1
|
Contreras EG, Kautzmann S, Klämbt C. The Drosophila blood-brain barrier invades the nervous system in a GPCR-dependent manner. Front Cell Neurosci 2024; 18:1397627. [PMID: 38846639 PMCID: PMC11153769 DOI: 10.3389/fncel.2024.1397627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The blood-brain barrier (BBB) represents a crucial interface between the circulatory system and the brain. In Drosophila melanogaster, the BBB is composed of perineurial and subperineurial glial cells. The perineurial glial cells are small mitotically active cells forming the outermost layer of the nervous system and are engaged in nutrient uptake. The subperineurial glial cells form occluding septate junctions to prevent paracellular diffusion of macromolecules into the nervous system. To address whether the subperineurial glia just form a simple barrier or whether they establish specific contacts with both the perineurial glial cells and inner central nervous system (CNS) cells, we undertook a detailed morphological analysis. Using genetically encoded markers alongside with high-resolution laser scanning confocal microscopy and transmission electron microscopy, we identified thin cell processes extending into the perineurial layer and into the CNS cortex. Interestingly, long cell processes were observed reaching the glia ensheathing the neuropil of the central brain. GFP reconstitution experiments highlighted multiple regions of membrane contacts between subperineurial and ensheathing glia. Furthermore, we identify the G-protein-coupled receptor (GPCR) Moody as negative regulator of the growth of subperineurial cell processes. Loss of moody triggered a massive overgrowth of subperineurial cell processes into the CNS cortex and, moreover, affected the polarized localization of the xenobiotic transporter Mdr65. Finally, we found that GPCR signaling, but not septate junction formation, is responsible for controlling membrane overgrowth. Our findings support the notion that the Drosophila BBB is able to bridge the communication gap between circulation and synaptic regions of the brain by long cell processes.
Collapse
Affiliation(s)
| | | | - Christian Klämbt
- Multiscale Imaging Center, Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Coutinho-Budd J, Freeman MR, Ackerman S. Glial Regulation of Circuit Wiring, Firing, and Expiring in the Drosophila Central Nervous System. Cold Spring Harb Perspect Biol 2024:a041347. [PMID: 38565270 PMCID: PMC11513168 DOI: 10.1101/cshperspect.a041347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Molecular genetic approaches in small model organisms like Drosophila have helped to elucidate fundamental principles of neuronal cell biology. Much less is understood about glial cells, although interest in using invertebrate preparations to define their in vivo functions has increased significantly in recent years. This review focuses on our current understanding of the three major neuron-associated glial cell types found in the Drosophila central nervous system (CNS)-astrocytes, cortex glia, and ensheathing glia. Together, these cells act like mammalian astrocytes and microglia; they associate closely with neurons including surrounding neuronal cell bodies and proximal neurites, regulate synapses, and engulf neuronal debris. Exciting recent work has shown critical roles for these CNS glial cells in neural circuit formation, function, plasticity, and pathology. As we gain a more firm molecular and cellular understanding of how Drosophila CNS glial cells interact with neurons, it is clear that they share significant molecular and functional attributes with mammalian glia and will serve as an excellent platform for mechanistic studies of glial function.
Collapse
Affiliation(s)
- Jaeda Coutinho-Budd
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Sarah Ackerman
- Department of Pathology and Immunology, Brain Immunology and Glia Center, and Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| |
Collapse
|
3
|
Chen J, Mu X, Liu H, Yong Q, Ouyang X, Liu Y, Zheng L, Chen H, Zhai Y, Ma J, Meng L, Liu S, Zheng H. Rotenone impairs brain glial energetics and locomotor behavior in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167870. [PMID: 37865240 DOI: 10.1016/j.scitotenv.2023.167870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
Bumblebees are essential pollinators of both wildflowers and crops and face multiple anthropogenic stressors, particularly the utilization of pesticides. Rotenone is an extensively applied neurotoxic pesticide that possesses insecticidal activities against a wide range of pests. However, whether environmentally realistic exposure levels of rotenone can damage neurons in bumblebee brains is still uncertain. Using single-cell RNA-seq, we revealed that rotenone induced cell-specific responses in bumblebee brains, emphasizing the disruption of energy metabolism and mitochondrial dysfunction in glial cells. Correspondingly, the gene regulatory network associated with neurotransmission was also suppressed. Notably, rotenone could specially reduce the number of dopaminergic neurons, impairing bumblebee's ability to fly and crawl. We also found impaired intestinal motility in rotenone-treated bumblebees. Finally, we demonstrated that many differentially expressed genes in our snRNA-seq data overlapped with rotenone-induced Parkinson's disease risk genes, especially in glial cells. Although rotenone is widely used owing to its hypotoxicity, we found that environmentally realistic exposure levels of rotenone induced disturbed glial energetics and locomotor dysfunction in bumblebees, which may lead to an indirect decline in this essential pollinator.
Collapse
Affiliation(s)
- Jieteng Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaohuan Mu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huiling Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiyao Yong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoman Ouyang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jie Ma
- BGI-Qingdao, Qingdao 266555, China
| | | | | | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| |
Collapse
|
4
|
Yadav V, Mishra R, Das P, Arya R. Cut homeodomain transcription factor is a novel regulator of growth and morphogenesis of cortex glia niche around neural cells. Genetics 2024; 226:iyad173. [PMID: 37751321 PMCID: PMC11491519 DOI: 10.1093/genetics/iyad173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Cortex glia in Drosophila central nervous system form a niche around neural cells for necessary signals to establish cross talk with their surroundings. These cells grow and expand their thin processes around neural cell bodies. Although essential for the development and function of the nervous system, how these cells make extensive and intricate connected networks remains largely unknown. In this study, we show that Cut, a homeodomain transcription factor, directly regulates the fate of the cortex glia, impacting neural stem cell (NSC) homeostasis. Focusing on the thoracic ventral nerve cord, we found that Cut is required for the normal growth and development of cortex glia and timely increase in DNA content through endocycle to later divide via acytokinetic mitosis. Knockdown of Cut in cortex glia significantly reduces the growth of cellular processes, the network around NSCs, and their progeny's cell bodies. Conversely, overexpression of Cut induces overall growth of the main processes at the expense of side ones. Whereas the Cut knockdown slows down the timely increase of DNA, the Cut overexpression results in a significant increase in nuclear size and volume and a 3-fold increase in DNA content of cortex glia. Further, we note that constitutively high Cut also interfered with nuclei separation during acytokinetic mitosis. Since the cortex glia form syncytial networks around neural cells, the finding identifies Cut as a novel regulator of glial growth and variant cell cycles to support a functional nervous system.
Collapse
Affiliation(s)
- Vaishali Yadav
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ramkrishna Mishra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Papri Das
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Richa Arya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Valamparamban GF, Spéder P. Homemade: building the structure of the neurogenic niche. Front Cell Dev Biol 2023; 11:1275963. [PMID: 38107074 PMCID: PMC10722289 DOI: 10.3389/fcell.2023.1275963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Neural stem/progenitor cells live in an intricate cellular environment, the neurogenic niche, which supports their function and enables neurogenesis. The niche is made of a diversity of cell types, including neurons, glia and the vasculature, which are able to signal to and are structurally organised around neural stem/progenitor cells. While the focus has been on how individual cell types signal to and influence the behaviour of neural stem/progenitor cells, very little is actually known on how the niche is assembled during development from multiple cellular origins, and on the role of the resulting topology on these cells. This review proposes to draw a state-of-the art picture of this emerging field of research, with the aim to expose our knowledge on niche architecture and formation from different animal models (mouse, zebrafish and fruit fly). We will span its multiple aspects, from the existence and importance of local, adhesive interactions to the potential emergence of larger-scale topological properties through the careful assembly of diverse cellular and acellular components.
Collapse
Affiliation(s)
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
6
|
Banach-Latapy A, Rincheval V, Briand D, Guénal I, Spéder P. Differential adhesion during development establishes individual neural stem cell niches and shapes adult behaviour in Drosophila. PLoS Biol 2023; 21:e3002352. [PMID: 37943883 PMCID: PMC10635556 DOI: 10.1371/journal.pbio.3002352] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023] Open
Abstract
Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.
Collapse
Affiliation(s)
- Agata Banach-Latapy
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | | | - David Briand
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| | - Isabelle Guénal
- Université Paris-Saclay, UVSQ, LGBC, 78000, Versailles, France
| | - Pauline Spéder
- Institut Pasteur, Université Paris Cité, CNRS UMR3738, Structure and Signals in the Neurogenic Niche, Paris, France
| |
Collapse
|
7
|
Gujar MR, Gao Y, Teng X, Deng Q, Lin KY, Tan YS, Toyama Y, Wang H. Golgi-dependent reactivation and regeneration of Drosophila quiescent neural stem cells. Dev Cell 2023; 58:1933-1949.e5. [PMID: 37567172 DOI: 10.1016/j.devcel.2023.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/26/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
The ability of stem cells to switch between quiescent and proliferative states is crucial for maintaining tissue homeostasis and regeneration. In Drosophila, quiescent neural stem cells (qNSCs) extend a primary protrusion, a hallmark of qNSCs. Here, we have found that qNSC protrusions can be regenerated upon injury. This regeneration process relies on the Golgi apparatus that acts as the major acentrosomal microtubule-organizing center in qNSCs. A Golgi-resident GTPase Arf1 and its guanine nucleotide exchange factor Sec71 promote NSC reactivation and regeneration via the regulation of microtubule growth. Arf1 physically associates with its new effector mini spindles (Msps)/XMAP215, a microtubule polymerase. Finally, Arf1 functions upstream of Msps to target the cell adhesion molecule E-cadherin to NSC-neuropil contact sites during NSC reactivation. Our findings have established Drosophila qNSCs as a regeneration model and identified Arf1/Sec71-Msps pathway in the regulation of microtubule growth and NSC reactivation.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yang Gao
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Xiang Teng
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Qiannan Deng
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kun-Yang Lin
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Ye Sing Tan
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, Level 5, T-lab Building, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
8
|
Kandimalla P, Omoto JJ, Hong EJ, Hartenstein V. Lineages to circuits: the developmental and evolutionary architecture of information channels into the central complex. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:679-720. [PMID: 36932234 PMCID: PMC10354165 DOI: 10.1007/s00359-023-01616-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 03/19/2023]
Abstract
The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.
Collapse
Affiliation(s)
- Pratyush Kandimalla
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| | - Jaison Jiro Omoto
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Rujano MA, Briand D, Ðelić B, Marc J, Spéder P. An interplay between cellular growth and atypical fusion defines morphogenesis of a modular glial niche in Drosophila. Nat Commun 2022; 13:4999. [PMID: 36008397 PMCID: PMC9411534 DOI: 10.1038/s41467-022-32685-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neural stem cells (NSCs) live in an intricate cellular microenvironment supporting their activity, the niche. Whilst shape and function are inseparable, the morphogenetic aspects of niche development are poorly understood. Here, we use the formation of a glial niche to investigate acquisition of architectural complexity. Cortex glia (CG) in Drosophila regulate neurogenesis and build a reticular structure around NSCs. We first show that individual CG cells grow tremendously to ensheath several NSC lineages, employing elaborate proliferative mechanisms which convert these cells into syncytia rich in cytoplasmic bridges. CG syncytia further undergo homotypic cell-cell fusion, using defined cell surface receptors and actin regulators. Cellular exchange is however dynamic in space and time. This atypical cell fusion remodels cellular borders, restructuring the CG syncytia. Ultimately, combined growth and fusion builds the multi-level architecture of the niche, and creates a modular, spatial partition of the NSC population. Our findings provide insights into how a niche forms and organises while developing intimate contacts with a stem cell population.
Collapse
Affiliation(s)
| | | | - Bojana Ðelić
- Institut Pasteur, CNRS UMR3738, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Cell Division and Neurogenesis, Ecole Normale Supérieure, CNRS, Inserm, PSL Université Paris, Paris, France
| | - Julie Marc
- Institut Pasteur, CNRS UMR3738, Paris, France
| | | |
Collapse
|
10
|
Dillon N, Cocanougher B, Sood C, Yuan X, Kohn AB, Moroz LL, Siegrist SE, Zlatic M, Doe CQ. Single cell RNA-seq analysis reveals temporally-regulated and quiescence-regulated gene expression in Drosophila larval neuroblasts. Neural Dev 2022; 17:7. [PMID: 36002894 PMCID: PMC9404614 DOI: 10.1186/s13064-022-00163-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that generate neural diversity during development remains largely unknown. Here, we use scRNA-seq methodology to discover new features of the Drosophila larval CNS across several key developmental timepoints. We identify multiple progenitor subtypes - both stem cell-like neuroblasts and intermediate progenitors - that change gene expression across larval development, and report on new candidate markers for each class of progenitors. We identify a pool of quiescent neuroblasts in newly hatched larvae and show that they are transcriptionally primed to respond to the insulin signaling pathway to exit from quiescence, including relevant pathway components in the adjacent glial signaling cell type. We identify candidate "temporal transcription factors" (TTFs) that are expressed at different times in progenitor lineages. Our work identifies many cell type specific genes that are candidates for functional roles, and generates new insight into the differentiation trajectory of larval neurons.
Collapse
Affiliation(s)
- Noah Dillon
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA
| | - Ben Cocanougher
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Chhavi Sood
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Xin Yuan
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, FL, 32080, St. Augustine, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, VA, 22904, Charlottesville, USA
| | - Marta Zlatic
- MRC Laboratory of Molecular Biology, Dept of Zoology, University of Cambridge, Cambridge, UK
- Janelia Research Campus, VA, Ashburn, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, OR, 97403, Eugene, USA.
| |
Collapse
|
11
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Gujar MR, Wang H. A fly's eye view of quiescent neural stem cells. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac001. [PMID: 38596705 PMCID: PMC10913722 DOI: 10.1093/oons/kvac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 04/11/2024]
Abstract
The balance between proliferation and quiescence of stem cells is crucial in maintaining tissue homeostasis. Neural stem cells (NSCs) in the brain have the ability to be reactivated from a reversible quiescent state to generate new neurons. However, how NSCs transit between quiescence and reactivation remains largely elusive. Drosophila larval brain NSCs, also known as neuroblasts, have emerged as an excellent in vivo model to study molecular mechanisms underlying NSC quiescence and reactivation. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs in Drosophila. We review the most recent advances on epigenetic regulations and microtubule cytoskeleton in Drosophila quiescent NSCs and their cross-talk with signaling pathways that are required in regulating NSC reactivation.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore
| |
Collapse
|
13
|
Pogodalla N, Winkler B, Klämbt C. Glial Tiling in the Insect Nervous System. Front Cell Neurosci 2022; 16:825695. [PMID: 35250488 PMCID: PMC8891220 DOI: 10.3389/fncel.2022.825695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
The Drosophila nervous system comprises a small number of well characterized glial cell classes. The outer surface of the central nervous system (CNS) is protected by a glial derived blood-brain barrier generated by perineurial and subperineurial glia. All neural stem cells and all neurons are engulfed by cortex glial cells. The inner neuropil region, that harbors all synapses and dendrites, is covered by ensheathing glia and infiltrated by astrocyte-like glial cells. All these glial cells show a tiled organization with an often remarkable plasticity where glial cells of one cell type invade the territory of the neighboring glial cell type upon its ablation. Here, we summarize the different glial tiling patterns and based on the different modes of cell-cell contacts we hypothesize that different molecular mechanisms underlie tiling of the different glial cell types.
Collapse
|
14
|
Deng Q, Tan YS, Chew LY, Wang H. Msps governs acentrosomal microtubule assembly and reactivation of quiescent neural stem cells. EMBO J 2021; 40:e104549. [PMID: 34368973 PMCID: PMC8488572 DOI: 10.15252/embj.2020104549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of stem cells to switch between quiescence and proliferation is crucial for tissue homeostasis and regeneration. Drosophila quiescent neural stem cells (NSCs) extend a primary cellular protrusion from the cell body prior to their reactivation. However, the structure and function of this protrusion are not well established. Here, we show that in the protrusion of quiescent NSCs, microtubules are predominantly acentrosomal and oriented plus‐end‐out toward the tip of the primary protrusion. We have identified Mini Spindles (Msps)/XMAP215 as a key microtubule regulator in quiescent NSCs that governs NSC reactivation via regulating acentrosomal microtubule growth and orientation. We show that quiescent NSCs form membrane contact with the neuropil and E‐cadherin, a cell adhesion molecule, localizes to these NSC‐neuropil junctions. Msps and a plus‐end directed motor protein Kinesin‐2 promote NSC cell cycle re‐entry and target E‐cadherin to NSC‐neuropil contact during NSC reactivation. Together, this work establishes acentrosomal microtubule organization in the primary protrusion of quiescent NSCs and the Msps‐Kinesin‐2 pathway that governs NSC reactivation, in part, by targeting E‐cad to NSC‐neuropil contact sites.
Collapse
Affiliation(s)
- Qiannan Deng
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Ye Sing Tan
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Liang Yuh Chew
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Dong Q, Zavortink M, Froldi F, Golenkina S, Lam T, Cheng LY. Glial Hedgehog signalling and lipid metabolism regulate neural stem cell proliferation in Drosophila. EMBO Rep 2021; 22:e52130. [PMID: 33751817 DOI: 10.15252/embr.202052130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/07/2023] Open
Abstract
The final size and function of the adult central nervous system (CNS) are determined by neuronal lineages generated by neural stem cells (NSCs) in the developing brain. In Drosophila, NSCs called neuroblasts (NBs) reside within a specialised microenvironment called the glial niche. Here, we explore non-autonomous glial regulation of NB proliferation. We show that lipid droplets (LDs) which reside within the glial niche are closely associated with the signalling molecule Hedgehog (Hh). Under physiological conditions, cortex glial Hh is autonomously required to sustain niche chamber formation. Upon FGF-mediated cortex glial overgrowth, glial Hh non-autonomously activates Hh signalling in the NBs, which in turn disrupts NB cell cycle progression and its ability to produce neurons. Glial Hh's ability to signal to NB is further modulated by lipid storage regulator lipid storage droplet-2 (Lsd-2) and de novo lipogenesis gene fatty acid synthase 1 (Fasn1). Together, our data suggest that glial-derived Hh modified by lipid metabolism mechanisms can affect the neighbouring NB's ability to proliferate and produce neurons.
Collapse
Affiliation(s)
- Qian Dong
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Michael Zavortink
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Francesca Froldi
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Sofya Golenkina
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Tammy Lam
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Parkville, Vic., Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia.,The Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
16
|
Yatsenko AS, Kucherenko MM, Xie Y, Urlaub H, Shcherbata HR. Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization. eLife 2021; 10:63868. [PMID: 33620318 PMCID: PMC7929561 DOI: 10.7554/elife.63868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II or cobblestone brain. The previously established Drosophila model for cobblestone lissencephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,University Medical Center Göttingen, Bioanalytics, Institute for Clinical Chemistry, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
17
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
18
|
Bakshi A, Joshi R. Role of glial niche in regulating neural stem cell proliferation in Drosophila central nervous system. J Neurosci Res 2020; 98:2373-2375. [PMID: 32812272 DOI: 10.1002/jnr.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Asif Bakshi
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rohit Joshi
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
19
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
20
|
Waking up quiescent neural stem cells: Molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet 2020; 16:e1008653. [PMID: 32324743 PMCID: PMC7179833 DOI: 10.1371/journal.pgen.1008653] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the nervous system. Most NSCs in mammalian adult brains are quiescent, but in response to extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new neurons. The delicate balance between NSC quiescence and activation is important for adult neurogenesis and NSC maintenance. However, how NSCs transit between quiescence and activation remains largely elusive. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent advances on signaling pathways originated from the NSC niche and their crosstalk in regulating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactivation in Drosophila and mammalian systems. We also discuss emerging evidence on modeling human neurodevelopmental disorders using NSCs.
Collapse
|
21
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
22
|
Loyer N, Januschke J. Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Curr Opin Cell Biol 2020; 62:70-77. [DOI: 10.1016/j.ceb.2019.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
|
23
|
Collective behaviors of Drosophila-derived retinal progenitors in controlled microenvironments. PLoS One 2019; 14:e0226250. [PMID: 31835272 PMCID: PMC6910854 DOI: 10.1371/journal.pone.0226250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/24/2019] [Indexed: 12/29/2022] Open
Abstract
Collective behaviors of retinal progenitor cells (RPCs) are critical to the development of neural networks needed for vision. Signaling cues and pathways governing retinal cell fate, migration, and functional organization are remarkably conserved across species, and have been well-studied using Drosophila melanogaster. However, the collective migration of heterogeneous groups of RPCs in response to dynamic signaling fields of development remains incompletely understood. This is in large part because the genetic advances of seminal invertebrate models have been poorly complemented by in vitro cell study of its visual development. Tunable microfluidic assays able to replicate the miniature cellular microenvironments of the developing visual system provide newfound opportunities to probe and expand our knowledge of collective chemotactic responses essential to visual development. Our project used a controlled, microfluidic assay to produce dynamic signaling fields of Fibroblast Growth Factor (FGF) that stimulated the chemotactic migration of primary RPCs extracted from Drosophila. Results illustrated collective RPC chemotaxis dependent on average size of clustered cells, in contrast to the non-directional movement of individually-motile RPCs. Quantitative study of these diverse collective responses will advance our understanding of retina developmental processes, and aid study/treatment of inherited eye disease. Lastly, our unique coupling of defined invertebrate models with tunable microfluidic assays provides advantages for future quantitative and mechanistic study of varied RPC migratory responses.
Collapse
|
24
|
Pena CD, Zhang S, Majeska R, Venkatesh T, Vazquez M. Invertebrate Retinal Progenitors as Regenerative Models in a Microfluidic System. Cells 2019; 8:cells8101301. [PMID: 31652654 PMCID: PMC6829900 DOI: 10.3390/cells8101301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insufficient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical to our understanding of retinogenesis and the development of effective, cell-based approaches to retinal replacement. The current article describes a new bio-engineering approach to investigate the migratory responses of innate collections of RPCs upon extracellular substrates by combining microfluidics with the well-established invertebrate model of Drosophila melanogaster. Experiments utilized microfluidics to investigate how the composition, size, and adhesion of RPC clusters on defined extracellular substrates affected migration to exogenous chemotactic signaling. Results demonstrated that retinal cluster size and composition influenced RPC clustering upon extracellular substrates of concanavalin (Con-A), Laminin (LM), and poly-L-lysine (PLL), and that RPC cluster size greatly altered collective migratory responses to signaling from Fibroblast Growth Factor (FGF), a primary chemotactic agent in Drosophila. These results highlight the significance of examining collective cell-biomaterial interactions on bio-substrates of emerging biomaterials to aid directional migration of transplanted cells. Our approach further introduces the benefits of pairing genetically controlled models with experimentally controlled microenvironments to advance cell replacement therapies.
Collapse
Affiliation(s)
- Caroline D Pena
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Stephanie Zhang
- Department of Biomedical Engineering, The State University of New York at Binghamton, NY 13902, USA.
| | - Robert Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
| | - Tadmiri Venkatesh
- Department of Biology, City College of New York, New York, NY 10031, USA.
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08854, USA.
| |
Collapse
|
25
|
Plazaola-Sasieta H, Zhu Q, Gaitán-Peñas H, Rios M, Estévez R, Morey M. Drosophila ClC-a is required in glia of the stem cell niche for proper neurogenesis and wiring of neural circuits. Glia 2019; 67:2374-2398. [PMID: 31479171 PMCID: PMC6851788 DOI: 10.1002/glia.23691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023]
Abstract
Glial cells form part of the neural stem cell niche and express a wide variety of ion channels; however, the contribution of these channels to nervous system development is poorly understood. We explored the function of the Drosophila ClC‐a chloride channel, since its mammalian ortholog CLCN2 is expressed in glial cells, and defective channel function results in leukodystrophies, which in humans are accompanied by cognitive impairment. We found that ClC‐a was expressed in the niche in cortex glia, which are closely associated with neurogenic tissues. Characterization of loss‐of‐function ClC‐a mutants revealed that these animals had smaller brains and widespread wiring defects. We showed that ClC‐a is required in cortex glia for neurogenesis in neuroepithelia and neuroblasts, and identified defects in a neuroblast lineage that generates guidepost glial cells essential for photoreceptor axon guidance. We propose that glia‐mediated ionic homeostasis could nonautonomously affect neurogenesis, and consequently, the correct assembly of neural circuits.
Collapse
Affiliation(s)
- Haritz Plazaola-Sasieta
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Qi Zhu
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Héctor Gaitán-Peñas
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Martín Rios
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Raúl Estévez
- Departament de Ciencies Fisiològiques, Genes, Disease and Therapy Program IDIBELL-Institute of Neurosciences, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morey
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Programa de Biologia Integrativa, Barcelona, Spain
| |
Collapse
|
26
|
Weiss S, Melom JE, Ormerod KG, Zhang YV, Littleton JT. Glial Ca 2+signaling links endocytosis to K + buffering around neuronal somas to regulate excitability. eLife 2019; 8:44186. [PMID: 31025939 PMCID: PMC6510531 DOI: 10.7554/elife.44186] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 12/30/2022] Open
Abstract
Glial-neuronal signaling at synapses is widely studied, but how glia interact with neuronal somas to regulate their activity is unclear. Drosophila cortex glia are restricted to brain regions devoid of synapses, providing an opportunity to characterize interactions with neuronal somas. Mutations in the cortex glial NCKXzydeco elevate basal Ca2+, predisposing animals to seizure-like behavior. To determine how cortex glial Ca2+ signaling controls neuronal excitability, we performed an in vivo modifier screen of the NCKXzydeco seizure phenotype. We show that elevation of glial Ca2+ causes hyperactivation of calcineurin-dependent endocytosis and accumulation of early endosomes. Knockdown of sandman, a K2P channel, recapitulates NCKXzydeco seizures. Indeed, sandman expression on cortex glial membranes is substantially reduced in NCKXzydeco mutants, indicating enhanced internalization of sandman predisposes animals to seizures. These data provide an unexpected link between glial Ca2+ signaling and the well-known role of glia in K+ buffering as a key mechanism for regulating neuronal excitability.
Collapse
Affiliation(s)
- Shirley Weiss
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Jan E Melom
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Kiel G Ormerod
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Yao V Zhang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
27
|
Read RD. Pvr receptor tyrosine kinase signaling promotes post-embryonic morphogenesis, and survival of glia and neural progenitor cells in Drosophila. Development 2018; 145:dev.164285. [PMID: 30327326 DOI: 10.1242/dev.164285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022]
Abstract
Stem cells reside in specialized microenvironments, called niches, that regulate their development and the development of their progeny. However, the development and maintenance of niches are poorly understood. In the Drosophila brain, cortex glial cells provide a niche that promotes self-renewal and proliferation of neural stem cell-like cells (neuroblasts). In the central brain, neuroblasts and their progeny control post-embryonic morphogenesis of cortex glia through PDGF-like ligands, and this PDGFR receptor tyrosine kinase (RTK) signaling in cortex glia is required for expression of DE-cadherin, which sustains neuroblasts. Thus, through an RTK-dependent feed-forward loop, neuroblasts and their glial niche actively maintain each other. When the EGFR RTK is constitutively activated in cortex glia, they overexpress PDGF orthologs to stimulate autocrine PDGFR signaling, which uncouples their growth and survival from neuroblasts, and drives neoplastic glial transformation and elimination of neuroblasts. These results provide fundamental insights into glial development and niche regulation, and show that niche-neural stem cell feed-forward signaling becomes hijacked to drive neural tumorigenesis.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
28
|
Yildirim K, Petri J, Kottmeier R, Klämbt C. Drosophila glia: Few cell types and many conserved functions. Glia 2018; 67:5-26. [DOI: 10.1002/glia.23459] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Johanna Petri
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Rita Kottmeier
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| | - Christian Klämbt
- Institute for Neuro and Behavioral Biology; University of Münster; Badestraße 9, 48149 Münster Germany
| |
Collapse
|
29
|
Loyer N, Januschke J. The last-born daughter cell contributes to division orientation of Drosophila larval neuroblasts. Nat Commun 2018; 9:3745. [PMID: 30218051 PMCID: PMC6138640 DOI: 10.1038/s41467-018-06276-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 08/17/2018] [Indexed: 01/27/2023] Open
Abstract
Controlling the orientation of cell division is important in the context of cell fate choices and tissue morphogenesis. However, the mechanisms providing the required positional information remain incompletely understood. Here we use stem cells of the Drosophila larval brain that stably maintain their axis of polarity and division between cell cycles to identify cues that orient cell division. Using live cell imaging of cultured brains, laser ablation and genetics, we reveal that division axis maintenance relies on their last-born daughter cell. We propose that, in addition to known intrinsic cues, stem cells in the developing fly brain are polarized by an extrinsic signal. We further find that division axis maintenance allows neuroblasts to maximize their contact area with glial cells known to provide protective and proliferative signals to neuroblasts.
Collapse
Affiliation(s)
- Nicolas Loyer
- Cell & Developmental Biology, School of Life Sciences, University of Dundee, MSI/WTB3 Complex, Dow Street, Dundee, DD1 5EH, UK
| | - Jens Januschke
- Cell & Developmental Biology, School of Life Sciences, University of Dundee, MSI/WTB3 Complex, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
30
|
Nichols EL, Green LA, Smith CJ. Ensheathing cells utilize dynamic tiling of neuronal somas in development and injury as early as neuronal differentiation. Neural Dev 2018; 13:19. [PMID: 30121077 PMCID: PMC6098834 DOI: 10.1186/s13064-018-0115-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
Background Glial cell ensheathment of specific components of neuronal circuits is essential for nervous system function. Although ensheathment of axonal segments of differentiated neurons has been investigated, ensheathment of neuronal cell somas, especially during early development when neurons are extending processes and progenitor populations are expanding, is still largely unknown. Methods To address this, we used time-lapse imaging in zebrafish during the initial formation of the dorsal root ganglia (DRG). Results Our results show that DRG neurons are ensheathed throughout their entire lifespan by a progenitor population. These ensheathing cells dynamically remodel during development to ensure axons can extend away from the neuronal cell soma into the CNS and out to the skin. As a population, ensheathing cells tile each DRG neuron to ensure neurons are tightly encased. In development and in experimental cell ablation paradigms, the oval shape of DRG neurons dynamically changes during partial unensheathment. During longer extended unensheathment neuronal soma shifting is observed. We further show the intimate relationship of these ensheathing cells with the neurons leads to immediate and choreographed responses to distal axonal damage to the neuron. Conclusion We propose that the ensheathing cells dynamically contribute to the shape and position of neurons in the DRG by their remodeling activity during development and are primed to dynamically respond to injury of the neuron. Electronic supplementary material The online version of this article (10.1186/s13064-018-0115-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Evan L Nichols
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA
| | - Lauren A Green
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA.,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, 015 Galvin Life Sciences Building, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
31
|
Kanai MI, Kim MJ, Akiyama T, Takemura M, Wharton K, O'Connor MB, Nakato H. Regulation of neuroblast proliferation by surface glia in the Drosophila larval brain. Sci Rep 2018; 8:3730. [PMID: 29487331 PMCID: PMC5829083 DOI: 10.1038/s41598-018-22028-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/15/2018] [Indexed: 01/19/2023] Open
Abstract
Despite the importance of precisely regulating stem cell division, the molecular basis for this control is still elusive. Here, we show that surface glia in the developing Drosophila brain play essential roles in regulating the proliferation of neural stem cells, neuroblasts (NBs). We found that two classes of extracellular factors, Dally-like (Dlp), a heparan sulfate proteoglycan, and Glass bottom boat (Gbb), a BMP homologue, are required for proper NB proliferation. Interestingly, Dlp expressed in perineural glia (PG), the most outer layer of the surface glia, is responsible for NB proliferation. Consistent with this finding, functional ablation of PG using a dominant-negative form of dynamin showed that PG has an instructive role in regulating NB proliferation. Gbb acts not only as an autocrine proliferation factor in NBs but also as a paracrine survival signal in the PG. We propose that bidirectional communication between NBs and glia through TGF-β signaling influences mutual development of these two cell types. We also discuss the possibility that PG and NBs communicate via direct membrane contact or transcytotic transport of membrane components. Thus, our study shows that the surface glia acts not only as a simple structural insulator but also a dynamic regulator of brain development.
Collapse
Affiliation(s)
- Makoto I Kanai
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Takuya Akiyama
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Masahiko Takemura
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kristi Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
32
|
Spéder P, Brand AH. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. eLife 2018; 7. [PMID: 29299997 PMCID: PMC5754201 DOI: 10.7554/elife.30413] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Successful neurogenesis requires adequate proliferation of neural stem cells (NSCs) and their progeny, followed by neuronal differentiation, maturation and survival. NSCs inhabit a complex cellular microenvironment, the niche, which influences their behaviour. To ensure sustained neurogenesis, niche cells must respond to extrinsic, environmental changes whilst fulfilling the intrinsic requirements of the neurogenic program and adapting their roles accordingly. However, very little is known about how different niche cells adjust their properties to such inputs. Here, we show that nutritional and NSC-derived signals induce the remodelling of Drosophila cortex glia, adapting this glial niche to the evolving needs of NSCs. First, nutrition-induced activation of PI3K/Akt drives the cortex glia to expand their membrane processes. Second, when NSCs emerge from quiescence to resume proliferation, they signal to glia to promote membrane remodelling and the formation of a bespoke structure around each NSC lineage. The remodelled glial niche is essential for newborn neuron survival.
Collapse
Affiliation(s)
- Pauline Spéder
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea H Brand
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
34
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 961] [Impact Index Per Article: 160.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
35
|
Coutinho-Budd JC, Sheehan AE, Freeman MR. The secreted neurotrophin Spätzle 3 promotes glial morphogenesis and supports neuronal survival and function. Genes Dev 2017; 31:2023-2038. [PMID: 29138279 PMCID: PMC5733495 DOI: 10.1101/gad.305888.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/20/2017] [Indexed: 10/27/2022]
Abstract
Most glial functions depend on establishing intimate morphological relationships with neurons. Significant progress has been made in understanding neuron-glia signaling at synaptic and axonal contacts, but how glia support neuronal cell bodies is unclear. Here we explored the growth and functions of Drosophila cortex glia (which associate almost exclusively with neuronal cell bodies) to understand glia-soma interactions. We show that cortex glia tile with one another and with astrocytes to establish unique central nervous system (CNS) spatial domains that actively restrict glial growth, and selective ablation of cortex glia causes animal lethality. In an RNAi-based screen, we identified αSNAP (soluble NSF [N-ethylmalemeide-sensitive factor] attachment protein α) and several components of vesicle fusion and recycling machinery as essential for the maintenance of cortex glial morphology and continued contact with neurons. Interestingly, loss of the secreted neurotrophin Spätzle 3 (Spz3) phenocopied αSNAP phenotypes, which included loss of glial ensheathment of neuron cell bodies, increased neuronal cell death, and defects in animal behavior. Rescue experiments suggest that Spz3 can exert these effects only over very short distances. This work identifies essential roles for glial ensheathment of neuronal cell bodies in CNS homeostasis as well as Spz3 as a novel signaling factor required for maintenance of cortex glial morphology and neuron-glia contact.
Collapse
Affiliation(s)
- Jaeda C Coutinho-Budd
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| |
Collapse
|
36
|
Rittschof CC, Schirmeier S. Insect models of central nervous system energy metabolism and its links to behavior. Glia 2017; 66:1160-1175. [DOI: 10.1002/glia.23235] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology; College of Agriculture, Food, and the Environment, University of Kentucky; Lexington Kentucky
| | - Stefanie Schirmeier
- Institut für Neuro-und Verhaltensbiologie, University of Münster; Münster Germany
| |
Collapse
|
37
|
Richier B, Vijandi CDM, Mackensen S, Salecker I. Lapsyn controls branch extension and positioning of astrocyte-like glia in the Drosophila optic lobe. Nat Commun 2017; 8:317. [PMID: 28827667 PMCID: PMC5567088 DOI: 10.1038/s41467-017-00384-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Astrocytes have diverse, remarkably complex shapes in different brain regions. Their branches closely associate with neurons. Despite the importance of this heterogeneous glial cell type for brain development and function, the molecular cues controlling astrocyte branch morphogenesis and positioning during neural circuit assembly remain largely unknown. We found that in the Drosophila visual system, astrocyte-like medulla neuropil glia (mng) variants acquire stereotypic morphologies with columnar and layered branching patterns in a stepwise fashion from mid-metamorphosis onwards. Using knockdown and loss-of-function analyses, we uncovered a previously unrecognized role for the transmembrane leucine-rich repeat protein Lapsyn in regulating mng development. lapsyn is expressed in mng and cell-autonomously required for branch extension into the synaptic neuropil and anchoring of cell bodies at the neuropil border. Lapsyn works in concert with the fibroblast growth factor (FGF) pathway to promote branch morphogenesis, while correct positioning is essential for mng survival mediated by gliotrophic FGF signaling. How glial cells, such as astrocytes, acquire their characteristic morphology during development is poorly understood. Here the authors describe the morphogenesis of astrocyte-like glia in the Drosophila optic lobe, and through a RNAi screen, they identify a transmembrane LRR protein–Lapsyn–that plays a critical role in this process.
Collapse
Affiliation(s)
- Benjamin Richier
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | - Stefanie Mackensen
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, 48149, Muenster, Germany
| | - Iris Salecker
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
38
|
Doyle SE, Pahl MC, Siller KH, Ardiff L, Siegrist SE. Neuroblast niche position is controlled by Phosphoinositide 3-kinase-dependent DE-Cadherin adhesion. Development 2017; 144:820-829. [PMID: 28126840 DOI: 10.1242/dev.136713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
Correct positioning of stem cells within their niche is essential for tissue morphogenesis and homeostasis. How stem cells acquire and maintain niche position remains largely unknown. Here, we show that a subset of brain neuroblasts (NBs) in Drosophila utilize Phosphoinositide 3-kinase (PI3-kinase) and DE-cadherin to build adhesive contact for NB niche positioning. NBs remain within their native microenvironment when levels of PI3-kinase activity and DE-cadherin are elevated in NBs. This occurs through PI3-kinase-dependent regulation of DE-Cadherin-mediated cell adhesion between NBs and neighboring cortex glia, and between NBs and their ganglion mother cell daughters. When levels of PI3-kinase activity and/or DE-Cadherin are reduced in NBs, NBs lose niche position and relocate to a non-native brain region that is rich in neurosecretory neurons, including those that secrete some of the Drosophila insulin-like peptides. Linking levels of PI3-kinase activity to the strength of adhesive attachment could provide cancer stem cells and hematopoietic stem cells with a means to cycle from trophic-poor to trophic-rich microenvironments.
Collapse
Affiliation(s)
- Susan E Doyle
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Matthew C Pahl
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Karsten H Siller
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Lindsay Ardiff
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
39
|
Developmental Expression of 4-Repeat-Tau Induces Neuronal Aneuploidy in Drosophila Tauopathy Models. Sci Rep 2017; 7:40764. [PMID: 28112163 PMCID: PMC5256094 DOI: 10.1038/srep40764] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/12/2016] [Indexed: 01/23/2023] Open
Abstract
Tau-mediated neurodegeneration in Alzheimer’s disease and tauopathies is generally assumed to start in a normally developed brain. However, several lines of evidence suggest that impaired Tau isoform expression during development could affect mitosis and ploidy in post-mitotic differentiated tissue. Interestingly, the relative expression levels of Tau isoforms containing either 3 (3R-Tau) or 4 repeats (4R-Tau) play an important role both during brain development and neurodegeneration. Here, we used genetic and cellular tools to study the link between 3R and 4R-Tau isoform expression, mitotic progression in neuronal progenitors and post-mitotic neuronal survival. Our results illustrated that the severity of Tau-induced adult phenotypes depends on 4R-Tau isoform expression during development. As recently described, we observed a mitotic delay in 4R-Tau expressing cells of larval eye discs and brains. Live imaging revealed that the spindle undergoes a cycle of collapse and recovery before proceeding to anaphase. Furthermore, we found a high level of aneuploidy in post-mitotic differentiated tissue. Finally, we showed that overexpression of wild type and mutant 4R-Tau isoform in neuroblastoma SH-SY5Y cell lines is sufficient to induce monopolar spindles. Taken together, our results suggested that neurodegeneration could be in part linked to neuronal aneuploidy caused by 4R-Tau expression during brain development.
Collapse
|
40
|
Christofi T, Apidianakis Y. Drosophila and the hallmarks of cancer. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 135:79-110. [PMID: 23615878 DOI: 10.1007/10_2013_190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
: Cancer was the disease of the twentieth century. Today it is still a leading cause of death worldwide despite being intensively investigated. Abundant knowledge exists regarding the pathological and molecular mechanisms that drive healthy cells to become malignant and form metastatic tumors. The relation of oncogenes and tumor suppressors to the genetic trigger of carcinogenesis is unquestionable. However, the development of the disease requires many characteristics that due to their proven role in cancer are collectively described as the "hallmarks of cancer." We highlight here the historic discoveries made using the model organism Drosophila melanogaster and its contributions to biomedical and cancer research. Flies are utilized as a model organism for the investigation of each and every aspect of cancer hallmarks. Due to the significant conservation between flies and mammals at the signaling and tissue physiology level it is possible to explore the genes and mechanisms responsible for cancer pathogenesis in flies. Recent Drosophila studies suggest novel aspects of therapeutic intervention and are expected to guide cancer research in the twenty-first century.
Collapse
|
41
|
The Hippo signalling pathway maintains quiescence in Drosophila neural stem cells. Nat Commun 2016; 7:10510. [PMID: 26821647 PMCID: PMC4740179 DOI: 10.1038/ncomms10510] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Stem cells control their mitotic activity to decide whether to proliferate or to stay in quiescence. Drosophila neural stem cells (NSCs) are quiescent at early larval stages, when they are reactivated in response to metabolic changes. Here we report that cell-contact inhibition of growth through the canonical Hippo signalling pathway maintains NSC quiescence. Loss of the core kinases hippo or warts leads to premature nuclear localization of the transcriptional co-activator Yorkie and initiation of growth and proliferation in NSCs. Yorkie is necessary and sufficient for NSC reactivation, growth and proliferation. The Hippo pathway activity is modulated via inter-cellular transmembrane proteins Crumbs and Echinoid that are both expressed in a nutrient-dependent way in niche glial cells and NSCs. Loss of crumbs or echinoid in the niche only is sufficient to reactivate NSCs. Finally, we provide evidence that the Hippo pathway activity discriminates quiescent from non-quiescent NSCs in the Drosophila nervous system. Drosophila neural stem cells (NSCs) are quiescent at early larval stages but how this is regulated is unclear. Here, Ding et al. show that quiescence of NSCs is mediated by cell-contact inhibition via the Hippo pathway transmembrane proteins Crumbs and Echinoid, which in turn are regulated by nutrient levels.
Collapse
|
42
|
Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, Postle AD, Gould AP. Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell 2016; 163:340-53. [PMID: 26451484 PMCID: PMC4601084 DOI: 10.1016/j.cell.2015.09.020] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 06/15/2015] [Accepted: 08/12/2015] [Indexed: 12/19/2022]
Abstract
Stem cells reside in specialized microenvironments known as niches. During Drosophila development, glial cells provide a niche that sustains the proliferation of neural stem cells (neuroblasts) during starvation. We now find that the glial cell niche also preserves neuroblast proliferation under conditions of hypoxia and oxidative stress. Lipid droplets that form in niche glia during oxidative stress limit the levels of reactive oxygen species (ROS) and inhibit the oxidation of polyunsaturated fatty acids (PUFAs). These droplets protect glia and also neuroblasts from peroxidation chain reactions that can damage many types of macromolecules. The underlying antioxidant mechanism involves diverting PUFAs, including diet-derived linoleic acid, away from membranes to the core of lipid droplets, where they are less vulnerable to peroxidation. This study reveals an antioxidant role for lipid droplets that could be relevant in many different biological contexts. Oxidative stress stimulates lipid droplet biosynthesis in a neural stem cell niche Lipid droplets protect niche and neural stem cells from damaging PUFA peroxidation PUFAs are less vulnerable to peroxidation in lipid droplets than in cell membranes
Collapse
Affiliation(s)
- Andrew P Bailey
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Grielof Koster
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Christelle Guillermier
- National Resource for Imaging Mass Spectroscopy, Harvard Medical School and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Elizabeth M A Hirst
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - James I MacRae
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Claude P Lechene
- National Resource for Imaging Mass Spectroscopy, Harvard Medical School and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Anthony D Postle
- Academic Unit of Clinical & Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Alex P Gould
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
43
|
Fedotov SA, Bragina JV, Besedina NG, Danilenkova LV, Kamysheva EA, Panova AA, Kamyshev NG. The effect of neurospecific knockdown of candidate genes for locomotor behavior and sound production in Drosophila melanogaster. Fly (Austin) 2015; 8:176-87. [PMID: 25494872 PMCID: PMC4594543 DOI: 10.4161/19336934.2014.983389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Molecular mechanisms underlying the functioning of central pattern generators (CPGs) are poorly understood. Investigations using genetic approaches in the model organism Drosophila may help to identify unknown molecular players participating in the formation or control of motor patterns. Here we report Drosophila genes as candidates for involvement in the neural mechanisms responsible for motor functions, such as locomotion and courtship song. Twenty-two Drosophila lines, used for gene identification, were isolated from a previously created collection of 1064 lines, each carrying a P element insertion in one of the autosomes. The lines displayed extreme deviations in locomotor and/or courtship song parameters compared with the whole collection. The behavioral consequences of CNS-specific RNAi-mediated knockdowns for 10 identified genes were estimated. The most prominent changes in the courtship song interpulse interval (IPI) were seen in flies with Sps2 or CG15630 knockdown. Glia-specific knockdown of these genes produced no effect on the IPI. Estrogen-induced knockdown of CG15630 in adults reduced the IPI. The product of the CNS-specific gene, CG15630 (a predicted cell surface receptor), is likely to be directly involved in the functioning of the CPG generating the pulse song pattern. Future studies should ascertain its functional role in the neurons that constitute the song CPG. Other genes (Sps2, CG34460), whose CNS-specific knockdown resulted in IPI reduction, are also worthy of detailed examination.
Collapse
Affiliation(s)
- Sergey A Fedotov
- a I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences ; Saint Petersburg ; Russia
| | | | | | | | | | | | | |
Collapse
|
44
|
Lovick JK, Hartenstein V. Hydroxyurea-mediated neuroblast ablation establishes birth dates of secondary lineages and addresses neuronal interactions in the developing Drosophila brain. Dev Biol 2015; 402:32-47. [PMID: 25773365 PMCID: PMC4472457 DOI: 10.1016/j.ydbio.2015.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 11/27/2022]
Abstract
The Drosophila brain is comprised of neurons formed by approximately 100 lineages, each of which is derived from a stereotyped, asymmetrically dividing neuroblast. Lineages serve as structural and developmental units of Drosophila brain anatomy and reconstruction of lineage projection patterns represents a suitable map of Drosophila brain circuitry at the level of neuron populations ("macro-circuitry"). Two phases of neuroblast proliferation, the first in the embryo and the second during the larval phase (following a period of mitotic quiescence), produce primary and secondary lineages, respectively. Using temporally controlled pulses of hydroxyurea (HU) to ablate neuroblasts and their corresponding secondary lineages during the larval phase, we analyzed the effect on development of primary and secondary lineages in the late larval and adult brain. Our findings indicate that timing of neuroblast re-activation is highly stereotyped, allowing us to establish "birth dates" for all secondary lineages. Furthermore, our results demonstrate that, whereas the trajectory and projection pattern of primary and secondary lineages is established in a largely independent manner, the final branching pattern of secondary neurons is dependent upon the presence of appropriate neuronal targets. Taken together, our data provide new insights into the degree of neuronal plasticity during Drosophila brain development.
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Tastan ÖY, Liu JL. CTP Synthase Is Required for Optic Lobe Homeostasis in Drosophila. J Genet Genomics 2015; 42:261-74. [PMID: 26059773 PMCID: PMC4458259 DOI: 10.1016/j.jgg.2015.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 10/31/2022]
Abstract
CTP synthase (CTPsyn) is a metabolic enzyme responsible for the de novo synthesis of the nucleotide CTP. Several recent studies have shown that CTPsyn forms filamentous subcellular structures known as cytoophidia in bacteria, yeast, fruit flies and humans. However, it remains elusive whether and how CTPsyn and cytoophidia play a role during development. Here, we show that cytoophidia are abundant in the neuroepithelial stem cells in Drosophila optic lobes. Optic lobes are underdeveloped in CTPsyn mutants as well as in CTPsyn RNAi. Moreover, overexpressing CTPsyn impairs the development of optic lobes, specifically by blocking the transition from neuroepithelium to neuroblast. Taken together, our results indicate that CTPsyn is critical for optic lobe homeostasis in Drosophila.
Collapse
Affiliation(s)
- Ömür Y Tastan
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|
46
|
Omoto JJ, Yogi P, Hartenstein V. Origin and development of neuropil glia of the Drosophila larval and adult brain: Two distinct glial populations derived from separate progenitors. Dev Biol 2015; 404:2-20. [PMID: 25779704 DOI: 10.1016/j.ydbio.2015.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/01/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model.
Collapse
Affiliation(s)
- Jaison Jiro Omoto
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Puja Yogi
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
47
|
Ajjuri RR, Hall M, Reiter LT, O’Donnell JM. Drosophila. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
48
|
Zwarts L, Van Eijs F, Callaerts P. Glia in Drosophila behavior. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:879-93. [PMID: 25336160 DOI: 10.1007/s00359-014-0952-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 10/02/2014] [Accepted: 10/07/2014] [Indexed: 02/06/2023]
Abstract
Glial cells constitute about 10 % of the Drosophila nervous system. The development of genetic and molecular tools has helped greatly in defining different types of glia. Furthermore, considerable progress has been made in unraveling the mechanisms that control the development and differentiation of Drosophila glia. By contrast, the role of glia in adult Drosophila behavior is not well understood. We here summarize recent work describing the role of glia in normal behavior and in Drosophila models for neurological and behavioral disorders.
Collapse
Affiliation(s)
- L Zwarts
- Laboratory of Behavioral and Developmental Genetics VIB Center for the Biology of Disease, Center for Human Genetics, KULeuven, O&N IV Herestraat 49, Box 602, 3000, Louvain, Belgium
| | | | | |
Collapse
|
49
|
Lovick JK, Ngo KT, Omoto JJ, Wong DC, Nguyen JD, Hartenstein V. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts. Dev Biol 2013; 384:228-57. [PMID: 23880429 DOI: 10.1016/j.ydbio.2013.07.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/11/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.).
Collapse
Affiliation(s)
- Jennifer K Lovick
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, 610 Charles E. Young Drive, 5009 Terasaki Life Sciences Bldg, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
50
|
Holcroft CE, Jackson WD, Lin WH, Bassiri K, Baines RA, Phelan P. Innexins Ogre and Inx2 are required in glial cells for normal postembryonic development of the Drosophila central nervous system. J Cell Sci 2013; 126:3823-34. [PMID: 23813964 DOI: 10.1242/jcs.117994] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Innexins are one of two gene families that have evolved to permit neighbouring cells in multicellular systems to communicate directly. Innexins are found in prechordates and persist in small numbers in chordates as divergent sequences termed pannexins. Connexins are functionally analogous proteins exclusive to chordates. Members of these two families of proteins form intercellular channels, assemblies of which constitute gap junctions. Each intercellular channel is a composite of two hemichannels, one from each of two apposed cells. Hemichannels dock in the extracellular space to form a complete channel with a central aqueous pore that regulates the cell-cell exchange of ions and small signalling molecules. Hemichannels can also act independently by releasing paracrine signalling molecules. optic ganglion reduced (ogre) is a member of the Drosophila innexin family, originally identified as a gene essential for postembryonic neurogenesis. Here we demonstrate, by heterologous expression in paired Xenopus oocytes, that Ogre alone does not form homotypic gap-junction channels; however, co-expression of Ogre with Innexin2 (Inx2) induces formation of functional channels with properties distinct from Inx2 homotypic channels. In the Drosophila larval central nervous system, we find that Inx2 partially colocalises with Ogre in proliferative neuroepithelia and in glial cells. Downregulation of either ogre or inx2 selectively in glia, by targeted expression of RNA interference transgenes, leads to a significant reduction in the size of the larval nervous system and behavioural defects in surviving adults. We conclude that these innexins are crucially required in glial cells for normal postembryonic development of the central nervous system.
Collapse
|