1
|
Li M, Mo J, Wu D, He H, Hu P. Treadmill training improves neural function recovery in rats with spinal cord injury via JAK2/STAT3 signaling pathway and attenuating apoptosis. Neuroreport 2024; 35:811-821. [PMID: 38973489 DOI: 10.1097/wnr.0000000000002062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
To investigate the role of JAK2/STAT3 signaling pathway in neural function recovery in rats with spinal cord injury (SCI) after treadmill training. Sprague-Dawley rats were randomly divided into four groups: (a) sham group; (b) SCI group; (c) SCI+treadmill training group (SCI/TT); and (d) SCI/TT+AG490 group (a JAK2 inhibitor) ( n = 12). The 12 Sprague-Dawley rats in each group were randomly assigned into 1 st , 3 rd , 7 th , and 14 th day subgroups. The Basso-Beattie-Bresnahan (BBB) locomotor rating scale was used to assess the spinal cord function, and JAK2, STAT3, and IL-6 protein expressions in the rat spinal cord were evaluated by western blot. The level of cell apoptosis and expressions of apoptotic proteins were evaluated by TUNEL assay and immunohistochemistry, respectively. Rats in the SCI+TT group showed a significantly higher BBB score after SCI compared with the SCI group and the SCI/TT+AG490 group. Mechanistically, the JAK2/STAT3 signal pathway was immediately activated after SCI compared with sham group, and JAK2 and STAT3 were obviously upregulated when treadmill training was performed ( P < 0.05). Results of TUNEL assay showed that the apoptotic rate in SCI/TT was significantly lower than that in the SCI group and SCI/TT+AG490 group ( P < 0.05). Besides, the IL-6 expression in the SCI/TT group was significantly attenuated compared with the SCI group ( P < 0.05). Our results showed that physical treadmill training can enhance activation of JAK2/STAT3 signal pathway and attenuate apoptosis in the injured spinal cord, resulting in better functional recovery. These results underline the importance of synergistic treatment strategies for SCI.
Collapse
Affiliation(s)
- Meng Li
- Department of Hyperbaric Oxygen, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Jinfeng Mo
- Neurology Department, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi
| | - Deguang Wu
- Department of Traumatic Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Haibo He
- Department of Traumatic Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou
| | - Panyong Hu
- Department of Spinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guangxi, China
| |
Collapse
|
2
|
Shan C, Zhang C, Zhang C. The Role of IL-6 in Neurodegenerative Disorders. Neurochem Res 2024; 49:834-846. [PMID: 38227113 DOI: 10.1007/s11064-023-04085-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
"Neurodegenerative disorder" is an umbrella term for a group of fatal progressive neurological illnesses characterized by neuronal loss and inflammation. Interleukin-6 (IL-6), a pleiotropic cytokine, significantly affects the activities of nerve cells and plays a pivotal role in neuroinflammation. Furthermore, as high levels of IL-6 have been frequently observed in association with several neurodegenerative disorders, it may potentially be used as a biomarker for the progression and prognosis of these diseases. This review summarizes the production and function of IL-6 as well as its downstream signaling pathways. Moreover, we make a comprehensive review on the roles of IL-6 in neurodegenerative disorders and its potential clinical application.
Collapse
Affiliation(s)
- Chen Shan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Chuanbao Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China.
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Pérez Gómez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. Cells 2022; 11:2044. [PMID: 35805128 PMCID: PMC9265636 DOI: 10.3390/cells11132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1β, and MIP-1β for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Molecular and Cellular Medicine, Texas A & M Health Science Center, Texas A & M University, College Station, TX 77843, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| |
Collapse
|
4
|
Carvalho-Silva AC, Da Silva Junior AR, Rigaud VOC, Martins WK, Coelho V, Pfrimer IAH, Kalil J, Fonseca SG, Cunha-Neto E, Ferreira LRP. A Major Downregulation of Circulating microRNAs in Zika Acutely Infected Patients: Potential Implications in Innate and Adaptive Immune Response Signaling Pathways. Front Genet 2022; 13:857728. [PMID: 35719399 PMCID: PMC9199004 DOI: 10.3389/fgene.2022.857728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) is an arbovirus mainly transmitted by mosquitos of the genus Aedes. The first cases of ZIKV infection in South America occurred in Brazil in 2015. The infection in humans causes diverse symptoms from asymptomatic to a syndrome-like dengue infection with fever, arthralgia, and myalgia. Furthermore, ZIKV infection during pregnancy is associated with fetal microcephaly and neurological disorders. The identification of host molecular mechanisms responsible for the modulation of different signaling pathways in response to ZIKV is the first step to finding potential biomarkers and therapeutic targets and understanding disease outcomes. In the last decade, it has been shown that microRNAs (miRNAs) are important post-transcriptional regulators involved in virtually all cellular processes. miRNAs present in body fluids can not only serve as key biomarkers for diagnostics and prognosis of human disorders but also contribute to cellular signaling offering new insights into pathological mechanisms. Here, we describe for the first time ZIKV-induced changes in miRNA plasma levels in patients during the acute and recovery phases of infection. We observed that during ZIKV acute infection, among the dysregulated miRNAs (DMs), the majority is with decreased levels when compared to convalescent and control patients. We used systems biology tools to build and highlight biological interactions between miRNAs and their multiple direct and indirect target molecules. Among the 24 DMs identified in ZIKV + patients, miR-146, miR-125a-5p, miR-30-5p, and miR-142-3p were related to signaling pathways modulated during infection and immune response. The results presented here are an effort to open new vistas for the key roles of miRNAs during ZIKV infection.
Collapse
Affiliation(s)
- Ana Carolina Carvalho-Silva
- RNA Systems Biology Laboratory (RSBL), Departmento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Biologia Celular, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Almir Ribeiro Da Silva Junior
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Waleska Kerllen Martins
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Universidade Anhanguera, São Paulo, Brazil
| | - Verônica Coelho
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Gonçalves Fonseca
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor) School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- National Institute of Science and Technology for Vaccines (INCTV), Belo Horizonte, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Ludmila Rodrigues Pinto Ferreira,
| |
Collapse
|
5
|
Tennakoon A, Katharesan V, Musgrave IF, Koblar SA, Faull RLM, Curtis MA, Johnson IP. Normal aging, motor neurone disease, and Alzheimer's disease are characterized by cortical changes in inflammatory cytokines. J Neurosci Res 2021; 100:653-669. [PMID: 34882833 DOI: 10.1002/jnr.24996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
The role of increased brain inflammation in the development of neurodegenerative diseases is unclear. Here, we have compared cytokine changes in normal aging, motor neurone disease (MND), and Alzheimer's disease (AD). After an initial analysis, six candidate cytokines, interleukin (IL)- 4, 5, 6, 10, macrophage inhibitory protein (MIP)-1α, and fibroblast growth factor (FGF)-2, showing greatest changes were assayed in postmortem frozen human superior frontal gyri (n = 12) of AD patients, aging and young adult controls along with the precentral gyrus (n = 12) of MND patients. Healthy aging was associated with decreased anti-inflammatory IL-10 and FGF-2 levels. AD prefrontal cortex was associated with increased levels of IL-4, IL-5, and FGF-2, with the largest increase seen for FGF-2. Notwithstanding differences in the specific frontal lobe gyrus sampled, MND patients' primary motor cortex (precentral gyrus) was associated with increased levels of IL-5, IL-6, IL-10, and FGF-2 compared to the aging prefrontal cortex (superior frontal gyrus). Immunocytochemistry showed that FGF-2 is expressed in neurons, astrocytes, and microglia in normal aging prefrontal cortex, AD prefrontal cortex, and MND motor cortex. We report that healthy aging and age-related neurodegenerative diseases have different cortical inflammatory signatures that are characterized by increased levels of anti-inflammatory cytokines and call into question the view that increased inflammation underlies the development of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Anuradha Tennakoon
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Viythia Katharesan
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Simon Andrea Koblar
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Maurice Anthony Curtis
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Ian Paul Johnson
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
6
|
Perez Gomez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Genetic and immunological contributors to virus-induced paralysis. Brain Behav Immun Health 2021; 18:100395. [PMID: 34917987 PMCID: PMC8645428 DOI: 10.1016/j.bbih.2021.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/25/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infection by a single virus can evoke diverse immune responses, resulting in different neurological outcomes, depending on the host's genetic background. To study heterogenous viral response, we use Theiler's Murine Encephalomyelitis Virus (TMEV) to model virally induced neurological phenotypes and immune responses in Collaborative Cross (CC) mice. The CC resource consists of genetically distinct and reproducible mouse lines, thus providing a population model with genetic heterogeneity similar to humans. We examined different CC strains for the effect of chronic stage TMEV-induced immune responses on neurological outcomes throughout 90 days post infection (dpi), with a particular focus on limb paralysis, by measuring serum levels of 23 different cytokines and chemokines. Each CC strain demonstrated a unique set of immune responses, regardless of presence or absence of TMEV RNA. Using stepwise regression, significant associations were identified between IL-1α, RANTES, and paralysis frequency scores. To better understand these interactions, we evaluated multiple aspects of the different CC genetic backgrounds, including haplotypes of genomic regions previously linked with TMEV pathogenesis and viral clearance or persistence, individual cytokine levels, and TMEV-relevant gene expression. These results demonstrate how loci previously associated with TMEV outcomes provide incomplete information regarding TMEV-induced paralysis in the CC strains. Overall, these findings provide insight into the complex roles of immune response in the pathogenesis of virus-associated neurological diseases influenced by host genetic background.
Collapse
Key Words
- Amyotrophic Lateral Sclerosis, (ALS)
- Chromosome, (Chr)
- Chronic infection
- Collaborative Cross, (CC)
- Collaborative cross
- Cytokine
- Epstein-Barr Virus, (EBV)
- Host response
- IL-1 α
- Multiple Sclerosis, (MS)
- Paralysis
- Parkinson's disease, (PD)
- RANTES
- TMEV
- Theiler's murine encephalomyelitis virus, (TMEV)
- Viral infection
- blood brain barrier, (BBB)
- central nervous system, (CNS)
- days post infection, (dpi)
- experimental autoimmune encephalitis, (EAE)
- intraperitoneal, (IP)
- phosphate buffered saline, (PBS)
- plaque-forming units, (PFU)
- receptor for IL-1 α, (Il1r1)
Collapse
Affiliation(s)
- Aracely A. Perez Gomez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author. Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A&M University, College Station, TX, USA
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Yu G, Zilundu PLM, Xu X, Li Y, Zhou Y, Zhong K, Fu R, Zhou LH. The temporal pattern of brachial plexus root avulsion-induced lncRNA and mRNA expression prior to the motoneuron loss in the injured spinal cord segments. Neurochem Int 2020; 132:104611. [DOI: 10.1016/j.neuint.2019.104611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/08/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
|
8
|
Bobbo VCD, Jara CP, Mendes NF, Morari J, Velloso LA, Araújo EP. Interleukin-6 Expression by Hypothalamic Microglia in Multiple Inflammatory Contexts: A Systematic Review. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1365210. [PMID: 31534953 PMCID: PMC6724433 DOI: 10.1155/2019/1365210] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Interleukin-6 (IL-6) is a unique cytokine that can play both pro- and anti-inflammatory roles depending on the anatomical site and conditions under which it has been induced. Specific neurons of the hypothalamus provide important signals to control food intake and energy expenditure. In individuals with obesity, a microglia-dependent inflammatory response damages the neural circuits responsible for maintaining whole-body energy homeostasis, resulting in a positive energy balance. However, little is known about the role of IL-6 in the regulation of hypothalamic microglia. In this systematic review, we asked what types of conditions and stimuli could modulate microglial IL-6 expression in murine model. We searched the PubMed and Web of Science databases and analyzed 13 articles that evaluated diverse contexts and study models focused on IL-6 expression and microglia activation, including the effects of stress, hypoxia, infection, neonatal overfeeding and nicotine exposure, lipopolysaccharide stimulus, hormones, exercise protocols, and aging. The results presented in this review emphasized the role of "injury-like" stimuli, under which IL-6 acts as a proinflammatory cytokine, concomitant with marked microglial activation, which drive hypothalamic neuroinflammation. Emerging evidence indicates an important correlation of basal IL-6 levels and microglial function with the maintenance of hypothalamic homeostasis. Advances in our understanding of these different contexts will lead to the development of more specific pharmacological approaches for the management of acute and chronic conditions, like obesity and metabolic diseases, without disturbing the homeostatic functions of IL-6 and microglia in the hypothalamus.
Collapse
Affiliation(s)
- Vanessa C. D. Bobbo
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Carlos P. Jara
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Natália F. Mendes
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Lício A. Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| | - Eliana P. Araújo
- Faculty of Nursing, University of Campinas, SP 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, SP 13083-864, Brazil
| |
Collapse
|
9
|
Wang LC, Yao HW, Chang CF, Wang SW, Wang SM, Chen SH. Suppression of interleukin-6 increases enterovirus A71 lethality in mice. J Biomed Sci 2017; 24:94. [PMID: 29233145 PMCID: PMC5726025 DOI: 10.1186/s12929-017-0401-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Enterovirus A71 (EV-A71) infection can induce fatal encephalitis in young children. Clinical reports show that interleukin-6 (IL-6) levels in the serum and cerebrospinal fluid of infected patients with brainstem encephalitis are significantly elevated. We used a murine model to address the significance of endogenous IL-6 in EV-A71 infection. Results EV-A71 infection transiently increased serum and brain IL-6 protein levels in mice. Most importantly, absence of IL-6 due to gene knockout or depletion of IL-6 using neutralizing monoclonal antibody enhanced the mortality and tissue viral load of infected mice. Absence of IL-6 increased the damage in the central nervous system and decreased the lymphocyte and virus-specific antibody responses of infected mice. Conclusions Endogenous IL-6 functions to clear virus and protect the host from EV-A71 infection. Our study raises caution over the use of anti-IL-6 antibody or pentoxifylline to reduce IL-6 for patient treatment. Electronic supplementary material The online version of this article (10.1186/s12929-017-0401-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Chiu Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Hui-Wen Yao
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Chuan-Fa Chang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Shainn-Wei Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.,Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Shih-Min Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.,Department of Pediatrics, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Shun-Hua Chen
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.
| |
Collapse
|
10
|
Shives KD, Tyler KL, Beckham JD. Molecular mechanisms of neuroinflammation and injury during acute viral encephalitis. J Neuroimmunol 2017; 308:102-111. [DOI: 10.1016/j.jneuroim.2017.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/23/2017] [Accepted: 03/06/2017] [Indexed: 01/25/2023]
|
11
|
Metals in Spine. World Neurosurg 2017; 100:619-627. [DOI: 10.1016/j.wneu.2016.12.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 02/06/2023]
|
12
|
Wootla B, Denic A, Watzlawik JO, Warrington AE, Zoecklein LJ, Papke-Norton LM, David C, Rodriguez M. Human class I major histocompatibility complex alleles determine central nervous system injury versus repair. J Neuroinflammation 2016; 13:293. [PMID: 27855706 PMCID: PMC5112886 DOI: 10.1186/s12974-016-0759-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/03/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We investigated the role of human HLA class I molecules in persistent central nervous system (CNS) injury versus repair following virus infection of the CNS. METHODS Human class I A11+ and B27+ transgenic human beta-2 microglobulin positive (Hβ2m+) mice of the H-2 b background were generated on a combined class I-deficient (mouse beta-2 microglobulin deficient, β2m0) and class II-deficient (mouse Aβ0) phenotype. Intracranial infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL mice results in acute encephalitis with prominent injury in the hippocampus, striatum, and cortex. RESULTS Following infection with TMEV, a picornavirus, the Aβ0.β2m0 mice lacking active immune responses died within 18 to 21 days post-infection. These mice showed severe encephalomyelitis due to rapid replication of the viral genome. In contrast, transgenic Hβ2m mice with insertion of a single human class I MHC gene in the absence of human or mouse class II survived the acute infection. Both A11+ and B27+ mice significantly controlled virus RNA expression by 45 days and did not develop late-onset spinal cord demyelination. By 45 days post-infection (DPI), B27+ transgenic mice showed almost complete repair of the virus-induced brain injury, but A11+ mice conversely showed persistent severe hippocampal and cortical injury. CONCLUSIONS The findings support the hypothesis that the expression of a single human class I MHC molecule, independent of persistent virus infection, influences the extent of sub frequent chronic neuronal injury or repair in the absence of a class II MHC immune response.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Arthur E. Warrington
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Laurie J. Zoecklein
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Louisa M. Papke-Norton
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Chella David
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
13
|
Wootla B, Denic A, Watzlawik JO, Warrington AE, Rodriguez M. Antibody-Mediated Oligodendrocyte Remyelination Promotes Axon Health in Progressive Demyelinating Disease. Mol Neurobiol 2016; 53:5217-28. [PMID: 26409478 PMCID: PMC5012151 DOI: 10.1007/s12035-015-9436-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023]
Abstract
Demyelination underlies early neurological symptoms in multiple sclerosis (MS); however, axonal damage is considered critical for permanent chronic deficits. The precise mechanisms by which axonal injury occurs in MS are unclear; one hypothesis is the absence or failure of remyelination, suggesting that promoting remyelination may protect axons from death. This report provides direct evidence that promoting oligodendrocyte remyelination protects axons and maintains transport function. Persistent Theiler's virus infection of Swiss Jim Lambert (SJL)/J mice was used as a model of MS to assess the effects of remyelination on axonal injury following demyelination in the spinal cord. Remyelination was induced using an oligodendrocyte/myelin-specific recombinant human monoclonal IgM, rHIgM22. The antibody is endowed with strong anti-apoptotic and pro-proliferative effects on oligodendrocyte progenitor cells. We used (1)H-magnetic resonance spectroscopy (MRS) at the brainstem to measure N-acetyl-aspartate (NAA) as a surrogate of neuronal health and spinal cord integrity. We found increased brainstem NAA concentrations at 5 weeks post-treatment with rHIgM22, which remained stable out to 10 weeks. Detailed spinal cord morphology studies revealed enhanced remyelination in the rHIgM22-treated group but not in the isotype control antibody- or saline-treated groups. Importantly, we found rHIgM22-mediated remyelination protected small- and medium-caliber mid-thoracic spinal cord axons from damage despite similar demyelination and inflammation across all experimental groups. The most direct confirmation of remyelination-mediated protection of descending neurons was an improvement in retrograde transport. Treatment with rHIgM22 significantly increased the number of retrograde-labeled neurons in the brainstem, indicating that preserved axons are functionally competent. This is direct validation that remyelination preserves spinal cord axons and protects functional axon integrity.
Collapse
Affiliation(s)
- Bharath Wootla
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aleksandar Denic
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jens O Watzlawik
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Arthur E Warrington
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Moses Rodriguez
- Departments of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
- Departments of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Riesberg LA, Weed SA, McDonald TL, Eckerson JM, Drescher KM. Beyond muscles: The untapped potential of creatine. Int Immunopharmacol 2016; 37:31-42. [PMID: 26778152 PMCID: PMC4915971 DOI: 10.1016/j.intimp.2015.12.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/15/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022]
Abstract
Creatine is widely used by both elite and recreational athletes as an ergogenic aid to enhance anaerobic exercise performance. Older individuals also use creatine to prevent sarcopenia and, accordingly, may have therapeutic benefits for muscle wasting diseases. Although the effect of creatine on the musculoskeletal system has been extensively studied, less attention has been paid to its potential effects on other physiological systems. Because there is a significant pool of creatine in the brain, the utility of creatine supplementation has been examined in vitro as well as in vivo in both animal models of neurological disorders and in humans. While the data are preliminary, there is evidence to suggest that individuals with certain neurological conditions may benefit from exogenous creatine supplementation if treatment protocols can be optimized. A small number of studies that have examined the impact of creatine on the immune system have shown an alteration in soluble mediator production and the expression of molecules involved in recognizing infections, specifically toll-like receptors. Future investigations evaluating the total impact of creatine supplementation are required to better understand the benefits and risks of creatine use, particularly since there is increasing evidence that creatine may have a regulatory impact on the immune system.
Collapse
Affiliation(s)
- Lisa A Riesberg
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Stephanie A Weed
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Thomas L McDonald
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495, Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | - Joan M Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
15
|
A single dose of a neuron-binding human monoclonal antibody improves brainstem NAA concentrations, a biomarker for density of spinal cord axons, in a model of progressive multiple sclerosis. J Neuroinflammation 2015; 12:83. [PMID: 25924771 PMCID: PMC4418041 DOI: 10.1186/s12974-015-0303-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intracerebral infection of susceptible mouse strains with Theiler's murine encephalomyelitis virus (TMEV) results in chronic demyelinating disease with progressive axonal loss and neurologic dysfunction similar to progressive forms of multiple sclerosis (MS). We previously showed that as the disease progresses, a marked decrease in brainstem N-acetyl aspartate (NAA; metabolite associated with neuronal integrity) concentrations, reflecting axon health, is measured. We also demonstrated stimulation of neurite outgrowth by a neuron-binding natural human antibody, IgM12. Treatment with either the serum-derived or recombinant human immunoglobulin M 12 (HIgM12) preserved functional motor activity in the TMEV model. In this study, we examined IgM-mediated changes in brainstem NAA concentrations and central nervous system (CNS) pathology. FINDINGS (1)H-magnetic resonance spectroscopy (MRS) showed that treatment with HIgM12 significantly increased brainstem NAA concentrations compared to controls in TMEV-infected mice. Pathologic analysis demonstrated a significant preservation of axons in the spinal cord of animals treated with HIgM12. CONCLUSIONS This study links drug efficacy of slowing deficits with axon preservation and NAA concentrations in the brainstem in a model of progressive MS. HIgM12-mediated changes of NAA concentrations in the brainstem are a surrogate marker of axon injury/preservation throughout the spinal cord. This study provides proof-of-concept that a neuron-reactive human IgM can be therapeutic and provides a biomarker for clinical trials.
Collapse
|
16
|
Kumar RG, Diamond ML, Boles JA, Berger RP, Tisherman SA, Kochanek PM, Wagner AK. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun 2015; 45:253-62. [PMID: 25555531 DOI: 10.1016/j.bbi.2014.12.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in a significant inflammatory burden that perpetuates the production of inflammatory mediators and biomarkers. Interleukin-6 (IL-6) is a pro-inflammatory cytokine known to be elevated after trauma, and a major contributor to the inflammatory response following TBI. Previous studies have investigated associations between IL-6 and outcome following TBI, but to date, studies have been inconsistent in their conclusions. We hypothesized that cohort heterogeneity, temporal inflammatory profiles, and concurrent inflammatory marker associations are critical to characterize when targeting subpopulations for anti-inflammatory therapies. Toward this objective, we used serial cerebrospinal fluid (CSF) samples to generate temporal acute IL-6 trajectory (TRAJ) profiles in a prospective cohort of adults with severe TBI (n=114). We examined the impact of injury type on IL-6 profiles, and how IL-6 profiles impact sub-acute (2weeks-3months) serum inflammatory marker load and long-term global outcome 6-12months post-injury. There were two distinct acute CSF IL-6 profiles, a high and low TRAJ group. Individuals in the high TRAJ had increased odds of unfavorable Glasgow Outcome Scale (GOS) scores at 6months (adjusted OR=3.436, 95% CI: 1.259, 9.380). Individuals in the high TRAJ also had higher mean acute CSF inflammatory load compared to individuals in the low TRAJ (p⩽0.05). The two groups did not differ with respect acute serum profiles; however, individuals in the high CSF IL-6 TRAJ also had higher mean sub-acute serum IL-1β and IL-6 levels compared with the low TRAJ group (p⩽0.05). Lastly, injury type (isolated TBI vs. TBI+polytrauma) was associated with IL-6 TRAJ group (χ(2)=5.31, p=0.02). Specifically, there was 70% concordance between those with TBI+polytrauma and the low TRAJ; in contrast, isolated TBI was similarly distributed between TRAJ groups. These data provide evidence that sustained, elevated levels of CSF IL-6 are associated with an increased inflammatory load, and these increases are associated with increased odds for unfavorable global outcomes in the first year following TBI. Future studies should explore additional factors contributing to IL-6 elevations, and therapies to mitigate its detrimental effects on outcome.
Collapse
Affiliation(s)
- R G Kumar
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - M L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - J A Boles
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States
| | - R P Berger
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - S A Tisherman
- Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, United States
| | - P M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - A K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
17
|
Wang T, Yuan W, Liu Y, Zhang Y, Wang Z, Zhou X, Ning G, Zhang L, Yao L, Feng S, Kong X. The role of the JAK-STAT pathway in neural stem cells, neural progenitor cells and reactive astrocytes after spinal cord injury. Biomed Rep 2014; 3:141-146. [PMID: 25798237 DOI: 10.3892/br.2014.401] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 12/18/2022] Open
Abstract
Patients with spinal cord injuries can develop severe neurological damage and dysfunction, which is not only induced by primary but also by secondary injuries. As an evolutionarily conserved pathway of eukaryotes, the JAK-STAT pathway is associated with cell growth, survival, development and differentiation; activation of the JAK-STAT pathway has been previously reported in central nervous system injury. The JAK-STAT pathway is directly associated with neurogenesis and glia scar formation in the injury region. Following injury of the axon, the overexpression and activation of STAT3 is exhibited specifically in protecting neurons. To investigate the role of the JAK-STAT pathway in neuroprotection, we summarized the effect of JAK-STAT pathway in the following three sections: Firstly, the modulation of JAK-STAT pathway in proliferation and differentiation of neural stem cells and neural progenitor cells is discussed; secondly, the time-dependent effect of JAK-STAT pathway in reactive astrocytes to reveal their capability of neuroprotection is revealed and lastly, we focus on how the astrocyte-secretory polypeptides (astrocyte-derived cytokines and trophic factors) accomplish neuroprotection via the JAK-STAT pathway.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China ; Department of Orthopedics, The 266th Hospital of the Chinese People's Liberation Army, Chengde, Hebei 067000, P.R. China
| | - Wenqi Yuan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanjun Zhang
- Department of Orthopedics, Capital Medical University Luhe Hospital, Beijing 100000, P.R. China
| | - Zhijie Wang
- Department of Paediatric Internal Medicine, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xianhu Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Liwei Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
18
|
Bell MP, Renner DN, Johnson AJ, Pavelko KD. An elite controller of picornavirus infection targets an epitope that is resistant to immune escape. PLoS One 2014; 9:e94332. [PMID: 24710606 PMCID: PMC3978045 DOI: 10.1371/journal.pone.0094332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 11/22/2022] Open
Abstract
The emergence of novel viral pathogens can lead to devastating consequences in the infected population. However, on occasion, rare hyper-responsive elite controllers are able to mount a protective primary response to infection and clear the new pathogen. Factors distinguishing elite controllers from other members of the population are not completely understood. We have been using Theiler's murine encephalomyelitis as a model of primary infection in mice and clearance of the virus is limited to one MHC genotype capable of generating a protective response to a single viral peptide VP2121-130. The genetics of host susceptibility to TMEV, a natural mouse pathogen, has been studied extensively and non-protective CD8 responses to other peptides have been documented, however, little is known why the protective response to infection focuses on the VP2121-130 peptide. To study this question, we have generated TMEV mutants that encode for mutations within the VP2121-130 peptide. We find that very few of mutants are able to assemble and infect in vitro. These mutations are not related to virus RNA structure since non-coding mutations do not interfere with assembly. In the rare event when functional VP2121-130 mutant viruses did emerge, they were attenuated to some level or retained the ability to develop an immune response to the wild-type VP2121-130 sequence, demonstrating that the virus is incapable of escaping the protective response. These findings advance our understanding of how characteristics of the host immune response and an infectious agent can interact to lead to the appearance of rare super controllers in a population. Furthermore, the immutable nature of the viral antigen highlights the importance of choosing appropriate vaccine antigens and has implications for the development of agents that are able to generate protective CD8 T-cell responses.
Collapse
Affiliation(s)
- Michael P. Bell
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Danielle N. Renner
- Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Neurology, Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
19
|
Denic A, Wootla B, Zoecklein L, Rodriguez M. Deletion of Virus-specific T-cells Enhances Remyelination in a Model of Multiple Sclerosis. JOURNAL OF NEUROLOGY & TRANSLATIONAL NEUROSCIENCE 2014; 2:1032. [PMID: 25383388 PMCID: PMC4222056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We used transgenic expression of capsid antigens to Theiler's murine encephalomyelitis virus (TMEV) to study how the immune response to VP1 and VP2 influences spinal cord demyelination, remyelination and axonal loss during the acute and chronic phases of infection. Expression from birth of capsid antigen under the ubiquitin promoter resulted in tolerance to the antigen and absence of an immune response to the respective capsid antigen following virus infection. The transgenic mice were crossed to B10.Q mice normally susceptible to demyelination but which, when compared to FVB mice of the same H2 q haplotype, show poor remyelination. The major finding in this study was that VP1+ and VP2+ animals featured more remyelination at all three chronic time points (90, 180 and 270 dpi) than transgene-negative controls. Interestingly, at 270 dpi, remyelination in VP1+ mice tended to be higher and more complete than that in VP2+ mice. Compared with transgene- negative controls, VP1+ and VP2+ animals showed similar demyelination in but less only late in the disease (270 dpi). The number of mid-thoracic axons at the last time point correlated with the levels of remyelination. The increase in number of axons in VP1+ mice with remyelination was driven by counts in medium- and large-caliber axons. This study supports the hypothesis that expression of viral capsid proteins as self and subsequent genetic deletion of capsid-specific T cells influences the extent of spinal cord remyelination following Theiler's virus-induced demyelination. We propose that VP1- and, to a lesser extent, VP2-specific CD8+ T cells limit and/or prevent the naturally occurring process of remyelination. This finding may have relevance to human multiple sclerosis, as targeted removal of CD8+ T cells specific for a yet-to-be-discovered causative peptide may enhance remyelination and prevent axonal loss in patients.
Collapse
Affiliation(s)
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
| | | | - Moses Rodriguez
- Department of Neurology, Mayo Clinic, Rochester, MN 55905
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
20
|
Cunningham BW, Hallab NJ, Hu N, McAfee PC. Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model. J Neurosurg Spine 2013; 19:336-50. [DOI: 10.3171/2013.5.spine13166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The introduction and utilization of motion-preserving implant systems for spinal reconstruction served as the impetus for this basic scientific investigation. The effect of unintended wear particulate debris resulting from micromotion at spinal implant interconnections and bearing surfaces remains a clinical concern. Using an in vivo rabbit model, the current study quantified the neural and systemic histopathological responses following epidural application of 11 different types of medical-grade particulate wear debris produced from spinal instrumentation.
Methods
A total of 120 New Zealand White rabbits were equally randomized into 12 groups based on implant treatment: 1) sham (control), 2) stainless steel, 3) titanium alloy, 4) cobalt chromium alloy, 5) ultra–high molecular weight polyethylene (UHMWPe), 6) ceramic, 7) polytetrafluoroethylene, 8) polycarbonate urethane, 9) silicone, 10) polyethylene terephthalate, 11) polyester, and 12) polyetheretherketone. The surgical procedure consisted of a midline posterior approach followed by resection of the L-6 spinous process and L5–6 ligamentum flavum, permitting interlaminar exposure of the dural sac. Four milligrams of the appropriate treatment material (Groups 2–12) was then implanted onto the dura in a dry, sterile format. All particles (average size range 0.1–50 μm in diameter) were verified to be endotoxin free prior to implantation. Five animals from each treatment group were sacrificed at 3 months and 5 were sacrificed at 6 months postoperatively. Postmortem analysis included epidural cultures and histopathological assessment of local and systemic tissue samples. Immunocytochemical analysis of the spinal cord and overlying epidural fibrosis quantified the extent of proinflammatory cytokines (tumor necrosis factor–α, tumor necrosis factor–β, interleukin [IL]–1α, IL-1β, and IL-6) and activated macrophages.
Results
Epidural cultures were negative for nearly all cases, and there was no evidence of particulate debris or significant histopathological changes in the systemic tissues. Gross histopathological examination demonstrated increased levels of epidural fibrosis in the experimental treatment groups compared with the control group. Histopathological evaluation of the epidural fibrous tissues showed evidence of a histiocytic reaction containing phagocytized inert particles and foci of local inflammatory reactions. At 3 months, immunohistochemical examination of the spinal cord and epidural tissues demonstrated upregulation of IL-6 in the groups in which metallic and UHMWPe debris were implanted (p < 0.05), while macrophage activity levels were greatest in the stainless-steel and UHMWPe groups (p < 0.05). By 6 months, the levels of activated cytokines and macrophages in nearly all experimental cases were downregulated and not significantly different from those of the operative controls (p > 0.05). The spinal cord had no evidence of lesions or neuropathology. However, multiple treatments in the metallic groups exhibited a mild, chronic macrophage response to particulate debris, which had diffused intrathecally.
Conclusions
Epidural application of spinal instrumentation particulate wear debris elicits a chronic histiocytic reaction localized primarily within the epidural fibrosis. Particles have the capacity to diffuse intrathecally, eliciting a transient upregulation in macrophage/cytokine activity response within the epidural fibrosis. Overall, based on the time periods evaluated, there was no evidence of an acute neural or systemic histopathological response to the materials included in the current project.
Collapse
Affiliation(s)
- Bryan W. Cunningham
- 1Orthopaedic Spinal Research Institute and Scoliosis and Spine Center, University of Maryland St. Joseph Medical Center, Towson, Maryland; and
| | - Nadim J. Hallab
- 2Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Nianbin Hu
- 1Orthopaedic Spinal Research Institute and Scoliosis and Spine Center, University of Maryland St. Joseph Medical Center, Towson, Maryland; and
| | - Paul C. McAfee
- 1Orthopaedic Spinal Research Institute and Scoliosis and Spine Center, University of Maryland St. Joseph Medical Center, Towson, Maryland; and
| |
Collapse
|
21
|
The epitope integration site for vaccine antigens determines virus control while maintaining efficacy in an engineered cancer vaccine. Mol Ther 2013; 21:1087-95. [PMID: 23568262 DOI: 10.1038/mt.2013.52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Picornaviruses have been developed as potential therapies for gene delivery and vaccination. One drawback to their use is the potential for recombination and viral persistence. Therefore, the engineering strategies used must take into account the possibility for virus escape. We have developed Theiler's murine encephalomyelitis virus (TMEV) as a potential vaccine vector for use in immunotherapy. This study shows that insertion of a vaccine epitope at a unique site within the TMEV leader protein can dramatically increase the type I interferon (IFN) response to infection and promote rapid viral clearance. This live virus vaccine maintains its ability to drive antigen-specific CD8(+) T-cell responses to a model antigen as well as to the weakly immunogenic tumor antigen Her2/neu. Furthermore, the epitope integration site does not affect the efficacy of this vaccine as cancer immunotherapy for treating models of melanoma and breast cancer as demonstrated by delayed tumor outgrowth and increased survival in animals implanted with these tumors. These findings show that an attenuated virus retaining limited ability to replicate nonetheless can effectively mobilize CD8(+) cellular immunity and will be important for the design of picornavirus vectors used as immunotherapy in clinical settings.
Collapse
|
22
|
Control of early Theiler's murine encephalomyelitis virus replication in macrophages by interleukin-6 occurs in conjunction with STAT1 activation and nitric oxide production. J Virol 2012; 86:10841-51. [PMID: 22837198 DOI: 10.1128/jvi.01402-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During Theiler's murine encephalomyelitis virus (TMEV) infection of macrophages, it is thought that high interleukin-6 (IL-6) levels contribute to the demyelinating disease found in chronically infected SJL/J mice but absent in B10.S mice capable of clearing the infection. Therefore, IL-6 expression was measured in TMEV-susceptible SJL/J and TMEV-resistant B10.S macrophages during their infection with TMEV DA strain or responses to lipopolysaccharide (LPS) or poly(I · C). Unexpectedly, IL-6 production was greater in B10.S macrophages than SJL/J macrophages during the first 24 h after stimulation with TMEV, LPS, or poly(I · C). Further experiments showed that in B10.S, SJL/J, and RAW264.7 macrophage cells, IL-6 expression was dependent on extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) and enhanced by exogenous IL-12. In SJL/J and RAW264.7 macrophages, exogenous IL-6 resulted in decreased TMEV replication, earlier activation of STAT1 and STAT3, production of nitric oxide, and earlier upregulation of several antiviral genes downstream of STAT1. However, neither inhibition of IL-6-induced nitric oxide nor knockdown of STAT1 diminished the early antiviral effect of exogenous IL-6. In addition, neutralization of endogenous IL-6 from SJL/J macrophages with Fab antibodies did not exacerbate early TMEV infection. Therefore, endogenous IL-6 expression after TMEV infection is dependent on ERK MAPK, enhanced by IL-12, but too slow to decrease viral replication during early infection. In contrast, exogenous IL-6 enhances macrophage control of TMEV infection through preemptive antiviral nitric oxide production and antiviral STAT1 activation. These results indicate that immediate-early production of IL-6 could protect macrophages from TMEV infection.
Collapse
|
23
|
Coelho-Santos V, Gonçalves J, Fontes-Ribeiro C, Silva AP. Prevention of methamphetamine-induced microglial cell death by TNF-α and IL-6 through activation of the JAK-STAT pathway. J Neuroinflammation 2012; 9:103. [PMID: 22642790 PMCID: PMC3391183 DOI: 10.1186/1742-2094-9-103] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Background It is well known that methamphetamine (METH) is neurotoxic and recent studies have suggested the involvement of neuroinflammatory processes in brain dysfunction induced by misuse of this drug. Indeed, glial cells seem to be activated in response to METH, but its effects on microglial cells are not fully understood. Moreover, it has been shown that cytokines, which are normally released by activated microglia, may have a dual role in response to brain injury. This led us to study the toxic effect of METH on microglial cells by looking to cell death and alterations of tumor necrosis factor-alpha (TNF-α) and interleukine-6 (IL-6) systems, as well as the role played by these cytokines. Methods We used the N9 microglial cell line, and cell death and proliferation were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and incorporation of bromodeoxyuridine, respectively. The TNF-α and IL-6 content was quantified by enzyme-linked immunosorbent assay, and changes in TNF receptor 1, IL-6 receptor-alpha, Bax and Bcl-2 protein levels by western blotting. Immunocytochemistry analysis was also performed to evaluate alterations in microglial morphology and in the protein expression of phospho-signal transducer and activator of transcription 3 (pSTAT3). Results METH induced microglial cell death in a concentration-dependent manner (EC50 = 1 mM), and also led to significant morphological changes and decreased cell proliferation. Additionally, this drug increased TNF-α extracellular and intracellular levels, as well as its receptor protein levels at 1 h, whereas IL-6 and its receptor levels were increased at 24 h post-exposure. However, the endogenous proinflammatory cytokines did not contribute to METH-induced microglial cell death. On the other hand, exogenous low concentrations of TNF-α or IL-6 had a protective effect. Interestingly, we also verified that the anti-apoptotic role of TNF-α was mediated by activation of IL-6 signaling, specifically the janus kinase (JAK)-STAT3 pathway, which in turn induced down-regulation of the Bax/Bcl-2 ratio. Conclusions These findings show that TNF-α and IL-6 have a protective role against METH-induced microglial cell death via the IL-6 receptor, specifically through activation of the JAK-STAT3 pathway, with consequent changes in pro- and anti-apoptotic proteins.
Collapse
Affiliation(s)
- Vanessa Coelho-Santos
- Laboratory of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
24
|
In vitro beneficial activation of microglial cells by mechanically-injured astrocytes enhances the synthesis and secretion of BDNF through p38MAPK. Neurochem Int 2012; 61:175-86. [PMID: 22561407 DOI: 10.1016/j.neuint.2012.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/20/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022]
Abstract
It has long been promulgated that microglial cells serve beneficial roles in the central nervous system (CNS). The beneficial role of microglial cells is considered to be linked with microglial activation and consequent up-regulation of various trophic factors. However, what triggers microglial activation and consequent elevated level of trophic factors, especially brain-derived neurotrophic factor (BDNF), following traumatic CNS injury has become a crucial but elusive issue. Furthermore, an effort still remains in understanding of the cellular and molecular mechanisms underlying the endogenous neuroprotection of activated microglial cells. In this study, we demonstrated that mechanically-injured astrocyte conditioned medium (ACM) could provoke beneficial activation of microglial cells and thus promote the transcription, synthesis and release of BDNF in cultured microglial cells. The microglia-derived BDNF can exerted a demonstrable biological role in promoting neurite outgrowth and intimate terminal contacts of dorsal root ganglion (DRG) neurons co-cultured with microglial cells. Moreover, ACM induced remarkable p38MAPK phosphorylation in cultured microglial cells that preceded the burst of BDNF. Activating p38-MAPK by anisomycin resulted in salutary effects similar to those seen with ACM, whereas specific inhibition of the p38MAPK by SB203580 abrogated all the positive effects of ACM, including BDNF promotion and subsequent neurite outgrowth of DRG neurite outgrowth of DRG neurons and their intimate terminal contacts with microglial cells. Together, our results indicated that the neuroprotection of the microglial source is mainly caused by micro-environmental soluble molecules released from injured astrocytes, and ACM-induced BDNF production and release from microglial cells may be mediated through p38-MAPK signaling pathway. Therefore, these findings may lay a foundation to further investigations on the microglial beneficial activation role in the repair of traumatic CNS injury and neurodegenerative diseases.
Collapse
|
25
|
Two discreet subsets of CD8 T cells modulate PLP(91-110) induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J Autoimmun 2012; 38:344-53. [PMID: 22459490 DOI: 10.1016/j.jaut.2012.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/23/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
Previously we showed that transgenic mice expressing human HLA-DR3 gene are susceptible to PLP(91-110) induced experimental autoimmune encephalomyelitis (EAE) and can serve as an animal model of multiple sclerosis (MS). HLA-DR3 mice with EAE showed increased number of CD8 T cells indicating their important role in disease pathogenesis. The role of CD8 T cells in MS, an inflammatory demyelinating disease of CNS, has been enigmatic as it has been assigned both regulatory and pathogenic roles. Therefore, to evaluate the role of CD8 T cells, we generated CD8 deficient HLA-DR3 transgenic mice (DR3.CD8(-/-)). Immunization with PLP(91-110) led to more severe EAE in DR3.CD8(-/-) mice compared to HLA-DR3 mice indicating a regulatory role for CD8 T cells. Interestingly, DR3.CD8(-/-) mice with EAE showed decreased CNS pathology compared to DR3 mice thus suggesting a pathogenic role for CD8 T cells. We show that these two subsets of CD8 T cells can be differentiated based on the surface expression of CD122 (IL-2 Rβ chain). CD8 T cells expressing CD122 (CD8+CD122+) play a regulatory role while CD8+CD122- T cells act as a pathogenic subset. CD122 expressing CD8 T cells are the regulatory subset of CD8 T cells and regulate the encephalitogenic CD4 T cells through direct modulation of antigen presenting cells and/or through the release of immunoregulatory cytokines such as IL-10, IFNγ and TGFβ. We also showed that adoptive transfer of CD8CD122- T cells caused increased spinal cord demyelination indicating that these are pathogenic subset of CD8 T cells. Our study suggests that CD8+ T cells play both regulatory as well as pathogenic role in disease pathogenesis of EAE. A better understanding of these subsets could aid in designing novel therapy for MS patients.
Collapse
|
26
|
Denic A, Pirko I, Wootla B, Bieber A, Macura S, Rodriguez M. Deletion of beta-2-microglobulin ameliorates spinal cord lesion load and promotes recovery of brainstem NAA levels in a murine model of multiple sclerosis. Brain Pathol 2012; 22:698-708. [PMID: 22335434 DOI: 10.1111/j.1750-3639.2012.00576.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We used genetic deletion of β2-microglobulin to study the influence of CD8(+) T cells on spinal cord demyelination, remyelination, axonal loss and brainstem N-acetyl aspartate levels during the acute and chronic phases of Theiler's murine encephalomyelitis virus (TMEV) infection. We used β2m(-/-) and β2m(+/+) B10.Q mice (of H-2(q) background) normally susceptible to TMEV-induced demyelination. Over the disease course, β2m(+/+) mice had increasing levels of demyelination and minimal late-onset remyelination. In contrast, β2m(-/-) mice had steady levels of demyelination from 45-390 dpi and remyelination was extensive and more complete. Early in the disease, brainstem NAA levels drop in both strains, but accordingly with remyelination and axonal preservation, NAA recover in β2m(-/-) mice despite equivalent brainstem pathology. At 270 dpi, β2m(+/+) mice had significantly fewer spinal cord axons than β2m(-/-) mice (up to 28% less). In addition, β2m(+/+) mice lost axons of all calibers, whereas β2m(-/-) mice had a modest loss of only medium- and large-caliber axons. This study further supports the hypothesis that CD8(+) T cells are involved in demyelination, and axonal loss following Theiler's virus-induced demyelination.
Collapse
|
27
|
Wong CH, Lin LC, Lee HH, Liu CF. The Analgesic Effect of Thermal Therapy After Total Knee Arthroplasty. J Altern Complement Med 2012; 18:175-9. [DOI: 10.1089/acm.2010.0815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ching H. Wong
- Graduate Institute of Clinical Medical Sciences, Tao-Yuan, Taiwan
| | - Leou C. Lin
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsieh H. Lee
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Feng Liu
- Graduate Institute of Integration of Traditional Chinese Medicine with Western Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
28
|
Vichaya EG, Young EE, Frazier MA, Cook JL, Welsh CJ, Meagher MW. Social disruption induced priming of CNS inflammatory response to Theiler's virus is dependent upon stress induced IL-6 release. J Neuroimmunol 2011; 239:44-52. [PMID: 22000153 DOI: 10.1016/j.jneuroim.2011.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 01/09/2023]
Abstract
Chronic social disruption stress (SDR) exacerbates acute and chronic phase Theiler's murine encephalomyelitis virus (TMEV) infection, a mouse model of multiple sclerosis. However, the precise mechanism by which this occurs remains unknown. The present study suggests that SDR exacerbates TMEV disease course by priming virus-induced neuroinflammation. It was demonstrated that IL-1β mRNA expression increases following acute SDR; however, IL-6 mRNA expression, but not IL-1β, is upregulated in response to chronic SDR. Furthermore, this study demonstrated SDR prior to infection increases infection related central IL-6 and IL-1β mRNA expression, and administration of IL-6 neutralizing antibody during SDR reverses this increase in neuroinflammation.
Collapse
Affiliation(s)
- E G Vichaya
- Dept. of Psychology, College of Liberal Arts, Texas A&M University, United States
| | | | | | | | | | | |
Collapse
|
29
|
Sun XM, Lu JH, Qiu YH, Liu Z, Wang XQ, Peng YP. Interleukin-6 Reduces NMDA-Induced Ca2+Overload via Prevention of Ca2+Release From Intracellular Store. Int J Neurosci 2011; 121:423-9. [DOI: 10.3109/00207454.2011.556280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S. Interleukin-6, a mental cytokine. ACTA ACUST UNITED AC 2011; 67:157-83. [PMID: 21238488 DOI: 10.1016/j.brainresrev.2011.01.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
Almost a quarter of a century ago, interleukin-6 (IL-6) was discovered as an inflammatory cytokine involved in B cell differentiation. Today, IL-6 is recognized to be a highly versatile cytokine, with pleiotropic actions not only in immune cells, but also in other cell types, such as cells of the central nervous system (CNS). The first evidence implicating IL-6 in brain-related processes originated from its dysregulated expression in several neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. In addition, IL-6 was shown to be involved in multiple physiological CNS processes such as neuron homeostasis, astrogliogenesis and neuronal differentiation. The molecular mechanisms underlying IL-6 functions in the brain have only recently started to emerge. In this review, an overview of the latest discoveries concerning the actions of IL-6 in the nervous system is provided. The central position of IL-6 in the neuroinflammatory reaction pattern, and more specifically, the role of IL-6 in specific neurodegenerative processes, which accompany Alzheimer's disease, multiple sclerosis and excitotoxicity, are discussed. It is evident that IL-6 has a dichotomic action in the CNS, displaying neurotrophic properties on the one hand, and detrimental actions on the other. This is in agreement with its central role in neuroinflammation, which evolved as a beneficial process, aimed at maintaining tissue homeostasis, but which can become malignant when exaggerated. In this perspective, it is not surprising that 'well-meant' actions of IL-6 are often causing harm instead of leading to recovery.
Collapse
Affiliation(s)
- Anneleen Spooren
- Laboratory of Eukaryotic Signal Transduction and Gene Expression, University of Ghent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
Clarkson AN, Talbot CL, Wang PY, MacLaughlin DT, Donahoe PK, McLennan IS. Müllerian inhibiting substance is anterogradely transported and does not attenuate avulsion-induced death of hypoglossal motor neurons. Exp Neurol 2010; 231:304-8. [PMID: 21195071 DOI: 10.1016/j.expneurol.2010.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/01/2010] [Accepted: 12/22/2010] [Indexed: 12/20/2022]
Abstract
Müllerian Inhibiting Substance (MIS, Anti-Müllerian hormone) is a gonadal hormone that contributes to the subtle sex-biases in the nervous system. Mature neurons of both sexes also produce MIS, suggesting that MIS may be a paracrine regulator of adult neural networks. We report here that murine hypoglossal motor neurons produce MIS and its receptors, MISRII and bone morphogenetic protein receptor 1A (BMPR1A, ALK3), but differentially transport them, with only MIS being detectable in axons. The production of MIS and its receptors were rapidly down regulated after axonal damage, which is a characteristic of genes involved in mature neuronal function. MIS is a survival factor for embryonic spinal motor neurons, but the rate of cell loss after hypoglossal nerve avulsion was normal in Mis(-/-) mice and was not attenuated by intraventricular administration of MIS. These observations suggest that MIS may be involved in anterograde rather than autocrine or retrograde regulation of neurons.
Collapse
Affiliation(s)
- Andrew N Clarkson
- Department of Anatomy and Structural Biology, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Transgenic expression of the RNA-dependent RNA polymerase 3D(pol) inhibited infection of Theiler's murine encephalitis virus (TMEV), a picornavirus from which it was derived. Here, we infected 3D(pol) transgenic mice with another picornavirus, as well as an alphaherpesvirus and a rhabdovirus. 3D(pol) transgenic FVB mice had significantly lower viral loads and survived longer after infection with all three types of viruses than nontransgenic FVB mice. Viral inhibition among three different types of virus by transgenic 3D(pol) suggests that the mechanism of action is not the direct interference with picornaviral 3D(pol) but instead may be the changing of host cells to an antiviral state before or after viral infection occurs, as basal interferon levels were higher in 3D(pol) transgenic mice before infection. Further study of this mechanism may open new possibilities for future antiviral therapy.
Collapse
|
33
|
Transgenic expression of the 3D polymerase inhibits Theiler's virus infection and demyelination. J Virol 2009; 83:12279-89. [PMID: 19759133 DOI: 10.1128/jvi.00664-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The RNA-dependent RNA polymerase 3D(pol) is required for the elongation of positive- and negative-stranded picornavirus RNA. During the course of investigating the effect of the transgenic expression of viral genes on the host immune response, we evaluated the viral load present in the host after infection. To our surprise, we found that 3D transgenic expression in genetically susceptible FVB mice led to substantially lower viral loads after infection with Theiler's murine encephalomyelitis virus (TMEV). As a result, spinal cord damage caused by chronic viral infection in the central nervous system was reduced in FVB mice that expressed 3D. This led to the preservation of large-diameter axons and motor function in these mice. The 3D transgene also lowered early viral loads when expressed in FVB-D(b) mice resistant to persistent TMEV infection. The protective effect of 3D transgenic expression was not altered in FVB-Rag(-/-).3D mice that are deficient in T and B cells, thus ruling out a mechanism by which the overexpression of 3D enhanced the adaptive immune clearance of the virus. Understanding how endogenously overexpressed 3D polymerase inhibits viral replication may lead to new strategies for targeting therapies to all picornaviruses.
Collapse
|
34
|
Fujita T, Tozaki-Saitoh H, Inoue K. P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. Glia 2009; 57:244-57. [PMID: 18756525 DOI: 10.1002/glia.20749] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell survival is a critical issue in the onset and progression of neurodegenerative diseases and following pathological events including ischemia and traumatic brain injury. Oxidative stress is the main cause of cell damage in such pathological conditions. Here, we report that adenosine 5'-triphosphate (ATP) protects hippocampal astrocytes from hydrogen peroxide (H(2)O(2))-evoked oxidative injury in astrocyte monocultures. The effect of ATP was prevented by a selective antagonist of or siRNAs against P2Y(1)R. Interestingly, in astrocyte-neuron cocultures, ATP also produced neuroprotective effects against H(2)O(2)-evoked neuronal cell death, whereas ATP did not produce any neuroprotective effects in monocultures. The ATP-induced neuroprotection in cocultures was completely inhibited by silencing of astrocytic P2Y(1)R expression, indicating that ATP acts on astrocytes and enhances their neuroprotective functions by activating P2Y(1)R. Furthermore, this neuroprotective effect was mimicked by applying conditioned medium from astrocytes that had been stimulated by ATP, implying an involvement of diffusible factors from astrocytes. We found that, in both purified astrocyte cultures and astrocyte-neuronal cocultures, ATP and the P2Y(1)R agonist 2-methylthioadenosine 5' diphosphate (2MeSADP) induced the release of interleukin-6 (IL-6), but this did not occur in neuron monocultures. Moreover, exogenous IL-6 produced a neuroprotective effect, and the neuroprotection induced by P2Y(1)R-stimulated astrocytes was prevented in the presence of an anti-IL-6 antibody. Taken together, these results suggest that P2Y(1)R-stimulated astrocytes protect against neuronal damage induced by oxidative stress, and that IL-6 is a crucial signaling molecule released from astrocytes. Thus, activation of P2Y(1)R in astrocytes may rescue neurons from secondary cell death under pathological conditions.
Collapse
Affiliation(s)
- Takumi Fujita
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
35
|
Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82:7264-75. [PMID: 18495771 DOI: 10.1128/jvi.00737-08] [Citation(s) in RCA: 935] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of humans with the severe acute respiratory syndrome coronavirus (SARS-CoV) results in substantial morbidity and mortality, with death resulting primarily from respiratory failure. While the lungs are the major site of infection, the brain is also infected in some patients. Brain infection may result in long-term neurological sequelae, but little is known about the pathogenesis of SARS-CoV in this organ. We previously showed that the brain was a major target organ for infection in mice that are transgenic for the SARS-CoV receptor (human angiotensin-converting enzyme 2). Herein, we use these mice to show that virus enters the brain primarily via the olfactory bulb, and infection results in rapid, transneuronal spread to connected areas of the brain. This extensive neuronal infection is the main cause of death because intracranial inoculation with low doses of virus results in a uniformly lethal disease even though little infection is detected in the lungs. Death of the animal likely results from dysfunction and/or death of infected neurons, especially those located in cardiorespiratory centers in the medulla. Remarkably, the virus induces minimal cellular infiltration in the brain. Our results show that neurons are a highly susceptible target for SARS-CoV and that only the absence of the host cell receptor prevents severe murine brain disease.
Collapse
|
36
|
Ritz MF, Hausmann ON. Effect of 17β-estradiol on functional outcome, release of cytokines, astrocyte reactivity and inflammatory spreading after spinal cord injury in male rats. Brain Res 2008; 1203:177-88. [DOI: 10.1016/j.brainres.2008.01.091] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 11/29/2022]
|
37
|
Human HLA-DR transgenes protect mice from fatal virus-induced encephalomyelitis and chronic demyelination. J Virol 2008; 82:3369-80. [PMID: 18234804 DOI: 10.1128/jvi.02243-07] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We evaluated the participatory role of human HLA-DR molecules in control of virus from the central nervous system and in the development of subsequent spinal cord demyelination. The experiments utilized intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), a picornavirus that, in some strains of mice, results in primary demyelination. We studied DR2 and DR3 transgenic mice that were bred onto a combined class I-deficient mouse (beta-2 microglobulin deficient; beta2m(0)) and class II-deficient mouse (Abeta(0)) of the H-2(b) background. Abeta(0).beta2m(0) mice infected with TMEV died within 18 days of infection. These mice showed severe encephalomyelitis due to rapid replication of virus genome. In contrast, transgenic mice with insertion of a single human class II major histocompatibility complex (MHC) gene (DR2 or DR3) survived the acute infection. DR2 and DR3 mice controlled virus infection by 45 days and did not develop spinal cord demyelination. Levels of virus RNA were reduced in HLA-DR transgenic mice compared to Abeta(0).beta2m(0) mice. Virus-neutralizing antibody responses did not explain why DR mice survived the infection and controlled virus replication. However, DR mice showed an increase in gamma interferon and interleukin-2 transcripts in the brain, which were associated with protection. The findings support the hypothesis that the expression of a single human class II MHC molecule can, by itself, influence the control of an intracerebral pathogen in a host without a competent class I MHC immune response. The mechanism of protection appears to be the result of cytokines released by CD4(+) T cells.
Collapse
|
38
|
Meagher MW, Johnson RR, Young EE, Vichaya EG, Lunt S, Hardin EA, Connor MA, Welsh CJR. Interleukin-6 as a mechanism for the adverse effects of social stress on acute Theiler's virus infection. Brain Behav Immun 2007; 21:1083-95. [PMID: 17591434 PMCID: PMC2538675 DOI: 10.1016/j.bbi.2007.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 05/02/2007] [Accepted: 05/04/2007] [Indexed: 12/29/2022] Open
Abstract
Prior exposure to social disruption stress (SDR) exacerbates both the acute and chronic phase of Theiler's murine encephalomyelitis virus infection (TMEV; [Johnson, R.R., Storts, R., Welsh, T.H., Jr., Welsh, C.J., Meagher, M.W., 2004. Social stress alters the severity of acute Theiler's virus infection. J. Neuroimmunol. 148, 74--85; Johnson, R.R., Prentice, T.W., Bridegam, P., Young, C.R., Steelman, A.J., Welsh, T.H., Welsh, C.J.R., Meagher, M.W., 2006. Social stress alters the severity and onset of the chronic phase of Theiler's virus infection. J. Neuroimmunol. 175, 39--51]). However, the neuroimmune mechanism(s) mediating this effect have not been determined. The present study examined whether stress-induced increases in the proinflammatory cytokine interleukin-6 (IL-6) contributes to the adverse effects of SDR on acute TMEV infection. Experiment 1 demonstrated that SDR increases central and peripheral levels of IL-6 and that this effect is reversed by intracerebral ventricular infusion of neutralizing antibody to IL-6 prior to each of six SDR sessions. Although SDR reduced the sensitivity of spleen cells to the anti-inflammatory effects of corticosterone, the neutralizing antibody to IL-6 did not alter this effect. To investigate whether stress-induced increases in IL-6 contribute to the exacerbation of acute TMEV infection, Experiment 2 examined whether intracerebral administration of neutralizing antibody to IL-6 during SDR would prevent the subsequent exacerbation of acute TMEV infection. Experiment 3 then replaced the social stress with intracerebral infusion of IL-6 to assess sufficiency. As expected, prior exposure to SDR subsequently increased infection-related sickness behaviors, motor impairment, CNS viral titers, and CNS inflammation. These deleterious effects of SDR were either prevented or significantly attenuated by intracerebral infusion of neutralizing antibody to IL-6 during the stress exposure period. However, infusion of IL-6 alone did not mimic the adverse effects of SDR. We conclude that IL-6 is necessary but not sufficient to exacerbate acute TMEV infection.
Collapse
Affiliation(s)
- Mary W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, TX 77843-4235, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pavelko KD, Pease LR, David CS, Rodriguez M. Genetic deletion of a single immunodominant T-cell response confers susceptibility to virus-induced demyelination. Brain Pathol 2007; 17:184-96. [PMID: 17388949 PMCID: PMC1859885 DOI: 10.1111/j.1750-3639.2007.00062.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An important question in neuropathology involves determining the antigens that are targeted during demyelinating disease. Viral infection of the central nervous system (CNS) leads to T‐cell responses that can be protective as well as pathogenic. In the Theiler’s murine encephalomyelitis virus (TMEV) model of demyelination it is known that the immune response to the viral capsid protein 2 (VP2) is critical for disease pathogenesis. This study shows that expressing the whole viral capsid VP2 or the minimal CD8‐specific peptide VP2121‐130 as “self” leads to a loss of VP2‐specific immune responses. Loss of responsiveness is caused by T cell‐specific tolerance, as VP2‐specific antibodies are generated in response to infection. More importantly, these mice lose the CD8 T‐cell response to the immunodominant peptide VP2121‐130, which is critical for the development of demyelinating disease. The transgenic mice fail to clear the infection and develop chronic demyelinating disease in the spinal cord white matter. These findings demonstrate that T‐cell responses can be removed by transgenic expression and that lack of responsiveness alters viral clearance and CNS pathology. This model will be important for understanding the mechanisms involved in antigen‐specific T‐cell deletion and the contribution of this response to CNS pathology.
Collapse
Affiliation(s)
| | | | | | - Moses Rodriguez
- Departments of Immunology and
- Neurology, Mayo Clinic College of Medicine, Rochester, Minn
| |
Collapse
|
40
|
Qian Y, Zheng Y, Weber D, Tiffany-Castiglioni E. A 78-kDa glucose-regulated protein is involved in the decrease of interleukin-6 secretion by lead treatment from astrocytes. Am J Physiol Cell Physiol 2007; 293:C897-905. [PMID: 17567751 DOI: 10.1152/ajpcell.00059.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-6 is a cytokine produced mainly by microglia and astrocytes and plays a pleiotropic role in the central nervous system. In this study, we cloned rat IL-6 cDNA into an enhanced green fluorescent protein (EGFP) or a red fluorescent protein (DsRed2) vector and rat 78-kDa glucose-regulated protein (GRP78) cDNA into an EGFP vector to construct IL-6-EGFP, IL-6-DsRed2, and GRP78-EGFP chimeras for the investigation of the mechanism of IL-6 secretion from astrocytes. The data showed that constructed IL-6-EGFP and IL-6-DsRed2 chimeras retained the secretory property, and the secretion of IL-6-EGFP from astrocytes could be attenuated by GRP78 depletion with double-stranded RNA interference. Coexpression of IL-6-DsRed2 and dysfunctional GRP78-EGFP abolished IL-6-DsRed2 secretion, and two chimeric proteins colocalized inside living astrocytes. Coimmunoprecipitation analysis indicated that IL-6 and GRP78 resided in the same complex. The data further revealed that IL-6-EGFP secretion from astrocytes was blocked by the heavy metal lead (Pb) in a concentration-dependent manner. Analysis of the Pb interaction with protein on a Pb-affinity column demonstrated that Pb bound to GRP78 but failed to bind to IL-6. Therefore, these data suggest that IL-6-EGFP or IL-6-DsRed2 chimeras can be used as imaging probes to study IL-6 secretion from living cells, that GRP78 is involved in IL-6 secretion from astrocytes, and that Pb can block IL-6 secretion from astrocytes via targeting GRP78.
Collapse
Affiliation(s)
- Yongchang Qian
- Dept. of Veterinary Integrative Biosciences, Texas A&M Univ., College Station, TX 77843-4458, USA.
| | | | | | | |
Collapse
|
41
|
Bennett JL, Elhofy A, Charo I, Miller SD, Dal Canto MC, Karpus WJ. CCR2 regulates development of Theiler's murine encephalomyelitis virus-induced demyelinating disease. Viral Immunol 2007; 20:19-33. [PMID: 17425418 DOI: 10.1089/vim.2006.0068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a murine model for multiple sclerosis, involves recruitment of T cells and macrophages to the CNS after infection. We hypothesized that CCR2, the only known receptor for CCL2, would be required for TMEV-induced demyelinating disease development because of its role in macrophage recruitment. TMEV-infected SJL CCR2 knockout (KO) mice showed decreased long-term clinical disease severity and less demyelination compared with controls. Flow cytometric data indicated that macrophages (CD45(high) CD11b(+) ) in the CNS of TMEV-infected CCR2 KO mice were decreased compared with control mice throughout disease. CD4(+) and CD8(+) T cell percentages in the CNS of TMEV-infected control and CCR2 KO mice were similar over the course of disease. There were no apparent differences between CCR2 KO and control peripheral immune responses. The frequency of interferon-gamma-producing T cells in response to proteolipid protein 139-151 in the CNS was also similar during the autoimmunity stage of TMEV-induced demyelinating disease. These data suggest that CCR2 is important for development of clinical disease by regulating macrophage accumulation after TMEV infection.
Collapse
Affiliation(s)
- Jami L Bennett
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007; 8:221-32. [PMID: 17311007 DOI: 10.1038/nrn2054] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuropoietic cytokines are well known for their role in the control of neuronal, glial and immune responses to injury or disease. Since this discovery, it has emerged that several of these proteins are also involved in nervous system development, in particular in the regulation of neurogenesis and stem cell fate. Recent data indicate that these proteins have yet more functions, as key modulators of synaptic plasticity and of various behaviours. In addition, neuropoietic cytokines might be a factor in the aetiology of psychiatric disorders.
Collapse
Affiliation(s)
- Sylvian Bauer
- Physiologie Neurovégétative, UMR 6153 CNRS, 1147 INRA, Université Paul Cézanne-Aix-Marseille-3, Ave. Escadrille Normandie-Niemen, BP 351-352, 13397 Marseille Cedex 20, France
| | | | | |
Collapse
|
43
|
Howe CL, Mayoral S, Rodriguez M. Activated microglia stimulate transcriptional changes in primary oligodendrocytes via IL-1beta. Neurobiol Dis 2006; 23:731-9. [PMID: 16887357 DOI: 10.1016/j.nbd.2006.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/17/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022] Open
Abstract
No therapy currently exists to repair demyelinated lesions in multiple sclerosis. However, the use of IgM antibodies may provide a valuable therapeutic avenue for evoking such repair. Unfortunately, the mechanism of immunoglobulin action in CNS repair is currently unknown but may depend upon complex interactions between multiple cell types rather than upon direct activation of a single cell type. Using rat mixed glial cultures containing oligodendrocytes, microglia, and astrocytes, we found that the Fc portion of human IgM shifts microglia to an activated phenotype, reduces glial proliferation, upregulates a variety of immediate early genes, including JunB, Egr-1, and c-Fos, and stimulates microglial production and release of IL-1beta. Microglia-derived IL-1beta consequently triggers transcriptional upregulation of immediate early genes such as c-Jun, Egr-1, and c-Fos in the mixed glial cultures, and stimulates the upregulation of late response genes such as lipocalin in purified oligodendrocytes. Treatment with an IL-1beta receptor antagonist abrogates the effects of Fcmu on glial proliferation and prevents the upregulation of lipocalin in response to Fcmu, but does not prevent Fcmu-mediated upregulation of IL-1beta, suggesting that IL-1beta mediates at least some of the downstream effects of Fcmu in mixed glial cultures. We hypothesize that Fcmu-stimulated IL-1beta-induced upregulation of immediate early and late response genes in oligodendrocytes may promote CNS repair.
Collapse
Affiliation(s)
- Charles L Howe
- Department of Neuroscience, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
44
|
Yamauchi K, Osuka K, Takayasu M, Usuda N, Nakazawa A, Nakahara N, Yoshida M, Aoshima C, Hara M, Yoshida J. Activation of JAK/STAT signalling in neurons following spinal cord injury in mice. J Neurochem 2006; 96:1060-70. [PMID: 16417589 DOI: 10.1111/j.1471-4159.2005.03559.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway is one of the most important in transducing signals from the cell surface to the nucleus in response to cytokines. In the present study, we investigated chronological alteration and cellular location of JAK1, STAT3, phosphorylated (p)-Tyr1022/1023-JAK1, p-Tyr705-STAT3, and interleukin-6 (IL-6) following spinal cord injury (SCI) in mice. Western blot analysis showed JAK1 to be significantly phosphorylated at Tyr1022/1023 from 6 h after SCI, peaking at 12 h and gradually decreasing thereafter, accompanied by phosphorylation of STAT3 at Tyr705 with a similar time course. ELISA analysis showed the concentration of IL-6 in injured spinal cord to also significantly increase from 3 h after SCI, peaking at 12 h, then gradually decreasing. Immunohistochemistry revealed p-Tyr1022/1023-JAK1, p-Tyr705-STAT3, and IL-6 to be mainly expressed in neurons of the anterior horns at 12 h after SCI. Pretreatment with a JAK inhibitor, AG-490, suppressed phosphorylation of JAK1 and STAT3 at 12 h after SCI, reducing recovery of motor functions. These findings suggest that SCI at the acute stage produces IL-6 mainly in neurons of the injured spinal cord, which activates the JAK/STAT pathway, and that this pathway may be involved with neuronal response to SCI.
Collapse
Affiliation(s)
- Katsuaki Yamauchi
- Department of Neurosurgery, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Conley L, Geurs TL, Levin LA. Transcriptional regulation of ceruloplasmin by an IL-6 response element pathway. ACTA ACUST UNITED AC 2006; 139:235-41. [PMID: 15979198 DOI: 10.1016/j.molbrainres.2005.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 05/10/2005] [Accepted: 05/15/2005] [Indexed: 11/25/2022]
Abstract
Cp is an acute phase reactant protein that also acts as a ferroxidase, and thus indirectly decreases the production of the reactive oxygen species hydroxyl radical. Ceruloplasmin (Cp) expression is induced by a variety of central nervous system injuries, but the mechanism by which this occurs is unclear. Based on the fact that peripheral nerve injury induces interleukin-6 (IL-6) expression and that there are three IL-6 response elements in the upstream region of the Cp gene, we studied their role in transcriptional regulation of Cp in astrocytic C6 glioma cells, using transfection of a rat Cp-luciferase construct, followed by sequential and simultaneous mutation of the IL-6 response elements. We found that 0.8 kb of sequence upstream to the rat ceruloplasmin start site was sufficient to drive luciferase expression in C6 glioma cells. Cells transfected with Cp-luc and treated with 100 ng/ml rat IL-6 induced 216.8% +/- 4.6% of control activity. Mutagenesis of the IL-6 response elements decreased luciferase activity, with the maximal decline (9.7 +/- 0.7% of wild-type) after mutation of the second site. Mutagenesis of multiple sites decreased activity beyond mutagenesis of single sites with mutation of all three sites decreasing activity to 5.3 +/- 0.4% of wild-type. Gel shift and supershift assays indicated that activation of Cp in these cells was not via STAT-3. These results are consistent with a signaling process via IL-6 response elements for Cp upregulation.
Collapse
Affiliation(s)
- Laurie Conley
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | |
Collapse
|
46
|
Wang PY, Koishi K, McGeachie AB, Kimber M, Maclaughlin DT, Donahoe PK, McLennan IS. Mullerian inhibiting substance acts as a motor neuron survival factor in vitro. Proc Natl Acad Sci U S A 2005; 102:16421-5. [PMID: 16260730 PMCID: PMC1283469 DOI: 10.1073/pnas.0508304102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The survival of motor neurons is controlled by multiple factors that regulate different aspects of their physiology. The identification of these factors is important because of their relationship to motor neuron disease. We investigate here whether Mullerian Inhibiting Substance (MIS) is a motor neuron survival factor. We find that motor neurons from adult mice synthesize MIS and express its receptors, suggesting that mature motor neurons use MIS in an autocrine fashion or as a way to communicate with each other. MIS was observed to support the survival and differentiation of embryonic motor neurons in vitro. During development, male-specific MIS may have a hormone effect because the blood-brain barrier has yet to form, raising the possibility that MIS participates in generating sex-specific differences in motor neurons.
Collapse
Affiliation(s)
- Pei-Yu Wang
- Neuromuscular Research Group, Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
47
|
Wickham S, Lu B, Ash J, Carr DJJ. Chemokine receptor deficiency is associated with increased chemokine expression in the peripheral and central nervous systems and increased resistance to herpetic encephalitis. J Neuroimmunol 2005; 162:51-9. [PMID: 15833359 DOI: 10.1016/j.jneuroim.2005.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/05/2005] [Accepted: 01/05/2005] [Indexed: 12/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) infection of the eye leads to the retrograde spread of the virus from the eye to the trigeminal ganglion resulting in the infiltration of leukocytes and production of inflammatory cytokines and chemokines including CXCL9 and CXCL10. The present study investigated the role of the receptor for CXCL9 and CXCL10 in the host response to HSV-1 infection using mice deficient in CXCR3 expression (CXCR3-/-). Although wild type C57BL/6 and CXCR3-/- mice cleared the virus, HSV-1 titers remained elevated in the ganglion and brain stem of CXCR3-/- mice day 7 post infection. Coinciding with the increase in virus titer, CCL5, CXCL9, CXCL10 and IFN-gamma protein levels were enhanced in the trigeminal ganglion and/or brain stem of the CXCR3-/- mice associated with a 2-fold increase in the percentage of CD3+CD8+ T lymphocytes in the trigeminal ganglion. However, the survival rate of CXCR3-/- mice was significantly enhanced above the wild type controls associated with an increase in brain IL-6 content. Collectively, the results indicate the absence of CXCR3 is associated with a transient increase in virus burden in the nervous system and an elevated protective immune response.
Collapse
Affiliation(s)
- Stephanie Wickham
- Department of Ophthalmology, DMEI #415, The University of Oklahoma Health Sciences Center, 608 Stanton L Young Blvd., Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
48
|
Sattayaprasert P, Choi HB, Chongthammakun S, McLarnon JG. Platelet-activating factor enhancement of calcium influx and interleukin-6 expression, but not production, in human microglia. J Neuroinflammation 2005; 2:11. [PMID: 15833109 PMCID: PMC1097754 DOI: 10.1186/1742-2094-2-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 04/15/2005] [Indexed: 11/10/2022] Open
Abstract
Calcium-sensitive fluorescence microscopy and molecular biology analysis have been used to study the effects of platelet-activating factor (PAF) on intracellular calcium [Ca2+]i and IL-6 expression in human microglia. PAF (applied acutely at 100 nM) elicited a biphasic response in [Ca2+]i consisting of an initial rapid increase of [Ca2+]i due to release from internal stores, followed by a sustained influx. The latter phase of the [Ca2+]i increase was blocked by SKF96365, a non-selective store-operated channel (SOC) inhibitor. RT-PCR analysis showed PAF treatment of microglia induced expression of the pro-inflammatory cytokine IL-6 in a time-dependent manner which was blocked in the presence of SKF96365. However, ELISA assay showed no production of IL-6 was elicited at any time point (1–24 h) for microglial exposures to PAF. These findings suggest that PAF stimulation of human microglia induces expression, but not production, of IL-6 and that SOC-mediated [Ca2+]i influx contributes to the enhanced expression of the cytokine.
Collapse
Affiliation(s)
- Prasongchai Sattayaprasert
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Hyun B Choi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | | | - James G McLarnon
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
49
|
Gorina R, Petegnief V, Chamorro A, Planas AM. AG490 prevents cell death after exposure of rat astrocytes to hydrogen peroxide or proinflammatory cytokines: involvement of the Jak2/STAT pathway. J Neurochem 2005; 92:505-18. [PMID: 15659221 DOI: 10.1111/j.1471-4159.2004.02878.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Janus kinases/STAT pathway mediates cellular responses to certain oxidative stress stimuli and cytokines. Here we examine the activation of Stat1 and Stat3 in rat astrocyte cultures and its involvement in cell death. H(2)O(2), interferon (INF)-gamma and interleukin (IL)-6 but not IL-10 caused cell death. Stat1 was phosphorylated on tyrosine (Tyr)-701 after exposure to H(2)O(2), INF-gamma or IL-6 but not IL-10. Tyr-705 pStat3 was observed after H(2)O(2), IL-6 and IL-10. Also, H(2)O(2) induced serine (Ser)-727 phosphorylation of Stat1 but not Stat3. The degree of Tyr-701 pStat1 by the different treatments positively correlated with the corresponding reduction of cell viability. AG490, a Jak2 inhibitor, prevented Tyr-701 but not Ser-727, Stat1 phosphorylation. Also, AG490 inhibited Tyr-705 Stat3 phosphorylation induced by H(2)O(2) and IL-6 but did not prevent that induced by IL-10. Furthermore, AG490 conferred strong protection against cell death induced by INF-gamma, IL-6 and H(2)O(2). These results suggest that Jak2/Stat1 activation mediates cell death induced by proinflammatory cytokines and peroxides. However, we found evidence suggesting that AG490 reduces oxidative stress induced by H(2)O(2), which further shows that H(2)O(2) and/or derived reactive oxygen species directly activate Jak2/Stat1, but masks the actual involvement of this pathway in H(2)O(2)-induced cell death.
Collapse
Affiliation(s)
- Roser Gorina
- Departament de Farmacologia i Toxicologia, IIBB-CSIC, IDIBAPS, Rosselló 161, Planta 6, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Rouget R, Vigneault F, Codio C, Rochette C, Paradis I, Drouin R, Simard L. Characterization of the survival motor neuron (SMN) promoter provides evidence for complex combinatorial regulation in undifferentiated and differentiated P19 cells. Biochem J 2005; 385:433-43. [PMID: 15361068 PMCID: PMC1134714 DOI: 10.1042/bj20041024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 08/17/2004] [Accepted: 09/13/2004] [Indexed: 11/17/2022]
Abstract
There exist two SMN (survival motor neuron) genes in humans, the result of a 500 kb duplication in chromosome 5q13. Deletions/mutations in the SMN1 gene are responsible for childhood spinal muscular atrophy, an autosomal recessive neurodegenerative disorder. While the SMN1 and SMN2 genes are not functionally equivalent, up-regulation of the SMN2 gene represents an important therapeutic target. Consequently, we exploited in silico, in vitro and in vivo approaches to characterize the core human and mouse promoters in undifferentiated and differentiated P19 cells. Phylogenetic comparison revealed four highly conserved regions that contained a number of cis-elements, only some of which were shown to activate/repress SMN promoter activity. Interestingly, the effect of two Sp1 cis-elements varied depending on the state of P19 cells and was only observed in combination with a neighbouring Ets cis-element. Electrophoretic mobility-shift assay and in vivo DNA footprinting provided evidence for DNA-protein interactions involving Sp, NF-IL6 and Ets cis-elements, whereas transient transfection experiments revealed complex interactions involving these recognition sites. SMN promoter activity was strongly regulated by an NF-IL6 response element and this regulation was potentiated by a downstream Ets element. In vivo results suggested that the NF-IL6 response must function either via a protein-tethered transactivation mechanism or a transcription factor binding an upstream element. Our results provide strong evidence for complex combinatorial regulation and suggest that the composition or state of the basal transcription complex binding to the SMN promoter is different between undifferentiated and differentiated P19 cells.
Collapse
Key Words
- cellular differentiation
- p19 cell
- sp1 and ets cis-elements
- spinal muscular atrophy
- survival motor neuron gene
- transcriptional regulation
- ahr, aromatic hydrocarbon receptor
- c/ebp, ccaat/enhancer-binding protein
- cr, conserved region
- dms, dimethylsulphate
- ec cells, embryonal carcinoma cells
- ehmn, embryonic hybrid motor neuron
- emsa, electrophoretic mobility-shift assay
- il-6, interleukin-6
- lmpcr, ligation-mediated pcr
- nf1, nuclear factor-1
- p19ra, p19 cells treated with retinoic acid
- ra, retinoic acid
- rlu, relative luciferase unit
- sma, spinal muscular atrophy
- smn, survival motor neuron
- tf, transcription factor
- tis, transcription initiation site
- uvc, ultraviolet c
Collapse
Affiliation(s)
- Raphaël Rouget
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| | - François Vigneault
- †Département de Pédiatrie, Université de Sherbrooke and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC, Canada J1H 5N4
| | - Circé Codio
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| | - Camille Rochette
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| | - Isabelle Paradis
- †Département de Pédiatrie, Université de Sherbrooke and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC, Canada J1H 5N4
| | - Régen Drouin
- †Département de Pédiatrie, Université de Sherbrooke and Centre Hospitalier Universitaire de Sherbrooke, 3001, 12 Avenue Nord, Sherbrooke, QC, Canada J1H 5N4
| | - Louise R. Simard
- *Centre de Recherche, Hôpital Sainte-Justine and Université de Montréal, Montréal, QC, Canada H3T 1C5
| |
Collapse
|