1
|
Kao WH, Chiu KY, Tsai SCS, Teng CLJ, Oner M, Lai CH, Hsieh JT, Lin CC, Wang HY, Chen MC, Lin H. PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167568. [PMID: 39536992 DOI: 10.1016/j.bbadis.2024.167568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Aberrant PI3K/Akt activation is linked to prostate cancer (PCa) malignancy, while androgen receptor (AR) is critical in early-stage PCa development. Investigating the interaction between these pathways is crucial for PCa malignancy. Our previous study demonstrated that p35-CDK5 mediates post-translational modifications of AR, STAT3, and p21CIP1, eventually promoting PCa cell growth. This study revealed the role of p35-CDK5 in between PI3K/Akt and AR by utilizing LNCaP and 22Rv1 cells. Through the TCGA database analysis, we observed a positive correlation between PTEN and p35 expression, implying a potential negative correlation between PI3K/Akt activation and p35-CDK5. Inhibiting PI3K/Akt with LY294002, Capivasertib (AZD5363), or using an inactive Akt mutant significantly increased p35 expression and subsequently enhanced AR stability and activation in PCa cells. On the other hand, CDK5-knockdown reversed these effects. The involvement of the β-catenin/Egr1-axis was observed in regulating PI3K/Akt inhibition and p35-CDK5 activation, implying a possible mechanistic connection. Importantly, CDK5 knockdown further reduced PI3K/Akt-inhibition-induced AR and cell viability maintenance, suggesting a compensatory role for CDK5-AR in maintaining cell viability under Akt inhibition. In conclusion, PI3K/Akt inhibition could trigger p35-CDK5-dependent AR activation and cell viability, highlighting p35-CDK5 as a critical link connecting PI3K/Akt inhibition to AR activation and pivotal in PCa cell resistance to PI3K/Akt blockade.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan; College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, TX75390, USA.
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Ramirez M, Robert R, Yeung J, Wu J, Abdalla-Wyse A, Goldowitz D. Identification and characterization of transcribed enhancers during cerebellar development through enhancer RNA analysis. BMC Genomics 2023; 24:351. [PMID: 37365500 DOI: 10.1186/s12864-023-09368-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development. RESULTS Temporal analysis of eRNA transcription identified clusters of TEs that peak in activity during either embryonic or postnatal times, highlighting their importance for temporally specific developmental events. Functional analysis of putative target genes identified molecular mechanisms under TE regulation revealing that TEs regulate genes involved in biological processes specific to neurons. We validate enhancer activity using in situ hybridization of eRNA expression from TEs predicted to regulate Nfib, a gene critical for cerebellar granule cell differentiation. CONCLUSIONS The results of this analysis provide a valuable dataset for the identification of cerebellar enhancers and provide insight into the molecular mechanisms critical for brain development under TE regulation. This dataset is shared with the community through an online resource ( https://goldowitzlab.shinyapps.io/trans-enh-app/ ).
Collapse
Affiliation(s)
- Miguel Ramirez
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, 950 W 28th Ave, V6H 3V5, Vancouver, BC, Canada
- University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Remi Robert
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, 950 W 28th Ave, V6H 3V5, Vancouver, BC, Canada
- University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Joanna Yeung
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, 950 W 28th Ave, V6H 3V5, Vancouver, BC, Canada
- University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Joshua Wu
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, 950 W 28th Ave, V6H 3V5, Vancouver, BC, Canada
- University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Ayasha Abdalla-Wyse
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, 950 W 28th Ave, V6H 3V5, Vancouver, BC, Canada
- University of British Columbia, V6T 1Z4, Vancouver, BC, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, 950 W 28th Ave, V6H 3V5, Vancouver, BC, Canada.
- University of British Columbia, V6T 1Z4, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
4
|
Im DS, Joselin A, Svoboda D, Takano T, Rousseaux MWC, Callaghan S, Slack RS, Hisanaga SI, Davis RJ, Park DS, Qu D. Cdk5-mediated JIP1 phosphorylation regulates axonal outgrowth through Notch1 inhibition. BMC Biol 2022; 20:115. [PMID: 35581583 PMCID: PMC9115922 DOI: 10.1186/s12915-022-01312-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.
Collapse
Affiliation(s)
- Doo Soon Im
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Alvin Joselin
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Devon Svoboda
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Tesuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Maxime W C Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Steve Callaghan
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01650, USA
| | - David S Park
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Dianbo Qu
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Zhao D, Zhou Y, Huo Y, Meng J, Xiao X, Han L, Zhang X, Luo H, Can D, Sun H, Huang TY, Wang X, Zhang J, Liu FR, Xu H, Zhang YW. RPS23RG1 modulates tau phosphorylation and axon outgrowth through regulating p35 proteasomal degradation. Cell Death Differ 2020; 28:337-348. [PMID: 32908202 DOI: 10.1038/s41418-020-00620-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/09/2022] Open
Abstract
Tauopathies are a group of neurodegenerative diseases characterized by hyperphosphorylation of the microtubule-binding protein, tau, and typically feature axon impairment and synaptic dysfunction. Cyclin-dependent kinase5 (Cdk5) is a major tau kinase and its activity requires p35 or p25 regulatory subunits. P35 is subjected to rapid proteasomal degradation in its membrane-bound form and is cleaved by calpain under stress to a stable p25 form, leading to aberrant Cdk5 activation and tau hyperphosphorylation. The type Ib transmembrane protein RPS23RG1 has been implicated in Alzheimer's disease (AD). However, physiological and pathological roles for RPS23RG1 in AD and other tauopathies are largely unclear. Herein, we observed retarded axon outgrowth, elevated p35 and p25 protein levels, and increased tau phosphorylation at major Cdk5 phosphorylation sites in Rps23rg1 knockout (KO) mice. Both downregulation of p35 and the Cdk5 inhibitor roscovitine attenuated tau hyperphosphorylation and axon outgrowth impairment in Rps23rg1 KO neurons. Interestingly, interactions between the RPS23RG1 carboxyl-terminus and p35 amino-terminus promoted p35 membrane distribution and proteasomal degradation. Moreover, P301L tau transgenic (Tg) mice showed increased tau hyperphosphorylation with reduced RPS23RG1 levels and impaired axon outgrowth. Overexpression of RPS23RG1 markedly attenuated tau hyperphosphorylation and axon outgrowth defects in P301L tau Tg neurons. Our results demonstrate the involvement of RPS23RG1 in tauopathy disorders, and implicate a role for RPS23RG1 in inhibiting tau hyperphosphorylation through homeostatic p35 degradation and suppression of Cdk5 activation. Reduced RPS23RG1 levels in tauopathy trigger aberrant Cdk5-p35 activation, consequent tau hyperphosphorylation, and axon outgrowth impairment, suggesting that RPS23RG1 may be a potential therapeutic target in tauopathy disorders.
Collapse
Affiliation(s)
- Dongdong Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yunqiang Zhou
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuanhui Huo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jian Meng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaoxia Xiao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Linkun Han
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dan Can
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hao Sun
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Xin Wang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Fa-Rong Liu
- Department of Psychology, Xiamen Xianyue Hospital, Xiamen, 361012, Fujian, China
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China. .,Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, China.
| |
Collapse
|
6
|
CDK5: Key Regulator of Apoptosis and Cell Survival. Biomedicines 2019; 7:biomedicines7040088. [PMID: 31698798 PMCID: PMC6966452 DOI: 10.3390/biomedicines7040088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
The atypical cyclin-dependent kinase 5 (CDK5) is considered as a neuron-specific kinase that plays important roles in many cellular functions including cell motility and survival. The activation of CDK5 is dependent on interaction with its activator p35, p39, or p25. These activators share a CDK5-binding domain and form a tertiary structure similar to that of cyclins. Upon activation, CDK5/p35 complexes localize primarily in the plasma membrane, cytosol, and perinuclear region. Although other CDKs are activated by cyclins, binding of cyclin D and E showed no effect on CDK5 activation. However, it has been shown that CDK5 can be activated by cyclin I, which results in anti-apoptotic functions due to the increased expression of Bcl-2 family proteins. Treatment with the CDK5 inhibitor roscovitine sensitizes cells to heat-induced apoptosis and its phosphorylation, which results in prevention of the apoptotic protein functions. Here, we highlight the regulatory mechanisms of CDK5 and its roles in cellular processes such as gene regulation, cell survival, and apoptosis.
Collapse
|
7
|
Barrett T, Marchalant Y, Park KH. p35 Hemizygous Deletion in 5xFAD Mice Increases Aβ Plaque Load in Males but Not in Females. Neuroscience 2019; 417:45-56. [DOI: 10.1016/j.neuroscience.2019.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022]
|
8
|
Spurrier J, Shukla AK, McLinden K, Johnson K, Giniger E. Altered expression of the Cdk5 activator-like protein, Cdk5α, causes neurodegeneration, in part by accelerating the rate of aging. Dis Model Mech 2018; 11:dmm031161. [PMID: 29469033 PMCID: PMC5897722 DOI: 10.1242/dmm.031161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Aging is the greatest risk factor for neurodegeneration, but the connection between the two processes remains opaque. This is in part for want of a rigorous way to define physiological age, as opposed to chronological age. Here, we develop a comprehensive metric for physiological age in Drosophila, based on genome-wide expression profiling. We applied this metric to a model of adult-onset neurodegeneration, increased or decreased expression of the activating subunit of the Cdk5 protein kinase, encoded by the gene Cdk5α, the ortholog of mammalian p35. Cdk5α-mediated degeneration was associated with a 27-150% acceleration of the intrinsic rate of aging, depending on the tissue and genetic manipulation. Gene ontology analysis and direct experimental tests revealed that affected age-associated processes included numerous core phenotypes of neurodegeneration, including enhanced oxidative stress and impaired proteostasis. Taken together, our results suggest that Cdk5α-mediated neurodegeneration results from accelerated aging, in combination with cell-autonomous neuronal insults. These data fundamentally recast our picture of the relationship between neurodegeneration and its most prominent risk factor, natural aging.
Collapse
Affiliation(s)
- Joshua Spurrier
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
- The Johns Hopkins University/National Institutes of Health Graduate Partnership Program, National Institutes of Health, Bethesda, MD 02892, USA
| | - Arvind Kumar Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Kristina McLinden
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 02892, USA
| |
Collapse
|
9
|
Huang E, Qu D, Huang T, Rizzi N, Boonying W, Krolak D, Ciana P, Woulfe J, Klein C, Slack RS, Figeys D, Park DS. PINK1-mediated phosphorylation of LETM1 regulates mitochondrial calcium transport and protects neurons against mitochondrial stress. Nat Commun 2017; 8:1399. [PMID: 29123128 PMCID: PMC5680261 DOI: 10.1038/s41467-017-01435-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 09/18/2017] [Indexed: 01/04/2023] Open
Abstract
Mutations in PTEN-induced kinase 1 (PINK1) result in a recessive familial form of Parkinson’s disease (PD). PINK1 loss is associated with mitochondrial Ca2+ mishandling, mitochondrial dysfunction, as well as increased neuronal vulnerability. Here we demonstrate that PINK1 directly interacts with and phosphorylates LETM1 at Thr192 in vitro. Phosphorylated LETM1 or the phospho-mimetic LETM1-T192E increase calcium release in artificial liposomes and facilitates calcium transport in intact mitochondria. Expression of LETM1-T192E but not LETM1-wild type (WT) rescues mitochondrial calcium mishandling in PINK1-deficient neurons. Expression of both LETM1-WT and LETM1-T192E protects neurons against MPP+–MPTP-induced neuronal death in PINK1 WT neurons, whereas only LETM1-T192E protects neurons under conditions of PINK1 loss. Our findings delineate a mechanism by which PINK1 regulates mitochondrial Ca2+ level through LETM1 and suggest a model by which PINK1 loss leads to deficient phosphorylation of LETM1 and impaired mitochondrial Ca2+ transport.. Mutations in the mitochondrial kinase PINK1 result in familial Parkinson’s disease. Here the authors show that LETM1, a mitochondrial inner membrane protein, is a substrate of PINK1 that regulates Ca2+ handling in mitochondria in response to mitochondrial toxins.
Collapse
Affiliation(s)
- En Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - Dianbo Qu
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - Tianwen Huang
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - Nicoletta Rizzi
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Wassamon Boonying
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - Dorothy Krolak
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, Department of Oncology and Hemato-Oncology, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - John Woulfe
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute and Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Ruth S Slack
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, Department of Chemistry and Biomolecular Sciences, and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada, K1H 8M5
| | - David S Park
- University of Ottawa Brain and Mind Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5.
| |
Collapse
|
10
|
Xu B, Kumazawa A, Kobayashi S, Hisanaga SI, Inoue T, Ohshima T. Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners. Dev Neurobiol 2017; 77:1175-1187. [PMID: 28589675 DOI: 10.1002/dneu.22507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is recognized as a unique member among other Cdks due to its versatile roles in many biochemical processes in the nervous system. The proper development of neuronal dendrites is required for the formation of complex neural networks providing the physiological basis of various neuronal functions. We previously reported that sparse dendrites were observed on cultured Cdk5-null Purkinje cells and Purkinje cells in Wnt1cre -mediated Cdk5 conditional knockout (KO) mice. In the present study, we generated L7cre -mediated p35; p39 double KO (L7cre -p35f/f ; p39-/- ) mice whose Cdk5 activity was eliminated specifically in Purkinje cells of the developing cerebellum. Consequently, these mice exhibited defective Purkinje cell migration, motor coordination deficiency and a Purkinje dendritic abnormality similar to what we have observed before, suggesting that dendritic growth of Purkinje cells was cell-autonomous in vivo. We found that mixed and overlay cultures of WT cerebellar cells rescued the dendritic deficits in Cdk5-null Purkinje cells, however, indicating that Purkinje cell dendritic development was also supported by non-cell-autonomous factors. We then again rescued these abnormalities in vitro by applying exogenous brain-derived neurotrophic factor (BDNF). Based on the results from culture experiments, we attempted to rescue the developmental defects of Purkinje cells in L7cre -p35f/f ; p39-/- mice by using a TrkB agonist. We observed partial rescue of morphological defects of dendritic structures of Purkinje cells. These results suggest that Cdk5 activity is required for Purkinje cell dendritic growth in cell-autonomous and non-cell-autonomous manners. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1175-1187, 2017.
Collapse
Affiliation(s)
- Bozong Xu
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan
| | - Ayumi Kumazawa
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan.,Department of Biological Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Shunsuke Kobayashi
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, Laboratory for Neurophysiology, Waseda University, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Laboratory for Molecular Brain Science, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
11
|
Park KH, Franciosi S, Parrant K, Lu G, Leavitt BR. p35 hemizygosity activates Akt but does not improve motor function in the YAC128 mouse model of Huntington’s disease. Neuroscience 2017; 352:79-87. [DOI: 10.1016/j.neuroscience.2017.03.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/25/2023]
|
12
|
Fruhmann G, Seynnaeve D, Zheng J, Ven K, Molenberghs S, Wilms T, Liu B, Winderickx J, Franssens V. Yeast buddies helping to unravel the complexity of neurodegenerative disorders. Mech Ageing Dev 2017; 161:288-305. [DOI: 10.1016/j.mad.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 05/02/2016] [Indexed: 12/31/2022]
|
13
|
Gassen NC, Hartmann J, Zannas AS, Kretzschmar A, Zschocke J, Maccarrone G, Hafner K, Zellner A, Kollmannsberger LK, Wagner KV, Mehta D, Kloiber S, Turck CW, Lucae S, Chrousos GP, Holsboer F, Binder EB, Ising M, Schmidt MV, Rein T. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol Psychiatry 2016; 21:277-89. [PMID: 25849320 DOI: 10.1038/mp.2015.38] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/02/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
Abstract
Psychotropic medications target glycogen synthase kinase 3β (GSK3β), but the functional integration with other factors relevant for drug efficacy is poorly understood. We discovered that the suggested psychiatric risk factor FK506 binding protein 51 (FKBP51) increases phosphorylation of GSK3β at serine 9 (pGSK3β(S9)). FKBP51 associates with GSK3β mainly through its FK1 domain; furthermore, it also changes GSK3β's heterocomplex assembly by associating with the phosphatase PP2A and the kinase cyclin-dependent kinase 5. FKBP51 acts through GSK3β on the downstream targets Tau, β-catenin and T-cell factor/lymphoid enhancing factor (TCF/LEF). Lithium and the antidepressant (AD) paroxetine (PAR) functionally synergize with FKBP51, as revealed by reporter gene and protein association analyses. Deletion of FKBP51 blunted the PAR- or lithium-induced increase in pGSK3β(S9) in cells and mice and attenuated the behavioral effects of lithium treatment. Clinical improvement in depressive patients was predicted by baseline GSK3β pathway activity and by pGSK3β(S9) reactivity to ex vivo treatment of peripheral blood mononuclear lymphocytes with lithium or PAR. In sum, FKBP51-directed GSK3β activity contributes to the action of psychotropic medications. Components of the FKBP51-GSK3β pathway may be useful as biomarkers predicting AD response and as targets for the development of novel ADs.
Collapse
Affiliation(s)
- N C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - J Hartmann
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - A Kretzschmar
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - J Zschocke
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - G Maccarrone
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - K Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - A Zellner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - L K Kollmannsberger
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - K V Wagner
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - D Mehta
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Kloiber
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - C W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - S Lucae
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - G P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Athens, Greece
| | - F Holsboer
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - E B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Ising
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - M V Schmidt
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - T Rein
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
14
|
Abstract
The yeast Saccharomyces cerevisiae, a unicellular eukaryotic model, has enabled major breakthroughs in our understanding of a plethora of cellular and molecular processes. Today, a 're-invention' of its use in fundamental and applied research is paving the way for a better understanding of the mechanisms causing neurodegeneration. The increasing emergence of neurodegenerative disorders is becoming more and more problematic in our ageing society. Most prevalent is Alzheimer's disease (AD), affecting more than 35 million people worldwide (Abbott, Nature 475, S2-S4, 2011) and causing an enormous burden on a personal and communal level. The disease is characterized by two major pathological hallmarks: extracellular amyloid plaques consisting mainly of deposits of amyloid β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), consisting mainly of aggregates of hyperphosphorylated tau protein. Despite the huge importance of thoroughly understanding the underlying molecular mechanisms of neurodegeneration, progress has been slow. However, multiple complementary research methods are proving their value, particularly with the work done with S. cerevisiae, which combines well-established, fast genetic and molecular techniques with the ability to faithfully capture key molecular aspects of neurodegeneration. In this review chapter, we focus on the considerable progress made using S. cerevisiae as a model system for Alzheimer's disease.
Collapse
|
15
|
Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res 2015; 94:15-26. [PMID: 26400044 DOI: 10.1002/jnr.23674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia among the elderly. Neurofibrillary tangles (NFTs), a major pathological hallmark of AD, are composed of tau protein that is hyperphosphorylated by cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β (GSK3β). NFTs also contain Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) and collapsin response-mediator protein 2 (CRMP2). Although Cdk5 is known to phosphorylate tau, WAVE1, and CRMP2, the significance of this with respect to NFT formation remains to be elucidated. This study examines the involvement of phosphorylated (p-) CRMP2 and WAVE1 in p-tau aggregates using a triple-transgenic (3×Tg; APPswe/PS1M146V/tauP301L) AD mouse model. First, we verified the colocalization of p-WAVE1 and p-CRMP2 with aggregated hyperphosphorylated tau in the hippocampus at 23 months of age. Biochemical analysis revealed the inclusion of p-WAVE1, p-CRMP2, and tau in the sarkosyl-insoluble fractions of hippocampal homogenates. To test the significance of phosphorylation of these proteins further, we administered all-trans-retinoic acid (ATRA) to the 3×Tg mice, which downregulates Cdk5 and GSK3β activity. In ATRA-treated mice, fewer and smaller tau aggregates were observed compared with non-ATRA-treated mice. These results suggest the possibility of novel therapeutic target molecules for preventing tau pathology.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Junya Toba
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Aya Yoshii
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Miyu Nikkuni
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
16
|
Klinman E, Holzbaur ELF. Stress-Induced CDK5 Activation Disrupts Axonal Transport via Lis1/Ndel1/Dynein. Cell Rep 2015; 12:462-73. [PMID: 26166569 DOI: 10.1016/j.celrep.2015.06.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 01/26/2023] Open
Abstract
Axonal transport is essential for neuronal function, and defects in transport are associated with multiple neurodegenerative diseases. Aberrant cyclin-dependent kinase 5 (CDK5) activity, driven by the stress-induced activator p25, also is observed in these diseases. Here we show that elevated CDK5 activity increases the frequency of nonprocessive events for a range of organelles, including lysosomes, autophagosomes, mitochondria, and signaling endosomes. Transport disruption induced by aberrant CDK5 activation depends on the Lis1/Ndel1 complex, which directly regulates dynein activity. CDK5 phosphorylation of Ndel1 favors a high affinity Lis1/Ndel/dynein complex that blocks the ATP-dependent release of dynein from microtubules, inhibiting processive motility of dynein-driven cargo. Similar transport defects observed in neurons from a mouse model of amyotrophic lateral sclerosis are rescued by CDK5 inhibition. Together, these studies identify CDK5 as a Lis1/Ndel1-dependent regulator of transport in stressed neurons, and suggest that dysregulated CDK5 activity contributes to the transport deficits observed during neurodegeneration.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- Neuroscience Graduate Group and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
17
|
Tsai SYA, Pokrass MJ, Klauer NR, Nohara H, Su TP. Sigma-1 receptor regulates Tau phosphorylation and axon extension by shaping p35 turnover via myristic acid. Proc Natl Acad Sci U S A 2015; 112:6742-7. [PMID: 25964330 PMCID: PMC4450430 DOI: 10.1073/pnas.1422001112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of cyclin-dependent kinase 5 (cdk5) per relative concentrations of its activators p35 and p25 is implicated in neurodegenerative diseases. P35 has a short t½ and undergoes rapid proteasomal degradation in its membrane-bound myristoylated form. P35 is converted by calpain to p25, which, along with an extended t½, promotes aberrant activation of cdk5 and causes abnormal hyperphosphorylation of tau, thus leading to the formation of neurofibrillary tangles. The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum chaperone that is implicated in neuronal survival. However, the specific role of the Sig-1R in neurodegeneration is unclear. Here we found that Sig-1Rs regulate proper tau phosphorylation and axon extension by promoting p35 turnover through the receptor's interaction with myristic acid. In Sig-1R-KO neurons, a greater accumulation of p35 is seen, which results from neither elevated transcription of p35 nor disrupted calpain activity, but rather to the slower degradation of p35. In contrast, Sig-1R overexpression causes a decrease of p35. Sig-1R-KO neurons exhibit shorter axons with lower densities. Myristic acid is found here to bind Sig-1R as an agonist that causes the dissociation of Sig-1R from its cognate partner binding immunoglobulin protein. Remarkably, treatment of Sig-1R-KO neurons with exogenous myristic acid mitigates p35 accumulation, diminishes tau phosphorylation, and restores axon elongation. Our results define the involvement of Sig-1Rs in neurodegeneration and provide a mechanistic explanation that Sig-1Rs help maintain proper tau phosphorylation by potentially carrying and providing myristic acid to p35 for enhanced p35 degradation to circumvent the formation of overreactive cdk5/p25.
Collapse
Affiliation(s)
- Shang-Yi A Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Michael J Pokrass
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Neal R Klauer
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Hiroshi Nohara
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, Baltimore, MD 21224
| |
Collapse
|
18
|
Hagmann H, Taniguchi Y, Pippin JW, Kauerz HM, Benzing T, Shankland SJ, Brinkkoetter PT. Cyclin I and p35 determine the subcellular distribution of Cdk5. Am J Physiol Cell Physiol 2014; 308:C339-47. [PMID: 25500740 DOI: 10.1152/ajpcell.00168.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The atypical cyclin-dependent kinase 5 (Cdk5) serves an array of different functions in cell biology. Among these are axonal guidance, regulation of intercellular contacts, cell differentiation, and prosurvival signaling. The variance of these functions suggests that Cdk5 activation comes to pass in different cellular compartments. The kinase activity, half-life, and substrate specificity of Cdk5 largely depend on specific activators, such as p25, p35, p39, and cyclin I. We hypothesized that the subcellular distribution of Cdk5 activators also determines the localization of the Cdk5 protein and sets the stage for targeted kinase activity within distinct cellular compartments to suit the varying roles of Cdk5. Cdk5 localization was analyzed in murine kidney and brain slices of wild-type and cyclin I- and/or p35-null mice by immunohistochemistry and in cultured mouse podocytes using immunofluorescence labeling, as well as cell fractionation experiments. The predominance of cyclin I mediates the nuclear localization of Cdk5, whereas the predominance of p35 results in a membranous localization of Cdk5. These findings were further substantiated by overexpression of cyclin I and p35 with altered targeting characteristics in human embryonic kidney 293T cells. These studies reveal that the subcellular localization of Cdk5 is determined by its specific activators. This results in the directed Cdk5 kinase activity in specific cellular compartments dependent on the activator present and allows Cdk5 to serve multiple independent roles.
Collapse
Affiliation(s)
- Henning Hagmann
- Department of Internal Medicine and Nephrology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Yoshinori Taniguchi
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Jeffrey W Pippin
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Hans-Michael Kauerz
- Department of Internal Medicine and Nephrology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department of Internal Medicine and Nephrology, Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases, University of Cologne, Germany; Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Paul Thomas Brinkkoetter
- Department of Internal Medicine and Nephrology, Center for Molecular Medicine, University of Cologne, Cologne, Germany;
| |
Collapse
|
19
|
Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1556-66. [DOI: 10.1016/j.bbadis.2014.05.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/12/2014] [Accepted: 05/20/2014] [Indexed: 11/19/2022]
|
20
|
Kimura T, Ishiguro K, Hisanaga SI. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 2014; 7:65. [PMID: 25076872 PMCID: PMC4097945 DOI: 10.3389/fnmol.2014.00065] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 11/13/2022] Open
Abstract
Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer’s disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it is important to determine the molecular mechanism of hyperphosphorylation of tau to understand the pathology of these diseases collectively called tauopathy. Tau is phosphorylated at many sites via several protein kinases, and a characteristic is phosphorylation at Ser/Thr residues in Ser/Thr-Pro sequences, which are targeted by proline-directed protein kinases such as ERK, GSK3β, and Cdk5. Among these kinases, Cdk5 is particularly interesting because it could be abnormally activated in AD. Cdk5 is a member of the cyclin-dependent kinases (Cdks), but in contrast to the major Cdks, which promote cell cycle progression in proliferating cells, Cdk5 is activated in post-mitotic neurons via the neuron-specific activator p35. Cdk5-p35 plays a critical role in brain development and physiological synaptic activity. In contrast, in disease brains, Cdk5 is thought to be hyperactivated by p25, which is the N-terminal truncated form of p35 and is generated by cleavage with calpain. Several reports have indicated that tau is hyperphosphorylated by Cdk5-p25. However, normal and abnormal phosphorylation of tau by Cdk5 is still not completely understood. In this article, we summarize the physiological and pathological phosphorylation of tau via Cdk5.
Collapse
Affiliation(s)
- Taeko Kimura
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University Hachioji, Japan
| | - Koichi Ishiguro
- Department of Neurology, Graduate School of Medicine, Juntendo University Bunkyo, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University Hachioji, Japan
| |
Collapse
|
21
|
Yamada ES, Respondek G, Müssner S, de Andrade A, Höllerhage M, Depienne C, Rastetter A, Tarze A, Friguet B, Salama M, Champy P, Oertel WH, Höglinger GU. Annonacin, a natural lipophilic mitochondrial complex I inhibitor, increases phosphorylation of tau in the brain of FTDP-17 transgenic mice. Exp Neurol 2014; 253:113-25. [DOI: 10.1016/j.expneurol.2013.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/12/2013] [Accepted: 12/24/2013] [Indexed: 10/25/2022]
|
22
|
Li G, Liu T, Kong X, Wang L, Jin X. Hippocampal Glycogen Synthase Kinase 3β is Critical for the Antidepressant Effect of Cyclin-Dependent Kinase 5 Inhibitor in Rats. J Mol Neurosci 2014; 54:92-9. [DOI: 10.1007/s12031-014-0254-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
|
23
|
Goggin SL, Caldwell KK, Cunningham LA, Allan AM. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice. Toxicol Rep 2014; 1:544-553. [PMID: 25243109 PMCID: PMC4166584 DOI: 10.1016/j.toxrep.2014.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are the number one cause of preventable mental retardation. An estimated 2-5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE), specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.
Collapse
Affiliation(s)
- Samantha L Goggin
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Kevin K Caldwell
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Lee Anna Cunningham
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Andrea M Allan
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| |
Collapse
|
24
|
Wang L, Jiang DM. Neuroprotective effect of Buyang Huanwu Decoction on spinal ischemia-reperfusion injury in rats is linked with inhibition of cyclin-dependent kinase 5. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:309. [PMID: 24206767 PMCID: PMC4226250 DOI: 10.1186/1472-6882-13-309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/29/2013] [Indexed: 11/10/2022]
Abstract
Background Buyang Huanwu Decoction (BYHWD), a traditional Chinese medicine formula, has been shown to exert a variety of pharmacological effects including neuroprotective properties. However, the mechanism of neuroprotection is not fully understood. This study was designed to explore the mechanism of BYHWD in the treatment of spinal ischemia-reperfusion injury in rats. Methods Twenty-eight male Sprague–Dawley rats, weighting 250–280 g, were used, and were randomly divided into four groups with 7 animals in each: sham operation group (Control), spinal ischemia with saline (SI + Saline), spinal ischemia with BYHWD (SI + BYHWD), and spinal ischemia with roscovitine (SI + R). After 60 minutes of spinal ischemia followed by 72 hours of reperfusion, motor function of hind limbs, spinal ischemic infarction volume, the number of apoptotic cells, and cyclin-dependent kinase 5 (Cdk5) were examined. Result Ischemia-reperfusion resulted in injury of the spines, while BYHWD significantly improved spinal function. The spinal infarction volume, number of apoptotic cells, and Cdk5 were decreased by administration of BYHWD. The similar improvements were seen with the pre-treatment of roscovitine. Conclusions BYHWD prevented the ischemia-reperfusion-induced spinal injury in rats. The protective function of BYHWD was, in part, linked with inhibition of Cdk5.
Collapse
|
25
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 444] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
26
|
Holmgren A, Bouhy D, Timmerman V. Neurofilament phosphorylation and their proline-directed kinases in health and disease. J Peripher Nerv Syst 2012; 17:365-76. [DOI: 10.1111/j.1529-8027.2012.00434.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Asada A, Saito T, Hisanaga SI. Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner. J Cell Sci 2012; 125:3421-9. [PMID: 22467861 DOI: 10.1242/jcs.100503] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family, which is activated by neuronal activators p35 or p39. Cdk5 regulates a variety of neuronal activities including migration, synaptic activity and neuronal death. p35 and p39 impart cytoplasmic membrane association of p35-Cdk5 and p39-Cdk5, respectively, through their myristoylation, but it is not clearly understood how the cellular localization is related to different functions. We investigated the role of Cdk5 activity in the subcellular localization of p35-Cdk5 and p39-Cdk5. Cdk5 activity affected the localization of p35-Cdk5 and p39-Cdk5 through phosphorylation of p35 or p39. Using unphosphorylated or phosphomimetic mutants of p35 and p39, we found that phosphorylation at Ser8, common to p35 and p39, by Cdk5 regulated the cytoplasmic localization and perinuclear accumulation of unphosphorylated S8A mutants, and whole cytoplasmic distribution of phosphomimetic S8E mutants. Cdk5 activity was necessary to retain Cdk5-activator complexes in the cytoplasm. Nevertheless, small but distinct amounts of p35 and p39 were detected in the nucleus. In particular, nuclear p35 and p39 were increased when the Cdk5 activity was inhibited. p39 had a greater propensity to accumulate in the nucleus than p35, and phosphorylation at Thr84, specific to p39, regulated the potential nuclear localization activity of the Lys cluster in p39. These results suggest that the subcellular localization of the Cdk5-activator complexes is determined by its kinase activity, and also implicate a role for p39-Cdk5 in the nucleus.
Collapse
Affiliation(s)
- Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan.
| | | | | |
Collapse
|
28
|
O'Halloran DM, Hamilton OS, Lee JI, Gallegos M, L'Etoile ND. Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans. PLoS One 2012; 7:e31614. [PMID: 22319638 PMCID: PMC3272044 DOI: 10.1371/journal.pone.0031614] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/10/2012] [Indexed: 02/06/2023] Open
Abstract
The Protein Kinase G, EGL-4, is required within the C. elegans AWC sensory neurons to promote olfactory adaptation. After prolonged stimulation of these neurons, EGL-4 translocates from the cytosol to the nuclei of the AWC. This nuclear translocation event is both necessary and sufficient for adaptation of the AWC neuron to odor. A cGMP binding motif within EGL-4 and the Gα protein ODR-3 are both required for this translocation event, while loss of the guanylyl cyclase ODR-1 was shown to result in constitutively nuclear localization of EGL-4. However, the molecular changes that are integrated over time to produce a stably adapted response in the AWC are unknown. Here we show that odor-induced fluctuations in cGMP levels in the adult cilia may be responsible in part for sending EGL-4 into the AWC nucleus to produce long-term adaptation. We found that reductions in cGMP that result from mutations in the genes encoding the cilia-localized guanylyl cyclases ODR-1 and DAF-11 result in constitutively nuclear EGL-4 even in naive animals. Conversely, increases in cGMP levels that result from mutations in cGMP phosphodiesterases block EGL-4 nuclear entry even after prolonged odor exposure. Expression of a single phosphodiesterase in adult, naive animals was sufficient to modestly increase the number of animals with nuclear EGL-4. Further, coincident acute treatment of animals with odor and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) decreased the number of animals with nuclear EGL-4. These data suggest that reducing cGMP levels in AWC is necessary and even partially sufficient for nuclear translocation of EGL-4 and adaptation as a result of prolonged odor exposure. Our genetic analysis and chemical treatment of C. elegans further indicate that cilia morphology, as defined by fluorescent microscopic observation of the sensory endings, may allow for odor-induced fluctuations in cGMP levels and this fluctuation may be responsible for sending EGL-4 into the AWC nucleus.
Collapse
Affiliation(s)
- Damien M O'Halloran
- Center for Neuroscience, University of California Davis, Davis, California, United States of America.
| | | | | | | | | |
Collapse
|
29
|
Taniguchi Y, Pippin JW, Hagmann H, Krofft RD, Chang AM, Zhang J, Terada Y, Brinkkoetter P, Shankland SJ. Both cyclin I and p35 are required for maximal survival benefit of cyclin-dependent kinase 5 in kidney podocytes. Am J Physiol Renal Physiol 2012; 302:F1161-71. [PMID: 22262481 DOI: 10.1152/ajprenal.00614.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyclin-dependent kinase (Cdk)-5 is activated by both cyclin I and the noncyclin activator p35 in terminally differentiated cells such as kidney podocytes and neurons. Cyclin I and p35 are restricted to podocytes in the kidney, and each limit podocyte apoptosis by activating Cdk5. To determine whether both activators are necessary, or whether they serve backup roles, a double cyclin I-p35 null mouse was generated. Experimental glomerular disease characterized by podocyte apoptosis was then induced by administering an anti-podocyte antibody. The results showed that under nonstressed conditions double mutants had normal kidney structure and function and were indistinguishable from wild-type, cyclin I(-/-), or p35(-/-) mice. In contrast, when stressed with disease, podocyte apoptosis increased fourfold compared with diseased cyclin I(-/-) or p35(-/-) mice. This resulted in a more pronounced decrease in podocyte number, proteinuria, and glomerulosclerosis. Under normal states and nephritic states, levels for the prosurvival protein Bcl-2 were lower in double cyclin I(-/-) p35(-/-) mice than the other mice. Similarly, levels of Bcl-xL, another prosurvival member, were lower in normal and nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. Moreover, levels of ERK1/2 and MEK1/2 activation were lower in nephritic double cyclin I(-/-) p35(-/-) mice but similar to single-cyclin I(-/-) mice. The results demonstrate that the activators of Cdk5, p35, and cyclin I are not required for normal kidney function. However, they play pivotal coordinated roles in maintaining podocyte survival during stress states in disease.
Collapse
Affiliation(s)
- Yoshinori Taniguchi
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA 98195-6521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Engmann O, Hortobágyi T, Thompson AJ, Guadagno J, Troakes C, Soriano S, Al-Sarraj S, Kim Y, Giese KP. Cyclin-dependent kinase 5 activator p25 is generated during memory formation and is reduced at an early stage in Alzheimer's disease. Biol Psychiatry 2011; 70:159-68. [PMID: 21616478 DOI: 10.1016/j.biopsych.2011.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/23/2011] [Accepted: 04/06/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND The cyclin-dependent kinase 5 activator p35 can be cleaved into p25. Formation of p25 has been suggested to contribute to neurodegeneration in Alzheimer's disease (AD). However, overexpression of low levels of p25 in mice enhances memory formation. Therefore, it has been suggested that p25 formation might be an event early in AD to compensate for impairments in synaptic plasticity. Ongoing p25 formation has been hypothesized to contribute to neurodegeneration at the later stages of AD. METHODS Here, we tested the early compensation hypothesis by analyzing the levels of p25 and its precursor p35 in AD postmortem samples from different brain regions at different stages of tau pathology, using quantitative Western blots. Furthermore, we studied p35 and p25 during spatial memory formation. By employing quantitative mass spectrometry, we identified proteins downstream of p25, which were then studied in AD samples. RESULTS We found that p25 is generated during spatial memory formation. Furthermore, we demonstrate that overexpression of p25 in the physiological range increases the expression of two proteins implicated in spine formation, septin 7 and optic atrophy 1. We show that the expression of p35 and p25 is reduced as an early event in AD. Moreover, expression of the p25-regulated protein optic atrophy 1 was reduced in a time course similar to p25 expression. CONCLUSIONS Our findings suggest that p25 generation is a mechanism underlying hippocampal memory formation that is impaired in the early stages of AD. Our findings argue against the previously raised early compensation hypothesis and they propose that p25-mediated neurotoxicity does not occur in AD.
Collapse
Affiliation(s)
- Olivia Engmann
- Department of Neuroscience, Medical Research Council Centre for Neurodegeneration Research, Institute of Psychiatry, King's College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mice lacking phosphatase PP2A subunit PR61/B'delta (Ppp2r5d) develop spatially restricted tauopathy by deregulation of CDK5 and GSK3beta. Proc Natl Acad Sci U S A 2011; 108:6957-62. [PMID: 21482799 DOI: 10.1073/pnas.1018777108] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Functional diversity of protein phosphatase 2A (PP2A) enzymes mainly results from their association with distinct regulatory subunits. To analyze the functions of one such holoenzyme in vivo, we generated mice lacking PR61/B'δ (B56δ), a subunit highly expressed in neural tissues. In PR61/B'δ-null mice the microtubule-associated protein tau becomes progressively phosphorylated at pathological epitopes in restricted brain areas, with marked immunoreactivity for the misfolded MC1-conformation but without neurofibrillary tangle formation. Behavioral tests indicated impaired sensorimotor but normal cognitive functions. These phenotypical characteristics were further underscored in PR61/B'δ-null mice mildly overexpressing human tau. PR61/B'δ-containing PP2A (PP2A(T61δ)) poorly dephosphorylates tau in vitro, arguing against a direct dephosphorylation defect. Rather, the activity of glycogen synthase kinase-3β, a major tau kinase, was found increased, with decreased phosphorylation of Ser-9, a putative cyclin-dependent kinase 5 (CDK5) target. Accordingly, CDK5 activity is decreased, and its cellular activator p35, strikingly absent in the affected brain areas. As opposed to tau, p35 is an excellent PP2A(T61δ) substrate. Our data imply a nonredundant function for PR61/B'δ in phospho-tau homeostasis via an unexpected spatially restricted mechanism preventing p35 hyperphosphorylation and its subsequent degradation.
Collapse
|
32
|
De Vos A, Anandhakumar J, Van den Brande J, Verduyckt M, Franssens V, Winderickx J, Swinnen E. Yeast as a model system to study tau biology. Int J Alzheimers Dis 2011; 2011:428970. [PMID: 21559193 PMCID: PMC3090044 DOI: 10.4061/2011/428970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/21/2011] [Indexed: 11/20/2022] Open
Abstract
Hyperphosphorylated and aggregated human protein tau constitutes a hallmark of a multitude of neurodegenerative diseases called tauopathies, exemplified by Alzheimer's disease. In spite of an enormous amount of research performed on tau biology, several crucial questions concerning the mechanisms of tau toxicity remain unanswered. In this paper we will highlight some of the processes involved in tau biology and pathology, focusing on tau phosphorylation and the interplay with oxidative stress. In addition, we will introduce the development of a human tau-expressing yeast model, and discuss some crucial results obtained in this model, highlighting its potential in the elucidation of cellular processes leading to tau toxicity.
Collapse
Affiliation(s)
- Ann De Vos
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Jayamani Anandhakumar
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Jeff Van den Brande
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Mathias Verduyckt
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Vanessa Franssens
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Erwin Swinnen
- Laboratory of Functional Biology, Catholic University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| |
Collapse
|
33
|
Vanhelmont T, Vandebroek T, De Vos A, Terwel D, Lemaire K, Anandhakumar J, Franssens V, Swinnen E, Van Leuven F, Winderickx J. Serine-409 phosphorylation and oxidative damage define aggregation of human protein tau in yeast. FEMS Yeast Res 2011; 10:992-1005. [PMID: 20662935 DOI: 10.1111/j.1567-1364.2010.00662.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Unraveling the biochemical and genetic alterations that control the aggregation of protein tau is crucial to understand the etiology of tau-related neurodegenerative disorders. We expressed wild type and six clinical frontotemporal dementia with parkinsonism (FTDP) mutants of human protein tau in wild-type yeast cells and cells lacking Mds1 or Pho85, the respective orthologues of the tau kinases GSK3β and cdk5. We compared tau phosphorylation with the levels of sarkosyl-insoluble tau (SinT), as a measure for tau aggregation. The deficiency of Pho85 enhanced significantly the phosphorylation of serine-409 (S409) in all tau mutants, which coincided with marked increases in SinT levels. FTDP mutants tau-P301L and tau-R406W were least phosphorylated at S409 and produced the lowest levels of SinT, indicating that S409 phosphorylation is a direct determinant for tau aggregation. This finding was substantiated by the synthetic tau-S409A mutant that failed to produce significant amounts of SinT, while its pseudophosphorylated counterpart tau-S409E yielded SinT levels higher than or comparable to wild-type tau. Furthermore, S409 phosphorylation reduced the binding of protein tau to preformed microtubules. The highest SinT levels were found in yeast cells subjected to oxidative stress and with mitochondrial dysfunction. Under these conditions, the aggregation of tau was enhanced although the protein is less phosphorylated, suggesting that additional mechanisms are involved. Our results validate yeast as a prime model to identify the genetic and biochemical factors that contribute to the pathophysiology of human tau.
Collapse
Affiliation(s)
- Thomas Vanhelmont
- Laboratory of Functional Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Deregulation of Cytoskeletal Protein Phosphorylation and Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Dolan PJ, Johnson GVW. The role of tau kinases in Alzheimer's disease. CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT 2010; 13:595-603. [PMID: 20812151 PMCID: PMC2941661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A principal feature of the progression of Alzheimer's disease (AD) is the appearance of aberrant phosphorylation of the microtubule-associated protein tau in the brains of affected individuals. Significant research efforts have been directed at identifying the kinases involved in this process, as well as developing pharmacological agents to inhibit these molecules. This review focuses on recent developments in both the physiological and pathological effects of tau phosphorylation, and the contribution of phosphorylation to tau toxicity and pathological progression in AD. The evolving concepts of the roles tau plays in cellular biology, and the mechanisms by which phosphorylation regulates tau function, is reshaping the framework for the development of therapeutics targeting tau to treat AD.
Collapse
Affiliation(s)
- Philip J Dolan
- University of Alabama at Birmingham, Department of Cell Biology, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- University of Rochester, Department of Pharmacology/Physiology, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Gail VW Johnson
- University of Alabama at Birmingham, Department of Cell Biology, 1530 3rd Avenue South, Birmingham, AL 35294, USA
- University of Rochester, Department of Pharmacology/Physiology, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
- University of Rochester, Department of Anesthesiology, 601 Elmwood Avenue, Box 604, Rochester, NY 14642, USA
| |
Collapse
|
36
|
Huang E, Qu D, Zhang Y, Venderova K, Haque ME, Rousseaux MWC, Slack RS, Woulfe JM, Park DS. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol 2010; 12:563-71. [PMID: 20473298 DOI: 10.1038/ncb2058] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/20/2010] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests that deregulated cyclin-dependent kinase 5 (Cdk5) plays a critical part in neuronal death. However, the pathogenic targets of Cdk5 are not fully defined. Here we demonstrate that the Cdk5 activator p35 interacts directly with apurinic/apyrimidinic endonuclease 1 (Ape1), a protein crucial for base excision repair (BER) following DNA damage. Cdk5 complexes phosphorylate Ape1 at Thr 232 and thereby reduces its apurinic/apyrimidinic (AP) endonuclease activity. Ape1 phosphorylation is dependent on Cdk5 in in vitro and in vivo. The reduced endonuclease activity of phosphorylated Ape1 results in accumulation of DNA damage and contributes to neuronal death. Overexpression of Ape1(WT) and Ape1(T232A), but not the phosphorylation mimic Ape1(T232E), protects neurons against MPP(+)/MPTP. Loss of Ape1 sensitizes neurons to death. Importantly, increased phosphorylated Ape1 was also observed in post-mortem brain tissue from patients with Parkinson's and Alzheimer's diseases, suggesting a potential link between Ape1 phosphorylation and the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- En Huang
- Cellular Molecular Medicine, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
p35, the non-cyclin activator of Cdk5, protects podocytes against apoptosis in vitro and in vivo. Kidney Int 2010; 77:690-9. [DOI: 10.1038/ki.2009.548] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Kanungo J, Zheng YL, Amin ND, Pant HC. Targeting Cdk5 activity in neuronal degeneration and regeneration. Cell Mol Neurobiol 2010; 29:1073-80. [PMID: 19455415 DOI: 10.1007/s10571-009-9410-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
The major priming event in neurodegeneration is loss of neurons. Loss of neurons by apoptotic mechanisms is a theme for studies focused on determining therapeutic strategies. Neurons following an insult, activate a number of signal transduction pathways, of which, kinases are the leading members. Cyclin-dependent kinase 5 (Cdk5) is one of the kinases that have been linked to neurodegeneration. Cdk5 along with its principal activator p35 is involved in multiple cellular functions ranging from neuronal differentiation and migration to synaptic transmission. However, during neurotoxic stress, intracellular rise in Ca(2+) activates calpain, which cleaves p35 to generate p25. The long half-life of Cdk5/p25 results in a hyperactive, aberrant Cdk5 that hyperphosphorylates Tau, neurofilament and other cytoskeletal proteins. These hyperphosphorylated cytoskeletal proteins set the groundwork to forming neurofibrillary tangles and aggregates of phosphorylated proteins, hallmarks of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Amyotropic Lateral Sclerosis. Attempts to selectively target Cdk5/p25 activity without affecting Cdk5/p35 have been largely unsuccessful. A polypeptide inhibitor, CIP (Cdk5 inhibitory peptide), developed in our laboratory, successfully inhibits Cdk5/p25 activity in vitro, in cultured primary neurons, and is currently undergoing validation tests in mouse models of neurodegeneration. Here, we discuss the therapeutic potential of CIP in regenerating neurons that are exposed to neurodegenerative stimuli.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
39
|
The neuroprotective effects of cyclin-dependent kinase-5 inhibition in mice with Niemann-Pick disease type C. ACTA ACUST UNITED AC 2009; 29:324-9. [PMID: 19513615 DOI: 10.1007/s11596-009-0312-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Indexed: 12/19/2022]
Abstract
In order to investigate the neuroprotective effects of cyclin-dependent kinase-5 (cdk-5) inhibition in mice with Niemann-Pick disease type C (NPC) (npc(-/-)), recombinant adeno-associated virus (rAAV) carrying the small interfering RNA (siRNA) specific for cdk-5 gene was injected into 3-day-old npc(-/-) mice intracerebroventricularly. The rAAV-GFP-injected age-matched npc(-/-) mice and non-surgery age-matched npc(-/-) mice were employed as controls (n=6-10/group). From the 4th to 8th week after the treatment, mice were weighed, and evaluated for limb motor activity by using the coat hanger test once a week. Eight-week-old npc(-/-) mice were sacrificed by decapitation, and brains were quickly dissected and halved sagittally. Immunohistochemistry, Western blotting, and HE staining were used to evaluate the neuropathology in npc(-/-) mice. The results showed that rAAV-cdk-5-siRNA-GFP significantly reduced the number of axonal spheroids, delayed the death of Purkinje neurons, ameliorated motor defects in npc(-/-) mice, and significantly attenuated the hyperphosphorylation of tau proteins. These data suggested that inhibition of cdk-5 activity has neuroprotective effect on neurons in NPC mice.
Collapse
|
40
|
Savage MJ, Gingrich DE. Advances in the development of kinase inhibitor therapeutics for Alzheimer's disease. Drug Dev Res 2009. [DOI: 10.1002/ddr.20287] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 2009; 15:112-9. [DOI: 10.1016/j.molmed.2009.01.003] [Citation(s) in RCA: 540] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 01/22/2023]
|
42
|
Zhang M, Hallows JL, Wang X, Bu B, Wang W, Vincent I. Mitogen-activated protein kinase activity may not be necessary for the neuropathology of Niemann-Pick type C mice. J Neurochem 2008; 107:814-22. [PMID: 18778306 DOI: 10.1111/j.1471-4159.2008.05657.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hyperphosphorylation of neurofilament and tau, and formation of cytoskeletal lesions, are notable features of several human neurodegenerative diseases, including Niemann-Pick Disease Type C (NPC). Previous studies suggested that the MAPKs, extracellular signal regulated kinase 1 and 2 (ERK1/2) may play a significant role in this aspect of NPC. To test this idea, we treated npc mice with PD98059, a specific and potent inhibitor of MAPK activation. Although activity of ERK1/2 was inhibited by 40%, a 2-week intracerebroventricular infusion of PD98059 just prior to onset of cytoskeletal pathology and symptoms in npc mice did not delay or inhibit prominent hallmarks of NPC. Unexpectedly, ERK1/2 inhibition led to aggravation of tau hyperphosphorylation, particularly in oligodendroctyes, in a manner similar to that of certain human tauopathies. Our results suggest that ERK1/2 does not play a major role in NPC neuropathology, and therefore, that MAPK inhibition is unlikely to be a useful strategy for managing the disease.
Collapse
Affiliation(s)
- Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
43
|
Cagnon L, Braissant O. Role of caspases, calpain and cdk5 in ammonia-induced cell death in developing brain cells. Neurobiol Dis 2008; 32:281-92. [PMID: 18722528 DOI: 10.1016/j.nbd.2008.07.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/23/2008] [Accepted: 07/14/2008] [Indexed: 11/26/2022] Open
Abstract
Hyperammonemia in neonates and infants causes irreversible damages in the developing CNS due to brain cell loss. Elucidating the mechanisms triggering ammonia-induced cell death in CNS is necessary for the development of neuroprotective strategies. We used reaggregated developing brain cell cultures derived from fetal rat telencephalon exposed to ammonia as an experimental model. Ammonia induced neuronal and oligodendroglial death, triggered apoptosis and activated caspases and calpain. Probably due to calpain activation, ammonia caused the cleavage of the cyclin-dependent kinase 5 activator, p35, to p25, the cdk5/p25 complex being known to lead to neurodegeneration. Roscovitine, a cdk5 inhibitor, protected neurons from ammonia-induced cell death. However, roscovitine also impaired axonal growth, probably through inhibition of the remaining cdk5/p35 activity, which is involved in neurite outgrowth. Thus, cdk5 appears as a promising therapeutic target for treating hyperammonemic newborns and infants, especially if one develops specific cdk5/p25 inhibitors.
Collapse
Affiliation(s)
- Laurène Cagnon
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | |
Collapse
|
44
|
Kanungo J, Zheng YL, Amin ND, Pant HC. The Notch signaling inhibitor DAPT down-regulates cdk5 activity and modulates the distribution of neuronal cytoskeletal proteins. J Neurochem 2008; 106:2236-48. [PMID: 18662245 DOI: 10.1111/j.1471-4159.2008.05551.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Notch signaling is critical for the development of the nervous system. Cyclin-dependent kinase 5 (cdk5) is a neuronal kinase involved in neuronal development and phosphorylates a number of neuronal cytoskeletal proteins. To determine the relationship between Notch and cdk5 signaling, we tested the effects of the Notch inhibitor, N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butyl ester (DAPT) on cdk5 expression, activity and cytoskeletal protein distribution in the rat cortical neurons in primary cultures. Neurons treated with 10 microM DAPT showed attenuated cdk5 activity in spite of an up-regulation of cdk5 protein level, consistent with a phenomenon reported in the cdk5 transgenic mice. Immunoblot and immunofluorescence analyses showed an increased level of cdk5, but not p35. Phospho-tau and phospho-neurofilament showed a shift from axons to cell bodies in DAPT-treated cells. DAPT-induced attenuation of cdk5 activity was restored by over-expression of p35 indicating that it interacted with cdk5 and up-regulated nascent cdk5 activity. p35 over-expression also rescued DAPT-induced translocation of phospho-tau and phospho-neurofilament. Immunoprecipitation followed by immunoblotting demonstrated that DAPT does not disrupt cdk5 and p35 interaction. Moreover, DAPT up-regulated neurogenin that is negatively regulated by Notch, and down-regulated Hes1, a downstream target of Notch, suggesting that Notch signaling in the cortical neurons was disrupted. Semi-quantitative and quantitative RT-PCR analyses confirmed that DAPT up-regulated cdk5 expression at the transcriptional level. These results establish a link between Notch signaling and cdk5 expression regulating neuronal cytoskeletal protein dynamics.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
45
|
Veeranna, Lee JH, Pareek TK, Jaffee H, Boland B, Vinod KY, Amin N, Kulkarni AB, Pant HC, Nixon RA. Neurofilament tail phosphorylation: identity of the RT-97 phosphoepitope and regulation in neurons by cross-talk among proline-directed kinases. J Neurochem 2008; 107:35-49. [PMID: 18715269 DOI: 10.1111/j.1471-4159.2008.05547.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As axons myelinate, establish a stable neurofilament network, and expand in caliber, neurofilament proteins are extensively phosphorylated along their C-terminal tails, which is recognized by the monoclonal antibody, RT-97. Here, we demonstrate in vivo that RT-97 immunoreactivity (IR) is generated by phosphorylation at KSPXK or KSPXXXK motifs and requires flanking lysines at specific positions. extracellular signal regulated kinase 1,2 (ERK1,2) and pERK1,2 levels increase in parallel with phosphorylation at the RT-97 epitope during early postnatal brain development. Purified ERK1,2 generated RT-97 on both KSP motifs on recombinant NF-H tail domain proteins, while cdk5 phosphorylated only KSPXK motifs. RT-97 epitope generation in primary hippocampal neurons was regulated by extensive cross-talk among ERK1,2, c-Jun N-terminal kinase 1,2 (JNK1,2) and cdk5. Inhibition of both ERK1,2 and JNK1,2 completely blocked RT-97 generation. Cdk5 influenced RT-97 generation indirectly by modulating JNK activation. In mice, cdk5 gene deletion did not significantly alter RT-97 IR or ERK1,2 and JNK activation. In mice lacking the cdk5 activator P35, the partial suppression of cdk5 activity increased RT-97 IR by activating ERK1,2. Thus, cdk5 influences RT-97 epitope generation partly by modulating ERKs and JNKs, which are the two principal kinases regulating neurofilament phosphorylation. The regulation of a single target by multiple protein kinases underscores the importance of monitoring other relevant kinases when the activity of a particular one is blocked.
Collapse
Affiliation(s)
- Veeranna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Winderickx J, Delay C, De Vos A, Klinger H, Pellens K, Vanhelmont T, Van Leuven F, Zabrocki P. Protein folding diseases and neurodegeneration: Lessons learned from yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1381-95. [DOI: 10.1016/j.bbamcr.2008.01.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 12/29/2022]
|
47
|
Abstract
Neurofibrillary tangles are a characteristic hallmark of Alzheimer's and other neurodegenerative diseases, such as Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). These diseases are summarized as tauopathies, because neurofibrillary tangles are composed of intracellular aggregates of the microtubule-associated protein tau. The molecular mechanisms of tau-mediated neurotoxicity are not well understood; however, pathologic hyperphosphorylation and aggregation of tau play a central role in neurodegeneration and neuronal dysfunction. The present review, therefore, focuses on therapeutic approaches that aim to inhibit tau phosphorylation and aggregation or to dissolve preexisting tau aggregates. Further experimental therapy strategies include the enhancement of tau clearance by activation of proteolytic, proteasomal, or autophagosomal degradation pathways or anti-tau directed immunotherapy. Hyperphosphorylated tau does not bind microtubules, leading to microtubule instability and transport impairment. Pharmacological stabilization of microtubule networks might counteract this effect. In several tauopathies there is a shift toward four-repeat tau isoforms, and interference with the splicing machinery to decrease four-repeat splicing might be another therapeutic option.
Collapse
Affiliation(s)
- Anja Schneider
- grid.7450.60000000123644210Department of Psychiatry and Psychotherapy, University of Goettingen, Von-Siebold-Strasse 5, 37075 Goettingen, Germany
- grid.419522.90000000106686902Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Goettingen, Germany
| | - Eckhard Mandelkow
- Max-Planck-Unit for Structural Molecular Biology, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
48
|
Barten DM, Albright CF. Therapeutic strategies for Alzheimer's disease. Mol Neurobiol 2008; 37:171-86. [PMID: 18581273 DOI: 10.1007/s12035-008-8031-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/27/2008] [Indexed: 12/22/2022]
Abstract
Therapeutic approaches for Alzheimer's disease (AD) are guided by four disease characteristics: amyloid plaques, neurofibrillar tangles (NFT), neurodegeneration, and dementia. Amyloid plaques are composed largely of 4 kDa beta-amyloid (Abeta) peptides, with the more amyloidogenic, 42 amino acid form (Abeta42) as the primary species. Because multiple, rare mutations that cause early-onset, familial AD lead to increased production or aggregation of Abeta42, amyloid therapeutics aim to reduce the amount of toxic Abeta42 aggregates. Amyloid-based therapies include gamma-secretase inhibitors and modulators, BACE inhibitors, aggregation blockers, catabolism inducers, and anti-Abeta biologics. Tangles are composed of paired helical filaments of hyperphosphorylated tau protein. Tau-based therapeutics include kinase inhibitors, microtubule stabilizers, and catabolism inducers. Therapeutic strategies for neurodegeneration target multiple mechanisms, including excitotoxicity, mitochondrial dysfunction, oxidative damage, and inflammation or stimulation of neuronal viability. Although not disease modifying, cognition enhancers are important to treat the symptom of dementia. Strategies for cognition enhancement include cholinesterase inhibitors, and other approaches to enhance the signaling of cholinergic and glutamatergic neurons. In summary, plaques, tangles, neurodegeneration and dementia guide the development of multiple therapeutic approaches for AD and are the subject of this review.
Collapse
Affiliation(s)
- Donna M Barten
- Bristol Myers Squibb, Neuroscience Drug Discovery, 5 Research Parkway, Wallingford, CT 06492, USA.
| | | |
Collapse
|
49
|
Cuchillo-Ibanez I, Seereeram A, Byers HL, Leung KY, Ward MA, Anderton BH, Hanger DP. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB J 2008; 22:3186-95. [PMID: 18511549 DOI: 10.1096/fj.08-109181] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Defective axonal transport has been proposed as an underlying mechanism that may give rise to neurodegeneration. We investigated the effect of phosphorylation on the axonal transport of tau, a neuronal protein that stabilizes microtubules and is hyperphosphorylated and mislocalized in Alzheimer's disease. We report here that specific inhibition of glycogen synthase kinase-3 (GSK-3) reduces tau phosphorylation and significantly decreases the overall rate of axonal transport of tau in rat cortical neurons. Tau mutants, with serine/threonine targets of GSK-3 mutated to glutamate to mimic a permanent state of phosphorylation, were transported at a significantly increased rate compared to wild-type tau. Conversely, tau mutants, in which alanine replaced serine/threonine to mimic permanent dephosphorylation, were transported at a decreased rate compared to wild-type tau. We also found that tau interacts with the light chain of kinesin-1 and that this is dependent on the phosphorylation state of tau. Tau phosphorylation by GSK-3 increased binding, and dephosphorylated tau exhibited a reduced association with kinesin-1. We conclude that GSK-3 phosphorylation of tau modulates its axonal transport by regulating binding to kinesin-1. Hyperphosphorylated tau in Alzheimer's disease appearing first in distal portions of axons may result from aberrant axonal transport of phosphorylated tau reported here.
Collapse
Affiliation(s)
- Inmaculada Cuchillo-Ibanez
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry (P037), De Crespigny Park, SE5 8AF London, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Dhariwala FA, Rajadhyaksha MS. An unusual member of the Cdk family: Cdk5. Cell Mol Neurobiol 2008; 28:351-69. [PMID: 18183483 PMCID: PMC11520031 DOI: 10.1007/s10571-007-9242-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 11/14/2007] [Indexed: 12/23/2022]
Abstract
The proline-directed serine threonine kinase, Cdk5, is an unusual molecule that belongs to the well-known large family of proteins, cyclin-dependent kinases (Cdks). While it has significant homology with the mammalian Cdk2 and yeast cdc2, unlike the other Cdks, it has little role to play in cell cycle regulation and is activated by non-cyclin proteins, p35 and p39. It phosphorylates a spectrum of proteins, most of them associated with cell morphology and motility. A majority of known substrates of Cdk5 are cytoskeletal elements, signalling molecules or regulatory proteins. It also appears to be an important player in cell-cell communication. Highly conserved, Cdk5 is most abundant in the nervous system and is of special interest to neuroscientists as it appears to be indispensable for normal neural development and function. In normal cells, transcription and activity of Cdk5 is tightly regulated. Present essentially in post-mitotic neurons, its normal activity is obligatory for migration and differentiation of neurons in developing brain. Deregulation of Cdk5 has been implicated in Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease and acute neuronal injury. Regulators of Cdk5 activity are considered as potential therapeutic molecules for degenerative diseases. This review focuses on the role of Cdk5 in neural cells as regulator of cytoskeletal elements, axonal guidance, membrane transport, synaptogenesis and cell survival in normal and pathological conditions.
Collapse
Affiliation(s)
- Fatema A. Dhariwala
- Department of Life Sciences, Sophia College, B. Desai Road, Mumbai, 400026 India
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Center, Mumbai, 400085 India
| | | |
Collapse
|