1
|
Cang J, Chen C, Li C, Liu Y. Genetically defined neuron types underlying visuomotor transformation in the superior colliculus. Nat Rev Neurosci 2024; 25:726-739. [PMID: 39333418 DOI: 10.1038/s41583-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 09/29/2024]
Abstract
The superior colliculus (SC) is a conserved midbrain structure that is important for transforming visual and other sensory information into motor actions. Decades of investigations in numerous species have made the SC and its nonmammalian homologue, the optic tectum, one of the best studied structures in the brain, with rich information now available regarding its anatomical organization, its extensive inputs and outputs and its important functions in many reflexive and cognitive behaviours. Excitingly, recent studies using modern genomic and physiological approaches have begun to reveal the diverse neuronal subtypes in the SC, as well as their unique functions in visuomotor transformation. Studies have also started to uncover how subtypes of SC neurons form intricate circuits to mediate visual processing and visually guided behaviours. Here, we review these recent discoveries on the cell types and neuronal circuits underlying visuomotor transformations mediated by the SC. We also highlight the important future directions made possible by these new developments.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| | - Chen Chen
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Yuanming Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
2
|
Sugino H, Tanno S, Yoshida T, Isomura Y, Hira R. Functional segregation and dynamic integration of the corticotectal descending signal in rat. Neurosci Res 2024:S0168-0102(24)00111-1. [PMID: 39306244 DOI: 10.1016/j.neures.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The superior colliculus (SC) receives inputs from various brain regions in a layer- and radial subregion-specific manner, but whether the SC exhibits subregion-specific dynamics remains unclear. To address this issue, we recorded the spiking activity of single SC neurons while photoactivating cortical areas in awake head-fixed Thy1-ChR2 rats. We classified 309 neurons that responded significantly into 8 clusters according to the response dynamics. Among them, neurons with monophasic excitatory responses (7-12 ms latency) that returned to baseline within 20 ms were commonly observed in the optic and intermediate gray layers of centromedial and centrolateral SC. In contrast, neurons with complex polyphasic responses were commonly observed in the deep layers of the anterolateral SC. Cross-correlation analysis suggested that the complex pattern could be only partly explained by an internal circuit of the deep gray layer. Our results indicate that medial to centrolateral SC neurons simply relay cortical activity, whereas neurons in the deep layers of the anterolateral SC dynamically integrate inputs from the cortex, SNr, CN, and local circuits. These findings suggest a spatial gradient in SC integration, with a division of labor between simple relay circuits and those integrating complex dynamics.
Collapse
Affiliation(s)
- Hikaru Sugino
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Tanno
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsumi Yoshida
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
3
|
Cover KK, Elliott K, Preuss SM, Krauzlis RJ. A distinct circuit for biasing visual perceptual decisions and modulating superior colliculus activity through the mouse posterior striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605853. [PMID: 39372791 PMCID: PMC11451588 DOI: 10.1101/2024.07.31.605853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The basal ganglia play a key role in visual perceptual decisions. Despite being the primary target in the basal ganglia for inputs from the visual cortex, the posterior striatum's (PS) involvement in visual perceptual behavior remains unknown in rodents. We reveal that the PS direct pathway is largely segregated from the dorsomedial striatum (DMS) direct pathway, the other major striatal target for visual cortex. We investigated the role of the PS in visual perceptual decisions by optogenetically stimulating striatal medium spiny neurons in the direct pathway (D1-MSNs) of mice performing a visual change-detection task. PS D1-MSN activation robustly biased visual decisions in a manner dependent on visual context, timing, and reward expectation. We examined the effects of PS and DMS direct pathway activation on neuronal activity in the superior colliculus (SC), a major output target of the basal ganglia. Activation of either direct pathway rapidly modulated SC neurons, but mostly targeted different SC neurons and had opposite effects. These results demonstrate that the PS in rodents provides an important route for controlling visual decisions, in parallel with the better known DMS, but with distinct anatomical and functional properties.
Collapse
Affiliation(s)
- Kara K. Cover
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Kerry Elliott
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Sarah M. Preuss
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Richard J. Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| |
Collapse
|
4
|
Cone JJ, Mitchell AO, Parker RK, Maunsell JHR. Stimulus-dependent differences in cortical versus subcortical contributions to visual detection in mice. Curr Biol 2024; 34:1940-1952.e5. [PMID: 38640924 PMCID: PMC11080572 DOI: 10.1016/j.cub.2024.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with the V1 supporting the perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports the perception of many of the same visual features traditionally associated with the V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to the detection of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near their perceptual threshold while white noise patterns of optogenetic stimulation were delivered to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in the SC are critical for the detection of both luminance and contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK but no sign of a comparable modulation for luminance detection. The data suggest that behavioral detection of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both the SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually guided behaviors.
Collapse
Affiliation(s)
- Jackson J Cone
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA.
| | - Autumn O Mitchell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - Rachel K Parker
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - John H R Maunsell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Russell LE, Fişek M, Yang Z, Tan LP, Packer AM, Dalgleish HWP, Chettih SN, Harvey CD, Häusser M. The influence of cortical activity on perception depends on behavioral state and sensory context. Nat Commun 2024; 15:2456. [PMID: 38503769 PMCID: PMC10951313 DOI: 10.1038/s41467-024-46484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zidan Yang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Lynn Pei Tan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
6
|
Cazemier JL, Haak R, Tran TKL, Hsu ATY, Husic M, Peri BD, Kirchberger L, Self MW, Roelfsema P, Heimel JA. Involvement of superior colliculus in complex figure detection of mice. eLife 2024; 13:e83708. [PMID: 38270590 PMCID: PMC10810606 DOI: 10.7554/elife.83708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Object detection is an essential function of the visual system. Although the visual cortex plays an important role in object detection, the superior colliculus can support detection when the visual cortex is ablated or silenced. Moreover, it has been shown that superficial layers of mouse SC (sSC) encode visual features of complex objects, and that this code is not inherited from the primary visual cortex. This suggests that mouse sSC may provide a significant contribution to complex object vision. Here, we use optogenetics to show that mouse sSC is involved in figure detection based on differences in figure contrast, orientation, and phase. Additionally, our neural recordings show that in mouse sSC, image elements that belong to a figure elicit stronger activity than those same elements when they are part of the background. The discriminability of this neural code is higher for correct trials than for incorrect trials. Our results provide new insight into the behavioral relevance of the visual processing that takes place in sSC.
Collapse
Affiliation(s)
- J Leonie Cazemier
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Robin Haak
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - TK Loan Tran
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Ann TY Hsu
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Medina Husic
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Brandon D Peri
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Lisa Kirchberger
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Matthew W Self
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| | - Pieter Roelfsema
- Department of Vision and Cognition, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la VisionParisFrance
| | - J Alexander Heimel
- Department of Circuits, Structure & Function, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamNetherlands
| |
Collapse
|
7
|
Baruchin LJ, Alleman M, Schröder S. Reward Modulates Visual Responses in the Superficial Superior Colliculus of Mice. J Neurosci 2023; 43:8663-8680. [PMID: 37879894 PMCID: PMC7615379 DOI: 10.1523/jneurosci.0089-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The processing of sensory input is constantly adapting to behavioral demands and internal states. The drive to obtain reward, e.g., searching for water when thirsty, is a strong behavioral demand and associating the reward with its source, a certain environment or action, is paramount for survival. Here, we show that water reward increases subsequent visual activity in the superficial layers of the superior colliculus (SC), which receive direct input from the retina and belong to the earliest stages of visual processing. We trained mice of either sex to perform a visual decision task and recorded the activity of neurons in the SC using two-photon calcium imaging and high-density electrophysiological recordings. Responses to visual stimuli in around 20% of visually responsive neurons in the superficial SC were affected by reward delivered in the previous trial. Reward mostly increased visual responses independent from modulations due to pupil size changes. The modulation of visual responses by reward could not be explained by movements like licking. It was specific to responses to the following visual stimulus, independent of slow fluctuations in neural activity and independent of how often the stimulus was previously rewarded. Electrophysiological recordings confirmed these results and revealed that reward affected the early phase of the visual response around 80 ms after stimulus onset. Modulation of visual responses by reward, but not pupil size, significantly improved the performance of a population decoder to detect visual stimuli, indicating the relevance of reward modulation for the visual performance of the animal.SIGNIFICANCE STATEMENT To learn which actions lead to food, water, or safety, it is necessary to integrate the receiving of reward with sensory stimuli related to the reward. Cortical stages of sensory processing have been shown to represent stimulus-reward associations. Here, we show, however, that reward influences neurons at a much earlier stage of sensory processing, the superior colliculus (SC), receiving direct input from the retina. Visual responses were increased shortly after the animal received the water reward, which led to an improved stimulus signal in the population of these visual neurons. Reward modulation of early visual responses may thus improve perception of visual environments predictive of reward.
Collapse
Affiliation(s)
- Liad J Baruchin
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Matteo Alleman
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| | - Sylvia Schröder
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
- Institute of Ophthalmology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Lehnert J, Cha K, Halperin J, Yang K, Zheng DF, Khadra A, Cook EP, Krishnaswamy A. Visual attention to features and space in mice using reverse correlation. Curr Biol 2023; 33:3690-3701.e4. [PMID: 37611588 DOI: 10.1016/j.cub.2023.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Visual attention allows the brain to evoke behaviors based on the most important visual features. Mouse models offer immense potential to gain a circuit-level understanding of this phenomenon, yet how mice distribute attention across features and locations is not well understood. Here, we describe a new approach to address this limitation by training mice to detect weak vertical bars in a background of dynamic noise while spatial cues manipulate their attention. By adapting a reverse-correlation method from human studies, we linked behavioral decisions to stimulus features and locations. We show that mice deployed attention to a small rostral region of the visual field. Within this region, mice attended to multiple features (orientation, spatial frequency, contrast) that indicated the presence of weak vertical bars. This attentional tuning grew with training, multiplicatively scaled behavioral sensitivity, approached that of an ideal observer, and resembled the effects of attention in humans. Taken together, we demonstrate that mice can simultaneously attend to multiple features and locations of a visual stimulus.
Collapse
Affiliation(s)
- Jonas Lehnert
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada
| | - Kuwook Cha
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Jamie Halperin
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Kerry Yang
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Daniel F Zheng
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada; Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC H3G 0B1, Canada
| | - Erik P Cook
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada; Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC H3G 0B1, Canada.
| | - Arjun Krishnaswamy
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada; Quantitative Life Sciences, McGill University, Montreal, QC H3A 1E3, Canada.
| |
Collapse
|
10
|
Cone JJ, Mitchell AO, Parker RK, Maunsell JHR. Temporal weighting of cortical and subcortical spikes reveals stimulus dependent differences in their contributions to behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554473. [PMID: 37662213 PMCID: PMC10473714 DOI: 10.1101/2023.08.23.554473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with V1 supporting perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports perception of many of the same visual features traditionally associated with V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to perception of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near perceptual threshold while we presented white noise patterns of optogenetic stimulation to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in SC are critical for detection of both luminance or contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK, but no sign of a comparable modulation for luminance detection. The data suggest that perception of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually-guided behaviors.
Collapse
|
11
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus cell types bidirectionally modulate choice activity in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537884. [PMID: 37162880 PMCID: PMC10168218 DOI: 10.1101/2023.04.22.537884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
12
|
Modulation of cholinergic, GABA-ergic and glutamatergic components of superior colliculus affect REM sleep in rats. Behav Brain Res 2023; 438:114177. [PMID: 36306944 DOI: 10.1016/j.bbr.2022.114177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
The superior colliculus (SC) is associated with visual attention, spatial navigation, decision making, escape and approach responses, some of which are important for defence and survival in rodents. SC helps in initiating and controlling saccadic eye movements and gaze during wakefulness. It is also activated during rapid eye movement (REM) sleep associated rapid eye movements (REMs). To investigate the contribution of SC in sleep-wake behaviour, we have demonstrated that manipulation of SC with scopolamine, carbachol, muscimol, picrotoxin and MK-801 decreased the amount of REM sleep. We observed that scopolamine and picrotoxin as well as muscimol decreased REM sleep frequency. MK-801 decreased percent amount of REM sleep, however, neither the frequency nor the duration/episode was affected. The cholinergic and GABA-ergic modulation of SC affecting REM sleep may be involved in REM sleep associated visuo-spatial learning and memory consolidation, which however, need to be confirmed. Furthermore, the results suggest involvement of efferent from SC in modulation of sleep-waking via the brainstem sleep regulating areas.
Collapse
|
13
|
Shine JM. Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neurosci Biobehav Rev 2022; 143:104921. [DOI: 10.1016/j.neubiorev.2022.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
|
14
|
Groves Kuhnle C, Grimes M, Suárez Casanova VM, Turrigiano GG, Van Hooser SD. Juvenile Shank3 KO Mice Adopt Distinct Hunting Strategies during Prey Capture Learning. eNeuro 2022; 9:ENEURO.0230-22.2022. [PMID: 36446569 PMCID: PMC9768843 DOI: 10.1523/eneuro.0230-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 12/02/2022] Open
Abstract
Mice are opportunistic omnivores that readily learn to hunt and eat insects such as crickets. The details of how mice learn these behaviors and how these behaviors may differ in strains with altered neuroplasticity are unclear. We quantified the behavior of juvenile wild-type (WT) and Shank3 knock-out (KO) mice as they learned to hunt crickets during the critical period for ocular dominance plasticity. This stage involves heightened cortical plasticity including homeostatic synaptic scaling, which requires Shank3, a glutamatergic synaptic protein that, when mutated, produces Phelan-McDermid syndrome and is often comorbid with autism spectrum disorder (ASD). Both strains showed interest in examining live and dead crickets and learned to hunt. Shank3 knock-out mice took longer to become proficient, and, after 5 d, did not achieve the efficiency of wild-type mice in either time-to-capture or distance-to-capture. Shank3 knock-out mice also exhibited different characteristics when pursuing crickets that could not be explained by a simple motor deficit. Although both genotypes moved at the same average speed when approaching a cricket, Shank3 KO mice paused more often, did not begin final accelerations toward crickets as early, and did not close the distance gap to the cricket as quickly as wild-type mice. These differences in Shank3 KO mice are reminiscent of some behavioral characteristics of individuals with ASD as they perform complex tasks, such as slower action initiation and completion. This paradigm will be useful for exploring the neural circuit mechanisms that underlie these learning and performance differences in monogenic ASD rodent models.
Collapse
Affiliation(s)
| | - Micaela Grimes
- Department of Biology, Brandeis University, Waltham, MA 02453
| | | | | | | |
Collapse
|
15
|
Li C, McHaney KM, Sederberg PB, Cang J. Tree Shrews as an Animal Model for Studying Perceptual Decision-Making Reveal a Critical Role of Stimulus-Independent Processes in Guiding Behavior. eNeuro 2022; 9:ENEURO.0419-22.2022. [PMID: 36414413 PMCID: PMC9718354 DOI: 10.1523/eneuro.0419-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Decision-making is an essential cognitive process by which we interact with the external world. However, attempts to understand the neural mechanisms of decision-making are limited by the current available animal models and the technologies that can be applied to them. Here, we build on the renewed interest in using tree shrews (Tupaia belangeri) in vision research and provide strong support for them as a model for studying visual perceptual decision-making. Tree shrews learned very quickly to perform a two-alternative forced choice contrast discrimination task, and they exhibited differences in response time distributions depending on the reward and punishment structure of the task. Specifically, they made occasional fast guesses when incorrect responses are punished by a constant increase in the interval between trials. This behavior was suppressed when faster incorrect responses were discouraged by longer intertrial intervals. By fitting the behavioral data with two variants of racing diffusion decision models, we found that the between-trial delay affected decision-making by modulating the drift rate of a time accumulator. Our results thus provide support for the existence of an internal process that is independent of the evidence accumulation in decision-making and lay a foundation for future mechanistic studies of perceptual decision-making using tree shrews.
Collapse
Affiliation(s)
- Chuiwen Li
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Kara M McHaney
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Per B Sederberg
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | - Jianhua Cang
- Department of Biology and Department of Psychology, University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
16
|
Gao F, Ma J, Yu YQ, Gao XF, Bai Y, Sun Y, Liu J, Liu X, Barry DM, Wilhelm S, Piccinni-Ash T, Wang N, Liu D, Ross RA, Hao Y, Huang X, Jia JJ, Yang Q, Zheng H, van Nispen J, Chen J, Li H, Zhang J, Li YQ, Chen ZF. A non-canonical retina-ipRGCs-SCN-PVT visual pathway for mediating contagious itch behavior. Cell Rep 2022; 41:111444. [PMID: 36198265 PMCID: PMC9595067 DOI: 10.1016/j.celrep.2022.111444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions. It has been shown that GRP-GRPR neuropeptide signaling in the SCN is important for contagious itch behavior in mice. Gao et al. find that SCN-projecting ipRGCs are sufficient to relay itch information from the retina to the SCN by releasing neuropeptide PACAP to activate the GRP-GRPR pathway.
Collapse
Affiliation(s)
- Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Ma
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yao-Qing Yu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Xiao-Fei Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, P. R. China
| | - Yang Bai
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110016, P. R. China
| | - Yi Sun
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Binzhou Medical University, Yantai 264003, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianyu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devin M. Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler Piccinni-Ash
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Na Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Dongyang Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Pain Management, the State Key Clinical Specialty in Pain Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Rachel A. Ross
- Department of Neuroscience, Psychiatry and Medicine, Albert Einstein College of Medicine Rose F. Kennedy Center, Bronx, NY, USA
| | - Yan Hao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Department of Pediatrics, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xu Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Jin-Jing Jia
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: College of Life Sciences, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zheng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Johan van Nispen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact,Correspondence:
| |
Collapse
|
17
|
Wheatcroft T, Saleem AB, Solomon SG. Functional Organisation of the Mouse Superior Colliculus. Front Neural Circuits 2022; 16:792959. [PMID: 35601532 PMCID: PMC9118347 DOI: 10.3389/fncir.2022.792959] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a highly conserved area of the mammalian midbrain that is widely implicated in the organisation and control of behaviour. SC receives input from a large number of brain areas, and provides outputs to a large number of areas. The convergence and divergence of anatomical connections with different areas and systems provides challenges for understanding how SC contributes to behaviour. Recent work in mouse has provided large anatomical datasets, and a wealth of new data from experiments that identify and manipulate different cells within SC, and their inputs and outputs, during simple behaviours. These data offer an opportunity to better understand the roles that SC plays in these behaviours. However, some of the observations appear, at first sight, to be contradictory. Here we review this recent work and hypothesise a simple framework which can capture the observations, that requires only a small change to previous models. Specifically, the functional organisation of SC can be explained by supposing that three largely distinct circuits support three largely distinct classes of simple behaviours-arrest, turning towards, and the triggering of escape or capture. These behaviours are hypothesised to be supported by the optic, intermediate and deep layers, respectively.
Collapse
Affiliation(s)
| | | | - Samuel G. Solomon
- Institute of Behavioural Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
18
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Burlingham CS, Mirbagheri S, Heeger DJ. A unified model of the task-evoked pupil response. SCIENCE ADVANCES 2022; 8:eabi9979. [PMID: 35442730 PMCID: PMC9020670 DOI: 10.1126/sciadv.abi9979] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The pupil dilates and reconstricts following task events. It is popular to model this task-evoked pupil response as a linear transformation of event-locked impulses, whose amplitudes are used as estimates of arousal. We show that this model is incorrect and propose an alternative model based on the physiological finding that a common neural input drives saccades and pupil size. The estimates of arousal from our model agreed with key predictions: Arousal scaled with task difficulty and behavioral performance but was invariant to small differences in trial duration. Moreover, the model offers a unified explanation for a wide range of phenomena: entrainment of pupil size and saccades to task timing, modulation of pupil response amplitude and noise with task difficulty, reaction time-dependent modulation of pupil response timing and amplitude, a constrictory pupil response time-locked to saccades, and task-dependent distortion of this saccade-locked pupil response.
Collapse
Affiliation(s)
| | - Saghar Mirbagheri
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - David J. Heeger
- Department of Psychology, New York University, New York, NY 10003, USA
- Center for Neural Science, New York University, New York, NY 10003, USA
| |
Collapse
|
20
|
Grujic N, Brus J, Burdakov D, Polania R. Rational inattention in mice. SCIENCE ADVANCES 2022; 8:eabj8935. [PMID: 35245128 PMCID: PMC8896787 DOI: 10.1126/sciadv.abj8935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Behavior exhibited by humans and other organisms is generally inconsistent and biased and, thus, is often labeled irrational. However, the origins of this seemingly suboptimal behavior remain elusive. We developed a behavioral task and normative framework to reveal how organisms should allocate their limited processing resources such that sensory precision and its related metabolic investment are balanced to guarantee maximal utility. We found that mice act as rational inattentive agents by adaptively allocating their sensory resources in a way that maximizes reward consumption in previously unexperienced stimulus-reward association environments. Unexpectedly, perception of commonly occurring stimuli was relatively imprecise; however, this apparent statistical fallacy implies "awareness" and efficient adaptation to their neurocognitive limitations. Arousal systems carry reward distribution information of sensory signals, and distributional reinforcement learning mechanisms regulate sensory precision via top-down normalization. These findings reveal how organisms efficiently perceive and adapt to previously unexperienced environmental contexts within the constraints imposed by neurobiology.
Collapse
Affiliation(s)
- Nikola Grujic
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zürich, Zurich, Switzerland
| | - Jeroen Brus
- Neuroscience Center Zürich, Zurich, Switzerland
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Denis Burdakov
- Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zürich, Zurich, Switzerland
- Corresponding author. (R.P.); (D.B.)
| | - Rafael Polania
- Neuroscience Center Zürich, Zurich, Switzerland
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Corresponding author. (R.P.); (D.B.)
| |
Collapse
|
21
|
Wang L, Herman JP, Krauzlis RJ. Neuronal modulation in the mouse superior colliculus during covert visual selective attention. Sci Rep 2022; 12:2482. [PMID: 35169189 PMCID: PMC8847498 DOI: 10.1038/s41598-022-06410-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Covert visual attention is accomplished by a cascade of mechanisms distributed across multiple brain regions. Visual cortex is associated with enhanced representations of relevant stimulus features, whereas the contributions of subcortical circuits are less well understood but have been associated with selection of relevant spatial locations and suppression of distracting stimuli. As a step toward understanding these subcortical circuits, here we identified how neuronal activity in the intermediate layers of the superior colliculus (SC) of head-fixed mice is modulated during covert visual attention. We found that spatial cues modulated both firing rate and spike-count correlations. Crucially, the cue-related modulation in firing rate was due to enhancement of activity at the cued spatial location rather than suppression at the uncued location, indicating that SC neurons in our task were modulated by an excitatory or disinhibitory circuit mechanism focused on the relevant location, rather than broad inhibition of irrelevant locations. This modulation improved the neuronal discriminability of visual-change-evoked activity, but only when assessed for neuronal activity between the contralateral and ipsilateral SC. Together, our findings indicate that neurons in the mouse SC can contribute to covert visual selective attention by biasing processing in favor of locations expected to contain task-relevant information.
Collapse
Affiliation(s)
- Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| | - James P Herman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Goldstein S, Wang L, McAlonan K, Torres-Cruz M, Krauzlis RJ. Stimulus-driven visual attention in mice. J Vis 2022; 22:11. [PMID: 35044435 PMCID: PMC8787543 DOI: 10.1167/jov.22.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022] Open
Abstract
In primates, stimulus-driven changes in visual attention can facilitate or hinder perceptual performance, depending on the location and timing of the stimulus event. Mice have emerged as a powerful model for studying visual circuits and behavior; however, it is unclear whether mice show similar interactions between stimulus events and visual attention during perceptual decisions. To investigate this, we trained head-fixed mice to detect a near-threshold change in visual orientation and tested how performance was altered by task-irrelevant stimuli that occurred at different times and locations with respect to the orientation change. We found that task-irrelevant stimuli strongly affected mouse performance. Specifically, stimulus-driven attention in mice followed a similar time course as that in other species: The decreases in reaction times fully emerged between 250 and 400 ms after the stimulus event, and detection accuracy was not affected. However, the effects of stimulus-driven attention on behavior in mice were insensitive to stimulus-event location, an aspect different from what is known in primates. In contrast, reaction times in mice were reduced at longer delays after the task-irrelevant stimulus event regardless of its spatial congruence to the target. These results highlight the strengths and limitations of using mice as a model for studying higher-order visual functions.
Collapse
Affiliation(s)
- Sheridan Goldstein
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Kerry McAlonan
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| | - Mateus Torres-Cruz
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
- Laboratory for Neuroscience and Behavior, University of Sao Paulo, Sao Paulo, Brazil
- https://orcid.org/0000-0001-7571-0072
| | - Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD, USA
| |
Collapse
|
23
|
Essig J, Felsen G. Functional coupling between target selection and acquisition in the superior colliculus. J Neurophysiol 2021; 126:1524-1535. [PMID: 34550032 PMCID: PMC8782650 DOI: 10.1152/jn.00263.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
Survival in unpredictable environments requires that animals continuously evaluate their surroundings for behavioral targets, direct their movements toward those targets, and terminate movements once a target is reached. The ability to select, move toward, and acquire spatial targets depends on a network of brain regions, but it remains unknown how these goal-directed processes are linked by neural circuits. Within this network, common circuits in the midbrain superior colliculus (SC) mediate the selection and initiation of movements to spatial targets. However, SC activity often persists throughout movement, suggesting that the same SC circuits underlying target selection and movement initiation may also contribute to "target acquisition": stopping the movement at the selected target. Here, we examine the hypothesis that SC functional circuitry couples target selection and acquisition using a "default motor plan" generated by selection-related neuronal activity. Recordings from intermediate and deep layer SC neurons in mice performing a spatial choice task demonstrate that choice-predictive neurons, including optogenetically identified GABAergic neurons whose activity mediates target selection, exhibit increased activity during movement to the target. By recording from rostral and caudal SC in separate groups of mice, we also revealed higher activity in rostral than caudal neurons during target acquisition. Finally, we used an attractor model to examine how-invoking only SC circuitry-caudal SC activity related to selecting an eccentric target could generate higher rostral than caudal acquisition-related activity. Overall, our results suggest a functional coupling between SC circuits for target selection and acquisition, elucidating a key mechanism for goal-directed behavior.NEW & NOTEWORTHY How do neural circuits ensure that selected targets are successfully acquired? Here, we examine whether choice-related activity in the superior colliculus (SC) promotes a motor plan for target acquisition. By demonstrating that choice-predictive SC neurons-including GABAergic neurons-remain active throughout movement, while the activity of rostral SC neurons increases during acquisition, and by recapitulating these dynamics with an attractor model, our results support a role for SC circuits in coupling target selection and acquisition.
Collapse
Affiliation(s)
- Jaclyn Essig
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, and Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
24
|
An inferior-superior colliculus circuit controls auditory cue-directed visual spatial attention. Neuron 2021; 110:109-119.e3. [PMID: 34699777 DOI: 10.1016/j.neuron.2021.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/30/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
Selective attention modulates neuronal activity in multiple brain regions, but the origins of attention signals remain unclear. We show that, during a visual task requiring spatial attention directed by an auditory cue, an inferior-superior colliculus circuit provides the key attention signal. In mice performing a task based on a visual stimulus in the cued hemifield while ignoring a conflicting stimulus on the uncued side, the visual cortex (V1) and superior colliculus (SC) showed strong attentional modulation, with a shorter latency in the SC. The nucleus of the brachium of the inferior colliculus (nBIC), which provides auditory inputs to the SC, was activated not only at auditory cue onset but also during the delay period before the visual stimulus. The delay activity, but not cue onset activity, was crucial for task performance and attentional modulation in the SC and V1. These results establish a new behavioral paradigm for studying visual attention in mice and identify a midbrain signal controlling auditory cue-directed spatial attention.
Collapse
|
25
|
Jiang H, Stanford TR, Rowland BA, Stein BE. Association Cortex Is Essential to Reverse Hemianopia by Multisensory Training. Cereb Cortex 2021; 31:5015-5023. [PMID: 34056645 DOI: 10.1093/cercor/bhab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/14/2022] Open
Abstract
Hemianopia induced by unilateral visual cortex lesions can be resolved by repeatedly exposing the blinded hemifield to auditory-visual stimuli. This rehabilitative "training" paradigm depends on mechanisms of multisensory plasticity that restore the lost visual responsiveness of multisensory neurons in the ipsilesional superior colliculus (SC) so that they can once again support vision in the blinded hemifield. These changes are thought to operate via the convergent visual and auditory signals relayed to the SC from association cortex (the anterior ectosylvian sulcus [AES], in cat). The present study tested this assumption by cryogenically deactivating ipsilesional AES in hemianopic, anesthetized cats during weekly multisensory training sessions. No signs of visual recovery were evident in this condition, even after providing animals with up to twice the number of training sessions required for effective rehabilitation. Subsequent training under the same conditions, but with AES active, reversed the hemianopia within the normal timeframe. These results indicate that the corticotectal circuit that is normally engaged in SC multisensory plasticity has to be operational for the brain to use visual-auditory experience to resolve hemianopia.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
26
|
Lee CCY, Kheradpezhouh E, Diamond ME, Arabzadeh E. State-Dependent Changes in Perception and Coding in the Mouse Somatosensory Cortex. Cell Rep 2021; 32:108197. [PMID: 32997984 DOI: 10.1016/j.celrep.2020.108197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/07/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
An animal's behavioral state is reflected in the dynamics of cortical population activity and its capacity to process sensory information. To better understand the relationship between behavioral states and information processing, mice are trained to detect varying amplitudes of whisker-deflection under two-photon calcium imaging. Layer 2/3 neurons in the vibrissal primary somatosensory cortex are imaged across different behavioral states, defined based on detection performance (low to high-state) and pupil diameter. The neurometric curve in each behavioral state mirrors the corresponding psychometric performance, with calcium signals predictive of the animal's choice. High behavioral states are associated with lower network synchrony, extending over shorter cortical distances. The decrease in correlation across neurons in high state results in enhanced information transmission capacity at the population level. The observed state-dependent changes suggest that the coding regime within the first stage of cortical processing may underlie adaptive routing of relevant information through the sensorimotor system.
Collapse
Affiliation(s)
- Conrad C Y Lee
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia.
| | - Ehsan Kheradpezhouh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia
| | - Mathew E Diamond
- Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia; Cognitive Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ehsan Arabzadeh
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, The Australian National University Node, Canberra, ACT 2601, Australia
| |
Collapse
|
27
|
Franco LM, Goard MJ. A distributed circuit for associating environmental context with motor choice in retrosplenial cortex. SCIENCE ADVANCES 2021; 7:eabf9815. [PMID: 34433557 PMCID: PMC8386923 DOI: 10.1126/sciadv.abf9815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/02/2021] [Indexed: 05/03/2023]
Abstract
During navigation, animals often use recognition of familiar environmental contexts to guide motor action selection. The retrosplenial cortex (RSC) receives inputs from both visual cortex and subcortical regions required for spatial memory and projects to motor planning regions. However, it is not known whether RSC is important for associating familiar environmental contexts with specific motor actions. We test this possibility by developing a task in which motor trajectories are chosen based on the context. We find that mice exhibit differential predecision activity in RSC and that optogenetic suppression of RSC activity impairs task performance. Individual RSC neurons encode a range of task variables, often multiplexed with distinct temporal profiles. However, the responses are spatiotemporally organized, with task variables represented along a posterior-to-anterior gradient along RSC during the behavioral performance, consistent with histological characterization. These results reveal an anatomically organized retrosplenial cortical circuit for associating environmental contexts with appropriate motor outputs.
Collapse
Affiliation(s)
- Luis M Franco
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Michael J Goard
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
28
|
Xie Z, Wang M, Liu Z, Shang C, Zhang C, Sun L, Gu H, Ran G, Pei Q, Ma Q, Huang M, Zhang J, Lin R, Zhou Y, Zhang J, Zhao M, Luo M, Wu Q, Cao P, Wang X. Transcriptomic encoding of sensorimotor transformation in the midbrain. eLife 2021; 10:e69825. [PMID: 34318750 PMCID: PMC8341986 DOI: 10.7554/elife.69825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/25/2021] [Indexed: 12/31/2022] Open
Abstract
Sensorimotor transformation, a process that converts sensory stimuli into motor actions, is critical for the brain to initiate behaviors. Although the circuitry involved in sensorimotor transformation has been well delineated, the molecular logic behind this process remains poorly understood. Here, we performed high-throughput and circuit-specific single-cell transcriptomic analyses of neurons in the superior colliculus (SC), a midbrain structure implicated in early sensorimotor transformation. We found that SC neurons in distinct laminae expressed discrete marker genes. Of particular interest, Cbln2 and Pitx2 were key markers that define glutamatergic projection neurons in the optic nerve (Op) and intermediate gray (InG) layers, respectively. The Cbln2+ neurons responded to visual stimuli mimicking cruising predators, while the Pitx2+ neurons encoded prey-derived vibrissal tactile cues. By forming distinct input and output connections with other brain areas, these neuronal subtypes independently mediated behaviors of predator avoidance and prey capture. Our results reveal that, in the midbrain, sensorimotor transformation for different behaviors may be performed by separate circuit modules that are molecularly defined by distinct transcriptomic codes.
Collapse
Affiliation(s)
- Zhiyong Xie
- National Institute of Biological SciencesBeijingChina
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Congping Shang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Changjiang Zhang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Le Sun
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
| | - Huating Gu
- National Institute of Biological SciencesBeijingChina
| | - Gengxin Ran
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Pei
- National Institute of Biological SciencesBeijingChina
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meizhu Huang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| | - Junjing Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
| | - Rui Lin
- National Institute of Biological SciencesBeijingChina
| | - Youtong Zhou
- National Institute of Biological SciencesBeijingChina
| | - Jiyao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
| | - Miao Zhao
- National Institute of Biological SciencesBeijingChina
| | - Minmin Luo
- National Institute of Biological SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
| | - Peng Cao
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
- Beijing Institute for Brain Disorders, Capital Medical UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical UniversityBeijingChina
| |
Collapse
|
29
|
Lyamzin DR, Aoki R, Abdolrahmani M, Benucci A. Probabilistic discrimination of relative stimulus features in mice. Proc Natl Acad Sci U S A 2021; 118:e2103952118. [PMID: 34301903 PMCID: PMC8325293 DOI: 10.1073/pnas.2103952118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During perceptual decision-making, the brain encodes the upcoming decision and the stimulus information in a mixed representation. Paradigms suitable for studying decision computations in isolation rely on stimulus comparisons, with choices depending on relative rather than absolute properties of the stimuli. The adoption of tasks requiring relative perceptual judgments in mice would be advantageous in view of the powerful tools available for the dissection of brain circuits. However, whether and how mice can perform a relative visual discrimination task has not yet been fully established. Here, we show that mice can solve a complex orientation discrimination task in which the choices are decoupled from the orientation of individual stimuli. Moreover, we demonstrate a typical discrimination acuity of 9°, challenging the common belief that mice are poor visual discriminators. We reached these conclusions by introducing a probabilistic choice model that explained behavioral strategies in 40 mice and demonstrated that the circularity of the stimulus space is an additional source of choice variability for trials with fixed difficulty. Furthermore, history biases in the model changed with task engagement, demonstrating behavioral sensitivity to the availability of cognitive resources. In conclusion, our results reveal that mice adopt a diverse set of strategies in a task that decouples decision-relevant information from stimulus-specific information, thus demonstrating their usefulness as an animal model for studying neural representations of relative categories in perceptual decision-making research.
Collapse
Affiliation(s)
- Dmitry R Lyamzin
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan;
| | - Ryo Aoki
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan
| | | | - Andrea Benucci
- RIKEN Center for Brain Science, RIKEN, Wako-shi 351-0198, Japan;
- Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo, Bunkyo City 113-0032, Japan
| |
Collapse
|
30
|
Essig J, Hunt JB, Felsen G. Inhibitory neurons in the superior colliculus mediate selection of spatially-directed movements. Commun Biol 2021; 4:719. [PMID: 34117346 PMCID: PMC8196039 DOI: 10.1038/s42003-021-02248-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Decision making is a cognitive process that mediates behaviors critical for survival. Choosing spatial targets is an experimentally-tractable form of decision making that depends on the midbrain superior colliculus (SC). While physiological and computational studies have uncovered the functional topographic organization of the SC, the role of specific SC cell types in spatial choice is unknown. Here, we leveraged behavior, optogenetics, neural recordings and modeling to directly examine the contribution of GABAergic SC neurons to the selection of opposing spatial targets. Although GABAergic SC neurons comprise a heterogeneous population with local and long-range projections, our results demonstrate that GABAergic SC neurons do not locally suppress premotor output, suggesting that functional long-range inhibition instead plays a dominant role in spatial choice. An attractor model requiring only intrinsic SC circuitry was sufficient to account for our experimental observations. Overall, our study elucidates the role of GABAergic SC neurons in spatial choice.
Collapse
Affiliation(s)
- Jaclyn Essig
- Department of Physiology and Biophysics, and Neuroscience Program University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Hunt
- Department of Physiology and Biophysics, and Neuroscience Program University of Colorado School of Medicine, Aurora, CO, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, and Neuroscience Program University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
31
|
Huerta-Ocampo I, Dautan D, Gut NK, Khan B, Mena-Segovia J. Whole-brain mapping of monosynaptic inputs to midbrain cholinergic neurons. Sci Rep 2021; 11:9055. [PMID: 33907215 PMCID: PMC8079369 DOI: 10.1038/s41598-021-88374-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
The cholinergic midbrain is involved in a wide range of motor and cognitive processes. Cholinergic neurons of the pedunculopontine (PPN) and laterodorsal tegmental nucleus (LDT) send long-ranging axonal projections that target sensorimotor and limbic areas in the thalamus, the dopaminergic midbrain and the striatal complex following a topographical gradient, where they influence a range of functions including attention, reinforcement learning and action-selection. Nevertheless, a comprehensive examination of the afferents to PPN and LDT cholinergic neurons is still lacking, partly due to the neurochemical heterogeneity of this region. Here we characterize the whole-brain input connectome to cholinergic neurons across distinct functional domains (i.e. PPN vs LDT) using conditional transsynaptic retrograde labeling in ChAT::Cre male and female rats. We reveal that input neurons are widely distributed throughout the brain but segregated into specific functional domains. Motor related areas innervate preferentially the PPN, whereas limbic related areas preferentially innervate the LDT. The quantification of input neurons revealed that both PPN and LDT receive similar substantial inputs from the superior colliculus and the output of the basal ganglia (i.e. substantia nigra pars reticulata). Notably, we found that PPN cholinergic neurons receive preferential inputs from basal ganglia structures, whereas LDT cholinergic neurons receive preferential inputs from limbic cortical areas. Our results provide the first characterization of inputs to PPN and LDT cholinergic neurons and highlight critical differences in the connectome among brain cholinergic systems thus supporting their differential roles in behavior.
Collapse
Affiliation(s)
- Icnelia Huerta-Ocampo
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Daniel Dautan
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
- Department of Neuroscience and Brain Technologies, Genetics of Cognition Laboratory, Istituto Italiano Di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Nadine K Gut
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Bakhtawer Khan
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA
| | - Juan Mena-Segovia
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
32
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
33
|
Goldbach HC, Akitake B, Leedy CE, Histed MH. Performance in even a simple perceptual task depends on mouse secondary visual areas. eLife 2021; 10:e62156. [PMID: 33522482 PMCID: PMC7990500 DOI: 10.7554/elife.62156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary visual cortex (V1) in the mouse projects to numerous brain areas, including several secondary visual areas, frontal cortex, and basal ganglia. While it has been demonstrated that optogenetic silencing of V1 strongly impairs visually guided behavior, it is not known which downstream areas are required for visual behaviors. Here we trained mice to perform a contrast-increment change detection task, for which substantial stimulus information is present in V1. Optogenetic silencing of visual responses in secondary visual areas revealed that their activity is required for even this simple visual task. In vivo electrophysiology showed that, although inhibiting secondary visual areas could produce some feedback effects in V1, the principal effect was profound suppression at the location of the optogenetic light. The results show that pathways through secondary visual areas are necessary for even simple visual behaviors.
Collapse
Affiliation(s)
- Hannah C Goldbach
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of HealthBethesdaUnited States
| | - Bradley Akitake
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of HealthBethesdaUnited States
| | - Caitlin E Leedy
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of HealthBethesdaUnited States
| | - Mark H Histed
- Unit on Neural Computation and Behavior, National Institute of Mental Health Intramural Program, National Institutes of HealthBethesdaUnited States
| |
Collapse
|