1
|
Ren S, Wang S, Lv S, Gao J, Mao Y, Liu Y, Xie Q, Zhang T, Zhao L, Shi J. The nociceptive inputs of the paraventricular hypothalamic nucleus in formalin stimulated mice. Neurosci Lett 2024; 841:137948. [PMID: 39179131 DOI: 10.1016/j.neulet.2024.137948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The paraventricular hypothalamic nucleus (PVH) is an important neuroendocrine center involved in pain regulation, but the nociceptive afferent routes for the nucleus are still unclear. We examined the profile of PVH receiving injurious information by a combination of retrograde tracing with Fluoro-Gold (FG) and FOS expression induced by formalin stimuli. The result showed that formalin injection induced significantly increased expression of FOS in the PVH, among which oxytocin containing neurons are one neuronal phenotype. Immunofluorescent staining of FG and FOS revealed that double labeled neurons were strikingly distributed in the area 2 of the cingulate cortex (Cg2), the lateral septal nucleus (LS), the periaqueductal gray (PAG), the posterior hypothalamic area (PH), and the lateral parabrachial nucleus (LPB). In the five regions, LPB had the biggest number and the highest ratio of FOS expression in FG labeled neurons, with main subnuclei distribution in the external, superior, dorsal, and central parts. Further immunofluorescent triple staining disclosed that about one third of FG and FOS double labeled neurons in the LPB were immunoreactive for calcitonin gene related peptide (CGRP). In conclusion, the present study demonstrates the nociceptive input profile of the PVH area under inflammatory pain and suggests that neurons in the LPB may play essential roles in transmitting noxious information to the PVH.
Collapse
Affiliation(s)
- Shuting Ren
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Shumin Wang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Siting Lv
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Jiaying Gao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yajie Mao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuankun Liu
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Qiongyao Xie
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an 716000, China.
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Nishimura K, Ueta Y, Yoshino K. Estrogen-dependent oxytocin expression in the hypothalamus and estrogen-dependent vasopressin in the median eminence. J Obstet Gynaecol Res 2024. [PMID: 39340151 DOI: 10.1111/jog.16100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
The posterior pituitary (PP) hormones oxytocin (OXT) and arginine vasopressin (AVP) are synthesized within the hypothalamic nucleus and released from the PP into systemic circulation. Hypothalamic AVP projects its axons into the external layer of median eminence (eME) and regulates anterior pituitary hormone secretion during stress responses. Although similar as PP hormones, we demonstrate distinct regulatory roles of estrogen in hypothalamic OXT and AVP dynamics. OXT dynamics in the hypothalamus exhibit sex-dependent variations and that estrogen may influence dynamic OXT level changes, as observed in OXT-mRFP1 transgenic rats. Estrogen was also observed to modulate dynamic changes in AVP levels in the axon terminals of eME in female AVP-eGFP transgenic rats. Although OXT and AVP are produced within the similar hypothalamic region, both exhibit distinct dynamics within the hypothalamus. Estrogen acts on the hypothalamus, and further effects of estrogen replacement therapy can be expected.
Collapse
Affiliation(s)
- Kazuaki Nishimura
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kiyoshi Yoshino
- Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
3
|
Xu Z, Hu SW, Zhou Y, Guo Q, Wang D, Gao YH, Zhao WN, Tang HM, Yang JX, Yu X, Ding HL, Cao JL. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br J Anaesth 2023; 130:446-458. [PMID: 36737387 DOI: 10.1016/j.bja.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.
Collapse
Affiliation(s)
- Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui-Mei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
4
|
Baba K, Kawasaki M, Nishimura H, Suzuki H, Matsuura T, Ikeda N, Fujitani T, Yamanaka Y, Tsukamoto M, Ohnishi H, Yoshimura M, Maruyama T, Sanada K, Sonoda S, Nishimura K, Tanaka K, Onaka T, Ueta Y, Sakai A. Upregulation of the hypothalamo-neurohypophysial system and activation of vasopressin neurones attenuates hyperalgesia in a neuropathic pain model rat. Sci Rep 2022; 12:13046. [PMID: 35906406 PMCID: PMC9338054 DOI: 10.1038/s41598-022-17477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Arginine vasopressin (AVP) is a hypothalamic neurosecretory hormone well known as an antidiuretic, and recently reported to be involved in pain modulation. The expression kinetics of AVP and its potential involvement in the descending pain modulation system (DPMS) in neuropathic pain (NP) remains unclear. We investigated AVP expression and its effects on mechanical and thermal nociceptive thresholds using a unilateral spinal nerve ligation (SNL) model. All rats with SNL developed NP. Intensities of enhanced green fluorescent protein (eGFP) in the supraoptic and paraventricular nuclei, median eminence, and posterior pituitary were significantly increased at 7 and 14 days post-SNL in AVP-eGFP rats. In situ hybridisation histochemistry revealed significantly increased AVP mRNA expression at 14 days post-SNL compared with the sham control group. The chemogenetic activation of AVP neurones significantly attenuated mechanical and thermal hyperalgesia with elevated plasma AVP concentration. These analgesic effects were suppressed by pre-administration with V1a receptor antagonist. AVP neurones increased the neuronal activity of serotonergic dorsal raphe, noradrenergic locus coeruleus, and inhibitory interneurones in the spinal dorsal horn. These results suggest that the hypothalamo-neurohypophysial system of AVP is upregulated in NP and activated endogenous AVP exerts analgesic effects via the V1a receptors. AVP neurones may activate the DPMS.
Collapse
Affiliation(s)
- Kazuhiko Baba
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| | - Haruki Nishimura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takanori Matsuura
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Naofumi Ikeda
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Teruaki Fujitani
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
5
|
Sanada K, Ueno H, Miyamoto T, Baba K, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Yoshimura M, Maruyama T, Onaka T, Otsuji Y, Kataoka M, Ueta Y. AVP-eGFP was significantly upregulated by hypovolemia in the parvocellular division of the paraventricular nucleus in the transgenic rats. Am J Physiol Regul Integr Comp Physiol 2022; 322:R161-R169. [PMID: 35018823 DOI: 10.1152/ajpregu.00107.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON). Peripheral AVP, which is secreted from the posterior pituitary, is produced in the magnocellular division of the PVN (mPVN) and SON. In addition, AVP is produced in the parvocellular division of the PVN (pPVN), where corticotrophin-releasing factor (CRF) is synthesized. These peptides synergistically modulate the hypothalamic-pituitary-adrenal (HPA) axis. Previous studies have revealed that the HPA axis was activated by hypovolemia. However, the detailed dynamics of AVP in the pPVN under hypovolemic state has not been elucidated. Here, we evaluated the effects of hypovolemia and hyperosmolality on the hypothalamus, using AVP-enhanced green fluorescent protein (eGFP) transgenic rats. Polyethylene glycol (PEG) or 3% hypertonic saline (HTN) was intraperitoneally administered to develop hypovolemia or hyperosmolality. AVP-eGFP intensity was robustly upregulated at 3 and 6 h after intraperitoneal administration of PEG or HTN in the mPVN. While in the pPVN, eGFP intensity was significantly increased at 6 h after intraperitoneal administration of PEG with significant induction of Fos-immunoreactive (-ir) neurons. Consistently, eGFP mRNA, AVP hnRNA, and CRF mRNA in the pPVN and plasma AVP and corticosterone were significantly increased at 6 h after intraperitoneal administration of PEG. The results suggest that AVP and CRF syntheses in the pPVN were activated by hypovolemia, resulting in the activation of the HPA axis.
Collapse
Affiliation(s)
- Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tetsu Miyamoto
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yutaka Otsuji
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Masaharu Kataoka
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
6
|
Tamegart L, Abbaoui A, Oukhrib M, Bouyatas MM, Gamrani H. Physiological Alterations of Subchronic Lead Exposure Induced Degeneration of Epithelial Cells in Proximal Tubules and the Remedial Effect of Curcumin-III in Meriones shawi: a Possible Link with Vasopressin Release. Biol Trace Elem Res 2022; 200:1303-1311. [PMID: 34176078 DOI: 10.1007/s12011-021-02751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
At the industrial working conditions, lead exposure could induce several alterations for the human body. Subchronic lead exposure is linked with several injuries including cerebral and renal dysfunctions. The present work discusses the effects of subchronic lead toxicity (3 g/l) in drinking water during the period of treatment (6 weeks) on vasopressin system and epithelial cells in proximal tubules. Also, we aimed to evaluate the protective effect of curcumin-III administered orally by gavage (30 mg/kg BW), against subchronic Pb exposure in Meriones shawi. The biochemical and histopathological examinations demonstrate renal damages induced by lead toxicity. In addition, the behavioral and immunohistochemical studies revealed that Pb neurotoxicity exhibited an anxious behavior with a significant elevation of the vasopressin (AVP) staining within the paraventricular nuclei. The study showed also curcumin-III restored the renal alterations with an anxiolytic effect. Moreover, it restored the AVP level in the studying nuclei. Our work supports a possible link between AVP release and epithelial degeneration in the proximal tubules, and shows a new pharmacological effect of curcumin-III as an anxiolytic agent against lead toxicity.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mjid Oukhrib
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mouly Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Department of Biology, Multidisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
- Neurosciences, Pharmacology and Environment Unit, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Avenue My Abdellah, B.P. 2390, Marrakesh, Morocco.
| |
Collapse
|
7
|
Ueta Y. Transgenic approaches to opening up new fields of vasopressin and oxytocin research. J Neuroendocrinol 2021; 33:e13055. [PMID: 34713515 DOI: 10.1111/jne.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022]
Abstract
Transgenic approaches have been applied to generate transgenic rats that express exogenous genes in arginine vasopressin (AVP)- and oxytocin (OXT)-producing magnocellular neurosecretory cells (MNCs) of the hypothalamic-neurohypophyseal system (HNS). First, the fusion gene that expresses AVP-enhanced green fluorescent protein (eGFP) and OXT-monomeric red fluorescent protein 1 (mRFP1) was used to visualize AVP- and OXT-producing MNCs and their axon terminals in the HNS under fluorescence microscopy. Second, the fusion gene that expresses c-fos-eGFP and c-fos-mRFP1 was used to identify activated neurons physiologically in the central nervous system, including MNCs, circumventricular organs and spinal cord. In addition, AVP-eGFP x c-fos-mRFP1 and OXT-mRFP1 × c-fos-eGFP double transgenic rats were generated to identify activated AVP- and OXT-producing MNCs using appropriate physiological stimuli. Third, the fusion gene that expresses AVP-chanelrhodopsin 2 (ChR2)-eGFP and AVP-hM3Dq-mCherry was used to activate AVP- and OXT-producing MNCs by optogenetic and chemogenetic approaches. In each step, these transgenic approaches in rats have provided new insights on the physiological roles of AVP and OXT not only in the HNS, but also in the whole body. In this review, we summarize the transgenic rats that we generated, as well as related physiological findings.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
8
|
Szczepanska-Sadowska E, Wsol A, Cudnoch-Jedrzejewska A, Żera T. Complementary Role of Oxytocin and Vasopressin in Cardiovascular Regulation. Int J Mol Sci 2021; 22:11465. [PMID: 34768894 PMCID: PMC8584236 DOI: 10.3390/ijms222111465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
The neurons secreting oxytocin (OXY) and vasopressin (AVP) are located mainly in the supraoptic, paraventricular, and suprachiasmatic nucleus of the brain. Oxytocinergic and vasopressinergic projections reach several regions of the brain and the spinal cord. Both peptides are released from axons, soma, and dendrites and modulate the excitability of other neuroregulatory pathways. The synthesis and action of OXY and AVP in the peripheral organs (eye, heart, gastrointestinal system) is being investigated. The secretion of OXY and AVP is influenced by changes in body fluid osmolality, blood volume, blood pressure, hypoxia, and stress. Vasopressin interacts with three subtypes of receptors: V1aR, V1bR, and V2R whereas oxytocin activates its own OXTR and V1aR receptors. AVP and OXY receptors are present in several regions of the brain (cortex, hypothalamus, pons, medulla, and cerebellum) and in the peripheral organs (heart, lungs, carotid bodies, kidneys, adrenal glands, pancreas, gastrointestinal tract, ovaries, uterus, thymus). Hypertension, myocardial infarction, and coexisting factors, such as pain and stress, have a significant impact on the secretion of oxytocin and vasopressin and on the expression of their receptors. The inappropriate regulation of oxytocin and vasopressin secretion during ischemia, hypoxia/hypercapnia, inflammation, pain, and stress may play a significant role in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Laboratory of Centre for Preclinical Research, Chair and Department of Experimental and Clinical Physiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (A.C.-J.); (T.Ż.)
| | | | | | | |
Collapse
|
9
|
Hagiwara D, Tochiya M, Azuma Y, Tsumura T, Hodai Y, Kawaguchi Y, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Takagi H, Ito Y, Iwama S, Suga H, Banno R, Arima H. Arginine vasopressin-Venus reporter mice as a tool for studying magnocellular arginine vasopressin neurons. Peptides 2021; 139:170517. [PMID: 33647312 DOI: 10.1016/j.peptides.2021.170517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022]
Abstract
Arginine vasopressin (AVP) synthesized in the magnocellular neurons of the hypothalamus is transported through their axons and released from the posterior pituitary into the systemic circulation to act as an antidiuretic hormone. AVP synthesis and release are precisely regulated by changes in plasma osmolality. Magnocellular AVP neurons receive innervation from osmosensory and sodium-sensing neurons, but previous studies showed that AVP neurons per se are osmosensitive as well. In the current study, we made AVP-Venus reporter mice and showed that Venus was expressed exclusively in AVP neurons and was upregulated under water deprivation. In hypothalamic organotypic cultures from the AVP-Venus mice, Venus-labeled AVP neurons in the supraoptic and paraventricular nuclei survived for 1 month, and Venus expression was upregulated by forskolin. Furthermore, in dissociated Venus-labeled magnocellular neurons, treatment with NaCl, but not with mannitol, decreased Venus fluorescence in the soma of the AVP neurons. Thus, Venus expression in AVP-Venus transgenic mice, as well as in primary cultures, faithfully showed the properties of intrinsic AVP expression. These findings indicate that AVP-Venus mice as well as the primary hypothalamic cultures could be useful for studying magnocellular AVP neurons.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Masayoshi Tochiya
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshinori Azuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tetsuro Tsumura
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuichi Hodai
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
10
|
Nishimura H, Kawasaki M, Suzuki H, Matsuura T, Baba K, Motojima Y, Yamanaka Y, Fujitani T, Ohnishi H, Tsukamoto M, Maruyama T, Yoshimura M, Nishimura K, Sonoda S, Sanada K, Tanaka K, Onaka T, Ueta Y, Sakai A. The neurohypophysial oxytocin and arginine vasopressin system is activated in a knee osteoarthritis rat model. J Neuroendocrinol 2020; 32:e12892. [PMID: 32761684 DOI: 10.1111/jne.12892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 01/11/2023]
Abstract
Osteoarthritis (OA) causes chronic joint pain and significantly impacts daily activities. Hence, developing novel treatment options for OA has become an increasingly important area of research. Recently, studies have reported that exogenous, as well as endogenous, hypothalamic-neurohypophysial hormones, oxytocin (OXT) and arginine-vasopressin (AVP), significantly contribute to nociception modulation. Moreover, the parvocellular OXT neurone (parvOXT) extends its projection to the superficial spinal dorsal horn, where it controls the transmission of nociceptive signals. Meanwhile, AVP produced in the magnocellular AVP neurone (magnAVP) is released into the systemic circulation where it contributes to pain management at peripheral sites. The parvocellular AVP neurone (parvAVP), as well as corticotrophin-releasing hormone (CRH), suppresses inflammation via activation of the hypothalamic-pituitary adrenal (HPA) axis. Previously, we confirmed that the OXT/AVP system is activated in rat models of pain. However, the roles of endogenous hypothalamic-neurohypophysial hormones in OA have not yet been characterised. In the present study, we investigated whether the OXT/AVP system is activated in a knee OA rat model. Our results show that putative parvOXT is activated and the amount of OXT-monomeric red fluorescent protein 1 positive granules in the ipsilateral superficial spinal dorsal horn increases in the knee OA rat. Furthermore, both magnAVP and parvAVP are activated, concurrent with HPA axis activation, predominantly modulated by AVP, and not CRH. The OXT/AVP system in OA rats was similar to that in systemic inflammation models, including adjuvant arthritis; however, magnocellular OXT neurones (magnOXT) were not activated in OA. Hence, localised chronic pain conditions, such as knee OA, activate the OXT/AVP system without impacting magnOXT.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Manabu Tsukamoto
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentarou Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
11
|
Akiyama Y, Yoshimura M, Ueno H, Sanada K, Tanaka K, Sonoda S, Nishimura H, Nishimura K, Motojima Y, Saito R, Maruyama T, Hirata K, Uezono Y, Ueta Y. Peripherally administered cisplatin activates a parvocellular neuronal subtype expressing arginine vasopressin and enhanced green fluorescent protein in the paraventricular nucleus of a transgenic rat. J Physiol Sci 2020; 70:35. [PMID: 32650712 PMCID: PMC10717609 DOI: 10.1186/s12576-020-00764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin is one of the most potent anti-cancer drugs, though several side effects can induce stress responses such as activation of the hypothalamic-pituitary adrenal (HPA) axis. Arginine vasopressin (AVP) and corticotrophin-releasing hormone (CRH) expressed in the parvocellular division of the paraventricular nucleus (pPVN) play an important role in the stress-induced activation of the HPA axis. We aimed to evaluate whether intraperitoneal (i.p.) administration of cisplatin could activate parvocellular neurons in the pPVN, using a transgenic rat model that expresses the fusion gene of AVP and enhanced green fluorescent protein (eGFP). Along with the induction of FosB, a marker of neuronal activation, i.p. administration of cisplatin significantly increased eGFP fluorescent intensities in the pPVN. In situ hybridization histochemistry revealed that AVP-eGFP and CRH mRNAs in the pPVN were increased significantly in cisplatin-treated rats. These results suggest that cisplatin administration increases neuronal activation and upregulates AVP and CRH expression in the pPVN.
Collapse
Affiliation(s)
- Yasuki Akiyama
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Keiji Hirata
- Department of Surgery 1, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
12
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020; 81:102046. [PMID: 32284215 DOI: 10.1016/j.npep.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In many instances, the perception of pain is disproportionate to the strength of the algesic stimulus. Excessive or inadequate pain sensation is frequently observed in cardiovascular diseases, especially in coronary ischemia. The mechanisms responsible for individual differences in the perception of cardiovascular pain are not well recognized. Cardiovascular disorders may provoke pain in multiple ways engaging molecules released locally in the heart due to tissue ischemia, inflammation or cellular stress, and through neurogenic and endocrine mechanisms brought into action by hemodynamic disturbances. Cardiovascular neuropeptides, namely angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], vasopressin, oxytocin, and orexins belong to this group. Although participation of these peptides in the regulation of circulation and pain has been firmly established, their mutual interaction in the regulation of pain in cardiovascular diseases has not been profoundly analyzed. In the present review we discuss the regulation of the release, and mechanisms of the central and systemic actions of these peptides on the cardiovascular system in the context of their central and peripheral nociceptive (Ang II) and antinociceptive [Ang-(1-7), vasopressin, oxytocin, orexins] properties. We also consider the possibility that they may play a significant role in the modulation of pain in cardiovascular diseases. The rationale for focusing attention on these very compounds was based on the following premises (1) cardiovascular disturbances influence the release of these peptides (2) they regulate vascular tone and cardiac function and can influence the intensity of ischemia - the factor initiating pain signals in the cardiovascular system, (3) they differentially modulate nociception through peripheral and central mechanisms, and their effect strongly depends on specific receptors and site of action. Accordingly, an altered release of these peptides and/or pharmacological blockade of their receptors may have a significant but different impact on individual sensation of pain and comfort of an individual patient.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland
| | - Bogdan Sadowski
- School of Engineering and Health, Bitwy Warszawskiej 1920 r. 18, Warsaw, Poland
| |
Collapse
|
13
|
Abstract
The scientific community has searched for years for ways of examining neuronal tissue to track neural activity with reliable anatomical markers for stimulated neuronal activity. Existing studies that focused on hypothalamic systems offer a few options but do not always compare approaches or validate them for dependence on cell firing, leaving the reader uncertain of the benefits and limitations of each method. Thus, in this article, potential markers will be presented and, where possible, placed into perspective in terms of when and how these methods pertain to hypothalamic function. An example of each approach is included. In reviewing the approaches, one is guided through how neurons work, the consequences of their stimulation, and then the potential markers that could be applied to hypothalamic systems are discussed. Approaches will use features of neuronal glucose utilization, water/oxygen movement, changes in neuron-glial interactions, receptor translocation, cytoskeletal changes, stimulus-synthesis coupling that includes expression of the heteronuclear or mature mRNA for transmitters or the enzymes that make them, and changes in transcription factors (immediate early gene products, precursor buildup, use of promoter-driven surrogate proteins, and induced expression of added transmitters. This article includes discussion of methodological limitations and the power of combining approaches to understand neuronal function. © 2020 American Physiological Society. Compr Physiol 10:549-575, 2020.
Collapse
Affiliation(s)
- Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Wsol A. The role of oxytocin and vasopressin in the pathophysiology of heart failure in pregnancy and in fetal and neonatal life. Am J Physiol Heart Circ Physiol 2020; 318:H639-H651. [PMID: 32056469 DOI: 10.1152/ajpheart.00484.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy and early life create specific psychosomatic challenges for the mother and child, such as changes in hemodynamics, resetting of the water-electrolyte balance, hypoxia, pain, and stress, that all play an important role in the regulation of the release of oxytocin and vasopressin. Both of these hormones regulate the water-electrolyte balance and cardiovascular functions, maturation of the cardiovascular system, and cardiovascular responses to stress. These aspects may be of particular importance in a state of emergency, such as hypertension in the mother or severe heart failure in the child. In this review, we draw attention to a broad spectrum of actions exerted by oxytocin and vasopressin in the pregnant mother and the offspring during early life. To this end, we discuss the following topics: 1) regulation of the secretion of oxytocin and vasopressin and expression of their receptors in the pregnant mother and child, 2) direct and indirect effects of oxytocin and vasopressin on the cardiovascular system in the healthy mother and fetus, and 3) positive and negative consequences of altered secretion of oxytocin and vasopressin in the mother with cardiovascular pathology and in the progeny with heart failure. The present survey provides evidence that moderate stimulation of the oxytocin and vasopressin receptors plays a beneficial role in the healthy pregnant mother and fetus; however, under pathophysiological conditions the inappropriate action of these hormones exerts several negative effects on the cardiovascular system of the mother and progeny and may potentially contribute to the pathophysiology of heart failure in early life.
Collapse
Affiliation(s)
- E Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - A Wsol
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Nishimura H, Kawasaki M, Matsuura T, Suzuki H, Motojima Y, Baba K, Ohnishi H, Yamanaka Y, Fujitani T, Yoshimura M, Maruyama T, Ueno H, Sonoda S, Nishimura K, Tanaka K, Sanada K, Onaka T, Ueta Y, Sakai A. Acute Mono-Arthritis Activates the Neurohypophysial System and Hypothalamo-Pituitary Adrenal Axis in Rats. Front Endocrinol (Lausanne) 2020; 11:43. [PMID: 32117068 PMCID: PMC7026388 DOI: 10.3389/fendo.2020.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Various types of acute/chronic nociceptive stimuli cause neuroendocrine responses such as activation of the hypothalamo-neurohypophysial [oxytocin (OXT) and arginine vasopressin (AVP)] system and hypothalamo-pituitary adrenal (HPA) axis. Chronic multiple-arthritis activates the OXT/AVP system, but the effects of acute mono-arthritis on the OXT/AVP system in the same animals has not been simultaneously evaluated. Further, AVP, not corticotropin-releasing hormone (CRH), predominantly activates the HPA axis in chronic multiple-arthritis, but the participation of AVP in HPA axis activation in acute mono-arthritis remains unknown. Therefore, we aimed to simultaneously evaluate the effects of acute mono-arthritis on the activity of the OXT/AVP system and the HPA axis. In the present study, we used an acute mono-arthritic model induced by intra-articular injection of carrageenan in a single knee joint of adult male Wistar rats. Acute mono-arthritis was confirmed by a significant increase in knee diameter in the carrageenan-injected knee and a significant decrease in the mechanical nociceptive threshold in the ipsilateral hind paw. Immunohistochemical analysis revealed that the number of Fos-immunoreactive (ir) cells in the ipsilateral lamina I-II of the dorsal horn was significantly increased, and the percentage of OXT-ir and AVP-ir neurons expressing Fos-ir in both sides of the supraoptic (SON) and paraventricular nuclei (PVN) was increased in acute mono-arthritic rats. in situ hybridization histochemistry revealed that levels of OXT mRNA and AVP hnRNA in the SON and PVN, CRH mRNA in the PVN, and proopiomelanocortin mRNA in the anterior pituitary were also significantly increased in acute mono-arthritic rats. Further, plasma OXT, AVP, and corticosterone levels were significantly increased in acute mono-arthritic rats. These results suggest that acute mono-arthritis activates ipsilateral nociceptive afferent pathways at the spinal level and causes simultaneous and integrative activation of the OXT/AVP system. In addition, the HPA axis is activated by both AVP and CRH in acute mono-arthritis with a distinct pattern compared to that in chronic multiple-arthritis.
Collapse
Affiliation(s)
- Haruki Nishimura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- *Correspondence: Makoto Kawasaki
| | - Takanori Matsuura
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasuhito Motojima
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiaki Yamanaka
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Teruaki Fujitani
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kentarou Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akinori Sakai
- Department of Orthopaedics Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
16
|
Jiang WQ, Bao LL, Sun FJ, Liu XL, Yang J. Oxytocin in the periaqueductal gray mainly comes form the hypothalamic supraoptic nucleus to participate in pain modulation. Peptides 2019; 121:170153. [PMID: 31499086 DOI: 10.1016/j.peptides.2019.170153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
Oxytocin (OXT) that effects the nociception process is mainly synthesized and secreted in the hypothalamic supraoptic nucleus (SON). Although the periaqueductal gray (PAG) hardly synthesizes OXT, OXT in PAG also plays a role in pain regulation. The communication investigates whether OXT in the PAG comes from SON to influence pain modulation. RT-PCR was used to analyze OXT mRNA expression and radioimmunoassay to measure OXT concentration. The results showed that (1) pain stimulation enhanced OXT mRNA expression in the SON at 10 min (268.1 ± 39.2%, p < 0.001) and 20 min (135.4±37.9%, p < 0.05) treatment and did not change in the PAG; (2) OXT level increase in SON perfusion liquid during pain stimulation [236.7±22.1% at 10 min (p < 0.001), 223.1±12.4% at 20 min (p<0.001), 56.1 ± 15.7% at 30 min (p < 0.01) and 11.2±14.2% at 40 min] was earlier than that in PAG perfusion liquid [17.8±9.7% at 10 min, 375.6±35.1% at 20 min (p < 0.001), 123.2±17.7% at 30 min (p < 0.001) and 52.7±22.4% at 40 min (p < 0.05)]; (3) SON excitation (L-glutamate sodium microinjection) induced OXT level increase in PAG perfusion liquid in a dose-dependent manner; (4) the bilateral SON cauterization completely controlled and the right SON cauterization partly reversed the pain stimulation induced-OXT concentration increase in PAG perfusion liquid. The data suggested that OXT in PAG came from SON, which might influence the pain process.
Collapse
Affiliation(s)
- Wen-Quan Jiang
- The 988th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army (The 153rd Hospital of the Chinese People's Liberation Army), Zhengzhou, Henan, China
| | - Le-Le Bao
- The 988th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army (The 153rd Hospital of the Chinese People's Liberation Army), Zhengzhou, Henan, China
| | - Fang-Jie Sun
- Xinxiang Institute for New Medicine and Academician Workstation of Henan Province, Xinxiang, Henan, China
| | - Xi-Lin Liu
- Grade 2018, Department of Stomatology, Luohe Medical College, Luohe, Henan, China
| | - Jun Yang
- Xinxiang Institute for New Medicine and Academician Workstation of Henan Province, Xinxiang, Henan, China.
| |
Collapse
|
17
|
Ueno H, Serino R, Sanada K, Akiyama Y, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Motojima Y, Saito R, Yoshimura M, Maruyama T, Miyamoto T, Tamura M, Otsuji Y, Ueta Y. Effects of acute kidney dysfunction on hypothalamic arginine vasopressin synthesis in transgenic rats. J Physiol Sci 2019; 69:531-541. [PMID: 30937882 PMCID: PMC10717941 DOI: 10.1007/s12576-019-00675-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
Acute loss of kidney function is a critical internal stressor. Arginine vasopressin (AVP) present in the parvocellular division of the paraventricular nucleus (PVN) plays a key role in the regulation of stress responses. However, hypothalamic AVP dynamics during acute kidney dysfunction remain unclear. In this study, we investigated the effects of bilateral nephrectomy on AVP, using a transgenic rat line that expressed the AVP-enhanced green fluorescent protein (eGFP). The eGFP fluorescent intensities in the PVN were dramatically increased after bilateral nephrectomy. The mRNA levels of eGFP, AVP, and corticotrophin-releasing hormone in the PVN were dramatically increased after bilateral nephrectomy. Bilateral nephrectomy also increased the levels of Fos-like immunoreactive cells in brainstem neurons. These results indicate that bilateral nephrectomy upregulates the AVP-eGFP synthesis. Further studies are needed to identify the neural and/or humoral factors that activate AVP synthesis and regulate neuronal circuits during acute kidney dysfunction.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu, 808-0034, Japan
| | - Kenya Sanada
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuki Akiyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Haruki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Kazuaki Nishimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masahito Tamura
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
18
|
Effect of oestrogen-dependent vasopressin on HPA axis in the median eminence of female rats. Sci Rep 2019; 9:5153. [PMID: 30914732 PMCID: PMC6435644 DOI: 10.1038/s41598-019-41714-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
The median eminence (ME) anatomically consists of external (eME) and internal (iME) layers. The hypothalamic neurosecretory cells terminate their axons in the eME and secrete their neurohormones regulating anterior pituitary hormone secretion involved in stress responses into the portal vein located in the eME. Magnocellular neurosecretory cells (MNCs) which produce arginine vasopressin (AVP) and oxytocin in the paraventricular (PVN) and supraoptic nuclei (SON) terminate their axons in the posterior pituitary gland (PP) through the iME. Here, we provide the first evidence that oestrogen modulates the dynamic changes in AVP levels in the eME axon terminals in female rats, using AVP-eGFP and AVP-DREADDs transgenic rats. Strong AVP-eGFP fluorescence in the eME was observed at all oestrus cycle stages in adult female rats but not in male transgenic rats. AVP-eGFP fluorescence in the eME was depleted after bilateral ovariectomy but re-appeared with high-dose 17β-oestradiol. AVP-eGFP fluorescence in the MNCs and PP did not change significantly in most treatments. Peripheral clozapine-N-oxide administration induced AVP-DREADDs neurone activation, causing a significant increase in plasma corticosterone levels in the transgenic rats. These results suggest that stress-induced activation of the hypothalamic-pituitary-adrenal axis may be caused by oestrogen-dependent upregulation of AVP in the eME of female rats.
Collapse
|
19
|
Yoshimura M, Ueta Y. Advanced genetic and viral methods for labelling and manipulation of oxytocin and vasopressin neurones in rats. Cell Tissue Res 2018; 375:311-327. [PMID: 30338378 DOI: 10.1007/s00441-018-2932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Rats have been widely used as one of the most common laboratory animals for biological research, because their physiology, pathology, and behavioral characteristics are highly similar to humans. Recent developments in rat genetic modification techniques have now led to further their utility for a broad range of research questions, including the ability to specifically label individual neurones, and even manipulate neuronal function in rats. We have succeeded in generating several transgenic rat lines that enable visualization of specific neurones due to their expression of fluorescently-tagged oxytocin, vasopressin, and c-fos protein. Furthermore, we have been able to generate novel transgenic rat lines in which we can activate vasopressin neurones using optogenetic and chemogenetic techniques. In this review, we will summarize the techniques of genetic modification for labeling and manipulating the specific neurones. Successful examples of generating transgenic rat lines in our lab and usefulness of these rats will also be introduced. These transgenic rat lines enable the interrogation of neuronal function and physiology in a way that was not possible in the past, providing novel insights into neuronal mechanisms both in vivo and ex vivo.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
20
|
Ueno H, Yoshimura M, Tanaka K, Nishimura H, Nishimura K, Sonoda S, Motojima Y, Saito R, Maruyama T, Miyamoto T, Serino R, Tamura M, Onaka T, Otsuji Y, Ueta Y. Upregulation of hypothalamic arginine vasopressin by peripherally administered furosemide in transgenic rats expressing arginine vasopressin-enhanced green fluorescent protein. J Neuroendocrinol 2018; 30:e12603. [PMID: 29682811 DOI: 10.1111/jne.12603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/17/2018] [Indexed: 11/30/2022]
Abstract
Furosemide, which is used worldwide as a diuretic agent, inhibits sodium reabsorption in the Henle's loop, resulting in diuresis and natriuresis. Arginine vasopressin (AVP) is synthesized in the supraoptic nucleus (SON), paraventricular nucleus (PVN), and suprachiasmatic nucleus (SCN) of the hypothalamus. The synthesis AVP in the magnocellular neurons of SON and PVN physiologically regulated by plasma osmolality and blood volume and contributed water homeostasis by increasing water reabsorption in the collecting duct. Central AVP dynamics after peripheral administration of furosemide remain unclear. Here, we studied the effects of intraperitoneal (i.p.) administration of furosemide (20 mg/kg) on hypothalamic AVP by using transgenic rats expressing AVP-enhanced green fluorescent protein (eGFP) under the AVP promoter. The i.p. administration of furosemide did not affect plasma osmolality in the present study; however, eGFP in the SON and magnocellular divisions of the PVN (mPVN) were significantly increased after furosemide administration compared to the control. Immunohistochemical analysis revealed Fos-like immunoreactivity (IR) in eGFP-positive neurons in the SON and mPVN 90 min after i.p. administration of furosemide, and AVP heteronuclear (hn) RNA and eGFP mRNA levels were significantly increased. These furosemide-induced changes were not observed in the suprachiasmatic AVP neurons. Furthermore, furosemide induced a remarkable increase in Fos-IR in the organum vasculosum laminae terminals (OVLT), median preoptic nucleus (MnPO), subfornical organ (SFO), locus coeruleus (LC), nucleus of the solitary tract (NTS), and rostral ventrolateral medulla (RVLM) after i.p. administration of furosemide. In conclusion, we were able to visualize and quantitatively evaluate AVP-eGFP synthesis and neuronal activations after peripheral administration of furosemide, using the AVP-eGFP transgenic rats. The results of this study may provide new insights into the elucidation of physiological mechanisms underlying body fluid homeostasis induced by furosemide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiromichi Ueno
- Department of Physiology
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | | | | | | | | | | | | | | | | - Tetsu Miyamoto
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Ryota Serino
- Department of Nephrology, Yoshino Hospital, Kitakyushu, 808-0034, Japan
| | - Masahito Tamura
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, 329-0498, Japan
| | - Yutaka Otsuji
- The Second Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | | |
Collapse
|
21
|
Manzano-García A, González-Hernández A, Tello-García IA, Martínez-Lorenzana G, Condés-Lara M. The role of peripheral vasopressin 1A and oxytocin receptors on the subcutaneous vasopressin antinociceptive effects. Eur J Pain 2017; 22:511-526. [PMID: 29082571 DOI: 10.1002/ejp.1134] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Vasopressin (AVP) seems to play a role as an antinociceptive neurohormone, but little is known about the peripheral site of action of its antinociceptive effects. Moreover, AVP can produce motor impairment that could be confused with behavioural antinociception. Finally, it is not clear which receptor is involved in the peripheral antinociceptive AVP effects. METHODS In anaesthetized rats with end-tidal CO2 monitoring, extracellular unitary recordings were performed, measuring the evoked activity mediated by Aβ-, Aδ-, C-fibres and post-discharge. Behavioural nociception and motor impairment were evaluated under subcutaneous AVP (0.1-10 μg) using formalin and rotarod tests. Selective antagonists to vasopressin (V1A R) or oxytocin receptors (OTR) were used. Additionally, vasopressin and oxytocin receptors were explored immunohistochemically in skin tissues. RESULTS Subcutaneous AVP (1 and 10 μg/paw) induced antinociception and a transitory reduction of the end-tidal CO2 . The neuronal activity associated with Aδ- and C-fibre activation was diminished, but no effect was observed on Aβ-fibres. AVP also reduced paw flinches in the formalin test and a transitory locomotor impairment was also found. The AVP-induced antinociception was blocked by the selective antagonist to V1A R (SR49059) or OTR (L368,899). Immunohistochemical evidence of skin VP and OT receptors is given. CONCLUSIONS Subcutaneous AVP produces antinociception and behavioural analgesia. Both V1a and OTR participate in those effects. Our findings suggest that antinociception could be produced in a local manner using a novel vasopressin receptor located in cutaneous sensorial fibres. Additionally, subcutaneous AVP also produces important systemic effects such as respiratory and locomotor impairment. SIGNIFICANCE Our findings support that AVP produces peripheral antinociception and behavioural analgesia in a local manner; nevertheless, systemic effects are also presented. Additionally, this is the first detailed electrophysiological analysis of AVP antinociceptive action after subcutaneous administration. The results are reasonably explained by the demonstration of V1A R and OTR in cutaneous fibres.
Collapse
Affiliation(s)
- A Manzano-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - A González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - I A Tello-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - G Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - M Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
22
|
Comparison of the induction of c-fos-eGFP and Fos protein in the rat spinal cord and hypothalamus resulting from subcutaneous capsaicin or formalin injection. Neuroscience 2017; 356:64-77. [PMID: 28527956 DOI: 10.1016/j.neuroscience.2017.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/28/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022]
Abstract
We evaluated whether a c-fos-enhanced green fluorescent protein (eGFP) transgenic rat line, which expresses the c-fos and eGFP fusion gene, can be useful for the study of nociceptive pathways and processing. Capsaicin solution (15%) or formalin (5%) was subcutaneously injected bilaterally into the hind paws (100μL per each paw) of adult male c-fos-eGFP transgenic or wild-type rats. Control rats were injected with ethanol or physiological saline respectively. Transgenic and wild-type rats were perfused at 1.5, 3 and 6h post injection, with some transgenic rats being perfused 24h post injection. A comparison of eGFP in transgenic rats and Fos-like immunoreactivity (LI) in wild-type rats was made in the dorsal spinal cord, paraventricular nucleus (PVN) and supraoptic nucleus (SON). Oxytocin-LI (OXT-LI) was carried out to examine the activation of OXT neurons in the PVN and SON. Following capsaicin or formalin treatment, eGFP was maximally expressed at 6h in the spinal cord and 3h in the PVN and SON, whereas, Fos-LI was maximally expressed at 1.5h in all the regions we analyzed. Induction of eGFP in the OXT neurons was observed after capsaicin or formalin treatment, while Fos-LI in the OXT neurons was observed only after formalin treatment. These results demonstrate that the peak induction of c-fos-eGFP following exposure to acute nociceptive stimuli was delayed by around 1.5-4.5h, but more sensitive than endogenous Fos, suggesting that the c-fos-eGFP rat line can be useful for the study of nociceptive pathways and processing.
Collapse
|
23
|
Matsuura T, Kawasaki M, Hashimoto H, Yoshimura M, Motojima Y, Saito R, Ueno H, Maruyama T, Ishikura T, Sabanai K, Mori T, Ohnishi H, Onaka T, Sakai A, Ueta Y. Possible Involvement of the Rat Hypothalamo-Neurohypophysial/-Spinal Oxytocinergic Pathways in Acute Nociceptive Responses. J Neuroendocrinol 2016; 28. [PMID: 27144381 DOI: 10.1111/jne.12396] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 04/23/2016] [Accepted: 04/29/2016] [Indexed: 11/28/2022]
Abstract
Oxytocin (OXT)-containing neurosecretory cells in the parvocellular divisions of the paraventricular nucleus (PVN), which project to the medulla and spinal cord, are involved in various physiological functions, such as sensory modulation and autonomic processes. In the present study, we examined OXT expression in the hypothalamo-spinal pathway, as well as the hypothalamo-neurohypophysial system, which includes the magnocellular neurosecretory cells in the PVN and the supraoptic nucleus (SON), after s.c. injection of saline or formalin into the hindpaws of transgenic rats that express the OXT and monomeric red fluorescent protein 1 (mRFP1) fusion gene. (i) The numbers of OXT-mRFP1 neurones that expressed Fos-like immunoreactivity (-IR) and OXT-mRFP1 intensity were increased significantly in the magnocellular/parvocellular PVN and SON after s.c. injection of formalin. (ii) OXT-mRFP1 neurones in the anterior parvocellular PVN, which may project to the dorsal horn of the spinal cord, were activated by s.c. injection of formalin, as indicated by a significant increases of Fos-IR and mRFP1 intensity intensity. (iii) Formalin injection caused a significant transient increase in plasma OXT. (iv) OXT, mRFP1 and corticotrophin-releasing hormone mRNAs in the PVN were significantly increased after s.c. injection of formalin. (v) An intrathecal injection of OXT-saporin induced hypersensitivity in conscious rats. Taken together, these results suggest that the hypothalamo-neurohypophysial/-spinal OXTergic pathways may be involved in acute nociceptive responses in rats.
Collapse
Affiliation(s)
- T Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - M Kawasaki
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - H Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - M Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - R Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - H Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Ishikura
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - K Sabanai
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Mori
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - H Ohnishi
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - T Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - A Sakai
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Y Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
24
|
Forostyak O, Butenko O, Anderova M, Forostyak S, Sykova E, Verkhratsky A, Dayanithi G. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res 2016; 16:622-34. [PMID: 27062357 DOI: 10.1016/j.scr.2016.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca(2+) signals and membrane properties in rat adipose-derived stromal cells (ADSCs) and bone marrow stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca(2+) channels whereas both L- and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca(2+) stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca(2+)]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not P2Y1) receptors. Both types of stromal cells exhibited [Ca(2+)]i responses to vasopressin (AVP) and expressed V1 type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca(2+)]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from -40 to -50mV in cells in basal to -80mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K(+)-selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium formulation is associated with significant changes in their Ca(2+) signaling and membrane properties.
Collapse
Affiliation(s)
- Oksana Forostyak
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic
| | - Olena Butenko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
| | - Miroslava Anderova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Serhiy Forostyak
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Eva Sykova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alexei Verkhratsky
- University of Manchester, School of Biological Sciences, D.4417 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Govindan Dayanithi
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Institut National de la Santé et de la Recherche Médicale-U1198, Université Montpellier, Montpellier 34095, France; Ecole Pratique des Hautes Etudes-Sorbonne, Les Patios Saint-Jacques, 4-14 rue Ferrus, 75014 Paris, France.
| |
Collapse
|
25
|
Ishikura T, Suzuki H, Shoguchi K, Koreeda Y, Aritomi T, Matsuura T, Yoshimura M, Ohkubo JI, Maruyama T, Kawasaki M, Ohnishi H, Sakai A, Mizuno A, Suzuki M, Ueta Y. Possible involvement of TRPV1 and TRPV4 in nociceptive stimulation- induced nocifensive behavior and neuroendocrine response in mice. Brain Res Bull 2015; 118:7-16. [PMID: 26314785 DOI: 10.1016/j.brainresbull.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Members of the transient receptor potential (TRP) family of ion channels play important roles in inflammation and pain. Here, we showed that both TRPV1 and TRPV4 might contribute to biphasic nocifensive behavior and neuroendocrine response following a formalin test. We subcutaneously injected saline, formalin, or the TRPV4 agonist, 4α-phorbol 12,13-didecanoate (4α-PDD) into one hindpaw of wild-type (WT), TRPV1-deficient (Trpv1(-/-)), and TRPV4-deficient (Trpv4(-/-)) mice to investigate nocifensive behaviors (phase I [0-10 min] and phase II [10-60 min]) and Fos expression in the dorsal horn of the spinal cord and other brain regions related to pain, in the paraventricular nucleus (PVN), paraventricular nucleus of the thalamus, the medial habenular nucleus, the medial nucleus of the amygdala and capsular part of the central amygdala. Subcutaneous (s.c.) injection of formalin caused less nocifensive behavior in Trpv1(-/-) and Trpv4(-/-) mice than in WT mice during phase I. In phase II, however, formalin induced less nocifensive behavior only in the Trpv1(-/-) mice, but not in the Trpv4(-/-) mice, relative to WT mice. The number of Fos-like immunoreactive (LI) neurons in laminae I-II of the dorsal horn increased in all types of mice 90 min after s.c. injection of formalin; however, there was no difference in the other regions between saline- and formalin-treated mice. Furthermore, s.c. injection of 4α-PDD did not induce nociceptive behavior nor influence the number of Fos-LI neurons in the all above mentioned regions in any of the mice. These results suggest that TRPV4-mediated nociceptive information from the peripheral tissue excluding the spinal pathway might be involved the formalin behavioral response during phase I. Only TRPV1 might regulate the formalin behavioral response in peripheral neuron.
Collapse
Affiliation(s)
- Toru Ishikura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Department of Orthopaedics, Youmeikai Obase Hospital, Kanda, Fukuoka 800-0344, Japan
| | - Hitoshi Suzuki
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Kanako Shoguchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yuki Koreeda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takafumi Aritomi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Jun-ichi Ohkubo
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Makoto Kawasaki
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hideo Ohnishi
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Atsuko Mizuno
- Department of Pharmacology, Jichi Medical University, Minamikawachi, Tochigi 329-0498, Japan
| | - Makoto Suzuki
- Edogawabashi Suzuki Clinic, Shinjyukuku, Tokyo 162-0801, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|
26
|
Jasnic N, Dakic T, Bataveljic D, Vujovic P, Lakic I, Jevdjovic T, Djurasevic S, Djordjevic J. Distinct vasopressin content in the hypothalamic supraoptic and paraventricular nucleus of rats exposed to low and high ambient temperature. J Therm Biol 2015; 52:1-7. [DOI: 10.1016/j.jtherbio.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022]
|
27
|
Satoh K, Oti T, Katoh A, Ueta Y, Morris JF, Sakamoto T, Sakamoto H. In vivoprocessing and release into the circulation of GFP fusion protein in arginine vasopressin enhanced GFP transgenic rats: response to osmotic stimulation. FEBS J 2015; 282:2488-99. [DOI: 10.1111/febs.13291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Keita Satoh
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Takumi Oti
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Akiko Katoh
- Department of Physiology; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - Yoichi Ueta
- Department of Physiology; School of Medicine; University of Occupational and Environmental Health; Kitakyushu Japan
| | - John F. Morris
- Department of Physiology; Anatomy and Genetics; Le Gros Clark Building; University of Oxford; UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute; Graduate School of Natural Science and Technology; Okayama University; Japan
| |
Collapse
|
28
|
Peng F, Qu ZW, Qiu CY, Liao M, Hu WP. Spinal vasopressin alleviates formalin-induced nociception by enhancing GABAA receptor function in mice. Neurosci Lett 2015; 593:61-5. [PMID: 25782631 DOI: 10.1016/j.neulet.2015.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 12/18/2022]
Abstract
Arginine vasopressin (AVP) plays a regulatory role in nociception. Intrathecal administration of AVP displays an antinociceptive effect. However, little is understood about the mechanism underlying spinal AVP analgesia. Here, we have found that spinal AVP dose dependently reduced the second, but not first, phase of formalin-induced spontaneous nociception in mice. The AVP analgesia was completely blocked by intrathecal injected SR 49059, a vasopressin-1A (V1A) receptor antagonist. However, spinal AVP failed to exert its antinociceptive effect on the second phase formalin-induced spontaneous nociception in V1A receptor knock-out (V1A-/-) mice. The AVP analgesia was also reversed by bicuculline, a GABAA receptor antagonist. Moreover, AVP potentiated GABA-activated currents in dorsal root ganglion neurons from wild-type littermates, but not from V1A-/- mice. Our results may reveal a novel spinal mechanism of AVP analgesia by enhancing the GABAA receptor function in the spinal cord through V1A receptors.
Collapse
Affiliation(s)
- Fang Peng
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; Department of Anatomy and Histology & Embryology, College of Basic Medicine, Wenzou Medical University, Wenzou 32500, Zhejiang, PR China
| | - Zu-Wei Qu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Chun-Yu Qiu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Min Liao
- Department of Anatomy and Histology & Embryology, College of Basic Medicine, Wenzou Medical University, Wenzou 32500, Zhejiang, PR China.
| | - Wang-Ping Hu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China.
| |
Collapse
|
29
|
Hashimoto H, Matsuura T, Ueta Y. Fluorescent visualization of oxytocin in the hypothalamo-neurohypophysial system. Front Neurosci 2014; 8:213. [PMID: 25100939 PMCID: PMC4107947 DOI: 10.3389/fnins.2014.00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/02/2014] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OXT) is well known for its ability to the milk ejection reflex and uterine contraction. It is also involved in several other behaviors, such as anti-nociception, anxiety, feeding, social recognition, and stress responses. OXT is synthesized in the magnocellular neurosecretory cells (MNCs) in the hypothalamic paraventricular (PVN) and the supraoptic nuclei (SON) that terminate their axons in the posterior pituitary (PP). We generated transgenic rats that express the OXT and fluorescent protein fusion gene in order to visualize OXT in the hypothalamo-neurohypophysial system (HNS). In these transgenic rats, fluorescent proteins were observed in the MNCs and axon terminals in the PP. This transgenic rat is a new tool to study the physiological role of OXT in the HNS.
Collapse
Affiliation(s)
- Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| |
Collapse
|
30
|
High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response. Neuropharmacology 2014; 79:75-82. [DOI: 10.1016/j.neuropharm.2013.10.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/25/2013] [Accepted: 10/27/2013] [Indexed: 12/16/2022]
|
31
|
[Visualization of the response in the central nervous system after nociceptive stimulation using transgenic animals]. J UOEH 2012; 34:315-21. [PMID: 23270255 DOI: 10.7888/juoeh.34.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Physiological response to acute and chronic nociceptive stimulation are important for living organisms. In our laboratory, we generated transgenic rats expressing the arginine vasopressin (AVP) and enhanced green fluorescent protein (eGFP) fusion gene, and the c-fos and monomeric red fluorescent protein 1 (mRFP1) fusion gene in the central nervous system. We made it possible to visualize the pain response in the living cells. Using these transgenic rats, the aim of our studies is the elucidation of the physiological role of AVP after nociceptive stimulation and the pathophysiology of work-related pain. We describe the previous findings of nociceptive response, using these transgenic animals.
Collapse
|
32
|
Ishikura T, Suzuki H, Yoshimura M, Ohkubo JI, Katoh A, Ohbuchi T, Ohno M, Fujihara H, Kawasaki M, Ohnishi H, Nakamura T, Ueta Y. Expression of the c-fos-monomeric red fluorescent protein 1 fusion gene in the spinal cord and the hypothalamic paraventricular nucleus in transgenic rats after nociceptive stimulation. Brain Res 2012; 1479:52-61. [PMID: 22960202 DOI: 10.1016/j.brainres.2012.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 08/17/2012] [Accepted: 08/17/2012] [Indexed: 11/24/2022]
Abstract
We generated transgenic rats expressing the c-fos and monomeric red fluorescent protein 1 (mRFP1) fusion gene in the central nervous system after adequate stimulation. In the present study, the time-course of the induction patterns of mRFP1 fluorescence in the spinal cord and the paraventricular nucleus (PVN) was compared with that of Fos-like immunoreactivity (LI) within 24 h after subcutaneous (s.c.) injection of 0.9% saline and 5% formalin in both hind paws. Control rats were not treated. In the control and saline/formalin injected rats, scattered mRFP1 fluorescence in the spinal cord and the PVN was observed at 0 min, though there was little Fos-LI in the same region. The mRFP1 fluorescence in the spinal cord and the PVN was increased at 3h after formalin. On the other hand, the changes of Fos-LI in the spinal cord and the PVN were relatively shorter than those of the mRFP1 fluorescence after formalin. These results suggest that the c-fos-mRFP1 fusion gene expression is slightly upregulated in normal conditions and nociceptive stimulation-induced induction of the fusion gene may be maintained longer than the endogenous c-fos gene expression in the spinal cord and the PVN. Next, nocifensive behavior and mRFP1 fluorescence and Fos-LI in the spinal cord and the PVN after s.c. injection of formalin, 4α-phorbol 12,13-didecanoate (4α-PDD) and saline were compared. Although the 4α-PDD injected rats seldom displayed nocifensive behaviors like s.c. saline injection, 4α-PDD injection caused mRFP1 fluorescence and Fos-LI significantly in the spinal cord and the PVN unlike s.c. saline injection.
Collapse
Affiliation(s)
- Toru Ishikura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Murphy D, Konopacka A, Hindmarch C, Paton JFR, Sweedler JV, Gillette MU, Ueta Y, Grinevich V, Lozic M, Japundzic-Zigon N. The hypothalamic-neurohypophyseal system: from genome to physiology. J Neuroendocrinol 2012; 24:539-53. [PMID: 22448850 PMCID: PMC3315060 DOI: 10.1111/j.1365-2826.2011.02241.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The elucidation of the genomes of a large number of mammalian species has produced a huge amount of data on which to base physiological studies. These endeavours have also produced surprises, not least of which has been the revelation that the number of protein coding genes needed to make a mammal is only 22 333 (give or take). However, this small number belies an unanticipated complexity that has only recently been revealed as a result of genomic studies. This complexity is evident at a number of levels: (i) cis-regulatory sequences; (ii) noncoding and antisense mRNAs, most of which have no known function; (iii) alternative splicing that results in the generation of multiple, subtly different mature mRNAs from the precursor transcript encoded by a single gene; and (iv) post-translational processing and modification. In this review, we examine the steps being taken to decipher genome complexity in the context of gene expression, regulation and function in the hypothalamic-neurohypophyseal system (HNS). Five unique stories explain: (i) the use of transcriptomics to identify genes involved in the response to physiological (dehydration) and pathological (hypertension) cues; (ii) the use of mass spectrometry for single-cell level identification of biological active peptides in the HNS, and to measure in vitro release; (iii) the use of transgenic lines that express fusion transgenes enabling (by cross-breeding) the generation of double transgenic lines that can be used to study vasopressin (AVP) and oxytocin (OXT) neurones in the HNS, as well as their neuroanatomy, electrophysiology and activation upon exposure to any given stimulus; (iv) the use of viral vectors to demonstrate that somato-dendritically released AVP plays an important role in cardiovascular homeostasis by binding to V1a receptors on local somata and dendrites; and (v) the use of virally-mediated optogenetics to dissect the role of OXT and AVP in the modulation of a wide variety of behaviours.
Collapse
Affiliation(s)
- D Murphy
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The supraoptic nucleus (SON) is a particularly good model for the study of cell-type specific gene expression because it contains two distinct neuronal phenotypes, the oxytocin (OT) and vasopressin (AVP) synthesising magnocellular neurones (MCNs). The MCNs are found in approximately equal numbers and selectively express either the OT or the AVP gene in approximately 97% of the MCN population in the SON. An unresolved issue has been to determine what mechanisms are responsible for the highly selective regulation of the cell-type specific expression of OT and AVP genes in the MCNs. Previous attempts to address this question have used various bioinformatic and molecular approaches, which included using heterologous cell lines to study the putative cis-elements in the OT and AVP genes, and the use of OT and/or AVP transgenes in transgenic rodents. The data from all of the above studies identified a region < 0.6 kbp upstream of OT exon I and approximately 3 kb upstream of AVP exon I as being sufficient to produce cell-specific expression of the OT and AVP genes, respectively, although they failed to identify the specific cis-domains responsible for the MCN-specific gene expression. An alternative experimental approach to perform promoter deletion analysis in vivo (i.e. to use stereotaxic viral vector gene transfer into the SON to further dissect the cis-elements in the OT and AVP genes) will be described here. This in vivo method uses adeno-associated viral (AAV) vectors expressing OT-promoter deletion constructs and utilises the enhanced green fluorescent protein (EGFP) as the reporter. The AAV constructs are stereotaxically injected into the rat brain above the SON and, 2 weeks post injection, the rats are sacrificed and assayed for EGFP expression. Using this method, it has been possible to identify specific regions upstream of the transcription start site in the OT and AVP gene promoters that are responsible for conferring the cell-type specificity of the OT and AVP gene expression in the SON.
Collapse
Affiliation(s)
- H Gainer
- Section on Molecular Neuroscience, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
35
|
Iwanaga M, Ohno M, Katoh A, Ohbuchi T, Ishikura T, Fujihara H, Nomura M, Hachisuka K, Ueta Y. Upregulation of arginine vasopressin synthesis in the rat hypothalamus after kainic acid-induced seizures. Brain Res 2011; 1424:1-8. [PMID: 22005685 DOI: 10.1016/j.brainres.2011.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022]
Abstract
We examined the effects of kainic acid (KA)-induced seizures on arginine vasopressin (AVP) gene expression in the paraventricular (PVN) and the supraoptic nuclei (SON) of normal rats using in situ hybridization histochemistry. We also investigated the expression of the AVP-enhanced green fluorescent protein (eGFP) fusion gene after KA-induced seizures in transgenic rats. AVP heteronuclear (hn) RNA levels in the PVN and the SON were significantly increased at 3h and 24h after subcutaneous (s.c.) administration of KA in normal rats. AVP mRNA levels in the PVN and the SON did not change significantly at 3h, 24h and 1 week after s.c. administration of KA in normal rats. In KA-administered transgenic rats, AVP-eGFP fluorescence in the magnocellular and parvocellular divisions of the PVN and the SON were significantly stronger compared to vehicle-administered transgenic rats. By pretreatment with MK-801 (nonselective N-methyl-D-aspartate, NMDA, receptor antagonist), AVP-eGFP transgenic rats after administration of KA did not show preconvulsive symptoms or convulsions and AVP-eGFP fluorescence in the magnocellular and parvocellular divisions of the PVN and the SON of these rats was significantly reduced. These results suggested that KA-induced increases in AVP transcripts and AVP were prevented by MK801 because seizure activity was prevented or reduced.
Collapse
Affiliation(s)
- Masaru Iwanaga
- Department of Rehabilitation Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Katoh A, Fujihara H, Ohbuchi T, Onaka T, Hashimoto T, Kawata M, Suzuki H, Ueta Y. Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology 2011; 152:2768-74. [PMID: 21540286 DOI: 10.1210/en.2011-0006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have generated rats bearing an oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion transgene. The mRFP1 fluorescence was highly visible in ventral part of the supraoptic nucleus (SON) and the posterior pituitary in a whole mount. mRFP1 fluorescence in hypothalamic sections was also observed in the SON, the paraventricular nucleus (PVN), and the internal layer of the median eminence. Salt loading for 5 d caused a marked increase in mRFP1 fluorescence in the SON, the PVN, the median eminence, and the posterior pituitary. In situ hybridization histochemistry revealed that the expression of the mRNA encoding the OXT-mRFP1 fusion gene was observed in the SON and the PVN of euhydrated rats and increased dramatically after chronic salt loading. The expression of the endogenous OXT and the arginine vasopressin (AVP) genes were significantly increased in the SON and the PVN after chronic salt loading in both nontransgenic and transgenic rats. These responses were not different between male and female rats. Compared with nontransgenic rats, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT, and AVP levels. Finally, we succeeded in generating a double-transgenic rat that expresses both the OXT-mRFP1 fusion gene and the AVP-enhanced green fluorescent protein fusion gene. Our new transgenic rats are valuable new tools to study the physiology of the hypothalamo-neurohypophysial system.
Collapse
Affiliation(s)
- Akiko Katoh
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats. Eur J Pharmacol 2011; 655:31-7. [DOI: 10.1016/j.ejphar.2011.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/16/2023]
|
38
|
Ueta Y, Dayanithi G, Fujihara H. Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models. Horm Behav 2011; 59:221-6. [PMID: 21185297 DOI: 10.1016/j.yhbeh.2010.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/18/2010] [Accepted: 12/17/2010] [Indexed: 11/27/2022]
Abstract
Arginine vasopressin (AVP) is involved in the homeostatic responses numerous life-threatening conditions, for example, the promotion of water conservation during periods of dehydration, and the activation of the hypothalamo-pituitary adrenal axis by emotional stress. Recently, we generated new transgenic animals that faithfully express an AVP-enhanced green fluorescent protein (eGFP) fusion gene in the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the suprachiasmatic nucleus (SCN) of the hypothalamus. In these transgenic rats, marked increases in eGFP fluorescence and fusion gene expression were observed in the magnocellular division of the PVN and the SON, but not the SCN, after osmotic challenges, such as dehydration and salt loading, and both acute and chronic nociceptive stimuli. In the parvocellular division of the PVN, eGFP expression was increased after acute and chronic pain, bilateral adrenalectomy, endotoxin shock and restraint stress. In the extra-hypothalamic areas of the brain, eGFP expression was induced in the locus coeruleus after the intracerebroventricular administration of colchicine. Next, we generated another transgenic rat that expresses a fusion gene comprised of c-fos promoter-enhancer sequences driving the expression of monomeric red fluorescent protein 1 (mRFP1). In these transgenic rats, abundant nuclear fluorescence of mRFP1 was observed in the PVN, the SON and other osmosensitive areas after acute osmotic stimulation. Finally, we generated a double transgenic rat that expresses both the AVP-eGFP and c-fos-mRFP1 fusion genes. In this double transgenic rat, we have observed nuclear mRFP1 fluorescence in eGFP-positive neurons after acute osmotic stimulation. These unique transgenic rats provide an exciting new tool to examine neuroendocrine responses to physiological and stressful stimuli in both in vivo and in vitro preparations.
Collapse
Affiliation(s)
- Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | |
Collapse
|
39
|
Arima H, Baler R, Aguilera G. Fos proteins are not prerequisite for osmotic induction of vasopressin transcription in supraoptic nucleus of rats. Neurosci Lett 2010; 486:5-9. [PMID: 20850504 PMCID: PMC3408597 DOI: 10.1016/j.neulet.2010.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/11/2010] [Accepted: 09/10/2010] [Indexed: 12/16/2022]
Abstract
While it is well known that osmotic stimulation induces the expression of Fos family members in the supraoptic nucleus (SON), it is unclear whether the induced protein products are involved in the regulation of the gene transcription of arginine vasopressin (AVP). In the present study, we examined the in vivo correlation between changes in AVP gene transcription and expression of the various Fos family members in the SON after acute osmotic stimuli. The data demonstrated that the peak of AVP transcription (measured by intronic in situ hybridization) observed 15min after an injection of hypertonic saline preceded the expression of Fos proteins, which became detectable at 30min and peaked at 120min. Electrophoretic mobility shift assay showed that the expressed Fos proteins bound to the composite AP-1/CRE-like site in the AVP promoter. These data suggest that Fos proteins in the SON induced by acute osmotic stimuli could affect AVP gene transcription by binding to the AVP promoter, but they are not prerequisite for the induction of AVP gene transcription.
Collapse
Affiliation(s)
- Hiroshi Arima
- Section on Endocrine Physiology, Developmental Endocrinology Branch, National Institute of Child Health and Diseases, Bethesda, MD 20892, United States.
| | | | | |
Collapse
|
40
|
Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 2010; 16:e138-56. [PMID: 20626426 PMCID: PMC2972642 DOI: 10.1111/j.1755-5949.2010.00185.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein‐coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo–pituitary–adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca2+ in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy.
Collapse
Affiliation(s)
- Cedric Viero
- Department of Cardiology, Wales Heart Research Institute, Cardiff University, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ohbuchi T, Sato K, Suzuki H, Okada Y, Dayanithi G, Murphy D, Ueta Y. Acid-sensing ion channels in rat hypothalamic vasopressin neurons of the supraoptic nucleus. J Physiol 2010; 588:2147-62. [PMID: 20442265 DOI: 10.1113/jphysiol.2010.187625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Body fluid balance requires the release of arginine vasopressin (AVP) from the neurohypophysis. The hypothalamic supraoptic nucleus (SON) is a major site of AVP synthesis, and AVP release is controlled somatodendritically or at the level of nerve terminals by electrical activities of magnocellular neurosecretory cells (MNCs). Acid-sensing ion channels (ASICs) are neuronal voltage-insensitive cationic channels that are activated by extracellular acidification. Although ASICs are widely expressed in the central nervous system, functional ASICs have not been assessed in AVP neurons. ASICs are modulated by lactate (La(-)), which reduces the extracellular calcium ion concentration. We hypothesize that ASICs modify neuronal function through La(-) that is generated during local hypoxia resulting from osmotic stimulation in the SON. In the present study, we used the whole-cell patch-clamp technique to show that acid-induced ASIC current is enhanced by La(-) in isolated rat SON MNCs that express an AVP-enhanced green fluorescent protein (eGFP) transgene. Immunohistochemistry and multi-cell reverse transcriptase-polymerase chain reaction experiments revealed that these neurons express the ASIC1a and ASIC2a subunits. In addition, increased La(-) production was specifically observed in the SON after osmotic stress. These results suggest that interaction between ASICs and La(-) in the SON plays an important role in the regulatory mechanism of body fluid homeostasis.
Collapse
Affiliation(s)
- Toyoaki Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Ohbuchi T, Yokoyama T, Fujihara H, Suzuki H, Ueta Y. Electrophysiological identification of the functional presynaptic nerve terminals on an isolated single vasopressin neurone of the rat supraoptic nucleus. J Neuroendocrinol 2010; 22:413-9. [PMID: 20163519 DOI: 10.1111/j.1365-2826.2010.01979.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Release of arginine vasopressin (AVP) and oxytocin from magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) is under the control of glutamate-dependent excitation and GABA-dependent inhibition. The possible role of the synaptic terminals attached to SON neurones has been investigated using whole-cell patch-clamp recording in in vitro rat brain slice preparations. Recent evidence has provided new insights into the repercussions of glial environment modifications on the physiology of MNCs at the synaptic level in the SON. In the present study, excitatory glutamatergic and inhibitory GABAergic synaptic inputs were recorded from an isolated single SON neurone cultured for 12 h, using the whole-cell patch clamp technique. Neurones expressed an AVP-enhanced green fluorescent protein (eGFP) fusion gene in MNCs. In addition, native synaptic terminals attached to a dissociated AVP-eGFP neurone were visualised with synaptic vesicle markers. These results suggest that the function of presynaptic nerve terminals may be evaluated directly in a single AVP-eGFP neurone. These preparations would be helpful in future studies aiming to electrophysiologically distinguish between the functions of synaptic terminals and glial modifications in the SON neurones.
Collapse
Affiliation(s)
- T Ohbuchi
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | | | | | | | | |
Collapse
|