1
|
Macías F, Ulloa M, Clapp C, Martínez de la Escalera G, Arnold E. Prolactin protects hippocampal neurons against H2O2-induced neurotoxicity by suppressing BAX and NOX4 via the NF-κB signaling pathway. PLoS One 2024; 19:e0313328. [PMID: 39499702 PMCID: PMC11537405 DOI: 10.1371/journal.pone.0313328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Reactive oxygen species (ROS) are physiological byproducts of neuronal metabolism. However, an imbalance between ROS generation and antioxidant capacity, often driven by dysregulated pro-oxidant enzymes like nicotinamide adenine dinucleotide phosphate oxidases (NOX), can result in deleterious oxidative stress. This oxidative stress is a critical factor in the pathogenesis of neurodegenerative diseases. While interventions with broad-spectrum antioxidants have demonstrated limited efficacy, the modulation of endogenous antioxidant mechanisms presents a promising therapeutic avenue. Here, we investigated the potential of the neuroprotective hormone prolactin to mitigate oxidative stress and subsequent neuronal cell death. Prolactin protected primary mouse hippocampal neurons from hydrogen peroxide (H2O2)-induced oxidative damage. Prolactin reduced ROS levels, lipid peroxidation, and apoptosis, and its effects were occluded by a specific prolactin receptor antagonist (G129R-hPRL). Mechanistically, prolactin suppressed H2O2-induced mRNA upregulation of pro-oxidative Nox4 and pro-apoptotic Bax. Moreover, prolactin induced nuclear factor kappa B (NF-κB) nuclear translocation, and the inhibition of the NF-κB signaling pathway abolished the neuroprotective and transcriptional effects of prolactin, indicating its central role in prolactin-mediated protection. Our findings indicate that prolactin exerts potent antioxidant and neuroprotective effects by modulating the expression of Nox4 and Bax, thereby reducing ROS generation and neuronal apoptosis. This study underscores the therapeutic potential of prolactin in attenuating oxidative stress and suggests a possible role in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Miriam Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
- CONAHCYT–Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| |
Collapse
|
2
|
Sudharsan R, Kwok J, Swider M, Sumaroka A, Aguirre GD, Cideciyan AV, Beltran WA. Retinal prolactin isoform PRLΔE1 sustains rod disease in inherited retinal degenerations. Cell Death Dis 2024; 15:682. [PMID: 39294136 PMCID: PMC11410941 DOI: 10.1038/s41419-024-07070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
PRLΔE1, a retina-specific isoform of prolactin, is expressed in multiple and diverse forms of canine inherited retinal degeneration (IRD). We find that while PRLΔE1 expression in rods is not associated with the initial phase of disease characterized by acute photoreceptor cell death, it is associated with the protracted phase of slow cell loss. Restoration of photoreceptors to a healthy state by gene-specific replacement therapy of individual IRDs successfully suppresses PRLΔE1 expression. Moreover, short-term PRLΔE1 silencing using shRNA results in preservation of outer nuclear layer thickness, suggesting PRLΔE1 drives retinal disease. However, longer-term observations reveal off-target toxic effects of the PRLΔE1 shRNA, precluding determination of its full therapeutic potential. Future research efforts aimed at enhancing the safety and specificity of PRLΔE1-targeting strategies may identify a potential universal intervention strategy for sustaining photoreceptors during the prolonged phase of multiple IRDs.
Collapse
Affiliation(s)
- Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jennifer Kwok
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Li Y, Zhou L, Xiao L, Wang H, Wang G. Wheel Running During Pregnancy Alleviates Anxiety-and Depression-Like Behaviors During the Postpartum Period in Mice: The Roles of NLRP3 Neuroinflammasome Activation, Prolactin, and the Prolactin Receptor in the Hippocampus. Neurochem Res 2024; 49:2615-2635. [PMID: 38904910 DOI: 10.1007/s11064-024-04180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Despite the increase in the prevalence of postpartum depression among maternal disorder, its treatment outcomes remain suboptimal. Studies have shown that exercise can reduce postpartum depressive episodes in the mother, but the effects of exercise during pregnancy on maternal behavior and the potential mechanisms involved remain poorly understood. From the second day of pregnancy to the day of birth, dams exercised for 1 h a day by running on a controlled wheel. The maternal behaviors of the dams were assessed on postpartum day 2 to postpartum day 8. Chronic restraint stress was applied from postpartum day 2 to day 12. Blood was collected on postpartum days 3 and 8, then subjected to ELISA to determine the serum concentration of prolactin. The weight of each dam and the food intake were recorded. Anxiety- and depression-like behavioral tests were conducted, and hippocampal neuroinflammation and prolactin receptor levels were measured. The dams exhibited elevated levels of anxiety and depression, decreased serum prolactin levels, decreased prolactin receptor expression, and activation of NLRP3-mediated neuroinflammation in the hippocampus following the induction of postpartum chronic restraint stress, which were reversed with controlled wheel running during pregnancy. Overall, the findings of this study revealed that the preventive effects of exercise during pregnancy on postpartum anxiety-and depression-like behaviors were accompanied by increased serum prolactin levels, hippocampal prolactin receptor expression and hippocampal NLRP3-mediated neuroinflammation.
Collapse
Affiliation(s)
- Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No. 238, Wuhan, 430060, China.
| |
Collapse
|
4
|
Ulloa M, Macías F, Clapp C, Martínez de la Escalera G, Arnold E. Prolactin is an Endogenous Antioxidant Factor in Astrocytes That Limits Oxidative Stress-Induced Astrocytic Cell Death via the STAT3/NRF2 Signaling Pathway. Neurochem Res 2024; 49:1879-1901. [PMID: 38755517 PMCID: PMC11144156 DOI: 10.1007/s11064-024-04147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Oxidative stress-induced death of neurons and astrocytes contributes to the pathogenesis of numerous neurodegenerative diseases. While significant progress has been made in identifying neuroprotective molecules against neuronal oxidative damage, little is known about their counterparts for astrocytes. Prolactin (PRL), a hormone known to stimulate astroglial proliferation, viability, and cytokine expression, exhibits antioxidant effects in neurons. However, its role in protecting astrocytes from oxidative stress remains unexplored. Here, we investigated the effect of PRL against hydrogen peroxide (H2O2)-induced oxidative insult in primary cortical astrocyte cultures. Incubation of astrocytes with PRL led to increased enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX), resulting in higher total antioxidant capacity. Concomitantly, PRL prevented H2O2-induced cell death, reactive oxygen species accumulation, and protein and lipid oxidation. The protective effect of PRL upon H2O2-induced cell death can be explained by the activation of both signal transducer and activator of transcription 3 (STAT3) and NFE2 like bZIP transcription factor 2 (NRF2) transduction cascades. We demonstrated that PRL induced nuclear translocation and transcriptional upregulation of Nrf2, concurrently with the transcriptional upregulation of the NRF2-dependent genes heme oxygenase 1, Sod1, Sod2, and Gpx1. Pharmacological blockade of STAT3 suppressed PRL-induced transcriptional upregulation of Nrf2, Sod1 and Gpx1 mRNA, and SOD and GPX activities. Furthermore, genetic ablation of the PRL receptor increased astroglial susceptibility to H2O2-induced cell death and superoxide accumulation, while diminishing their intrinsic antioxidant capacity. Overall, these findings unveil PRL as a potent antioxidant hormone that protects astrocytes from oxidative insult, which may contribute to brain neuroprotection.
Collapse
Affiliation(s)
- Miriam Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, México
| | - Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México
| | | | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, 76230, Querétaro, México.
- CONAHCYT-Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
5
|
Reyes-Ortega P, Rodríguez-Arzate A, Noguez-Imm R, Arnold E, Thébault SC. Contribution of chemical and electrical transmission to the low delta-like intrinsic retinal oscillation in mice: A role for daylight-activated neuromodulators. Eur J Pharmacol 2024; 968:176384. [PMID: 38342360 DOI: 10.1016/j.ejphar.2024.176384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Basal electroretinogram (ERG) oscillations have shown predictive value for modifiable risk factors for type 2 diabetes. However, their origin remains unknown. Here, we seek to establish the pharmacological profile of the low delta-like (δ1) wave in the mouse because it shows light sensitivity in the form of a decreased peak frequency upon photopic exposure. Applying neuropharmacological drugs by intravitreal injection, we eliminated the δ1 wave using lidocaine or by blocking all chemical and electrical synapses. The δ1 wave was insensitive to the blockade of photoreceptor input, but was accelerated when all inhibitory or ionotropic inhibitory receptors in the retina were antagonized. The sole blockade of GABAA, GABAB, GABAC, and glycine receptors also accelerated the δ1 wave. In contrast, the gap junction blockade slowed the δ1 wave. Both GABAA receptors and gap junctions contribute to the light sensitivity of the δ1 wave. We further found that the day light-activated neuromodulators dopamine and nitric oxide donors mimicked the effect of photopic exposure on the δ1 wave. All drug effects were validated through light flash-evoked ERG responses. Our data indicate that the low δ-like intrinsic wave detected by the non-photic ERG arises from an inner retinal circuit regulated by inhibitory neurotransmission and nitric oxide/dopamine-sensitive gap junction-mediated communication.
Collapse
Affiliation(s)
| | | | - Ramsés Noguez-Imm
- Laboratorio de Investigación Traslacional en Salud Visual D-13 y, Mexico
| | - Edith Arnold
- Laboratorio de Endocrinología Molecular A-14, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230, Querétaro, Mexico; CONAHCYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | | |
Collapse
|
6
|
Paul DA, Rodrigue A, Contento N, Haber S, Hoang R, Rahmani R, Hirad A, Shafiq I, Williams Z, Vates GE. Prolactin at moderately increased levels confers a neuroprotective effect in non-secreting pituitary macroadenomas. PLoS One 2022; 17:e0271690. [PMID: 35921360 PMCID: PMC9348739 DOI: 10.1371/journal.pone.0271690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Context Prolactin, a hormone synthesized by the anterior pituitary gland demonstrates promise as a neuroprotective agent, however, its role in humans and in vivo during injury is not fully understood. Objective To investigate whether elevated levels of prolactin attenuate injury to the retinal nerve fiber layer (RNFL) following compression of the optic chiasm in patients with a prolactin secreting pituitary macroadenoma (i.e., prolactinoma). Design setting and participants A retrospective cross-sectional study of all pituitary macroadenoma patients treated at a single institution between 2009 and 2019. Main outcome measure(s) Primary outcome measures included RNFL thickness, mean deviation, and prolactin levels for both prolactin-secreting and non-secreting pituitary macroadenoma patients. Results Sixty-six patients met inclusion criteria for this study (14 prolactin-secreting and 52 non-secreting macroadenoma patients). Of 52 non-secreting macroadenoma patients, 12 had moderate elevation of prolactin secondary to stalk effect. Patients with moderate elevation in prolactin demonstrated increased RNFL thickness compared to patients with normal prolactin levels (p < 0.01). Additionally, a significant positive relation between increasing levels of prolactin and RNFL thickness was identified in patients with moderate prolactin elevation (R = 0.51, p-value = 0.035). No significant difference was identified between prolactinoma patients and those with normal prolactin levels. Conclusions Moderately increased serum prolactin is associated with increased RNFL thickness when compared to controls. These associations are lost when serum prolactin is < 30 ng/ml or elevated in prolactinomas. This suggests a neuroprotective effect of prolactin at moderately increased levels in preserving retinal function during optic chiasm compression.
Collapse
Affiliation(s)
- David A. Paul
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alejandra Rodrigue
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Nicholas Contento
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Sam Haber
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
| | - Ricky Hoang
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Adnan Hirad
- University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Ismat Shafiq
- Division of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Zoë Williams
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - G. Edward Vates
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Jin X, Liu J, Wang W, Li J, Liu G, Qiu R, Yang M, Liu M, Yang L, Du X, Lei B. Identification of Age-associated Proteins and Functional Alterations in Human Retinal Pigment Epithelium. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:633-647. [PMID: 35752290 PMCID: PMC9880895 DOI: 10.1016/j.gpb.2022.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/15/2022] [Accepted: 06/13/2022] [Indexed: 01/31/2023]
Abstract
Retinal pigment epithelium (RPE) has essential functions, such as nourishing and supporting the neural retina, and is of vital importance in the pathogenesis of age-related retinal degeneration. However, the exact molecular changes of RPE during aging remain poorly understood. Here, we isolated human primary RPE (hRPE) cells from 18 eye donors distributed over a wide age range (10-67 years old). A quantitative proteomic analysis was performed to analyze changes in their intracellular and secreted proteins. Age-group related subtypes and age-associated proteins were revealed and potential age-associated mechanisms were validated in ARPE-19 and hRPE cells. The results of proteomic data analysis and verifications suggest that RNF123- and RNF149-related protein ubiquitination plays an important role in protecting hRPE cells from oxidative damage during aging. In older hRPE cells, apoptotic signaling-related pathways were up-regulated, and endoplasmic reticulum organization was down-regulated both in the intracellular and secreted proteomes. Our work paints a detailed molecular picture of hRPE cells during the aging process and provides new insights into the molecular characteristics of RPE during aging and under other related clinical retinal conditions.
Collapse
Affiliation(s)
- Xiuxiu Jin
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China,School of Medicine, Henan Provincial People’s Hospital, Henan University, Zhengzhou 450003, China
| | - Jingyang Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Weiping Wang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Jiangfeng Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guangming Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ruiqi Qiu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Mingzhu Yang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Meng Liu
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Yang
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Du
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Bo Lei
- Henan Eye Institute, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People’s Hospital, Zhengzhou 450003, China,Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China,Corresponding author.
| |
Collapse
|
8
|
Ramos-Martínez E, Ramos-Martínez I, Valencia J, Ramos-Martínez JC, Hernández-Zimbrón L, Rico-Luna A, Pérez-Campos E, Pérez-Campos Mayoral L, Cerbón M. Modulatory role of prolactin in type 1 diabetes. Horm Mol Biol Clin Investig 2022; 44:79-88. [PMID: 35852366 DOI: 10.1515/hmbci-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Patients with type 1 diabetes mellitus have been reported to have elevated prolactin levels and a possible relationship between prolactin levels and the development of the disease has been proposed. However, some studies show that prolactin mediates beneficial functions in beta cells. Therefore, we review information on the roles of prolactin in type 1 diabetes mellitus.
Content
Here we summarize the functions of prolactin in the immune system and in pancreatic beta cells, in addition, we describe studies related to PRL levels, its regulation and alterations of secretion in patients with type 1 diabetes mellitus.
Summary
Studies in murine models have shown that prolactin protects beta cells from apoptosis, stimulates their proliferation and promotes pancreatic islet revascularization. In addition, some studies in patients with type 1 diabetes mellitus have shown that elevated prolactin levels correlate with better disease control.
Outlook
Prolactin treatment appears to be a promising strategy to improve beta-cell vascularization and proliferation in transplantation and immunotherapies.
Collapse
Affiliation(s)
- Edgar Ramos-Martínez
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Ivan Ramos-Martínez
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Jorge Valencia
- Endocrine Research Unit , UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social , Ciudad de México , México
| | - Juan Carlos Ramos-Martínez
- Cardiology Department , Hospital General Regional Lic Ignacio Garcia Tellez IMSS , Mérida , Yucatán , México
| | - Luis Hernández-Zimbrón
- Escuela Nacional de Estudios Superiores, Licenciatura en Optometría, Unidad León , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Anaiza Rico-Luna
- Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| | | | - Laura Pérez-Campos Mayoral
- Research Centre Medicine UNAM-UABJO. Facultad de Medicina , Universidad Autónoma “Benito Juárez” de Oaxaca , Oaxaca , México
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana. Instituto Nacional de Perinatología-Facultad de Química , Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|
9
|
Costa-Brito AR, Gonçalves I, Santos CRA. The brain as a source and a target of prolactin in mammals. Neural Regen Res 2022; 17:1695-1702. [PMID: 35017416 PMCID: PMC8820687 DOI: 10.4103/1673-5374.332124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prolactin is a polypeptide hormone associated with an extensive variety of biological functions. Among the roles of prolactin in vertebrates, some were preserved throughout evolution. This is the case of its function in the brain, where prolactin receptors, are expressed in different structures of the central nervous system. In the brain, prolactin actions are principally associated with reproduction and parental behavior, and involves the modulation of adult neurogenesis, neuroprotection, and neuroplasticity, especially during pregnancy, thereby preparing the brain to parenthood. Prolactin is mainly produced by specialized cells in the anterior pituitary gland. However, during vertebrate evolution many other extrapituitary tissues do also produce prolactin, like the immune system, endothelial cells, reproductive structures and in several regions of the brain. This review summarizes the relevance of prolactin for brain function, the sources of prolactin in the central nervous system, as well as its local production and secretion. A highlight on the impact of prolactin in human neurological diseases is also provided.
Collapse
Affiliation(s)
- Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
10
|
Duc Nguyen H, Pal Yu B, Hoang NHM, Jo WH, Young Chung H, Kim MS. Prolactin and Its Altered Action in Alzheimer's Disease and Parkinson's Disease. Neuroendocrinology 2022; 112:427-445. [PMID: 34126620 DOI: 10.1159/000517798] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolactin (PRL) is one of the most diverse pituitary hormones and is known to modulate normal neuronal function and neurodegenerative conditions. Many studies have described the influence that PRL has on the central nervous system and addressed its contribution to neurodegeneration, but little is known about the mechanisms responsible for the effects of PRL on neurodegenerative disorders, especially on Alzheimer's disease (AD) and Parkinson's disease (PD). SUMMARY We review and summarize the existing literature and current understanding of the roles of PRL on various PRL aspects of AD and PD. KEY MESSAGES In general, PRL is viewed as a promising molecule for the treatment of AD and PD. Modulation of PRL functions and targeting of immune mechanisms are needed to devise preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ngoc Hong Minh Hoang
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Won Hee Jo
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
11
|
Yousefvand S, Hadjzadeh MAR, Keshavarzi Z, Dolatshad H, Vafaee F, Mahmoudabady M, Gholamzadeh Virany Z. Effects of prolactin on movement disorders and APOE, GFAP, and PRL receptor gene expression following intracerebral hemorrhage in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1709-1716. [PMID: 35432801 PMCID: PMC8976900 DOI: 10.22038/ijbms.2021.58176.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022]
Abstract
Objectives Intracerebral hemorrhage (ICH) occurs mostly in the striatum. In ICH, blood prolactin level increases 3-fold. The effects of intracerebroventricular injection (ICV) of prolactin on motor disorders will be investigated. Materials and Methods This study was performed on 32 male Wistar rats in 4 groups: sham, ICH, and prolactin with 1 μg/2 μl (P1) and 2 μg/2 μl (P2) doses. Results The weight of animals on days 1 (P˂0.01), 3, and 7 (P˂0.05) in the sham and P2 groups increased compared with the ICH group. Neurological Deficit Score (NDS) in ICH and P1 groups decreased, and increased compared with sham and ICH groups (P˂0.001), respectively. NDS in the P1 group increased compared with the P2 group on days 1 (P˂0.0 5), 3, and 7 (P˂0.001). The duration time of rotarod in ICH and P1 groups decreased and increased compared with sham and ICH groups (P˂0.001), respectively. The duration time of rotarod in the P1 group on days 3 and 7 increased compared with the P2 group (P˂0.001). Travel distance in days 1(P˂0.01), 3(P˂0.001), and 7(P˂0.01) decreased in the ICH group. Prolactin receptor (PRL receptor) expression in ICH, P1, and P2 groups increased compared with sham and ICH groups (P˂0.001). Glial fibrillary acidic protein (GFAP) expression (P˂0.001) and apolipoprotein E (APOE) (P˂0.01) expression in the ICH group increased compared with the sham group. GFAP and APOE expression in the P1 group increased compared with the ICH group (P˂0.001). APOE expression in the P1 group increased compared with the P2 group (P˂0.001). Conclusion According to the results, prolactin reduces movement disorders.
Collapse
Affiliation(s)
- Shiba Yousefvand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-al-Reza Hadjzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neuro-Cognitive Sciences, Psychiatry and Behavioural Sciences Research center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zakieh Keshavarzi
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Dolatshad
- Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamzadeh Virany
- Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| |
Collapse
|
12
|
Paul DA, Strawderman E, Rodriguez A, Hoang R, Schneider CL, Haber S, Chernoff BL, Shafiq I, Williams ZR, Vates GE, Mahon BZ. Empty Sella Syndrome as a Window Into the Neuroprotective Effects of Prolactin. Front Med (Lausanne) 2021; 8:680602. [PMID: 34307410 PMCID: PMC8295462 DOI: 10.3389/fmed.2021.680602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The goal of this study was to relate diffusion MR measures of white matter integrity of the retinofugal visual pathway with prolactin levels in a patient with downward herniation of the optic chiasm secondary to medical treatment of a prolactinoma. Methods: A 36-year-old woman with a prolactinoma presented with progressive bilateral visual field defects 9 years after initial diagnosis and medical treatment. She was diagnosed with empty-sella syndrome and instructed to stop cabergoline. Hormone testing was conducted in tandem with routine clinical evaluations over 1 year and the patient was followed with diffusion magnetic resonance imaging (dMRI), optical coherence tomography (OCT), and automated perimetry at three time points. Five healthy controls underwent a complementary battery of clinical and neuroimaging tests at a single time point. Results: Shortly after discontinuing cabergoline, diffusion metrics in the optic tracts were within the range of values observed in healthy controls. However, following a brief period where the patient resumed cabergoline (of her own volition), there was a decrease in serum prolactin with a corresponding decrease in visual ability and increase in radial diffusivity (p < 0.001). Those measures again returned to their baseline ranges after discontinuing cabergoline a second time. Conclusions: These results demonstrate the sensitivity of dMRI to detect rapid and functionally significant microstructural changes in white matter tracts secondary to alterations in serum prolactin levels. The inverse relations between prolactin and measures of white matter integrity and visual function are consistent with the hypothesis that prolactin can play a neuroprotective role in the injured nervous system.
Collapse
Affiliation(s)
- David A. Paul
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Emma Strawderman
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
| | - Alejandra Rodriguez
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Ricky Hoang
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Colleen L. Schneider
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sam Haber
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin L. Chernoff
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ismat Shafiq
- Department of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, NY, United States
| | - Zoë R. Williams
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
| | - G. Edward Vates
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Bradford Z. Mahon
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, United States
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Jayakumar P, Martínez-Moreno CG, Lorenson MY, Walker AM, Morales T. Prolactin Attenuates Neuroinflammation in LPS-Activated SIM-A9 Microglial Cells by Inhibiting NF-κB Pathways Via ERK1/2. Cell Mol Neurobiol 2021; 42:2171-2186. [PMID: 33821330 DOI: 10.1007/s10571-021-01087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Prolactin (PRL) is a pleiotropic hormone with multiple functions in several tissues and organs, including the brain. PRL decreases lesion-induced microgliosis and modifies gene expression related to microglial functions in the hippocampus, thereby providing a possible mechanism through which it might participate in neuroimmune modulatory responses and prevent neuronal cell damage. However, the direct contribution of microglial cells to PRL-mediated neuroprotection is still unclear and no studies have yet documented whether PRL can directly activate cellular pathways in microglial cells. The aim of this study is to elucidate in vitro actions of PRL on the immortalized SIM-A9 microglia cell line in basal and LPS-stimulated conditions. PRL alone induced a time-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Pretreatment with PRL attenuated LPS (200 ng/ml) stimulated pro-inflammatory markers: nitric oxide (NO) levels, inducible nitric oxide synthase (iNOS), interleukins (IL)-6, -1β and tumor necrosis factor (TNF-α) expression at 20 nM dosage. PRL suppressed LPS-induced nuclear factor (NF)-κappaB (NF-κB) p65 subunit phosphorylation and its upstream p-ERK1/2 activity. In conclusion, PRL exhibits anti-inflammatory effects in LPS-stimulated SIM-A9 microglia by downregulating pro-inflammatory mediators corresponding to suppression of LPS-activated ERK1/2 and NF-κB phosphorylation.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mary Y Lorenson
- Department of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Ameae M Walker
- Department of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
14
|
Short prolactin isoforms are expressed in photoreceptors of canine retinas undergoing retinal degeneration. Sci Rep 2021; 11:460. [PMID: 33432105 PMCID: PMC7801730 DOI: 10.1038/s41598-020-80691-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Prolactin (PRL) hormone functions as a pleiotropic cytokine with a protective role in the retina. We recently identified by transcriptome profiling that PRL is one of the most highly upregulated mRNAs in the retinas of mutant rcd1 (PDE6B) and xlpra2 (RPGR) dogs at advanced stages of photoreceptor disease. In the present study, we have identified the expression of a short PRL isoform that lacks exon 1 in canine retinas and analyzed the time-course of expression and localization of this isoform in the retinas of these two models. Using laser capture microdissection to isolate RNA from each of the retinal cellular layers, we found by qPCR that this short PRL isoform is expressed in photoreceptors of degenerating retinas. We confirmed by in situ hybridization that its expression is localized to the outer nuclear layer and begins shortly after the onset of disease at the time of peak photoreceptor cell death in both models. PRL protein was also detected only in mutant dog retinas. Our results call for further investigations into the role of this novel PRL isoform in retinal degeneration.
Collapse
|
15
|
Ramos-Martinez E, Ramos-Martínez I, Molina-Salinas G, Zepeda-Ruiz WA, Cerbon M. The role of prolactin in central nervous system inflammation. Rev Neurosci 2021; 32:323-340. [PMID: 33661585 DOI: 10.1515/revneuro-2020-0082] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022]
Abstract
Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.
Collapse
Affiliation(s)
- Edgar Ramos-Martinez
- Escuela de Ciencias, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca68000, Mexico
| | - Ivan Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010Créteil, France
| | - Gladys Molina-Salinas
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Wendy A Zepeda-Ruiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| | - Marco Cerbon
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, 04510Coyoacan, Mexico
| |
Collapse
|
16
|
Vázquez-Membrillo M, Siqueiros-Márquez L, Núñez FF, Díaz-Lezama N, Adán-Castro E, Ramírez-Hernández G, Adán N, Macotela Y, Martínez de la Escalera G, Clapp C. Prolactin stimulates the vascularisation of the retina in newborn mice under hyperoxia conditions. J Neuroendocrinol 2020; 32:e12858. [PMID: 32449569 DOI: 10.1111/jne.12858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/17/2020] [Accepted: 04/21/2020] [Indexed: 12/23/2022]
Abstract
The hormone prolactin (PRL) is emerging as an important regulator of ocular blood vessels. PRL is pro-angiogenic and acquires anti-angiogenic properties after undergoing proteolytic cleavage to the PRL fragment, vasoinhibin. The vascularisation of the rodent retina develops after birth when it rapidly expands until completion at the end of the first postnatal week. Exposure of newborn mice to high oxygen levels lowers the rate of blood vessel growth. In the present study, we investigated whether PRL treatment modifies the vascularisation of the retina in newborn mice exposed to high oxygen or to normoxia and whether the retinal conversion of PRL to vasoinhibin may be altered in the neonate. Newborn mice and their nursing mothers were subjected to 75% oxygen or to normoxia from postnatal day (P) 6 to P8 (group 1) or from P2 to P5 (group 2). PRL (2 µg g-1 , i.p., twice a day) or vehicle was injected from P5 to P8 in group 1 and from P1 to P5 in group 2. PRL treatment reduced the retinal inhibition of blood vessel growth and the increase in vascular regression induced by hyperoxia as revealed by immunofluorescence staining of blood vessels and the expression of angiogenesis and apoptosis markers. The pro-angiogenic effect may involve a reduced conversion of PRL to vasoinhibin. Incubation of PRL with retinal extracts showed reduced activity of the PRL-cleaving protease, cathepsin D, in the neonate vs the adult retina that was further reduced under hyperoxia. PRL and the PRL receptor mRNA were expressed at higher levels in the retina at P8 than in the adult, whereas endogenous PRL was undetectable in the circulation at P8. We conclude that PRL has a pro-angiogenic effect in the neonate retina as a result of its reduced conversion to vasoinhibin and that PRL produced by the retina may help promote physiological vascularisation after birth.
Collapse
Affiliation(s)
| | | | | | - Nundehui Díaz-Lezama
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
17
|
Reyes-Mendoza J, Morales T. Prolactin treatment reduces kainic acid-induced gliosis in the hippocampus of ovariectomized female rats. Brain Res 2020; 1746:147014. [DOI: 10.1016/j.brainres.2020.147014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 12/20/2022]
|
18
|
Arnold E, Thébault S, Aroña RM, Martínez de la Escalera G, Clapp C. Prolactin mitigates deficiencies of retinal function associated with aging. Neurobiol Aging 2019; 85:38-48. [PMID: 31698287 DOI: 10.1016/j.neurobiolaging.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/17/2023]
Abstract
Aging causes the progressive degeneration of retinal cells leading to the eventual loss of vision. The hormone prolactin (PRL) is a neurotrophic factor able to compensate for photoreceptor cell death and electroretinogram deficits induced by light retinal damage. Here, we used adult 4-month old and aged 20-month old pigmented mice, null or not for the PRL receptor to explore whether PRL provides trophic support against age-related retinal dysfunction. Retinal functionality, apoptosis, glia activation, and neurotrophin expression were assessed by electroretinogram, TUNEL, glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 immunohistochemistry, and real-time PCR, respectively. Lack of PRL signaling in aged mice, but not in adult mice, correlated with photosensitive retinal dysfunction, increased photoreceptor apoptosis, differential expression of proapoptotic mediators, and microglia activation. We conclude that PRL is required for maintaining retinal functionality in both female and male mice during aging and has potential therapeutic value against age-related retinal disorders.
Collapse
Affiliation(s)
- Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México; CONACYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Stéphanie Thébault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Rodrigo M Aroña
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
19
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
20
|
Leem YH, Park JS, Chang H, Park J, Kim HS. Exercise Prevents Memory Consolidation Defects Via Enhancing Prolactin Responsiveness of CA1 Neurons in Mice Under Chronic Stress. Mol Neurobiol 2019; 56:6609-6625. [DOI: 10.1007/s12035-019-1560-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
|
21
|
Ortiz-Pérez A, Limón-Morales O, Rojas-Castañeda J, Cerbón M, Picazo O. Prolactin prevents the kainic acid-induced neuronal loss in the rat hippocampus by inducing prolactin receptor and putatively increasing the VGLUT1 overexpression. Neurosci Lett 2019; 694:116-123. [DOI: 10.1016/j.neulet.2018.11.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023]
|
22
|
Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2019; 156:9-22. [PMID: 30222193 PMCID: PMC6283654 DOI: 10.1111/imm.13004] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) affecting young people and leading to demyelination and neurodegeneration. The disease is clearly more common in women, in whom incidence has been rising. Gender differences include: earlier disease onset and more frequent relapses in women; and faster progression and worse outcomes in men. Hormone-related physiological conditions in women such as puberty, pregnancy, puerperium, and menopause also exert significant influence both on disease prevalence as well as on outcomes. Hormonal and/or genetic factors are therefore believed to be involved in regulating the course of disease. In this review, we discuss clinical evidence for the impact of sex hormones (estrogens, progesterone, prolactin, and testosterone) on MS and attempt to elucidate the hormonal and immunological mechanisms potentially underlying these changes. We also review current knowledge on the relationship between sex hormones and resident CNS cells and provide new insights in the context of MS. Understanding these molecular mechanisms may contribute to the development of new and safer treatments for both men and women.
Collapse
Affiliation(s)
- María C. Ysrraelit
- Department of NeurologyRaúl Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Jorge Correale
- Department of NeurologyRaúl Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| |
Collapse
|
23
|
Anagnostou I, Reyes-Mendoza J, Morales T. Glial cells as mediators of protective actions of prolactin (PRL) in the CNS. Gen Comp Endocrinol 2018; 265:106-110. [PMID: 29378204 DOI: 10.1016/j.ygcen.2018.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/11/2018] [Accepted: 01/24/2018] [Indexed: 12/16/2022]
Abstract
Prolactin (PRL) is a hormone with multiple actions in the central nervous system (CNS) spanning from physiology to pathology. PRL exerts different actions through its receptors that can be found in both neurons and glial cells (astrocytes, microglia and oligodendrocytes) of the brain. Even though its effects during pregnancy and lactation, stress, anxiety, and depression are well studied, recent work on this hormone has brought to light a new role of PRL: that of a protective agent against brain damage and, consequently, against neurodegeneration. The mechanisms through which this protection takes place have not been fully elucidated; however, neurogenesis and anti-apoptosis are some of the plausible mechanisms that could mediate this effect. There is substantial information that implies the involvement of glial activation in this PRL effect, as shown in various models of brain damage. Taking into account glial cell dynamics and actions in various pathological conditions, combined with the neuroprotective effect of PRL, we consider of importance the revision of all the information about the interaction between these two cell types, as it will provide comprehensive knowledge about this new target of PRL against neuropathology.
Collapse
Affiliation(s)
- Ilektra Anagnostou
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Julio Reyes-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
24
|
Gassó P, Mas S, Bioque M, Cabrera B, Lobo A, González-Pinto A, Díaz-Caneja CM, Corripio I, Vieta E, Castro-Fornieles J, Sarró S, Mané A, Sanjuan J, Llerena A, Lafuente A, Saiz-Ruiz J, Bernardo M. Impact of NTRK2, DRD2 and ACE polymorphisms on prolactin levels in antipsychotic-treated patients with first-episode psychosis. J Psychopharmacol 2018; 32:702-710. [PMID: 29767567 DOI: 10.1177/0269881118773026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hyperprolactinemia is a common side-effect of antipsychotics (APs), which may trigger serious secondary problems and compromise the adherence to treatment which is crucial for prognosis, especially in patients presenting with a first-episode of psychosis (FEP). AIMS We evaluated, in some cases for the first time, the effect of polymorphisms in multiple candidate genes on serum prolactin (PRL) levels in an AP-treated FEP cohort recruited in the multicenter PEPs study (Phenotype - genotype and environmental interaction; Application of a predictive model in first psychotic episodes). METHODS PRL concentration was measured in serum from 222 patients. A total of 167 polymorphisms were selected in 23 genes. Genetic association analysis was performed in the whole sample and also in homogenous subgroups of patients treated with APs with a high (N = 101) or low risk (N = 95) of increasing PRL release, which showed significant differences in their PRL levels. RESULTS After Bonferroni correction, polymorphisms in NTRK2, DRD2 and ACE genes were associated with PRL concentration. CONCLUSION Our results give more support to the impact of DRD2, but also of other genes related to dopamine availability such as ACE. Moreover, this study provides the first evidence for the involvement of NTRK2, which suggests that pathways other than the ones related to dopamine or serotonin may participate in the AP-related PRL levels.
Collapse
Affiliation(s)
- Patricia Gassó
- 1 Department of Basic Clinical Practice, University of Barcelona, Spain.,2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- 1 Department of Basic Clinical Practice, University of Barcelona, Spain.,2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Miquel Bioque
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,4 Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Spain
| | - Bibiana Cabrera
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,4 Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Spain
| | - Antonio Lobo
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,5 Department of Medicine and Psychiatry, Universidad de Zaragoza, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Spain
| | - Ana González-Pinto
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,6 Hospital Universitario Araba, Servicio de Psiquiatria, UPV/EHU, Bioaraba, Spain
| | - Covadonga M Díaz-Caneja
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,7 Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Iluminada Corripio
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,8 Department of Psychiatry, Hospital de Sant Pau, Barcelona, Spain.,9 Universitat Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Eduard Vieta
- 2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,10 Bipolar Disorder Unit, Hospital Clinic of Barcelona, University of Spain
| | - Josefina Castro-Fornieles
- 2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,11 Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic of Barcelona, Spain.,12 Department of Medicine, University of Barcelona, Spain
| | - Salvador Sarró
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,13 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Anna Mané
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,14 Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Julio Sanjuan
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,15 INCLIVA, Universidad de Valencia, Hospital Clínico Universitario de Valencia, Spain
| | - Adrián Llerena
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,16 CICAB Clinical Research Center, Extremadura University Hospital and Medical School, Badajoz, Spain
| | - Amalia Lafuente
- 1 Department of Basic Clinical Practice, University of Barcelona, Spain.,2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Jerónimo Saiz-Ruiz
- 3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,17 Department of Psychiatry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Miguel Bernardo
- 2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,4 Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Spain.,12 Department of Medicine, University of Barcelona, Spain
| | -
- 1 Department of Basic Clinical Practice, University of Barcelona, Spain.,2 Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,3 Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,6 Hospital Universitario Araba, Servicio de Psiquiatria, UPV/EHU, Bioaraba, Spain.,7 Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Madrid, Spain.,9 Universitat Autonoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.,10 Bipolar Disorder Unit, Hospital Clinic of Barcelona, University of Spain.,11 Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clinic of Barcelona, Spain.,12 Department of Medicine, University of Barcelona, Spain.,13 FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.,14 Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,17 Department of Psychiatry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain.,18 Biomedical Research Institute Sant Pau, IIB Sant Pau, Barcelona, Spain.,19 Department of Family Medicine, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,20 Department of Neuroradiology, Hospital Quirónsalud, Instituto de Investigación Sanitaria Aragón (IIS Aragon), Zaragoza, Spain.,21 INCLIVA, Universidad de Valencia, Spain.,22 INCLIVA, Hospital Clínico Universitario de Valencia, Spain.,23 Department of Psychiatry, Bellvitge University Hospital-IDIBELL; Department of Clinical Sciences, School of Medicine, University of Barcelona, Spain.,24 Department of Psychiatry, University of Oviedo, Spain.,25 Department of Neuroscience, University of the Basque Country (UPV-EHU), Bizkaia, Spain.,26 Santiago Apóstol University Hospital, Psychiatry/ Bioaraba Research Institute Vitoria - Álava, Spain.,27 BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain.,28 Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), Madrid, Spain.,29 Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Sant Boi de Llobregat, Spain.,30 Neuroscience Research Australia, School of Medical Sciences, University of New South Wales, ARC Centre of Excellence in Cognition and its Disorders, Sydney, Australia.,31 Department of Psychiatry, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,32 Department of Medicine, Universitat de València, Spain
| |
Collapse
|
25
|
Robles-Osorio ML, García-Franco R, Núñez-Amaro CD, Mira-Lorenzo X, Ramírez-Neria P, Hernández W, López-Star E, Bertsch T, Martínez de la Escalera G, Triebel J, Clapp C. Basis and Design of a Randomized Clinical Trial to Evaluate the Effect of Levosulpiride on Retinal Alterations in Patients With Diabetic Retinopathy and Diabetic Macular Edema. Front Endocrinol (Lausanne) 2018; 9:242. [PMID: 29896154 PMCID: PMC5986911 DOI: 10.3389/fendo.2018.00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/27/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) and diabetic macular edema (DME) are potentially blinding, microvascular retinal diseases in people with diabetes mellitus. Preclinical studies support a protective role of the hormone prolactin (PRL) due to its ocular incorporation and conversion to vasoinhibins, a family of PRL fragments that inhibit ischemia-induced retinal angiogenesis and diabetes-derived retinal vasopermeability. Here, we describe the protocol of an ongoing clinical trial investigating a new therapy for DR and DME based on elevating the circulating levels of PRL with the prokinetic, dopamine D2 receptor blocker, levosulpiride. METHODS It is a prospective, randomized, double-blind, placebo-controlled trial enrolling male and female patients with type 2 diabetes having DME, non-proliferative DR (NPDR), proliferative DR (PDR) requiring vitrectomy, and DME plus standard intravitreal therapy with the antiangiogenic agent, ranibizumab. Patients are randomized to receive placebo (lactose pill, orally TID) or levosulpiride (75 mg/day orally TID) for 8 weeks (DME and NPDR), 1 week (the period before vitrectomy in PDR), or 12 weeks (DME plus ranibizumab). In all cases the study medication is taken on top of standard therapy for diabetes, blood pressure control, or other medical conditions. Primary endpoints in groups 1 and 2 (DME: placebo and levosulpiride), groups 3 and 4 (NPDR: placebo and levosulpiride), and groups 7 and 8 (DME plus ranibizumab: placebo and levosulpiride) are changes from baseline in visual acuity, retinal thickness assessed by optical coherence tomography, and retinal microvascular abnormalities evaluated by fundus biomicroscopy and fluorescein angiography. Changes in serum PRL levels and of PRL and vasoinhibins levels in the vitreous between groups 5 and 6 (PDR undergoing vitrectomy: placebo and levosulpiride) serve as proof of principle that PRL enters the eye to counteract disease progression. Secondary endpoints are changes during the follow-up of health and metabolic parameters (blood pressure, glycated hemoglobin, and serum levels of glucose and creatinine). A total of 120 patients are being recruited. DISCUSSION This trial will provide important knowledge on the potential benefits and safety of elevating circulating and intraocular PRL levels with levosulpiride in patients with DR and DME. ETHICS AND DISSEMINATION Ethics approval has been obtained from the Ethics Committees of the National University of Mexico (UNAM) and the Instituto Mexicano de Oftalmología, I.A.P. Dissemination will include submission to peer-reviewed scientific journals and presentation at congresses. CLINICAL TRIAL REGISTRATION Registered at www.ClinicalTrials.gov, ID: NCT03161652 on May 18, 2017.
Collapse
Affiliation(s)
| | | | - Carlos D. Núñez-Amaro
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro (UAQ), Querétaro, Mexico
| | | | | | - Wendy Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
| | | | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital & Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- *Correspondence: Jakob Triebel, ; Carmen Clapp,
| |
Collapse
|
26
|
Involvement of Innate Immune System in Late Stages of Inherited Photoreceptor Degeneration. Sci Rep 2017; 7:17897. [PMID: 29263354 PMCID: PMC5738376 DOI: 10.1038/s41598-017-18236-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/05/2017] [Indexed: 01/10/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerations that lead to progressive vision loss. Many mutations in 60 different genes have been shown to cause RP. Given the diversity of genes and mutations that cause RP, corrective gene therapy approaches currently in development may prove both time-consuming and cost-prohibitive for treatment of all forms of RP. An alternative approach is to find common biological pathways that cause retinal degeneration in various forms of RP, and identify new molecular targets. With this goal, we analyzed the retinal transcriptome of two non-allelic forms of RP in dogs, rcd1 and xlpra2, at clinically relevant advanced stages of the two diseases. Both diseases showed very similar trends in changes in gene expression compared to control normal dogs. Pathway analysis revealed upregulation of various components of the innate immune system in both diseases, including inflammasome and complement pathways. Our results show that the retinal transcriptome at advanced stages of RP is very similar to that of other retinal degenerative diseases such as age-related macular degeneration and diabetic retinopathy. Thus, drugs and therapeutics already in development for targeting these retinopathies may also prove useful for the treatment of many forms of RP.
Collapse
|
27
|
Higher prolactin and vasoinhibin serum levels associated with incidence and progression of retinopathy of prematurity. Pediatr Res 2017; 81:473-479. [PMID: 27842054 DOI: 10.1038/pr.2016.241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a potentially blinding, retinal neovascular disease. Systemic prolactin accesses the retina to regulate blood vessels. Prolactin is proangiogenic and can be cleaved to antiangiogenic vasoinhibins. We investigated whether circulating prolactin and vasoinhibins associate with incidence and progression of ROP. METHODS A prospective, longitudinal, case-control study covering postnatal weeks 1 to 9 measured serum prolactin, vasoinhibins, and vascular endothelial growth factor (VEGF) weekly in 90 premature infants diagnosed as ROP or control. RESULTS Prolactin levels were higher in ROP than in control patients before (106.2 ± 11.3 (SEM) vs. 64.7 ± 4.9 ng/ml, postnatal week 1) and during (120.6 ± 10 vs. 84.7 ± 7.5ng/ml, postnatal week 5) ROP diagnosis. Prolactin, but not gestational age, birth weight, Apgar score, sepsis, or ventilation time, correlated with ROP. The relative risk (RR) of developing ROP increased if Prolactin (PRL) levels were higher than thresholds of 80 ng/ml (RR = 1.55, 95% CI: 1.06-2.28), 100 ng/ml (RR = 1.63, 95% CI: 1.14-2.34), or 120 ng/ml (RR = 1.95, 95% CI: 1.41-2.68). Vasoinhibin levels were 39.7% higher (95% CI: 4.5-77.5) in the circulation of ROP than in control patients at postnatal week 1 and similar thereafter, whereas VEGF serum levels were always similar. CONCLUSION High serum prolactin and vasoinhibin levels predict and may impact ROP progression.
Collapse
|
28
|
Orczyk JJ, Batka R, Gore A, Maio-Lexa M, Kulkarni A, Garraghty PE. Female rat transcriptome response to infraorbital nerve transection differs from that of males: RNA-seq. J Comp Neurol 2017; 525:140-150. [PMID: 27224679 DOI: 10.1002/cne.24045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022]
Abstract
The effects of infraorbital nerve (ION) transection on gene expression in the adult female rat barrel cortex were investigated using RNA sequencing. After a 24-hour survival duration, 28 genes were differentially regulated by ION transection. Differentially expressed genes suggest microglial activity, increased retrograde ciliary transport, and a decrease in inhibition. These changes may be functionally comparable to changes in the male barrel cortex, where changes in genes related to morphology, neuronal activity, and neuronal excitability were observed. However, the patterns in changes in gene expression are vastly different between male and female rats. The results strongly caution against the practice of generalizing data from one sex to both sexes. This cautionary note has potentially profound implications for a range of research lines, including substance abuse and stress, both research domains in which subjects have been predominantly males. Future research needs to employ sex as a classification variable, as sex differences can generally be expected. Future research is also needed to confirm that changes in gene expression observed with RNA-seq correlate with changes in protein expression. J. Comp. Neurol. 525:140-150, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John J Orczyk
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Richard Batka
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Ashleigh Gore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Michelena Maio-Lexa
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Akhil Kulkarni
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA
| | - Preston E Garraghty
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, USA.,Program in Neuroscience, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
29
|
Triebel J, Robles-Osorio ML, Garcia-Franco R, Martínez de la Escalera G, Clapp C, Bertsch T. From Bench to Bedside: Translating the Prolactin/Vasoinhibin Axis. Front Endocrinol (Lausanne) 2017; 8:342. [PMID: 29321761 PMCID: PMC5732132 DOI: 10.3389/fendo.2017.00342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
The prolactin/vasoinhibin axis defines an endocrine system, in which prolactin (PRL) and vasoinhibins regulate blood vessel growth and function, the secretion of other hormones, inflammatory and immune processes, coagulation, and behavior. The core element of the PRL/vasoinhibin axis is the generation of vasoinhibins, which consists in the proteolytic cleavage of their precursor molecule PRL. Vasoinhibins can interact with multiple different partners to mediate their effects in various tissues and anatomical compartments, indicating their pleiotropic nature. Based on accumulating knowledge about the PRL/vasoinhibin axis, two clinical trials were initiated, in which vasoinhibin levels are the target of therapeutic interventions. One trial investigates the effect of levosulpiride, a selective dopamine D2-receptor antagonist, on retinal alterations in patients with diabetic macular edema and retinopathy. The rationale of this trial is that the levosulpiride-induced hyperprolactinemia resulting in increased retinal vasoinhibins could lead to beneficiary outcomes in terms of a vasoinhibin-mediated antagonization of diabetes-induced retinal alterations. Another trial investigated the effect of bromocriptine, a dopamine D2-receptor agonist, for the treatment of peripartum cardiomyopathy. The rationale of treatment with bromocriptine is the inhibition of vasoinhibin generation by substrate depletion to prevent detrimental effects on the myocardial microvascularization. The trial demonstrated that bromocriptine treatment was associated with a high rate of left ventricular recovery and low morbidity and mortality. Therapeutic interventions into the PRL/vasoinhibin axis bear the risk of side effects in the areas of blood coagulation, blood pressure, and alterations of the mental state.
Collapse
Affiliation(s)
- Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
- *Correspondence: Jakob Triebel,
| | | | | | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
30
|
Costanza M, Pedotti R. Prolactin: Friend or Foe in Central Nervous System Autoimmune Inflammation? Int J Mol Sci 2016; 17:ijms17122026. [PMID: 27918427 PMCID: PMC5187826 DOI: 10.3390/ijms17122026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/19/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
The higher prevalence of multiple sclerosis (MS) in females, along with the modulation of disease activity observed during pregnancy and the post-partum period, has suggested a hormonal influence in MS. Even if prolactin (PRL) does not belong to the sex hormones family, its crucial role in female reproduction and lactation has prompted great efforts to understand if PRL could represent a gender factor in the pathogenesis of MS and experimental autoimmune encephalomyelitis (EAE), the animal model for this disease. Extensive literature has documented a remarkable immune-stimulating potential for this hormone, indicating PRL as a disease-promoting factor in MS and EAE. However, recent work has pointed out that PRL is endowed with important neuroprotective and remyelinating properties and has encouraged a reinterpretation of the involvement of this hormone in MS. In this review we summarize both the protective functions that PRL exerts in central nervous system tissue as well as the inflammatory activity of this hormone in the context of autoimmune responses against myelin. Last, we draw future lines of research that might help to better clarify the impact of PRL on MS pathology.
Collapse
Affiliation(s)
- Massimo Costanza
- Department of Clinical Neuroscience, Neurological Institute Foundation IRCCS Carlo Besta, 20133 Milan, Italy.
| | - Rosetta Pedotti
- Department of Clinical Neuroscience, Neurological Institute Foundation IRCCS Carlo Besta, 20133 Milan, Italy.
| |
Collapse
|
31
|
Reyes-Mendoza J, Morales T. Post-treatment with prolactin protects hippocampal CA1 neurons of the ovariectomized female rat against kainic acid-induced neurodegeneration. Neuroscience 2016; 328:58-68. [DOI: 10.1016/j.neuroscience.2016.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 10/21/2022]
|
32
|
Meléndez García R, Arredondo Zamarripa D, Arnold E, Ruiz-Herrera X, Noguez Imm R, Baeza Cruz G, Adán N, Binart N, Riesgo-Escovar J, Goffin V, Ordaz B, Peña-Ortega F, Martínez-Torres A, Clapp C, Thebault S. Prolactin protects retinal pigment epithelium by inhibiting sirtuin 2-dependent cell death. EBioMedicine 2016; 7:35-49. [PMID: 27322457 PMCID: PMC4909382 DOI: 10.1016/j.ebiom.2016.03.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
The identification of pathways necessary for retinal pigment epithelium (RPE) function is fundamental to uncover therapies for blindness. Prolactin (PRL) receptors are expressed in the retina, but nothing is known about the role of PRL in RPE. Using the adult RPE 19 (ARPE-19) human cell line and mouse RPE, we identified the presence of PRL receptors and demonstrated that PRL is necessary for RPE cell survival via anti-apoptotic and antioxidant actions. PRL promotes the antioxidant capacity of ARPE-19 cells by reducing glutathione. It also blocks the hydrogen peroxide-induced increase in deacetylase sirtuin 2 (SIRT2) expression, which inhibits the TRPM2-mediated intracellular Ca(2+) rise associated with reduced survival under oxidant conditions. RPE from PRL receptor-null (prlr(-/-)) mice showed increased levels of oxidative stress, Sirt2 expression and apoptosis, effects that were exacerbated in animals with advancing age. These observations identify PRL as a regulator of RPE homeostasis.
Collapse
Affiliation(s)
- Rodrigo Meléndez García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - David Arredondo Zamarripa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Xarubet Ruiz-Herrera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ramsés Noguez Imm
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - German Baeza Cruz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Nadine Binart
- Institut National de la Santé et de la Recherche Médicale, U1185, Université Paris-Sud, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre 94270, France
| | - Juan Riesgo-Escovar
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Vincent Goffin
- Institut National de la Santé et de la Recherche Médicale, U1151, Institut Necker Enfants Malades, Université Paris-Descartes, Faculté de Médecine, Sorbonne Paris Cité, 75014, France
| | - Benito Ordaz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Fernando Peña-Ortega
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Ataúlfo Martínez-Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico
| | - Stéphanie Thebault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
33
|
Costanza M, Binart N, Steinman L, Pedotti R. Prolactin: A versatile regulator of inflammation and autoimmune pathology. Autoimmun Rev 2015; 14:223-30. [DOI: 10.1016/j.autrev.2014.11.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 11/08/2014] [Indexed: 12/20/2022]
|
34
|
Arredondo Zamarripa D, Díaz-Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma-Colunga MG, Arnold E, Clapp C, Thebault S. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci 2014; 8:333. [PMID: 25368550 PMCID: PMC4202700 DOI: 10.3389/fncel.2014.00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Vasoinhibins are prolactin fragments present in the retina, where they have been shown to prevent the hypervasopermeability associated with diabetes. Enhanced bradykinin (BK) production contributes to the increased transport through the blood-retina barrier (BRB) in diabetes. Here, we studied if vasoinhibins regulate BRB permeability by targeting the vascular endothelium and retinal pigment epithelium (RPE) components of this barrier. Intravitreal injection of BK in male rats increased BRB permeability. Vasoinhibins prevented this effect, as did the B2 receptor antagonist Hoe-140. BK induced a transient decrease in mouse retinal and brain capillary endothelial monolayer resistance that was blocked by vasoinhibins. Both vasoinhibins and the nitric oxide (NO) synthase inhibitor L-NAME, but not the antioxidant N-acetyl cysteine (NAC), blocked the transient decrease in bovine umbilical vein endothelial cell (BUVEC) monolayer resistance induced by BK; this block was reversed by the NO donor DETANONOate. Vasoinhibins also prevented the BK-induced actin cytoskeleton redistribution, as did L-NAME. BK transiently decreased human RPE (ARPE-19) cell monolayer resistance, and this effect was blocked by vasoinhibins, L-NAME, and NAC. DETANONOate reverted the blocking effect of vasoinhibins. Similar to BK, the radical initiator Luperox induced a reduction in ARPE-19 cell monolayer resistance, which was prevented by vasoinhibins. These effects on RPE resistance coincided with actin cytoskeleton redistribution. Intravitreal injection of vasoinhibins reduced the levels of reactive oxygen species (ROS) in retinas of streptozotocin-induced diabetic rats, particularly in the RPE and capillary-containing layers. Thus, vasoinhibins reduce BRB permeability by targeting both its main inner and outer components through NO- and ROS-dependent pathways, offering potential treatment strategies against diabetic retinopathies.
Collapse
Affiliation(s)
- David Arredondo Zamarripa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Nundehui Díaz-Lezama
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Rodrigo Meléndez García
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Jesús Chávez Balderas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Norma Adán
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Maria G Ledesma-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Edith Arnold
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Carmen Clapp
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| | - Stéphanie Thebault
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, México
| |
Collapse
|