1
|
Prabhu NM, Lehmann N, Kaminski E, Müller N, Taubert M. Online stimulation of the prefrontal cortex during practice increases motor variability and modulates later cognitive transfer: a randomized, double-blinded and sham-controlled tDCS study. Sci Rep 2024; 14:20162. [PMID: 39215020 PMCID: PMC11364672 DOI: 10.1038/s41598-024-70857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
The benefits of learning a motor skill extend to improved task-specific cognitive abilities. The mechanistic underpinnings of this motor-cognition relationship potentially rely on overlapping neural resources involved in both processes, an assumption lacking causal evidence. We hypothesize that interfering with prefrontal networks would inhibit concurrent motor skill performance, long-term learning and associated cognitive functions dependent on similar networks (transfer). We conducted a randomised, double-blinded, sham-controlled brain stimulation study using transcranial direct current stimulation (tDCS) in young adults spanning over three weeks to assess the role of the prefrontal regions in learning a complex balance task and long-term cognitive performance. Balance training combined with active tDCS led to higher performance variability in the trained task as compared to the sham group, impacting the process of learning a complex task without affecting the learning rate. Furthermore, active tDCS also positively influenced performance in untrained motor and cognitive tasks. The findings of this study help ascertaining the networks directly involved in learning a complex motor task and its implications on cognitive function. Hence, opening up the possibility of harnessing the observed frontal networks involved in resource mobilization in instances of aging, brain lesion/injury or dysfunction.
Collapse
Affiliation(s)
- Nisha Maria Prabhu
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Nico Lehmann
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| | - Elisabeth Kaminski
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
| | - Notger Müller
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Am Mühlenberg 9, 14476, Potsdam, Germany
- Neuroprotection Lab, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Department of Sport Science, Institute III, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
2
|
Zhang YZ, Zhang CY, Tian YN, Xiang Y, Wei JH. Cerebral arterial blood flow, attention, and executive and cognitive functions in depressed patients after acute hypertensive cerebral hemorrhage. World J Clin Cases 2024; 12:3815-3823. [PMID: 38994304 PMCID: PMC11235463 DOI: 10.12998/wjcc.v12.i19.3815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage mainly occurs in middle-aged and elderly patients with hypertension, and surgery is currently the main treatment for hypertensive cerebral hemorrhage, but the bleeding caused by surgery will cause damage to the patient's nerve cells, resulting in cognitive and motor dysfunction, resulting in a decline in the patient's quality of life. AIM To investigate associations between cerebral arterial blood flow and executive and cognitive functions in depressed patients after acute hypertensive cerebral hemorrhage. METHODS Eighty-nine patients with depression after acute hypertensive cerebral hemorrhage who were admitted to our hospital between January 2019 and July 2021 were selected as the observation group, while 100 patients without depression who had acute hypertensive cerebral hemorrhage were selected as the control group. The attention span of the patients was assessed using the Paddle Pin Test while executive function was assessed using the Wisconsin Card Sorting Test (WCST) and cognitive function was assessed using the Montreal Cognitive Assessment Scale (MoCA). The Hamilton Depression Rating Scale (HAMD-24) was used to evaluate the severity of depression of involved patients. Cerebral arterial blood flow was measured in both groups. RESULTS The MoCA score, net scores I, II, III, IV, and the total net score of the scratch test in the observation group were significantly lower than those in the control group (P < 0.05). Concurrently, the total number of responses, number of incorrect responses, number of persistent errors, and number of completed responses of the first classification in the WCST test were significantly higher in the observation group than those in the control group (P < 0.05). Blood flow in the basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery was significantly lower in the observation group than in the control group (P < 0.05). The basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery were positively correlated with the net and total net scores of each part of the Paddle Pin test and the MoCA score (P < 0.05), and negatively correlated with each part of the WCST test (P < 0.05). In the observation group, the post-treatment improvement was more prominent in the Paddle Pin test, WCST test, HAMD-24 score, and MoCA score compared with those in the pre-treatment period (P < 0.05). Blood flow in the basilar artery, left middle cerebral artery, right middle cerebral artery, left anterior cerebral artery, and right anterior cerebral artery significantly improved in the observation group after treatment (P < 0.05). CONCLUSION Impaired attention, and executive and cognitive functions are correlated with cerebral artery blood flow in patients with depression after acute hypertensive cerebral hemorrhage and warrant further study.
Collapse
Affiliation(s)
- Ya-Zhao Zhang
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| | - Cong-Yi Zhang
- Department of Ultrasound, Second People's Hospital of Hengshui City, Hengshui 053000, Hebei Province, China
| | - Ya-Nan Tian
- Department of Neurology, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| | - Yi Xiang
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| | - Jian-Hui Wei
- Department of Neurosurgery, Hengshui People's Hospital, Hengshui 053000, Hebei Province, China
| |
Collapse
|
3
|
Taubert M, Ziegler G, Lehmann N. Higher surface folding of the human premotor cortex is associated with better long-term learning capability. Commun Biol 2024; 7:635. [PMID: 38796622 PMCID: PMC11127997 DOI: 10.1038/s42003-024-06309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The capacity to learn enabled the human species to adapt to various challenging environmental conditions and pass important achievements on to the next generation. A growing body of research suggests links between neocortical folding properties and numerous aspects of human behavior, but their impact on enhanced human learning capacity remains unexplored. Here we leverage three training cohorts to demonstrate that higher levels of premotor cortical folding reliably predict individual long-term learning gains in a challenging new motor task, above and beyond initial performance differences. Individual folding-related predisposition to motor learning was found to be independent of cortical thickness and intracortical microstructure, but dependent on larger cortical surface area in premotor regions. We further show that learning-relevant features of cortical folding occurred in close spatial proximity to practice-induced structural brain plasticity. Our results suggest a link between neocortical surface folding and human behavioral adaptability.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Gabriel Ziegler
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nico Lehmann
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Cobia D, Haut MW, Revill KP, Rellick SL, Nudo RJ, Wischnewski M, Buetefisch CM. Gray matter volume of functionally relevant primary motor cortex is causally related to learning a hand motor task. Cereb Cortex 2024; 34:bhae210. [PMID: 38771243 PMCID: PMC11107379 DOI: 10.1093/cercor/bhae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Variability in brain structure is associated with the capacity for behavioral change. However, a causal link between specific brain areas and behavioral change (such as motor learning) has not been demonstrated. We hypothesized that greater gray matter volume of a primary motor cortex (M1) area active during a hand motor learning task is positively correlated with subsequent learning of the task, and that the disruption of this area blocks learning of the task. Healthy participants underwent structural MRI before learning a skilled hand motor task. Next, participants performed this learning task during fMRI to determine M1 areas functionally active during this task. This functional ROI was anatomically constrained with M1 boundaries to create a group-level "Active-M1" ROI used to measure gray matter volume in each participant. Greater gray matter volume in the left hemisphere Active-M1 ROI was related to greater motor learning in the corresponding right hand. When M1 hand area was disrupted with repetitive transcranial stimulation (rTMS), learning of the motor task was blocked, confirming its causal link to motor learning. Our combined imaging and rTMS approach revealed greater cortical volume in a task-relevant M1 area is causally related to learning of a hand motor task in healthy humans.
Collapse
Affiliation(s)
- Derin Cobia
- Department of Psychology and Neuroscience Center, 1036 KMBL, Brigham Young University, Provo, UT 84602, USA
| | - Marc W Haut
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
- Department of Neurology, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
- Department of Radiology, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
| | - Kate P Revill
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Stephanie L Rellick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, 33 Medical Center Dr., West Virginia University, Morgantown, WV 26506, USA
| | - Randolph J Nudo
- Department of Rehabilitation Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Miles Wischnewski
- Department of Neurology, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
| | - Cathrin M Buetefisch
- Department of Neurology, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
- Department of Rehabilitation Medicine, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
- Department of Radiology, Emory University, 1441 Clifton Road NE, Suite 236 C, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Keller M, Lichtenstein E, Roth R, Faude O. Balance Training Under Fatigue: A Randomized Controlled Trial on the Effect of Fatigue on Adaptations to Balance Training. J Strength Cond Res 2024; 38:297-305. [PMID: 37643391 PMCID: PMC10798588 DOI: 10.1519/jsc.0000000000004620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
ABSTRACT Keller, M, Lichtenstein, E, Roth, R, and Faude, O. Balance training under fatigue: a randomized controlled trial on the effect of fatigue on adaptations to balance training. J Strength Cond Res 38(2): 297-305, 2024-Balance training is an effective means for injury prevention in sports. However, one can question the existing practice of putting the balance programs at the start of a training session (i.e., train in an unfatigued state) because the occurrence of injuries has been associated with fatigue. Therefore, the aim of this study was to assess the influence of balance training in a fatigued or an unfatigued state on motor performance tested in fatigued and unfatigued conditions. Fifty-two, healthy, active volunteers (28.0 years; 19 women) were randomly allocated to 1 of 3 different training groups. The BALANCE group completed 6 weeks of balance training. The other 2 groups completed the identical balance tasks either before (BALANCE-high-intensity interval training [HIIT]) or after (HIIT-BALANCE) a HIIT session. Thus, these groups trained the balance tasks either in a fatigued or in an unfatigued state. In PRE and POST tests, balance (solid ground, soft mat, wobble board) and jump performance was obtained in fatigued and unfatigued states. Balance training resulted in reduced sway paths in all groups. However, the linear models revealed larger adaptations in BALANCE-HIIT and BALANCE when compared with HIIT-BALANCE ( d = 0.22-0.71). These small to moderate effects were-despite some uncertainties-consistent for the "unfatigued" and "fatigued" test conditions. The results of this study revealed for the first time that balance training under fatigue results in diminished adaptations, even when tested in a fatigued state. Therefore, the data indicate that balance training should be implemented at the start of a training session or in an unfatigued state.
Collapse
Affiliation(s)
- Martin Keller
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Eric Lichtenstein
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Ralf Roth
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Oliver Faude
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Yao ZF, Hsieh S, Yang MH. Exercise habits and mental health: Exploring the significance of multimodal imaging markers. PROGRESS IN BRAIN RESEARCH 2023; 286:179-209. [PMID: 38876575 DOI: 10.1016/bs.pbr.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Engaging in regular physical activity and establishing exercise habits is known to have multifaceted benefits extending beyond physical health to cognitive and mental well-being. This study explores the intricate relationship between exercise habits, brain imaging markers, and mental health outcomes. While extensive evidence supports the positive impact of exercise on cognitive functions and mental health, recent advancements in multimodal imaging techniques provide a new dimension to this exploration. By using a cross-sectional multimodal brain-behavior statistic in participants with different exercise habits, we aim to unveil the intricate mechanisms underlying exercise's influence on cognition and mental health, including the status of depression, anxiety, and quality of life. This integration of exercise science and imaging promises to substantiate cognitive benefits on mental health and uncover functional and structural changes underpinning these effects. This study embarks on a journey to explore the significance of multimodal imaging metrics (i.e., structural and functional metrics) in deciphering the intricate interplay between exercise habits and mental health, enhancing the comprehension of how exercise profoundly shapes psychological well-being. Our analysis of group comparisons uncovered a strong association between regular exercise habits and improved mental well-being, encompassing factors such as depression, anxiety levels, and overall life satisfaction. Additionally, individuals who engaged in exercise displayed enhanced brain metrics across different modalities. These metrics encompassed greater gray matter volume within the left frontal regions and hippocampus, improved white matter integrity in the frontal-occipital fasciculus, as well as more robust functional network configurations in the anterior segments of the default mode network. The interplay between exercise habits, brain adaptations, and mental health outcomes underscores the pivotal role of an active lifestyle in nurturing a resilient and high-functioning brain, thus paving the way for tailored interventions and improved well-being.
Collapse
Affiliation(s)
- Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu City, Taiwan; Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu City, Taiwan; Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu City, Taiwan; Department of Kinesiology, National Tsing Hua University, Hsinchu City, Taiwan.
| | - Shulan Hsieh
- Cognitive Electrophysiology Laboratory, Control, Aging, Sleep, and Emotion (CASE), National Cheng Kung University, Tainan City, Taiwan; Department of Psychology, National Cheng Kung University, Tainan City, Taiwan; Institute of Allied Health Sciences, National Cheng Kung University, Tainan City, Taiwan; Department of Public Health, National Cheng Kung University, Tainan City, Taiwan.
| | - Meng-Heng Yang
- Cognitive Electrophysiology Laboratory, Control, Aging, Sleep, and Emotion (CASE), National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
7
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Changes in Cortical Microstructure of the Human Brain Resulting from Long-Term Motor Learning. J Neurosci 2023; 43:8637-8648. [PMID: 37875377 PMCID: PMC10727185 DOI: 10.1523/jneurosci.0537-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 10/26/2023] Open
Abstract
The mechanisms subserving motor skill acquisition and learning in the intact human brain are not fully understood. Previous studies in animals have demonstrated a causal relationship between motor learning and structural rearrangements of synaptic connections, raising the question of whether neurite-specific changes are also observable in humans. Here, we use advanced diffusion magnetic resonance imaging (MRI), sensitive to dendritic and axonal processes, to investigate neuroplasticity in response to long-term motor learning. We recruited healthy male and female human participants (age range 19-29) who learned a challenging dynamic balancing task (DBT) over four consecutive weeks. Diffusion MRI signals were fitted using Neurite Orientation Dispersion and Density Imaging (NODDI), a theory-driven biophysical model of diffusion, yielding measures of tissue volume, neurite density and the organizational complexity of neurites. While NODDI indices were unchanged and reliable during the control period, neurite orientation dispersion increased significantly during the learning period mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor areas. Importantly, reorganization of cortical microstructure during the learning phase predicted concurrent behavioral changes, whereas there was no relationship between microstructural changes during the control phase and learning. Changes in neurite complexity were independent of alterations in tissue density, cortical thickness, and intracortical myelin. Our results are in line with the notion that structural modulation of neurites is a key mechanism supporting complex motor learning in humans.SIGNIFICANCE STATEMENT The structural correlates of motor learning in the human brain are not fully understood. Results from animal studies suggest that synaptic remodeling (e.g., reorganization of dendritic spines) in sensorimotor-related brain areas is a crucial mechanism for the formation of motor memory. Using state-of-the-art diffusion magnetic resonance imaging (MRI), we found a behaviorally relevant increase in the organizational complexity of neocortical microstructure, mainly in primary sensorimotor, prefrontal, premotor, supplementary, and cingulate motor regions, following training of a challenging dynamic balancing task (DBT). Follow-up analyses suggested structural modulation of synapses as a plausible mechanism driving this increase, while colocalized changes in cortical thickness, tissue density, and intracortical myelin could not be detected. These results advance our knowledge about the neurobiological basis of motor learning in humans.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Leibniz-Institute for Neurobiology (LIN), Magdeburg 39118, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg 39120, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
8
|
Wang Z, Donahue EK, Guo Y, Renteln M, Petzinger GM, Jakowec MW, Holschneider DP. Exercise alters cortico-basal ganglia network metabolic connectivity: a mesoscopic level analysis informed by anatomic parcellation defined in the mouse brain connectome. Brain Struct Funct 2023; 228:1865-1884. [PMID: 37306809 PMCID: PMC10516800 DOI: 10.1007/s00429-023-02659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The basal ganglia are important modulators of the cognitive and motor benefits of exercise. However, the neural networks underlying these benefits remain poorly understood. Our study systematically analyzed exercise-associated changes in metabolic connectivity in the cortico-basal ganglia-thalamic network during the performance of a new motor task, with regions-of-interest defined based on mesoscopic domains recently defined in the mouse brain structural connectome. Mice were trained on a motorized treadmill for six weeks or remained sedentary (control), thereafter undergoing [14C]-2-deoxyglucose metabolic brain mapping during wheel walking. Regional cerebral glucose uptake (rCGU) was analyzed in 3-dimensional brains reconstructed from autoradiographic brain sections using statistical parametric mapping. Metabolic connectivity was assessed by calculating inter-regional correlation of rCGU cross-sectionally across subjects within a group. Compared to controls, exercised animals showed broad decreases in rCGU in motor areas, but increases in limbic areas, as well as the visual and association cortices. In addition, exercised animals showed (i) increased positive metabolic connectivity within and between the motor cortex and caudoputamen (CP), (ii) newly emerged negative connectivity of the substantia nigra pars reticulata with the globus pallidus externus, and CP, and (iii) reduced connectivity of the prefrontal cortex (PFC). Increased metabolic connectivity in the motor circuit in the absence of increases in rCGU strongly suggests greater network efficiency, which is also supported by the reduced involvement of PFC-mediated cognitive control during the performance of a new motor task. Our study delineates exercise-associated changes in functional circuitry at the subregional level and provides a framework for understanding the effects of exercise on functions of the cortico-basal ganglia-thalamic network.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Erin K. Donahue
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Michael Renteln
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Giselle M. Petzinger
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Michael W. Jakowec
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Daniel P. Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California USA
| |
Collapse
|
9
|
Doborjeh Z, Doborjeh M, Sumich A, Singh B, Merkin A, Budhraja S, Goh W, Lai EMK, Williams M, Tan S, Lee J, Kasabov N. Investigation of social and cognitive predictors in non-transition ultra-high-risk' individuals for psychosis using spiking neural networks. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:10. [PMID: 36792634 PMCID: PMC9931713 DOI: 10.1038/s41537-023-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
Finding predictors of social and cognitive impairment in non-transition Ultra-High-Risk individuals (UHR) is critical in prognosis and planning of potential personalised intervention strategies. Social and cognitive functioning observed in youth at UHR for psychosis may be protective against transition to clinically relevant illness. The current study used a computational method known as Spiking Neural Network (SNN) to identify the cognitive and social predictors of transitioning outcome. Participants (90 UHR, 81 Healthy Control (HC)) completed batteries of neuropsychological tests in the domains of verbal memory, working memory, processing speed, attention, executive function along with social skills-based performance at baseline and 4 × 6-month follow-up intervals. The UHR status was recorded as Remitters, Converters or Maintained. SNN were used to model interactions between variables across groups over time and classify UHR status. The performance of SNN was examined relative to other machine learning methods. Higher interaction between social and cognitive variables was seen for the Maintained, than Remitter subgroup. Findings identified the most important cognitive and social variables (particularly verbal memory, processing speed, attention, affect and interpersonal social functioning) that showed discriminative patterns in the SNN models of HC vs UHR subgroups, with accuracies up to 80%; outperforming other machine learning models (56-64% based on 18 months data). This finding is indicative of a promising direction for early detection of social and cognitive impairment in UHR individuals that may not anticipate transition to psychosis and implicate early initiated interventions to stem the impact of clinical symptoms of psychosis.
Collapse
Affiliation(s)
- Zohreh Doborjeh
- Audiology Department, School of Population Health, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
- School of Psychology, The University of Waikato, Hamilton, New Zealand.
| | - Maryam Doborjeh
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand.
| | - Alexander Sumich
- School of Psychology, Nottingham Trent University, Nottingham, UK
- Department of Psychology and Neuroscience, Auckland University of Technology, Auckland, New Zealand
| | - Balkaran Singh
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Alexander Merkin
- Institute for Stroke and Applied Neurosciences, Auckland University of Technology, Auckland, New Zealand
- Research Methods, Assessment & Science, Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Sugam Budhraja
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Wilson Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, Singapore, Singapore
| | - Edmund M-K Lai
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Margaret Williams
- Department of Public Health and Psychosocial Studies, Auckland University of Technology, Auckland, New Zealand
| | - Samuel Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Mental Health & Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nikola Kasabov
- Knowledge Engineering and Discovery Research Institute, School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, 1010, New Zealand
- Intelligent Systems Research Centre, Ulster University, Londonderry, UK
- Institute for Information and Communication Technologies (IICT), Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
von Cederwald BF, Johansson J, Riklund K, Karalija N, Boraxbekk CJ. White matter lesion load determines exercise-induced dopaminergic plasticity and working memory gains in aging. Transl Psychiatry 2023; 13:28. [PMID: 36720847 PMCID: PMC9889313 DOI: 10.1038/s41398-022-02270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Age-related dopamine reductions have been suggested to contribute to maladaptive working memory (WM) function in older ages. One promising intervention approach is to increase physical activity, as this has been associated with plasticity of the striatal dopamine system and WM improvements, however with individual differences in efficacy. The present work focused on the impact of individual differences in white-matter lesion burden upon dopamine D2-like receptor (DRD2) availability and WM changes in response to a 6 months physical activity intervention. While the intervention altered striatal DRD2 availability and WM performance in individuals with no or only mild lesions (p < 0.05), no such effects were found in individuals with moderate-to-severe lesion severity (p > 0.05). Follow-up analyses revealed a similar pattern for processing speed, but not for episodic memory performance. Linear analyses further revealed that lesion volume (ml) at baseline was associated with reduced DRD2 availability (r = -0.41, p < 0.05), and level of DRD2 change (r = 0.40, p < 0.05). Taken together, this study underlines the necessity to consider cerebrovascular health in interventions with neurocognitive targets. Future work should assess whether these findings extend beyond measures of DRD2 availability and WM.
Collapse
Affiliation(s)
- Bryn Farnsworth von Cederwald
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden. .,Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark. .,Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark. .,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Tang S, Liu X, Nie L, Qian F, Chen W, He L. Three-dimensional pseudocontinuous arterial spin labeling perfusion imaging shows cerebral blood flow perfusion decline in attention-deficit/hyperactivity disorder children. Front Psychiatry 2023; 14:1064647. [PMID: 36741108 PMCID: PMC9889924 DOI: 10.3389/fpsyt.2023.1064647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
PURPOSE To investigate the feasibility of three-dimensional pseudocontinuous arterial spin labeling (3D-pcASL) perfusion imaging in the brain of children with Attention-deficit/hyperactivity disorder (ADHD). METHODS A total of 78 ADHD children aged 5-13 years were prospectively selected as the study group, and 89 healthy children matched in age and sex were selected as the control group. All children underwent MRI conventional sequence, 3D-pcASL, and 3D-T1 sequence scans. The brain gray and white matter volume and cerebral blood flow (CBF) perfusion values were obtained by software post-processing, and were compared and analyzed in the two groups to find out their characteristics in the brain of ADHD children. RESULTS The total brain volume and total CBF values were lower in ADHD children than in healthy children (P < 0.05); the gray and white matter volumes in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus and other brain regions were lower in ADHD children than in healthy children (P < 0.05); the gray matter CBF values in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, putamen, globus pallidus and other brain regions were lower in ADHD children than in healthy children (P < 0.05); the differences between the white matter CBF values of white matter in the said brain regions of ADHD children and healthy children were not statistically significant (P > 0.05); and the CBF values in frontal lobe and caudate nuclei could distinguish ADHD children (AUC > 0.05, P < 0.05). CONCLUSION The 3D-pcASL technique showed reduced cerebral perfusion in some brain regions of ADHD children.
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Fangfang Qian
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wushang Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
12
|
Upadhyay N, Schörkmaier T, Maurer A, Claus J, Scheef L, Daamen M, Martin JA, Stirnberg R, Radbruch A, Attenberger U, Stöcker T, Boecker H. Regional cortical perfusion increases induced by a 6-month endurance training in young sedentary adults. Front Aging Neurosci 2022; 14:951022. [PMID: 36034125 PMCID: PMC9407250 DOI: 10.3389/fnagi.2022.951022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
Physical inactivity is documented as a health risk factor for chronic diseases, accelerated aging, and cognitive impairment. Physical exercise, on the other hand, plays an important role in healthy aging by promoting positive muscular, cardiovascular, and central nervous system adaptions. Prior studies on the effects of exercise training on cerebral perfusion have focused largely on elderly cohorts or patient cohorts, while perfusion effects of exercise training in young sedentary adults have not yet been fully assessed. Therefore, the present study examined the physiological consequence of a 6-month endurance exercise training on brain perfusion in 28 young sedentary adults randomly assigned to an intervention group (IG; regular physical exercise) or a control group (CG; without physical exercise). The IG performed an extensive running interval training three times per week over 6 months. Performance diagnostics and MRI were performed every 2 months, and training intensity was adapted individually. Brain perfusion measurements with pseudo-continuous arterial spin labeling were analyzed using the standard Oxford ASL pipeline. A significant interaction effect between group and time was found for right superior temporal gyrus (STG) perfusion, driven by an increase in the IG and a decrease in the CG. Furthermore, a significant time effect was observed in the right middle occipital region in the IG only. Perfusion increases in the right STG, in the ventral striatum, and in primary motor areas were significantly associated with increases in maximum oxygen uptake (VO2max). Overall, this study identified region-specific increases in local perfusion in a cohort of young adults that partly correlated with individual performance increases, hence, suggesting exercise dose dependency. Respective adaptations in brain perfusion are discussed in the context of physical exercise-induced vascular plasticity.
Collapse
Affiliation(s)
- Neeraj Upadhyay
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | | | - Angelika Maurer
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Jannik Claus
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Lukas Scheef
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Marcel Daamen
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Jason A. Martin
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | | | - Alexander Radbruch
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Henning Boecker
- Clinical Functional Imaging Group, Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
- *Correspondence: Henning Boecker,
| |
Collapse
|
13
|
Maleki S, Hendrikse J, Chye Y, Caeyenberghs K, Coxon JP, Oldham S, Suo C, Yücel M. Associations of cardiorespiratory fitness and exercise with brain white matter in healthy adults: A systematic review and meta-analysis. Brain Imaging Behav 2022; 16:2402-2425. [PMID: 35773556 PMCID: PMC9581839 DOI: 10.1007/s11682-022-00693-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging (MRI) studies have revealed positive associations between brain structure and physical activity, cardiorespiratory fitness, and exercise (referred to here as PACE). While a considerable body of research has investigated the effects of PACE on grey matter, much less is known about effects on white matter (WM). Hence, we conducted a systematic review of peer-reviewed literature published prior to 5th July 2021 using online databases (PubMed and Scopus) and PRISMA guidelines to synthesise what is currently known about the relationship between PACE and WM in healthy adults. A total of 60 studies met inclusion criteria and were included in the review. Heterogeneity across studies was calculated using Qochran's q test, and publication bias was assessed for each meta-analysis using Begg and Mazumdar rank correlation test. A meta-regression was also conducted to explore factors contributing to any observed heterogeneity. Overall, we observed evidence of positive associations between PACE and global WM volume (effect size (Hedges's g) = 0.137, p < 0.001), global WM anomalies (effect size = 0.182, p < 0.001), and local microstructure integrity (i.e., corpus callosum: effect size = 0.345, p < 0.001, and anterior limb of internal capsule: effect size = 0.198, p < 0.001). These findings suggest that higher levels of PACE are associated with improved global WM volume and local integrity. We appraise the quality of evidence, and discuss the implications of these findings for the preservation of WM across the lifespan. We conclude by providing recommendations for future research in order to advance our understanding of the specific PACE parameters and neurobiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- Suzan Maleki
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Joshua Hendrikse
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Yann Chye
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - James P Coxon
- Movement and Exercise Neuroscience Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia
| | - Stuart Oldham
- Neural Systems and Behaviour, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Clayton, Australia.,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Chao Suo
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, 770 Blackburn RD, Clayton, VIC, 3168, Australia.
| |
Collapse
|
14
|
Reduced and delayed myelination and volume of corpus callosum in an animal model of Fetal Alcohol Spectrum Disorders partially benefit from voluntary exercise. Sci Rep 2022; 12:10653. [PMID: 35739222 PMCID: PMC9226126 DOI: 10.1038/s41598-022-14752-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
1 in 20 live births in the United States is affected by prenatal alcohol exposure annually, creating a major public health crisis. The teratogenic impact of alcohol on physical growth, neurodevelopment, and behavior is extensive, together resulting in clinical disorders which fall under the umbrella term of Fetal Alcohol Spectrum Disorders (FASD). FASD-related impairments to executive function and perceptual learning are prevalent among affected youth and are linked to disruptions to corpus callosum growth and myelination in adolescence. Targeted interventions that support neurodevelopment in FASD-affected youth are nonexistent. We evaluated the capacity of an adolescent exercise intervention, a stimulator of myelinogenesis, to upregulate corpus callosum myelination in a rat model of FASD (third trimester-equivalent alcohol exposure). This study employs in vivo diffusion tensor imaging (DTI) scanning to investigate the effects of: (1) neonatal alcohol exposure and (2) an adolescent exercise intervention on corpus callosum myelination in a rodent model of FASD. DTI scans were acquired twice longitudinally (pre- and post-intervention) in male and female rats using a 9.4 Tesla Bruker Biospec scanner to assess alterations to corpus callosum myelination noninvasively. Fractional anisotropy values as well as radial/axial diffusivity values were compared within-animal in a longitudinal study design. Analyses using mixed repeated measures ANOVA’s confirm that neonatal alcohol exposure in a rodent model of FASD delays the trajectory of corpus callosum growth and myelination across adolescence, with a heightened vulnerability in the male brain. Alterations to corpus callosum volume are correlated with reductions to forebrain volume which mediates an indirect relationship between body weight gain and corpus callosum growth. While we did not observe any significant effects of voluntary aerobic exercise on corpus callosum myelination immediately after completion of the 12-day intervention, we did observe a beneficial effect of exercise intervention on corpus callosum volume growth in all rats. In line with clinical findings, we have shown that prenatal alcohol exposure leads to hypomyelination of the corpus callosum in adolescence and that the severity of damage is sexually dimorphic. Further, exercise intervention improves corpus callosum growth in alcohol-exposed and control rats in adolescence.
Collapse
|
15
|
Shao X, Luo D, Zhou Y, Xiao Z, Wu J, Tan LH, Qiu S, Yuan D. Myeloarchitectonic plasticity in elite golf players' brains. Hum Brain Mapp 2022; 43:3461-3468. [PMID: 35420729 PMCID: PMC9248307 DOI: 10.1002/hbm.25860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 11/14/2022] Open
Abstract
Human neuroimaging studies have demonstrated that exercise influences the cortical structural plasticity as indexed by gray or white matter volume. It remains elusive, however, whether exercise affects cortical changes at the finer‐grained myelination structure level. To answer this question, we scanned 28 elite golf players in comparison with control participants, using a novel neuroimaging technique—quantitative magnetic resonance imaging (qMRI). The data showed myeloarchitectonic plasticity in the left temporal pole of the golf players: the microstructure of this brain region of the golf players was better proliferated than that of control participants. In addition, this myeloarchitectonic plasticity was positively related to golfing proficiency. Our study has manifested that myeloarchitectonic plasticity could be induced by exercise, and thus, shed light on the potential benefits of exercise on brain health and cognitive enhancement.
Collapse
Affiliation(s)
- Xueyun Shao
- School of Sports, Shenzhen University, Shenzhen, China.,Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Daiyi Luo
- Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Yulong Zhou
- Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Zhuoni Xiao
- Shenzhen Institute of Neuroscience, Shenzhen, China.,Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Jinjian Wu
- Department of Radiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Hai Tan
- Shenzhen Institute of Neuroscience, Shenzhen, China.,Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Shenzhen, China.,Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Shijun Qiu
- Department of Radiology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Di Yuan
- Shenzhen Institute of Neuroscience, Shenzhen, China.,Department of Psychology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
16
|
Neef NE, Korzeczek A, Primaßin A, Wolff von Gudenberg A, Dechent P, Riedel CH, Paulus W, Sommer M. White matter tract strength correlates with therapy outcome in persistent developmental stuttering. Hum Brain Mapp 2022; 43:3357-3374. [PMID: 35415866 PMCID: PMC9248304 DOI: 10.1002/hbm.25853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/11/2022] Open
Abstract
Persistent stuttering is a prevalent neurodevelopmental speech disorder, which presents with involuntary speech blocks, sound and syllable repetitions, and sound prolongations. Affected individuals often struggle with negative feelings, elevated anxiety, and low self-esteem. Neuroimaging studies frequently link persistent stuttering with cortical alterations and dysfunctional cortico-basal ganglia-thalamocortical loops; dMRI data also point toward connectivity changes of the superior longitudinal fasciculus (SLF) and the frontal aslant tract (FAT). Both tracts are involved in speech and language functions, and the FAT also supports inhibitory control and conflict monitoring. Whether the two tracts are involved in therapy-associated improvements and how they relate to therapeutic outcomes is currently unknown. Here, we analyzed dMRI data of 22 patients who participated in a fluency-shaping program, 18 patients not participating in therapy, and 27 fluent control participants, measured 1 year apart. We used diffusion tractography to segment the SLF and FAT bilaterally and to quantify their microstructural properties before and after a fluency-shaping program. Participants learned to speak with soft articulation, pitch, and voicing during a 2-week on-site boot camp and computer-assisted biofeedback-based daily training for 1 year. Therapy had no impact on the microstructural properties of the two tracts. Yet, after therapy, stuttering severity correlated positively with left SLF fractional anisotropy, whereas relief from the social-emotional burden to stutter correlated negatively with right FAT fractional anisotropy. Thus, posttreatment, speech motor performance relates to the left dorsal stream, while the experience of the adverse impact of stuttering relates to the structure recently associated with conflict monitoring and action inhibition.
Collapse
Affiliation(s)
- Nicole E Neef
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Korzeczek
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Annika Primaßin
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Fachbereich Gesundheit, FH Münster University of Applied Sciences, Münster, Germany
| | | | - Peter Dechent
- Department of Cognitive Neurology, MR Research in Neurosciences, University Medical Center Göttingen, Göttingen, Germany
| | - Christian Heiner Riedel
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Sommer
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Renke MB, Marcinkowska AB, Kujach S, Winklewski PJ. A Systematic Review of the Impact of Physical Exercise-Induced Increased Resting Cerebral Blood Flow on Cognitive Functions. Front Aging Neurosci 2022; 14:803332. [PMID: 35237146 PMCID: PMC8882971 DOI: 10.3389/fnagi.2022.803332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
Brain perfusion declines with aging. Physical exercise represents a low-cost accessible form of intervention to increase cerebral blood flow; however, it remains unclear if exercise-induced amelioration of brain perfusion has any impact on cognition. We aimed to provide a state-of-the art review on this subject. A comprehensive search of the PubMed (MEDLINE) database was performed. On the basis of the inclusion and exclusion criteria, 14 studies were included in the analysis. Eleven of the studies conducted well-controlled exercise programs that lasted 12–19 weeks for 10–40 participants and two studies were conducted in much larger groups of subjects for more than 5 years, but the exercise loads were indirectly measured, and three of them were focused on acute exercise. Literature review does not show a direct link between exercise-induced augmentation of brain perfusion and better cognitive functioning. However, in none of the reviewed studies was such an association the primary study endpoint. Carefully designed clinical studies with focus on cognitive and perfusion variables are needed to provide a response to the question whether exercise-induced cerebral perfusion augmentation is of clinical importance.
Collapse
Affiliation(s)
- Maria B. Renke
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Electronics, Telecommunication and Informatics, Gdańsk University of Technology, Gdańsk, Poland
- *Correspondence: Maria B. Renke
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwester Kujach
- Functional Near Infrared Spectroscopy Lab, Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Physiology, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Paweł J. Winklewski
- Second Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
- Department of Human Physiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
18
|
Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022; 12:1107. [PMID: 35064175 PMCID: PMC8783021 DOI: 10.1038/s41598-022-05145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
In recent years, mounting evidence from animal models and studies in humans has accumulated for the role of cardiovascular exercise (CE) in improving motor performance and learning. Both CE and motor learning may induce highly dynamic structural and functional brain changes, but how both processes interact to boost learning is presently unclear. Here, we hypothesized that subjects receiving CE would show a different pattern of learning-related brain plasticity compared to non-CE controls, which in turn associates with improved motor learning. To address this issue, we paired CE and motor learning sequentially in a randomized controlled trial with healthy human participants. Specifically, we compared the effects of a 2-week CE intervention against a non-CE control group on subsequent learning of a challenging dynamic balancing task (DBT) over 6 consecutive weeks. Structural and functional MRI measurements were conducted at regular 2-week time intervals to investigate dynamic brain changes during the experiment. The trajectory of learning-related changes in white matter microstructure beneath parieto-occipital and primary sensorimotor areas of the right hemisphere differed between the CE vs. non-CE groups, and these changes correlated with improved learning of the CE group. While group differences in sensorimotor white matter were already present immediately after CE and persisted during DBT learning, parieto-occipital effects gradually emerged during motor learning. Finally, we found that spontaneous neural activity at rest in gray matter spatially adjacent to white matter findings was also altered, therefore indicating a meaningful link between structural and functional plasticity. Collectively, these findings may lead to a better understanding of the neural mechanisms mediating the CE-learning link within the brain.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany. .,Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany.,Mind and Brain Institute, Charité and Humboldt University, Luisenstraße 56, 10117, Berlin, Germany
| | - Marco Taubert
- Faculty of Humanities, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.,Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
19
|
Changes in white matter microstructure and MRI-derived cerebral blood flow after 1-week of exercise training. Sci Rep 2021; 11:22061. [PMID: 34764358 PMCID: PMC8586229 DOI: 10.1038/s41598-021-01630-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
Exercise is beneficial for brain health, inducing neuroplasticity and vascular plasticity in the hippocampus, which is possibly mediated by brain-derived neurotrophic factor (BDNF) levels. Here we investigated the short-term effects of exercise, to determine if a 1-week intervention is sufficient to induce brain changes. Fifteen healthy young males completed five supervised exercise training sessions over seven days. This was preceded and followed by a multi-modal magnetic resonance imaging (MRI) scan (diffusion-weighted MRI, perfusion-weighted MRI, dual-calibrated functional MRI) acquired 1 week apart, and blood sampling for BDNF. A diffusion tractography analysis showed, after exercise, a significant reduction relative to baseline in restricted fraction-an axon-specific metric-in the corpus callosum, uncinate fasciculus, and parahippocampal cingulum. A voxel-based approach found an increase in fractional anisotropy and reduction in radial diffusivity symmetrically, in voxels predominantly localised in the corpus callosum. A selective increase in hippocampal blood flow was found following exercise, with no change in vascular reactivity. BDNF levels were not altered. Thus, we demonstrate that 1 week of exercise is sufficient to induce microstructural and vascular brain changes on a group level, independent of BDNF, providing new insight into the temporal dynamics of plasticity, necessary to exploit the therapeutic potential of exercise.
Collapse
|
20
|
Claassen JAHR, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev 2021; 101:1487-1559. [PMID: 33769101 PMCID: PMC8576366 DOI: 10.1152/physrev.00022.2020] [Citation(s) in RCA: 399] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brain function critically depends on a close matching between metabolic demands, appropriate delivery of oxygen and nutrients, and removal of cellular waste. This matching requires continuous regulation of cerebral blood flow (CBF), which can be categorized into four broad topics: 1) autoregulation, which describes the response of the cerebrovasculature to changes in perfusion pressure; 2) vascular reactivity to vasoactive stimuli [including carbon dioxide (CO2)]; 3) neurovascular coupling (NVC), i.e., the CBF response to local changes in neural activity (often standardized cognitive stimuli in humans); and 4) endothelium-dependent responses. This review focuses primarily on autoregulation and its clinical implications. To place autoregulation in a more precise context, and to better understand integrated approaches in the cerebral circulation, we also briefly address reactivity to CO2 and NVC. In addition to our focus on effects of perfusion pressure (or blood pressure), we describe the impact of select stimuli on regulation of CBF (i.e., arterial blood gases, cerebral metabolism, neural mechanisms, and specific vascular cells), the interrelationships between these stimuli, and implications for regulation of CBF at the level of large arteries and the microcirculation. We review clinical implications of autoregulation in aging, hypertension, stroke, mild cognitive impairment, anesthesia, and dementias. Finally, we discuss autoregulation in the context of common daily physiological challenges, including changes in posture (e.g., orthostatic hypotension, syncope) and physical activity.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatrics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- >National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
21
|
Effects of Sport-Based Interventions on Children's Executive Function: A Systematic Review and Meta-Analysis. Brain Sci 2021; 11:brainsci11060755. [PMID: 34200362 PMCID: PMC8226694 DOI: 10.3390/brainsci11060755] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022] Open
Abstract
One of the most studied aspects of children’s cognitive development is that of the development of the executive function, and research has shown that physical activity has been demonstrated as a key factor in its enhancement. This meta-analysis aims to assess the impact of specific sports interventions on the executive function of children and teenagers. A systematic review was carried out on 1 November 2020 to search for published scientific evidence that analysed different sports programs that possibly affected executive function in students. Longitudinal studies, which assessed the effects of sports interventions on subjects between 6 and 18 years old, were identified through a systematic search of the four principal electronic databases: Web of Science, PubMed, Scopus, and EBSCO. A total of eight studies, with 424 subjects overall, met the inclusion criteria and were classified based on one or more of the following categories: working memory, inhibitory control, and cognitive flexibility. The random-effects model for meta-analyses was performed with RevMan version 5.3 to facilitate the analysis of the studies. Large effect sizes were found in all categories: working memory (ES −1.25; 95% CI −1.70; −0.79; p < 0.0001); inhibitory control (ES −1.30; 95% CI −1.98; −0.63; p < 0.00001); and cognitive flexibility (ES −1.52; 95% CI −2.20; −0.83; p < 0.00001). Our analysis concluded that healthy children and teenagers should be encouraged to practice sports in order to improve their executive function at every stage of their development.
Collapse
|
22
|
Nicolini C, Nelson AJ. Current Methodological Pitfalls and Caveats in the Assessment of Exercise-Induced Changes in Peripheral Brain-Derived Neurotrophic Factor: How Result Reproducibility Can Be Improved. FRONTIERS IN NEUROERGONOMICS 2021; 2:678541. [PMID: 38235217 PMCID: PMC10790889 DOI: 10.3389/fnrgo.2021.678541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 01/19/2024]
Abstract
Neural mechanisms, such as enhanced neuroplasticity within the motor system, underpin exercise-induced motor improvements. Being a key mediator of motor plasticity, brain-derived neurotrophic factor (BDNF) is likely to play an important role in mediating exercise positive effects on motor function. Difficulties in assessing brain BDNF levels in humans have drawn attention to quantification of blood BDNF and raise the question of whether peripheral BDNF contributes to exercise-related motor improvements. Methodological and non-methodological factors influence measurements of blood BDNF introducing a substantial variability that complicates result interpretation and leads to inconsistencies among studies. Here, we discuss methodology-related issues and approaches emerging from current findings to reduce variability and increase result reproducibility.
Collapse
Affiliation(s)
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Jiang T, Luo J, Pan X, Zheng H, Yang H, Zhang L, Hu X. Physical exercise modulates the astrocytes polarization, promotes myelin debris clearance and remyelination in chronic cerebral hypoperfusion rats. Life Sci 2021; 278:119526. [PMID: 33894268 DOI: 10.1016/j.lfs.2021.119526] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
AIMS White matter damage is the main pathological feature of chronic cerebral hypoperfusion (CCH) and glial activation is crucial in this process. Physical exercise has protective effects on CCH, but the mechanism is unclear. Therefore, this study focuses on investigating the influence of physical exercise on activated astrocytes polarization and its role in CCH. MAIN METHODS Rats were given wheel running 48 h after 2VO (2 vessel occlusion) surgery. The cognitive function was evaluated by Morris water maze and novel object recognition test. Inflammatory cytokines expressions were detected by ELISA. Astrocytes polarization was analyzed by immunofluorescence. Myelin debris clearance and remyelination were detected by immunofluorescence and transmission electron microscopy. KEY FINDINGS Astrocytes were activated and mainly switched to A1 phenotype in rats 2 and 3 months after 2VO. Myelin debris deposition and limited remyelination can be observed at the corresponding time. Whereas physical exercise can improve the cognitive function of 2VO rats, downregulate the expression of inflammatory factors IL-1α, C1q and TNF, upregulate the release of TGFβ, and promote activated astrocytes transformation from A1 to A2 phenotype. In addition, it can also enhance myelin debris removal and remyelination. SIGNIFICANCE These findings suggest that the benefits of physical exercise on white matter repair and cognition improvement may be related to its regulation of astrocytes polarization, which contributes to myelin debris clearance and effective remyelination in CCH.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China; Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Xiaona Pan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Huaichun Yang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
24
|
Hung A, Roig M, Gillen JB, Sabiston CM, Swardfager W, Chen JL. Aerobic exercise and aerobic fitness level do not modify motor learning. Sci Rep 2021; 11:5366. [PMID: 33686100 PMCID: PMC7970889 DOI: 10.1038/s41598-021-84764-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Motor learning may be enhanced when a single session of aerobic exercise is performed immediately before or after motor skill practice. Most research to date has focused on aerobically trained (AT) individuals, but it is unknown if aerobically untrained (AU) individuals would equally benefit. We aimed to: (a) replicate previous studies and determine the effect of rest (REST) versus exercise (EXE) on motor skill retention, and (b) explore the effect of aerobic fitness level (AU, AT), assessed by peak oxygen uptake (VO2peak), on motor skill retention after exercise. Forty-four participants (20-29 years) practiced a visuomotor tracking task (acquisition), immediately followed by 25-min of high-intensity cycling or rest. Twenty-four hours after acquisition, participants completed a motor skill retention test. REST and EXE groups significantly improved motor skill performance during acquisition [F(3.17, 133.22) = 269.13, P = 0.001], but had no group differences in motor skill retention across time. AU-exercise (VO2peak = 31.6 ± 4.2 ml kg-1 min-1) and AT-exercise (VO2peak = 51.5 ± 7.6 ml kg-1 min-1) groups significantly improved motor skill performance during acquisition [F(3.07, 61.44) = 155.95, P = 0.001], but had no group differences in motor skill retention across time. Therefore, exercise or aerobic fitness level did not modify motor skill retention.
Collapse
Affiliation(s)
- Andrea Hung
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, QC, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada
| | - Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada
| | - Catherine M Sabiston
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Joyce L Chen
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada.
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
25
|
Lehmann N, Aye N, Kaufmann J, Heinze HJ, Düzel E, Ziegler G, Taubert M. Longitudinal Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) Derived Metrics in the White Matter. Neuroscience 2021; 457:165-185. [PMID: 33465411 DOI: 10.1016/j.neuroscience.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing ["VBM-style"], ROI-based analysis). We observed high test-retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field.
Collapse
Affiliation(s)
- Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany.
| | - Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Leibniz-Institute for Neurobiology (LIN), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Emrah Düzel
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AZ, UK
| | - Gabriel Ziegler
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
26
|
Li X, Khan A, Li Y, Chen D, Yang J, Zhan H, Du G, Xu J, Lou W, Tong RKY. Hyperconnection and hyperperfusion of overlapping brain regions in patients with menstrual-related migraine: a multimodal neuroimaging study. Neuroradiology 2021; 63:741-749. [PMID: 33392732 DOI: 10.1007/s00234-020-02623-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Menstrual-related migraine (MRM) results in moderate to severe intensity headaches accompanied by physical and emotional disability over time in women. Neuroimaging methodologies have advanced our understanding of migraine; however, the neural mechanisms of MRM are not clearly understood. METHODS In this study, fourteen MRM patients in the interictal phase and fifteen age- and education-matched healthy control females were recruited. Resting-state functional magnetic resonance imaging (fMRI) and pulsed arterial spin labeling (PASL) MRI were collected for both the subject groups outside of their menstrual periods. Eigenvector centrality mapping (ECM) was performed on resting-state fMRI, and the relative cerebral blood flow (relCBF) was assessed using PASL-MRI. RESULTS MRM patients showed a significantly increased eigenvector centrality in the right medial frontal gyrus compared to healthy controls. Seed-based ECM analysis revealed that increased centrality was associated with the right medial frontal gyrus's hyperconnectivity with the left insula and the right supplementary motor area. The perfusion MRI revealed significantly increased relCBF in the hyperconnected regions. Furthermore, the hyperconnection positively correlated with the attack frequency, while the hyperperfusion showed a positive correlation with the disease duration. CONCLUSION The results suggest that menstrual-related migraine is associated with cerebral hyperconnection and hyperperfusion in critical pain-processing brain regions. Furthermore, this elevated cerebral activity is correlated with different aspects of functional impairment in MRM patients suggesting that perfusion analysis, along with whole-brain connectivity analysis, can provide a comprehensive understanding of neural mechanisms of MRM.
Collapse
Affiliation(s)
- Xinyu Li
- Imaging Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ahsan Khan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yingying Li
- Imaging Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Diansen Chen
- Imaging Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jing Yang
- Imaging Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Haohui Zhan
- Division of MRI, The Second Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2020; 457:259-282. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
Exercise is a promising, cost-effective intervention to augment successful aging and neurorehabilitation. Decline of gray and white matter accompanies physiological aging and contributes to motor deficits in older adults. Exercise is believed to reduce atrophy within the motor system and induce neuroplasticity which, in turn, helps preserve motor function during aging and promote re-learning of motor skills, for example after stroke. To fully exploit the benefits of exercise, it is crucial to gain a greater understanding of the neurophysiological and molecular mechanisms underlying exercise-induced brain changes that prime neuroplasticity and thus contribute to postponing, slowing, and ameliorating age- and disease-related impairments in motor function. This knowledge will allow us to develop more effective, personalized exercise protocols that meet individual needs, thereby increasing the utility of exercise strategies in clinical and non-clinical settings. Here, we review findings from studies that investigated neurophysiological and molecular changes associated with acute or long-term exercise in healthy, young adults and in healthy, postmenopausal women.
Collapse
Affiliation(s)
- Chiara Nicolini
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Margaret Fahnestock
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
28
|
Lehmann N, Villringer A, Taubert M. Intrinsic Connectivity Changes Mediate the Beneficial Effect of Cardiovascular Exercise on Sustained Visual Attention. Cereb Cortex Commun 2020; 1:tgaa075. [PMID: 34296135 PMCID: PMC8152900 DOI: 10.1093/texcom/tgaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023] Open
Abstract
Cardiovascular exercise (CE) is an evidence-based healthy lifestyle strategy. Yet, little is known about its effects on brain and cognition in young adults. Furthermore, evidence supporting a causal path linking CE to human cognitive performance via neuroplasticity is currently lacking. To understand the brain networks that mediate the CE-cognition relationship, we conducted a longitudinal, controlled trial with healthy human participants to compare the effects of a 2-week CE intervention against a non-CE control group on cognitive performance. Concomitantly, we used structural and functional magnetic resonance imaging to investigate the neural mechanisms mediating between CE and cognition. On the behavioral level, we found that CE improved sustained attention, but not processing speed or short-term memory. Using graph theoretical measures and statistical mediation analysis, we found that a localized increase in eigenvector centrality in the left middle frontal gyrus, probably reflecting changes within an attention-related network, conveyed the effect of CE on cognition. Finally, we found CE-induced changes in white matter microstructure that correlated with intrinsic connectivity changes (intermodal correlation). These results suggest that CE is a promising intervention strategy to improve sustained attention via brain plasticity in young, healthy adults.
Collapse
Affiliation(s)
- Nico Lehmann
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Sport Science, Faculty of Human Sciences, Institute III, Otto von Guericke University, Magdeburg 39104, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Mind and Brain Institute, Charité and Humboldt University, Berlin 10117, Germany
| | - Marco Taubert
- Department of Sport Science, Faculty of Human Sciences, Institute III, Otto von Guericke University, Magdeburg 39104, Germany
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
29
|
Wanner P, Cheng FH, Steib S. Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neurosci Biobehav Rev 2020; 116:365-381. [PMID: 32565171 DOI: 10.1016/j.neubiorev.2020.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that acute bouts of cardiovascular exercise promote motor memory formation. In this preregistered meta-analysis (CRD42018106288) we synthesize data from 22 studies published until February 2020, including a total of 862 participants. We calculated standardized mean differences (SMDs) with 95 % confidence intervals (CIs) to assess exercise effects on motor memory encoding and consolidation, respectively. The pooled data indicate that exercise mainly benefits the consolidation of memories, with exercise prior to motor practice improving early non-sleep consolidation (SMD, 0.58; 95 % CI, 0.30-0.86; p < 0.001), and post-practice exercise facilitating sleep-dependent consolidation (SMD, 0.62; 95 % CI, 0.34-0.90; p < 0.001). Strongest effects exist for high exercise intensities, and motor task nature appears to be another relevant modulator. We demonstrate that acute cardiovascular exercise particularly promotes the consolidation of acquired motor memories, and exercise timing, and intensity as well as motor task nature seem to critically modulate this relationship. These findings are discussed within currently proposed models of motor memory formation and considering molecular and systemic mechanisms of neural plasticity.
Collapse
Affiliation(s)
- Philipp Wanner
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Gebbertstraße 123b, 91058 Erlangen, Germany
| | - Fei-Hsin Cheng
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Gebbertstraße 123b, 91058 Erlangen, Germany
| | - Simon Steib
- Department of Sport Science and Sport, Division of Exercise and Health, Friedrich-Alexander-University Erlangen-Nürnberg, Gebbertstraße 123b, 91058 Erlangen, Germany; Department of Sport and Health Sciences, Chair of Human Movement Science, Technical University of Munich, Georg-Brauchle-Ring 60/ 62, 80992 Munich, Germany.
| |
Collapse
|