1
|
Kramer SN, Antarasen J, Reinholt CR, Kisley L. A practical guide to light-sheet microscopy for nanoscale imaging: Looking beyond the cell. JOURNAL OF APPLIED PHYSICS 2024; 136:091101. [PMID: 39247785 PMCID: PMC11380115 DOI: 10.1063/5.0218262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
We present a comprehensive guide to light-sheet microscopy (LSM) to assist scientists in navigating the practical implementation of this microscopy technique. Emphasizing the applicability of LSM to image both static microscale and nanoscale features, as well as diffusion dynamics, we present the fundamental concepts of microscopy, progressing through beam profile considerations, to image reconstruction. We outline key practical decisions in constructing a home-built system and provide insight into the alignment and calibration processes. We briefly discuss the conditions necessary for constructing a continuous 3D image and introduce our home-built code for data analysis. By providing this guide, we aim to alleviate the challenges associated with designing and constructing LSM systems and offer scientists new to LSM a valuable resource in navigating this complex field.
Collapse
Affiliation(s)
- Stephanie N Kramer
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Jeanpun Antarasen
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | - Cole R Reinholt
- Department of Physics, Case Western Reserve University, Rockefeller Building, 2076 Adelbert Road, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
2
|
Tekieh T, Sasanpour P, Rafii-Tabar H. Electrophysiological effects of low frequency electrical radiation on the neural compartment: a theoretical investigation. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
3
|
Fisher JAN, Salzberg BM. Two-Photon Excitation of Fluorescent Voltage-Sensitive Dyes: Monitoring Membrane Potential in the Infrared. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:427-53. [PMID: 26238063 DOI: 10.1007/978-3-319-17641-3_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Functional imaging microscopy based on voltage-sensitive dyes (VSDs) has proven effective for revealing spatio-temporal patterns of activity in vivo and in vitro. Microscopy based on two-photon excitation of fluorescent VSDs offers the possibility of recording sub-millisecond membrane potential changes on micron length scales in cells that lie upwards of one millimeter below the brain's surface. Here we describe progress in monitoring membrane voltage using two-photon excitation (TPE) of VSD fluorescence, and detail an application of this emerging technology in which action potentials were recorded in single trials from individual mammalian nerve terminals in situ. Prospects for, and limitations of this method are reviewed.
Collapse
|
4
|
Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium 2012; 51:293-9. [DOI: 10.1016/j.ceca.2012.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 11/22/2022]
|
5
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
6
|
Abstract
Axons are generally considered as reliable transmission cables in which stable propagation occurs once an action potential is generated. Axon dysfunction occupies a central position in many inherited and acquired neurological disorders that affect both peripheral and central neurons. Recent findings suggest that the functional and computational repertoire of the axon is much richer than traditionally thought. Beyond classical axonal propagation, intrinsic voltage-gated ionic currents together with the geometrical properties of the axon determine several complex operations that not only control signal processing in brain circuits but also neuronal timing and synaptic efficacy. Recent evidence for the implication of these forms of axonal computation in the short-term dynamics of neuronal communication is discussed. Finally, we review how neuronal activity regulates both axon morphology and axonal function on a long-term time scale during development and adulthood.
Collapse
Affiliation(s)
- Dominique Debanne
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Emilie Campanac
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Andrzej Bialowas
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Edmond Carlier
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| | - Gisèle Alcaraz
- Institut National de la Santé et de la Recherche Médicale U.641 and Université de la Méditerranée, Faculté de Médecine Secteur Nord, Marseille, France
| |
Collapse
|
7
|
Foley J, Nguyen H, Bennett CB, Muschol M. Potassium accumulation as dynamic modulator of neurohypophysial excitability. Neuroscience 2010; 169:65-73. [PMID: 20433904 DOI: 10.1016/j.neuroscience.2010.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/22/2010] [Indexed: 11/28/2022]
Abstract
Activity-dependent modulation of excitable responses from neurohypophysial axons and their secretory swellings has long been recognized as an important regulator of arginine vasopressin and oxytocin release during patterned stimulation. Various activity-dependent mechanisms, including action potential broadening, potassium accumulation, and autocrine or paracrine feedback, have been proposed as underlying mechanisms. However, the relevance of any specific mechanism on net excitability in the intact preparation, during different levels of overall activation, and during realistic stimulation with trains of action potentials has remained largely undetermined. Using high-speed optical recordings and potentiometric dyes, we have quantified the dynamics of global excitability under physiologically more realistic conditions, that is in the intact neurohypophysis during trains of stimuli at varying frequencies and levels of overall activity. Net excitability facilitated during stimulation at low frequencies or at low activity. During persistent high-intensity or high-frequency stimulation, net excitability became severely depressed. Depression of excitable responses was strongly affected by manipulations of extracellular potassium levels, including changes to resting [K(+)](out), increases of interstitial spaces with hypertonic solutions and inhibition of Na(+)/K(+) ATPase activity. Application of the GABA(A) receptor blocker bicuculline or manipulations of Ca(2+) influx showed little effect. Numerical simulation of K(+) accumulation on action potentials of individual axons reproduced optically recorded population responses, including the overall depression of action potential (AP) amplitudes, modest AP broadening and the prominent loss of hyperpolarizing undershoots. Hence, extracellular potassium accumulation dominates activity-dependent depression of neurohypophysial excitability under elevated stimulation conditions. The intricate dependence on the short-term stimulation history and its resulting feedback on neurohypophysial excitability renders [K(+)](out) accumulation a surprisingly complex mechanism for regulating axonal excitability and subsequent neuroendocrine release.
Collapse
Affiliation(s)
- J Foley
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | | | | | | |
Collapse
|
8
|
Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 2010; 5:439-56. [PMID: 20203662 DOI: 10.1038/nprot.2009.226] [Citation(s) in RCA: 465] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Elucidation of the neural substrates underlying complex animal behaviors depends on precise activity control tools, as well as compatible readout methods. Recent developments in optogenetics have addressed this need, opening up new possibilities for systems neuroscience. Interrogation of even deep neural circuits can be conducted by directly probing the necessity and sufficiency of defined circuit elements with millisecond-scale, cell type-specific optical perturbations, coupled with suitable readouts such as electrophysiology, optical circuit dynamics measures and freely moving behavior in mammals. Here we collect in detail our strategies for delivering microbial opsin genes to deep mammalian brain structures in vivo, along with protocols for integrating the resulting optical control with compatible readouts (electrophysiological, optical and behavioral). The procedures described here, from initial virus preparation to systems-level functional readout, can be completed within 4-5 weeks. Together, these methods may help in providing circuit-level insight into the dynamics underlying complex mammalian behaviors in health and disease.
Collapse
|
9
|
Bennett CB, Muschol M. Large neurohypophysial varicosities amplify action potentials: results from numerical simulations. Endocrinology 2009; 150:2829-36. [PMID: 19213831 DOI: 10.1210/en.2008-1636] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Axons in the neurohypophysis are known for their "beads on a string" morphology, with numerous in-line secretory swellings lined up along the axon cable. A significant fraction of these secretory swellings, called Herring bodies, is large enough to serve as an identifying feature of the neural lobe in histological sections. Little is known about the physiological role such large axonal swellings might play in neuroendocrine physiology. Using numerical simulations, we have investigated whether large in-line varicosities affect the waveform and propagation of action potentials (APs) along neurohypophysial axons. Due to the strong nonlinear dependence of calcium influx on AP waveforms, such modulation would inevitably affect neuroendocrine release. The parameters for our numerical simulations were matched to established properties of voltage-gated ion channels in neurohypophysial swellings. We find that even a single in-line varicosity can severely depress AP waveforms far upstream in the axonal cable. In contrast, AP depolarization within varicosities becomes amplified. Amplification within varicosities varies in a nontrivial manner with varicosity dimensions, and is most pronounced for diameters close to those of Herring bodies. Overall, we find that large axonal varicosities significantly modulate AP waveforms and their propagation, and do so over large distances. Varicosity size is the main determinant for the observed AP amplification, with the kinetics of voltage-gated ion channels playing a noticeable but secondary role. Our results imply that large varicosities are sites of enhanced hormone release, suggesting that small and large varicosities target different neurohypophysial structures.
Collapse
Affiliation(s)
- C Brad Bennett
- Department of Physics, University of South Florida, Tampa, Florida 33620-5700, USA
| | | |
Collapse
|
10
|
Foley J, Muschol M. Action spectra of electrochromic voltage-sensitive dyes in an intact excitable tissue. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064015. [PMID: 19123661 DOI: 10.1117/1.3013326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Voltage-sensitive dyes (VSDs) provide a spatially resolved optical read-out of electrical signals in excitable tissues. Several common fluorescent VSDs display electrochromic shifts of their emission spectra, making them suitable candidates for ratiometric measurements of transmembrane voltages. These advantages of VSDs are tempered by tissue-specific shifts to their fluorescence emission. In addition, the optimal electrochromic dye response occurs in wavelength bands distinct from the dye's maximal resting emission. This "action spectrum" can undergo tissue-specific shifts as well. We have developed a technique for in situ measurements of the action spectra of VSDs in intact excitable tissues. Fluorescence emission spectra of VSDs during action-potential depolarization were obtained within a single sweep of a spectrophotometer equipped with a change-coupled device (CCD) array detector. To resolve the subtle electrochromic shifts in voltage-induced dye emission, fluorescence emission spectra measured right before and during field-induced action-potential depolarization were averaged over about 100 trials. Removing white-noise contributions from the spectrometer's CCD detector/amplifier via low-pass filtering in Fourier space, the action spectra of all dyes could be readily determined.
Collapse
Affiliation(s)
- Joseph Foley
- University of South Florida, Department of Physics, Tampa, Florida 33620-5700, USA
| | | |
Collapse
|
11
|
O'Donovan MJ, Bonnot A, Mentis GZ, Arai Y, Chub N, Shneider NA, Wenner P. Imaging the spatiotemporal organization of neural activity in the developing spinal cord. Dev Neurobiol 2008; 68:788-803. [PMID: 18383543 DOI: 10.1002/dneu.20620] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we discuss the use of imaging to visualize the spatiotemporal organization of network activity in the developing spinal cord of the chick embryo and the neonatal mouse. We describe several different methods for loading ion- and voltage-sensitive dyes into spinal neurons and consider the advantages and limitations of each one. We review work in the chick embryo, suggesting that motoneurons play a critical role in the initiation of each cycle of spontaneous network activity and describe how imaging has been used to identify a class of spinal interneuron that appears to be the avian homolog of mammalian Renshaw cells or 1a-inhibitory interneurons. Imaging of locomotor-like activity in the neonatal mouse revealed a wave-like activation of motoneurons during each cycle of discharge. We discuss the significance of this finding and its implications for understanding how locomotor-like activity is coordinated across different segments of the cord. In the last part of the review, we discuss some of the exciting new prospects for the future.
Collapse
Affiliation(s)
- Michael J O'Donovan
- National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Fisher JAN, Barchi JR, Welle CG, Kim GH, Kosterin P, Obaid AL, Yodh AG, Contreras D, Salzberg BM. Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ. J Neurophysiol 2008; 99:1545-53. [PMID: 18171710 DOI: 10.1152/jn.00929.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report the first optical recordings of action potentials, in single trials, from one or a few (approximately 1-2 microm) mammalian nerve terminals in an intact in vitro preparation, the mouse neurohypophysis. The measurements used two-photon excitation along the "blue" edge of the two-photon absorption spectrum of di-3-ANEPPDHQ (a fluorescent voltage-sensitive naphthyl styryl-pyridinium dye), and epifluorescence detection, a configuration that is critical for noninvasive recording of electrical activity from intact brains. Single-trial recordings of action potentials exhibited signal-to-noise ratios of approximately 5:1 and fractional fluorescence changes of up to approximately 10%. This method, by virtue of its optical sectioning capability, deep tissue penetration, and efficient epifluorescence detection, offers clear advantages over linear, as well as other nonlinear optical techniques used to monitor voltage changes in localized neuronal regions, and provides an alternative to invasive electrode arrays for studying neuronal systems in vivo.
Collapse
Affiliation(s)
- Jonathan A N Fisher
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6074, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang Z, Klyachko V, Jackson MB. Blockade of phosphodiesterase Type 5 enhances rat neurohypophysial excitability and electrically evoked oxytocin release. J Physiol 2007; 584:137-47. [PMID: 17690141 PMCID: PMC2277045 DOI: 10.1113/jphysiol.2007.139303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/06/2007] [Indexed: 11/08/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) acts specifically on cyclic guanosine monophosphate (cGMP) and terminates cGMP-mediated signalling. PDE5 has a well established role in vascular smooth muscle, where specific inhibitors of PDE5 such as sildenafil correct erectile dysfunction by augmenting cGMP-mediated vascular relaxation. However, the role of PDE5 outside of the vasculature has received little attention. The present study tested PDE5 inhibitors on the cGMP-mediated modulation of K(+) channels in the neurohypophysis (posterior pituitary). Photolysis of caged-cGMP enhanced current through Ca(2+)-activated K(+) channels, and this enhancement recovered in about 2 min. Sildenafil essentially eliminated this recovery, suggesting that the reversal of K(+) current enhancement depends on cGMP breakdown. Activation of nitric oxide synthase during trains of activity in pituitary nerve terminals enhances excitability. When trains of stimulation were applied at regular intervals, sildenafil enhanced the excitability of neurohypophysial nerve terminals and increased the action potential firing probability. T-1032, a compound with high specificity for PDE5 over PDE6, had a similar action. Voltage imaging in intact neurohypophysis with a voltage sensitive absorbance dye showed that T-1032 reduced the failure of propagating action potentials during trains of activity. This indicates that PDE5 activity limits action potential propagation in neurohypophysial axons. Immunoassay of oxytocin, a neuropeptide hormone secreted by the posterior pituitary, demonstrated that sildenafil increased electrically evoked release. Thus, PDE5 plays an important role in the regulation of neurohypophysial function, and blockade of this enzyme can enhance the use-dependent facilitation of neurohypophysial secretion.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Physiology, University of Wisconsin, Madison WI, USA
| | | | | |
Collapse
|
14
|
Kim GH, Kosterin P, Obaid AL, Salzberg BM. A mechanical spike accompanies the action potential in Mammalian nerve terminals. Biophys J 2007; 92:3122-9. [PMID: 17307820 PMCID: PMC1852366 DOI: 10.1529/biophysj.106.103754] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 01/17/2007] [Indexed: 11/18/2022] Open
Abstract
Large and rapid changes in light scattering accompany secretion from nerve terminals of the mammalian neurohypophysis (posterior pituitary). In the mouse, these intrinsic optical signals are intimately related to the arrival of the action potential E-wave and the release of arginine vasopressin and oxytocin (S-wave). Here we have used a high bandwidth atomic force microscope to demonstrate that these light-scattering signals are associated with changes in terminal volume that are detected as nanometer-scale movements of a cantilever positioned on top of the neurohypophysis. The most rapid mechanical response ("spike"), having a duration shorter than the action potential but comparable to that of the E-wave, represents a transient increase in terminal volume due to water movement associated with Na(+)-influx. The slower mechanical event ("dip"), on the other hand, depends upon Ca(2+)-entry as well as on intraterminal Ca(2+)-transients and, analogously to the S-wave, seems to monitor events associated with secretion.
Collapse
Affiliation(s)
- G H Kim
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA
| | | | | | | |
Collapse
|
15
|
Salama G, Choi BR, Azour G, Lavasani M, Tumbev V, Salzberg BM, Patrick MJ, Ernst LA, Waggoner AS. Properties of new, long-wavelength, voltage-sensitive dyes in the heart. J Membr Biol 2006; 208:125-40. [PMID: 16645742 PMCID: PMC3018276 DOI: 10.1007/s00232-005-0826-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
Membrane potential measurements using voltage-sensitive dyes (VSDs) have made important contributions to our understanding of electrophysiological properties of multi-cellular systems. Here, we report the development of long wavelength VSDs designed to record cardiac action potentials (APs) from deeper layers in the heart. The emission spectrum of styryl VSDs was red-shifted by incorporating a thienyl group in the polymethine bridge to lengthen and retain the rigidity of the chromophore. Seven dyes, Pittsburgh I to IV and VI to VIII (PGH I-VIII) were synthesized and characterized with respect to their spectral properties in organic solvents and heart muscles. PGH VSDs exhibited 2 absorption, 2 excitation and 2 voltage-sensitive emission peaks, with large Stokes shifts (> 100 nm). Hearts (rabbit, guinea pig and Rana pipiens) and neurohypophyses (CD-1 mice) were effectively stained by injecting a bolus (10-50 microl) of stock solution of VSD (2-5 mM) dissolved in in dimethylsulfoxide plus low molecular weight Pluronic (16% of L64). Other preparations were better stained with a bolus of VSD (2-5 mM) Tyrode's solution at pH 6.0. Action spectra measured with a fast CCD camera showed that PGH I exhibited an increase in fractional fluorescence, DeltaF/F = 17.5 % per AP at 720 nm with 550 nm excitation and DeltaF/F = - 6% per AP at 830 nm with 670 nm excitation. In frog hearts, PGH1 was stable with approximately 30% decrease in fluorescence and AP amplitude during 3 h of intermittent excitation or 1 h of continuous high intensity excitation (300 W Xe-Hg Arc lamp), which was attributed to a combination of dye wash out > photobleaching > dynamic damage > run down of the preparation. The long wavelengths, large Stokes shifts, high DeltaF/F and low baseline fluorescence make PGH dyes a valuable tool in optical mapping and for simultaneous mapping of APs and intracellular Ca(2+).
Collapse
Affiliation(s)
- G Salama
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, S314 Biomedical Science Tower, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kosterin P, Kim GH, Muschol M, Obaid AL, Salzberg BM. Changes in FAD and NADH fluorescence in neurosecretory terminals are triggered by calcium entry and by ADP production. J Membr Biol 2006; 208:113-24. [PMID: 16645741 DOI: 10.1007/s00232-005-0824-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Indexed: 10/24/2022]
Abstract
We measured changes in the intrinsic fluorescence (IF) of the neurosecretory terminals of the mouse neurohypophysis during brief (1-2 s) trains of stimuli. With fluorescence excitation at either 350 +/- 20 or 450 +/- 50 nm, and with emission measured, respectively, at 450 +/- 50 or > or = 520 nm, DeltaF/F(o) was approximately 5-8 % for a 2 s train of 30 action potentials. The IF changes lagged the onset of stimulation by approximately 100 ms and were eliminated by 1 microM tetrodotoxin (TTX). The signals were partially inhibited by 500 microM Cd(2+), by substitution of Mg(2+) for Ca(2+), by Ca(2+)-free Ringer's with 0.5 mM EGTA, and by 50 microM ouabain. The IF signals were also sensitive to the mitochondrial metabolic inhibitors CCCP (0.3 microM), FCCP (0.3 microM), and NaN(3) (0.3 mM), and their amplitude reflected the partial pressure of oxygen (pO(2)) in the bath. Resting fluorescence at both 350 nm and 450 nm exhibited significant bleaching. Flavin adenine dinucleotide (FAD) is fluorescent, while its reduced form FADH(2) is relatively non-fluorescent; conversely, NADH is fluorescent, while its oxidized form NAD is non-fluorescent. Thus, our experiments suggest that the stimulus-coupled rise in [Ca(2+)](i) triggers an increase in FAD and NAD as FADH(2) and NADH are oxidized, but that elevation of [Ca(2+)](i), alone cannot account for the totality of changes in intrinsic fluorescence.
Collapse
Affiliation(s)
- P Kosterin
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA
| | | | | | | | | |
Collapse
|
17
|
Salzberg BM, Kosterin PV, Muschol M, Obaid AL, Rumyantsev SL, Bilenko Y, Shur MS. An ultra-stable non-coherent light source for optical measurements in neuroscience and cell physiology. J Neurosci Methods 2005; 141:165-9. [PMID: 15585300 DOI: 10.1016/j.jneumeth.2004.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 06/11/2004] [Indexed: 11/20/2022]
Abstract
We demonstrate that high power light-emitting diodes (LED's) exhibit low-frequency noise characteristics that are clearly superior to those of quartz tungsten halogen lamps, the non-coherent light source most commonly employed when freedom from intensity variation is critical. Their extreme stability over tens of seconds (combined with readily selectable wavelength) makes high power LED's ideal light sources for DC recording of optical changes, from living cells and tissues, that last more than a few hundred milliseconds. These optical signals (DeltaI/I(0)) may be intrinsic (light scattering, absorbance or fluorescence) or extrinsic (absorbance or fluorescence from probe molecules) and we show that changes as small as approximately 8 x 10(-5) can be recorded without signal averaging when LED's are used as monochromatic light sources. Here, rapid and slow changes in the intrinsic optical properties of mammalian peptidergic nerve terminals are used to illustrate the advantages of high power LED's compared to filament bulbs.
Collapse
Affiliation(s)
- B M Salzberg
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Sasaki N, Dayanithi G, Shibuya I. Ca2+ clearance mechanisms in neurohypophysial terminals of the rat. Cell Calcium 2005; 37:45-56. [PMID: 15541463 DOI: 10.1016/j.ceca.2004.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/14/2004] [Accepted: 06/22/2004] [Indexed: 11/21/2022]
Abstract
The importance of intracellular calcium ([Ca2+]i) in the release of vasopressin (AVP) and oxytocin from the central nervous system neurohypopyhysial nerve terminals has been well-documented. To date, there is no clear understanding of Ca2+ clearance mechanisms and their interplay with transmembrane Ca2+ entry, intracellular [Ca2+]i transients, cytoplasmic Ca2+ stores and hence the release of AVP at the level of a single nerve terminal. Here, we studied the mechanism of Ca2+ clearance in freshly isolated nerve terminals of the rat neurohypophysis using Fura-2 Ca2+ imaging and measured the release of AVP by radioimmuno assay. An increase in the K+ concentration in the perfusion solution from 5 to 50 mM caused a rapid increase in [Ca2+]i and AVP release. Returning K+ concentration to 5 mM led to rapid restoration of both responses to basal level. The K+-evoked [Ca2+]i and AVP increase was concentration-dependent, reliable, and remained of constant amplitude and time course upon successive applications. Extracellular Ca2+ removal completely abolished the K+-evoked responses. The recovery phase was not affected upon replacement of NaCl with sucrose or drugs known to act on intracellular Ca2+ stores such as thapsigargin, cyclopiazonic acid, caffeine or a combination of caffeine and ryanodine did not affect either resting or K+-evoked [Ca2+]i or AVP release. By contrast, the plasma membrane Ca2+ pump inhibitor, La3+, markedly slowed down the recovery phase. The mitochondrial respiration uncoupler, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), slightly but significantly increased the basal [Ca2+]i, and also slowed down the recovery phase of both [Ca2+]i and release responses. In conclusion, we show in nerve terminals that (i) Ca2+ extrusion through the Ca2+ pump in the plasma membrane plays a major role in the Ca2+ clearance mechanisms of (ii) Ca2+ uptake by mitochondria also contributes to the Ca2+ clearance and (iii) neither Na+/Ca2+ exchangers nor Ca2+ stores are involved in the Ca2+ clearance or in the maintenance of basal [Ca2+]i or release of AVP.
Collapse
Affiliation(s)
- Naoko Sasaki
- Department of Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan
| | | | | |
Collapse
|
19
|
Abstract
During the last few decades, neuroscientists have benefited from the emergence of many powerful functional imaging techniques that cover broad spatial and temporal scales. We can now image single molecules controlling cell differentiation, growth and death; single cells and their neurites processing electrical inputs and sending outputs; neuronal circuits performing neural computations in vitro; and the intact brain. At present, imaging based on voltage-sensitive dyes (VSDI) offers the highest spatial and temporal resolution for imaging neocortical functions in the living brain, and has paved the way for a new era in the functional imaging of cortical dynamics. It has facilitated the exploration of fundamental mechanisms that underlie neocortical development, function and plasticity at the fundamental level of the cortical column.
Collapse
Affiliation(s)
- Amiram Grinvald
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel.
| | | |
Collapse
|
20
|
Affiliation(s)
- Dominique Debanne
- Equipe INSERM AVENIR, Plasticité de l'excitabilité neuronale, Neurobiologie des Canaux Ioniques INSERM U641, Institut Fédératif de Recherche Jean Roche, Université de la Méditerranée, Marseille, France.
| |
Collapse
|