this study, we aimed at detecting whether nNOS is a target protein of SUMOylation in the hippocampus and its contributions to hippocampal long-term potentiation (LTP) of synaptic transmission. Results: We showed that N-methyl-d-aspartate receptor-dependent neuronal activity enhancement induced the attachment of small ubiquitin-like modifier 1 (SUMO1) to nNOS. Protein inhibitor of activated STAT3 (PIAS3) promoted SUMO1 conjugation at K725 and K739 on nNOS, which upregulated NO production and nNOS S1412 phosphorylation (activation). In addition, the N-terminus (amino acids 43-86) of PIAS3 bound nNOS directly. Tat-tagged PIAS3 segment representing amino acids 43-86, a cell-permeable peptide containing PIAS3 residues 43-86, suppressed activity-induced nNOS SUMOylation by disrupting PIAS3-nNOS association. It also decreased LTP-related expression of Arc and brain-derived neurotrophic factor and blocked signaling via extracellular signal-regulated kinase (ERK) 1/2 and Elk-1 in the hippocampus. More importantly, PIAS3-mediated nNOS SUMOylation was required for activity-regulated ERK1/2 activation in nNOS-positive neurons and hippocampal LTP induction. Innovation and Conclusion: These findings indicated that network activity-regulated nNOS SUMOylation underlies excitatory synaptic LTP by facilitating nNOS-NO-ERK1/2 signal cascades.
Collapse
Affiliation(s)
- Cai-Ping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mei Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Chi Geng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bin Hu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Yan Xu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Bao Cheng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Nan Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Qiu-Ju Zhu
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Hou
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China.,State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Giesen J, Füchtbauer EM, Füchtbauer A, Funke K, Koesling D, Russwurm M. AMPA Induces NO-Dependent cGMP Signals in Hippocampal and Cortical Neurons via L-Type Voltage-Gated Calcium Channels. Cereb Cortex 2019; 30:2128-2143. [DOI: 10.1093/cercor/bhz227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023] Open
Abstract
AbstractThe nitric oxide (NO)/cGMP signaling cascade has an established role in synaptic plasticity. However, with conventional methods, the underlying cGMP signals were barely detectable. Here, we set out to confirm the well-known NMDA-induced cGMP increases, to test the impact of AMPA on those signals, and to identify the relevant phosphodiesterases (PDEs) using a more sensitive fluorescence resonance energy transfer (FRET)-based method. Therefore, a “knock-in” mouse was generated that expresses a FRET-based cGMP indicator (cGi-500) allowing detection of cGMP concentrations between 100 nM and 3 μM. Measurements were performed in cultured hippocampal and cortical neurons as well as acute hippocampal slices. In hippocampal and cortical neurons, NMDA elicited cGMP signals half as high as the ones elicited by exogenous NO. Interestingly, AMPA increased cGMP independently of NMDA receptors and dependent on NO synthase (NOS) activation. NMDA- and AMPA-induced cGMP signals were not additive indicating that both pathways converge on the level of NOS. Accordingly, the same PDEs, PDE1 and PDE2, were responsible for degradation of NMDA- as well as AMPA-induced cGMP signals. Mechanistically, AMPAR induced calcium influx through L-type voltage-gated calcium channels leading to NOS and finally NO-sensitive guanylyl cyclase activation. Our results demonstrate that in addition to NMDA also AMPA triggers endogenous NO formation and hence cGMP production.
Collapse
Affiliation(s)
- Jan Giesen
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Ernst-Martin Füchtbauer
- Molecular Cell and Developmental Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Annette Füchtbauer
- Molecular Cell and Developmental Biology, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Klaus Funke
- Department of Neurophysiology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Doris Koesling
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Michael Russwurm
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
31
|
Mallei A, Ieraci A, Corna S, Tardito D, Lee FS, Popoli M. Global epigenetic analysis of BDNF Val66Met mice hippocampus reveals changes in dendrite and spine remodeling genes. Hippocampus 2019; 28:783-795. [PMID: 30067287 DOI: 10.1002/hipo.22991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 12/28/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin highly expressed in the hippocampus, plays crucial roles in cognition, neuroplasticity, synaptic function, and dendritic remodeling. The common human Val66Met polymorphism of BDNF has been implicated in the pathophysiology of neuropsychiatric and neurodegenerative disorders, and in the outcome of pro-adaptive and therapeutic treatments. Altered gene-expression profile has been previously shown in BDNF Val66Met knock-in mice, which recapitulate the phenotypic hallmarks of individuals carrying the BDNF Met allele. The aim of this study was to investigate the impact of the BDNF Val66Met polymorphism in the knock-in mouse model on two hippocampal epigenetic marks for transcriptional repression and activation, respectively: trimethylation of lysine 27 on histone H3 (H3K27me3) and acetylation of histone H3 (AcH3), using a genome-wide approach. Chromatin immunoprecipitation followed by deep sequencing of immunoprecipitated DNA (ChIP-Seq) was carried out with specific antibodies for H3K27me3 and AcH3. Our results revealed broad alteration of H3K27me3 and AcH3 marks association profiles in BDNFMet/Met , compared to BDNFVal/Val mice. Bioinformatics analysis showed changes in several biological functions and related pathways, affected by the presence of the polymorphism. In particular, a number of networks of functional interaction contained BDNF as central node. Quantitative PCR analysis confirmed epigenetically related significant changes in the expression of five genes: Dvl1, Nos3, Reln, Lypd6, and Sh3gl2. The first three are involved in dendrite and spine remodeling, morphological features altered in BDNFMet/Met mice. This work in homozygous knock-in mice shows that the human BDNF Val66Met polymorphism induces an array of histone H3 epigenetic modifications, in turn altering the expression of select genes crucial for structural and functional neuronal features.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Stefano Corna
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Daniela Tardito
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, New York, New York
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Harms JF, Menniti FS, Schmidt CJ. Phosphodiesterase 9A in Brain Regulates cGMP Signaling Independent of Nitric-Oxide. Front Neurosci 2019; 13:837. [PMID: 31507355 PMCID: PMC6716477 DOI: 10.3389/fnins.2019.00837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
PDE9A is a cGMP-specific phosphodiesterase expressed in neurons throughout the brain that has attracted attention as a therapeutic target to treat cognitive disorders. Indeed, PDE9A inhibitors are under evaluation in clinical trials as a treatment for Alzheimer's disease and schizophrenia. However, little is known about the cGMP signaling cascades regulated by PDE9A. Canonical cGMP signaling in brain follows the activation of neuronal nitric oxide synthase (nNOS) and the generation of nitric oxide, which activates soluble guanylyl cyclase and cGMP synthesis. However, we show that in mice, PDE9A regulates a pool of cGMP that is independent of nNOS, specifically, and nitric oxide signaling in general. This PDE9A-regulated cGMP pool appears to be highly compartmentalized and independent of cGMP pools regulated by several PDEs. These findings provide a new foundation for study of the upstream and downstream signaling elements regulated by PDE9A and its potential as a therapeutic target for brain disease.
Collapse
Affiliation(s)
- John F. Harms
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, MA, United States
| | - Frank S. Menniti
- George & Anne Ryan Institute for Neuroscience, The University of Rhode Island, Kingston, RI, United States
| | - Christopher J. Schmidt
- Pfizer Innovation and Research Lab Unit, Pfizer Global Research and Development, Cambridge, MA, United States
| |
Collapse
|
33
|
Review of a Potential Novel Approach for Erectile Dysfunction: Light-Controllable Nitric Oxide Donors and Nanoformulations. Sex Med Rev 2019; 8:297-302. [PMID: 31351914 DOI: 10.1016/j.sxmr.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/18/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Nitric oxide (NO) is known as the key factor involved in initiating and maintaining an erection. Therefore, NO supplementation may be a target for erectile dysfunction. However, the use of NO donors carries the risk of systemic side effects. Recently, novel NO donors, such as a light-controllable NO donor or NO donor in nanoparticles, have been developed. In this review, we introduce such novel compounds and methods. AIM To review light-controllable and nanotechnological NO donors for the treatment of erectile dysfunction. METHODS We conducted a review of relevant articles via PubMed in December 2018. MAIN OUTCOME MEASURES In this study, we reviewed novel NO donors, such as light-controllable NO donors and nanotechnological NO donors. RESULTS Some light-controllable NO donors have been already reported. A light-controllable NO donor without metal has also been recently developed. Light-controllable NO donors and light irradiation can control the release of NO spatiotemporally. In an isometric tension study, a relaxing response of the aortic tissue and penile corpus cavernosum was observed under light irradiation with a light-controllable NO donor. In addition, the effects of nanoparticles and nanoemulsions containing sodium nitrate on erectile function have been reported. The nanoformulation containing an NO donor can likely be absorbed percutaneously and, thus, enhance erectile function. CONCLUSIONS A light-controllable NO donor might be useful for treating erectile dysfunction because light irradiation is a convenient method to be applied for patients. However, light permeability might be an issue that needs to be solved. Nanoformulation is also likely to be a useful, non-invasive approach. The application of these procedures and compounds may help in the development of future treatments for erectile dysfunction. Hotta Y, Kataoka T, Taiki Mori T, et al. Review of a Potential Novel Approach for Erectile Dysfunction: Light-Controllable Nitric Oxide Donors and Nanoformulations. Sex Med Rev 2020;8:297-302.
Collapse
|
34
|
Ieda N, Hotta Y, Kawaguchi M, Kimura K, Nakagawa H. In Cellullo and ex Vivo Availability of a Yellowish-Green-Light-Controllable NO Releaser. Chem Pharm Bull (Tokyo) 2019; 67:576-579. [DOI: 10.1248/cpb.c19-00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Yuji Hotta
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | - Kazunori Kimura
- Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | |
Collapse
|
35
|
Ritz T, Kroll JL, Patel SV, Chen JR, Yezhuvath US, Aslan S, Khan DA, Pinkham AE, Rosenfield D, Brown ES. Central nervous system signatures of affect in asthma: associations with emotion-induced bronchoconstriction, airway inflammation, and asthma control. J Appl Physiol (1985) 2019; 126:1725-1736. [PMID: 30920889 DOI: 10.1152/japplphysiol.01018.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The effects of asthma on affect have been noted for some time, but little is known about associated brain processes. We therefore examined whether emotion-induced bronchoconstriction, airway inflammation, and asthma control are related to specific patterns of brain activity during processing negative affective stimuli. Fifteen adults with asthma viewed alternating blocks of distressing film clips (negative condition), affectively neutral film clips (neutral condition), and a crosshair image (baseline condition) while undergoing blood oxygenation level-dependent (BOLD) functional MRI (fMRI). Block-design fMRI analysis evaluated the BOLD response to "negative-baseline" and "neutral-baseline" contrasts. Airway response to these film clips was also assessed with impulse oscillometry in a separate session. Measures of airway inflammation [fractional exhaled nitric oxide (FENO)] and asthma control [Asthma Control Questionnaire (ACQ)] were additionally obtained. A whole brain voxel-based regression analysis of contrast maps was performed against respiratory resistance increase during negative and neutral films, FENO, and ACQ. Peak airway obstruction to negative affective stimulation was associated with stronger activation of the anterior and middle cingulate gyrus, including the dorsal anterior cingulate cortex (dACC). Stronger airway inflammation and lower asthma control were associated with reduced activation to negative stimuli in the superior frontal gyrus, middle cingulate gyrus, and supplementary motor area. Activation of the dACC in negative-affect-induced airway obstruction could be part of an integrated defensive response to critical environmental change. In addition, reduced frontal and limbic activation during processing of negative affect may reflect consequences of pathophysiological processes for CNS functioning. NEW & NOTEWORTHY This functional magnetic resonance imaging study shows, for the first time, that the degree of airway constriction due to negative affective stimuli in asthma is associated with stronger response to these stimuli in the dorsal anterior and middle cingulate cortex. Asthma patients with stronger airway inflammation and reduced asthma control also show reduced activation in a number of cortical and subcortical areas relevant for affective processing and breathing control.
Collapse
Affiliation(s)
- Thomas Ritz
- Southern Methodist University , Dallas, Texas
| | | | - Sheenal V Patel
- The University of Texas Southwestern Medical Center , Dallas, Texas
| | - Justin R Chen
- The University of Texas Southwestern Medical Center , Dallas, Texas
| | | | - Sina Aslan
- The University of Texas Southwestern Medical Center , Dallas, Texas.,Advance MRI, LLC, Frisco, Texas.,The University of Texas at Dallas , Richardson, Texas
| | - David A Khan
- The University of Texas Southwestern Medical Center , Dallas, Texas
| | - Amy E Pinkham
- The University of Texas at Dallas , Richardson, Texas
| | | | - E Sherwood Brown
- The University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
36
|
Nethi SK, Barui AK, Mukherjee S, Patra CR. Engineered Nanoparticles for Effective Redox Signaling During Angiogenic and Antiangiogenic Therapy. Antioxid Redox Signal 2019; 30:786-809. [PMID: 29943661 DOI: 10.1089/ars.2017.7383] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Redox signaling plays a vital role in regulating various cellular signaling pathways and disease biology. Recently, nanomedicine (application of nanotechnology in biology and medicine) has been demonstrated to regulate angiogenesis through redox signaling. A complete understanding of redox signaling pathways influenced angiogenesis/antiangiogenesis triggered by therapeutic nanoparticles is extensively reviewed in this article. Recent Advances: In recent times, nanomedicines are regarded as the Trojan horses that could be employed for successful drug delivery, gene delivery, peptide delivery, disease diagnosis, and others, conquering barriers associated with conventional theranostic approaches. CRITICAL ISSUES Physiological angiogenesis is a tightly regulated process maintaining a balance between proangiogenic and antiangiogenic factors. The redox signaling is one of the main factors that contribute to this physiological balance. An aberrant redox signaling cascade can be caused by several exogenous and endogenous factors and leads to reduced or augmented angiogenesis that ultimately results in several disease conditions. FUTURE DIRECTIONS Redox signaling-based nanomedicine approach has emerged as a new platform for angiogenesis-related disease therapy, where nanoparticles promote angiogenesis via controlled reactive oxygen species (ROS) production and antiangiogenesis by triggering excessive ROS formation. Recently, investigators have identified different efficient nano-candidates, which modulate angiogenesis by controlling intracellular redox molecules. Considering the importance of angiogenesis in health care a thorough understanding of nanomedicine-regulated redox signaling would inspire researchers to design and develop more novel nanomaterials that could be used as an alternative strategy for the treatment of various diseases, where angiogenesis plays a vital role.
Collapse
Affiliation(s)
- Susheel Kumar Nethi
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Ayan Kumar Barui
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Sudip Mukherjee
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Chitta Ranjan Patra
- 1 Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,2 Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| |
Collapse
|
37
|
Garthwaite J. NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol 2019; 176:197-211. [PMID: 30399649 PMCID: PMC6295412 DOI: 10.1111/bph.14532] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
NO operates throughout the brain as an intercellular messenger, initiating its varied physiological effects by activating specialized GC-coupled receptors, resulting in the formation of cGMP. In line with the widespread expression of this pathway, NO participates in numerous different brain functions. This review gives an account of the discovery of NO as a signalling molecule in the brain, experiments that originated in the search for a mysterious cGMP-stimulating factor released from central neurones when their NMDA receptors were stimulated, and summarizes the subsequent key steps that helped establish its status as a central transmitter. Currently, various modes of operation are viewed to underlie its diverse behaviour, ranging from very local signalling between synaptic partners (in the orthograde or retrograde directions) to a volume-type transmission whereby NO synthesized by multiple synchronous sources summate spatially and temporally to influence intermingled neuronal or non-neuronal cells, irrespective of anatomical connectivity. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
38
|
Nitric oxide and l-arginine regulate feeding in satiated rats. Appetite 2019; 132:44-54. [PMID: 30273627 DOI: 10.1016/j.appet.2018.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/14/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
|
39
|
Differential roles of hippocampal nNOS and iNOS in the control of baroreflex function in conscious rats. Brain Res 2018; 1710:109-116. [PMID: 30605625 DOI: 10.1016/j.brainres.2018.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 12/20/2022]
Abstract
The baroreflex is a prominent moment-to-moment mechanism regulating the blood pressure. The hippocampus is a limbic structure in which has been pointed out as part of central network regulating baroreflex. However, the local neurochemical mechanisms involved in control of baroreflex function are not completely understood. Thus, this study aimed to investigate the involvement of nitrergic neurotransmission present in the dorsal hippocampus in baroreflex control of heart rate in conscious rats. For this, we evaluated the effect of bilateral microinjection into the dorsal hippocampus of either the nitric oxide (NO) scavenger carboxy-PTIO, the selective neuronal nitric oxide synthase (nNOS) inhibitor Nω-Propyl-l-arginine (NPLA) or the selective inducible nitric oxide synthase (iNOS) inhibitor 1400 W in bradycardia evoked by blood pressure increases in response to intravenous infusion of phenylephrine, and tachycardia caused by blood pressure decreases evoked by intravenous infusion of sodium nitroprusside. Bilateral microinjection of carboxy-PTIO into the dorsal hippocampus decreased the baroreflex tachycardic response without affecting the reflex bradycardia. Hippocampus treatment with NPLA increased the baroreflex bradycardia gain without affecting the reflex tachycardia. Bilateral hippocampal treatment with 1400 W decreased the reflex tachycardia and increased the baroreflex bradycardic response. Overall, these findings provide evidence that hippocampal nitrergic mechanisms acting in a NOS isoform-specific manner plays a prominent role in control of baroreflex function. Indeed, the results indicate that nNOS and iNOS exerts an inhibitory influence on reflex bradycardia, whereas iNOS mediates the reflex tachycardia.
Collapse
|
40
|
The “Memory” Effect in a Chain of Biochemical Reactions with a Positive Feedback is Enhanced by Substrate Saturation Described by Michaelis–Menten Kinetics. Bull Math Biol 2018; 81:919-935. [DOI: 10.1007/s11538-018-00541-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
41
|
Maltsev AV, Bal NV, Balaban PM. LTP suppression by protein synthesis inhibitors is NO-dependent. Neuropharmacology 2018; 146:276-288. [PMID: 30540927 DOI: 10.1016/j.neuropharm.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/19/2018] [Accepted: 12/08/2018] [Indexed: 01/25/2023]
Abstract
For several decades, the ability of protein synthesis inhibitors (PSI) to suppress the long-term potentiation (LTP) of hippocampal responses is known. It is considered that mechanisms of such impairment are related to a cessation of translation and a delayed depletion of the protein pool required for maintenance of synaptic plasticity. The present study demonstrates that cycloheximide or anisomycin applications reduce amplitudes of the field excitatory postsynaptic potentials as well as the presynaptically mediated form of plasticity, the paired-pulse facilitation after LTP induction in neurons of the CA1 area of hippocampus. We showed that nitric oxide signaling could be one of the pathways that cause the LTP decrease induced by cycloheximide or anisomycin. Inhibitor of the NO synthase, L-NNA or the NO scavenger, PTIO, rescued the late-phase LTP and restored the paired-pulse facilitation up to the control levels. For the first time we have directly measured the nitric oxide production induced by application of the translation blockers in hippocampal neurons using the NO-sensitive dye DAF-FM. Inhibitory analysis demonstrated that changes during protein synthesis blockade downstream the NO signaling cascade are cGMP-independent and apparently are implemented through degradation of target proteins. Prolonged application of the NO donor SNAP impaired the LTP maintenance in the same manner as PSI.
Collapse
Affiliation(s)
- Alexander V Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia.
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia
| |
Collapse
|
42
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Martínez-Lazcano JC, López-Quiroz A, Alcantar-Almaraz R, Montes S, Sánchez-Mendoza A, Alcaraz-Zubeldia M, Tristán-López LA, Sánchez-Hernández BE, Morales-Martínez A, Ríos C, Pérez-Severiano F. A Hypothesis of the Interaction of the Nitrergic and Serotonergic Systems in Aggressive Behavior Induced by Exposure to Lead. Front Behav Neurosci 2018; 12:202. [PMID: 30233338 PMCID: PMC6129586 DOI: 10.3389/fnbeh.2018.00202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
The effects caused by exposure to lead (Pb) are still considered as a relevant health risk despite public policies aimed to restricting the use of this element. The toxicity limit in the blood (10 μg/dL, established by the Center for Disease Control and Prevention) has been insufficient to prevent adverse effects and even lower values have been related to neurobehavioral dysfunctions in children. Currently, there is not a safe limit of exposure to Pb. A large body of evidence points to environmental pollutant exposure as the cause of predisposition to violent behavior, among others. Considering the evidence by our group and others, we propose that Pb exposure induces alterations in the brain vasculature, specifically in nitric oxide synthases (NOS), affecting in turn the serotonergic system and leading to heightened aggressive behavior in the exposed individuals. This review article describes the consequences of Pb exposure on the nitrergic and serotonergic systems as well as its relationship with aggressive behavior. In addition, it summarizes the available therapy to prevent damage in gestation and among infants.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Lazcano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico.,Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Alfredo López-Quiroz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Rocío Alcantar-Almaraz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mireya Alcaraz-Zubeldia
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Luis Antonio Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | | | - Adriana Morales-Martínez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| |
Collapse
|
44
|
Masoumi J, Abbasloui M, Parvan R, Mohammadnejad D, Pavon-Djavid G, Barzegari A, Abdolalizadeh J. Apelin, a promising target for Alzheimer disease prevention and treatment. Neuropeptides 2018; 70:76-86. [PMID: 29807653 DOI: 10.1016/j.npep.2018.05.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/19/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with high outbreak rates. It is estimated that about 35 million individuals around the world suffered from dementia in 2010. AD is expected to increase twofold every 20 years and, by 2030, approximately 65 million people could suffer from this illness. AD is determined clinically by a cognitive impairment and pathologically by the production of amyloid beta (Aβ), neurofibrillary tangles, toxic free radicals and inflammatory mediators in the brain. There is still no treatment to cure or even alter the progressive course of this disease; however, many new therapies are being investigated and are at various stages of clinical trials. Neuropeptides are signaling molecules used by neurons to communicate with each other. One of the important neuropeptides is apelin, which can be isolated from bovine stomach. Apelin and its receptor APJ have been shown to broadly disseminate in the neurons and oligodendrocytes of the central nervous system. Apelin-13 is known to be the predominant neuropeptide in neuroprotection. It is involved in the processes of memory and learning as well as the prevention of neuronal damage. Studies have shown that apelin can directly or indirectly prevent the production of Aβ and reduce its amounts by increasing its degradation. Phosphorylation and accumulation of tau protein may also be inhibited by apelin. Apelin is considered as an anti-inflammatory agent by preventing the production of inflammatory mediators such as interleukin-1β and tumor necrosis factor alpha. It has been shown that in vivo and in vitro anti-apoptotic effects of apelin have prevented the death of neurons. In this review, we describe the various functions of apelin associated with AD and present an integrated overview of recent findings that, in general, recommend apelin as a promising therapeutic agent in the treatment of this ailment.
Collapse
Affiliation(s)
- Javad Masoumi
- Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abbasloui
- Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Parvan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abolfazl Barzegari
- Research Centre for Pharmaceotical Nanotechnology, Tabriz University (Medical Sciences), Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Modulation of Cellular Respiration by Endogenously Produced Nitric Oxide in Rat Hippocampal Slices. Methods Mol Biol 2018. [PMID: 29850995 DOI: 10.1007/978-1-4939-7831-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nitric oxide (•NO) is an ubiquitous signaling molecule that participates in molecular processes associated with several neural phenomena ranging from memory formation to excitotoxicity. In the hippocampus, neuronal •NO production is coupled to the activation of NMDA type glutamate receptors. Cytochrome c oxidase has emerged as a novel target for •NO, which competes with O2 for binding to this mitochondrial complex. This reaction establishes •NO as a regulator of cellular metabolism and, possibly, mitochondrial production of reactive oxygen species which participate in cellular signaling. A major gap in the understanding of •NO bioactivity, namely, in the hippocampus, has been the lack of knowledge of its concentration dynamics. Here, we present a detailed description of the simultaneous recording of •NO and O2 concentration dynamics in rat hippocampal slices. Carbon fiber microelectrodes are fabricated and applied for real-time measurements of both gases in a system close to in vivo models. This approach allows for a better understanding of the current paradigm by which an intricate interplay between •NO and O2 regulates cellular respiration.
Collapse
|
46
|
Marie C, Pedard M, Quirié A, Tessier A, Garnier P, Totoson P, Demougeot C. Brain-derived neurotrophic factor secreted by the cerebral endothelium: A new actor of brain function? J Cereb Blood Flow Metab 2018; 38:935-949. [PMID: 29557702 PMCID: PMC5998997 DOI: 10.1177/0271678x18766772] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons. However, given the cross-talk between endothelial cells and neurons and recent evidence that BDNF expressed by the cerebral endothelium largely accounts for BDNF levels present in the brain, it is likely that BDNF-based therapies would be most effective if they also targeted the cerebral endothelium. In this review, we summarize the available knowledge about the biology and actions of BDNF derived from endothelial cells of the cerebral microvasculature and we emphasize the remaining gaps and shortcomings.
Collapse
Affiliation(s)
- Christine Marie
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Martin Pedard
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France.,2 Service de Neurologie, CHRU, Dijon, France
| | - Aurore Quirié
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Anne Tessier
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Perle Totoson
- 3 EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Céline Demougeot
- 3 EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
47
|
Ostadhadi S, Shakiba S, Norouzi-Javidan A, Nikoui V, Zolfaghari S, Chamanara M, Dehpour AR. The role of nitric oxide-cGMP pathway in selegiline antidepressant-like effect in the mice forced swim test. Pharmacol Rep 2018; 70:1015-1022. [PMID: 32002950 DOI: 10.1016/j.pharep.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 04/03/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
BACKGROUND Considering the pivotal role of nitric oxide (NO) pathway in depressive disorders, the aim of the present study was to investigate the antidepressant-like effect of selegiline in mice forced swimming test (FST), and possible involvement of NO-cyclic guanosine monophosphate (cGMP) pathway in this action. METHODS After assessment of locomotor activity in open-field test, mice were forced to swim individually and the immobility time of the last 4 min was evaluated. All drugs were given intraperitoneally (ip). RESULTS Selegiline (10 mg/kg) decreased the immobility time in the FST similar to fluoxetine (20 mg/kg). Pretreatment with l-arginine (NO precursor, 750 mg/kg) or sildenafil (a phosphodiesterase 5 inhibitor, 5 mg/kg) significantly reversed the selegiline anti-immobility effect. Sub-effective dose of selegiline (1 mg/kg) showed a synergistic antidepressant effect with NG-nitro-l-arginine methyl ester (L-NAME, inhibitor of NO synthase, 10 mg/kg) or 7-nitroindazole (specific neuronal NO synthase inhibitor, 30 mg/kg), but not with aminoguanidine (specific inducible NO synthase inhibitor, 50 mg/kg). Pretreatment of mice with methylene blue (an inhibitor of NO synthase and soluble guanylyl cyclase, 10 mg/kg) significantly produced a synergistic response with the sub-effective dose of selegiline. Neither of the drugs changed the locomotor activity. Also, hippocampal and prefrontal cortex (PFC) nitrite content was significantly lower in selegiline-injected mice compared to saline-administrated mice. Also, co-injection of 7-nitroindazole with selegiline produced a significant reduction in hippocampal or PFC nitrite contents. CONCLUSIONS It is concluded that selegiline possesses antidepressant-like effect in mice FST through inhibition of l-arginine-NO-cyclic guanosine monophosphate pathway.
Collapse
Affiliation(s)
- Sattar Ostadhadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Shakiba
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Norouzi-Javidan
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Zolfaghari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Russwurm M, Koesling D. Measurement of cGMP-generating and -degrading activities and cGMP levels in cells and tissues: Focus on FRET-based cGMP indicators. Nitric Oxide 2018; 77:44-52. [PMID: 29684551 DOI: 10.1016/j.niox.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/16/2022]
Abstract
The intracellular messenger molecule cGMP has an established function in the regulation of numerous physiological events. Yet for the identification of further biological cGMP-mediated functions, precise information whether a cGMP response exists in a certain cell type or tissue is mandatory. In this review, the techniques to measure cGMP i.e. cGMP-formation, -degradation or levels are outlined and discussed. As a superior method to measure cGMP, the article focusses on FRET-based cGMP indicators, describes the different cGMP indicators and discusses their advantages and drawbacks. Finally, the successful applications of these cGMP indicators to measure cGMP responses in cells and tissues are outlined and summarized. Hopefully, with the availability of the FRET-based cGMP indicators, the knowledge about the cGMP responses in special cells or tissues is going to increase thereby allowing to assess further cGMP-mediated functional responses and possibly to address their pathophysiology with the available guanylyl cyclase activators, stimulators and PDE inhibitors.
Collapse
Affiliation(s)
- Michael Russwurm
- Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany.
| | - Doris Koesling
- Pharmakologie und Toxikologie, Medizinische Fakultät, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
49
|
Okuno H, Ieda N, Hotta Y, Kawaguchi M, Kimura K, Nakagawa H. A yellowish-green-light-controllable nitric oxide donor based on N-nitrosoaminophenol applicable for photocontrolled vasodilation. Org Biomol Chem 2018; 15:2791-2796. [PMID: 28272634 DOI: 10.1039/c7ob00245a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nitric oxide (NO) has been known as a gaseous chemical mediator, which modulates several physiological functions. Spatial and temporal control of NO release facilitates further study and medical application of NO. Herein, we report design and synthesis of a novel NO donor, NO-Rosa. NO-Rosa has a rosamine moiety, which absorbs yellowish green light. Upon irradiation with yellowish green light (530-590 nm), NO is released from NO-Rosa, presumably via photoinduced electron transfer from the N-nitrosoaminophenol moiety to the rosamine moiety. NO release from NO-Rosa was detected by ESR spin trapping and a NO fluorescent probe. Cellular NO release control was achieved in HEK293 cells using a NO fluorescent probe, DAF-FM DA. Furthermore, temporally controlled NO-induced vasodilation was demonstrated by treatment of a rat aortic strip with NO-Rosaex vivo and irradiation by yellowish green light. NO-Rosa is expected to be utilized for further study of NO-related physiological functions, utilizing its ability of spatiotemporal release of NO as a photocontrollable compound with harmless yellowish-green light.
Collapse
Affiliation(s)
- Hana Okuno
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Naoya Ieda
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Yuji Hotta
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Kazunori Kimura
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Science, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| |
Collapse
|
50
|
Chavez GG, Taylor G, Garaliene J, Richardson GP, Korneev SA. The temporal expression profile of a Nos3-related natural antisense RNA in the brain suggests a possible role in neurogenesis. Nitric Oxide 2017; 71:27-31. [PMID: 29031735 PMCID: PMC5714617 DOI: 10.1016/j.niox.2017.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022]
Abstract
Experimental work over the past several years has revealed an unexpected abundance of long natural antisense transcripts (NATs) in eukaryotic species. In light of the proposed role of such RNA molecules in the regulation of gene expression in the brain, attention is now focused on specific examples of neuronal NATs. Of particular interest are NATs that are complementary to mRNAs encoding nitric oxide synthase (NOS), the enzyme responsible for production of the important gaseous neurotransmitter nitric oxide (NO). Here we study the temporal expression profile of murine Nos3as NAT in the brain. Notably, Nos3as NAT is known to act as a negative regulator of Nos3 gene expression. The results of our quantitative analysis reveal differential expression of Nos3as NAT during embryonic and post-embryonic stages of development of the brain. Also, they show that the low levels of Nos3as NAT coincides with active neurogenesis. In addition we report on an inverse correlation between the relative expression level of Nos3as NAT and the level of Nos3 protein. Thus our data raise the hypothesis that the Nos3as NAT regulates neurogenesis through suppression of Nos3 gene activity. This idea is further supported by experiments conducted on the olfactory bulbs and cultured neuroblastoma cells.
Collapse
Affiliation(s)
- Gabriela G Chavez
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton, BN1 9QG, UK
| | - Gabriella Taylor
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton, BN1 9QG, UK
| | - Jekaterina Garaliene
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton, BN1 9QG, UK
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton, BN1 9QG, UK
| | - Sergei A Korneev
- Sussex Neuroscience, School of Life Science, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|