1
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Yu SY, Kim SH, Choo JH, Jang S, Kim J, Ahn K, Hwang SY. Potential Effects of Low-Level Toluene Exposure on the Nervous System of Mothers and Infants. Int J Mol Sci 2024; 25:6215. [PMID: 38892402 PMCID: PMC11172598 DOI: 10.3390/ijms25116215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
In day-to-day living, individuals are exposed to various environmentally hazardous substances that have been associated with diverse diseases. Exposure to air pollutants can occur during breathing, posing a considerable risk to those with environmental health vulnerabilities. Among vulnerable individuals, maternal exposure can negatively impact the mother and child in utero. The developing fetus is particularly vulnerable to environmentally hazardous substances, with potentially greater implications. Among air pollutants, toluene is neurotoxic, and its effects have been widely explored. However, the impact of low-level toluene exposure in daily life remains unclear. Herein, we evaluated 194 mothers and infants from the Growing children's health and Evaluation of Environment (GREEN) cohort to determine the possible effects of early-life toluene exposure on the nervous system. Using Omics experiments, the effects of toluene were confirmed based on epigenetic changes and altered mRNA expression. Various epigenetic changes were identified, with upregulated expression potentially contributing to diseases such as glioblastoma and Alzheimer's, and downregulated expression being associated with structural neuronal abnormalities. These findings were detected in both maternal and infant groups, suggesting that maternal exposure to environmental hazardous substances can negatively impact the fetus. Our findings will facilitate the establishment of environmental health policies, including the management of environmentally hazardous substances for vulnerable groups.
Collapse
Affiliation(s)
- So Yeon Yu
- Institute of Natural Science & Technology, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Seung Hwan Kim
- Department of Bio-Nanotechnology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Jeong Hyeop Choo
- Department of Molecular & Life Science, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea;
| | - Sehun Jang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.J.)
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.J.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (S.J.)
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Seoul 06355, Republic of Korea
| | - Seung Yong Hwang
- Department of Medicinal and Life Sciences, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Department of Applied Artificial Intelligence, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. eLife 2024; 13:e87394. [PMID: 38456457 PMCID: PMC10959528 DOI: 10.7554/elife.87394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin . Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
Affiliation(s)
- Matthew Grove
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Hyukmin Kim
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Shuhuan Pang
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Jose Paz Amaya
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Michel Lemay
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Young-Jin Son
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| |
Collapse
|
4
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530298. [PMID: 38293102 PMCID: PMC10827063 DOI: 10.1101/2023.02.27.530298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin (Grove et al., 2017; Grove, Lee, Zhao, & Son, 2020). Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
|
5
|
McLean DT, Meudt JJ, Lopez Rivera LD, Schomberg DT, Pavelec DM, Duellman TT, Buehler DG, Schwartz PB, Graham M, Lee LM, Graff KD, Reichert JL, Bon-Durant SS, Konsitzke CM, Ronnekleiv-Kelly SM, Shanmuganayagam D, Rubinstein CD. Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model. Front Oncol 2023; 13:1253659. [PMID: 37817770 PMCID: PMC10561395 DOI: 10.3389/fonc.2023.1253659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.
Collapse
Affiliation(s)
- Dalton T. McLean
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Loren D. Lopez Rivera
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Dominic T. Schomberg
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Derek M. Pavelec
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Tyler T. Duellman
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Darya G. Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Patrick B. Schwartz
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa Graham
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Laura M. Lee
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Keri D. Graff
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jamie L. Reichert
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Sandra S. Bon-Durant
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles M. Konsitzke
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, WI, United States
| | - C. Dustin Rubinstein
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
6
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
7
|
Corty MM, Hulegaard AL, Hill JQ, Sheehan AE, Aicher SA, Freeman MR. Discoidin domain receptor regulates ensheathment, survival and caliber of peripheral axons. Development 2022; 149:281293. [PMID: 36355066 PMCID: PMC10112903 DOI: 10.1242/dev.200636] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022]
Abstract
Most invertebrate axons and small-caliber axons in mammalian peripheral nerves are unmyelinated but still ensheathed by glia. Here, we use Drosophila wrapping glia to study the development and function of non-myelinating axon ensheathment, which is poorly understood. Selective ablation of these glia from peripheral nerves severely impaired larval locomotor behavior. In an in vivo RNA interference screen to identify glial genes required for axon ensheathment, we identified the conserved receptor tyrosine kinase Discoidin domain receptor (Ddr). In larval peripheral nerves, loss of Ddr resulted in severely reduced ensheathment of axons and reduced axon caliber, and we found a strong dominant genetic interaction between Ddr and the type XV/XVIII collagen Multiplexin (Mp), suggesting that Ddr functions as a collagen receptor to drive axon wrapping. In adult nerves, loss of Ddr decreased long-term survival of sensory neurons and significantly reduced axon caliber without overtly affecting ensheathment. Our data establish essential roles for non-myelinating glia in nerve development, maintenance and function, and identify Ddr as a key regulator of axon-glia interactions during ensheathment and establishment of axon caliber.
Collapse
Affiliation(s)
- Megan M Corty
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Jo Q Hill
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy E Sheehan
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
8
|
Li X, Zhang X, Hao M, Wang D, Jiang Z, Sun L, Gao Y, Jin Y, Lei P, Zhuo Y. The application of collagen in the repair of peripheral nerve defect. Front Bioeng Biotechnol 2022; 10:973301. [PMID: 36213073 PMCID: PMC9542778 DOI: 10.3389/fbioe.2022.973301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Collagen is a natural polymer expressed in the extracellular matrix of the peripheral nervous system. It has become increasingly crucial in peripheral nerve reconstruction as it was involved in regulating Schwann cell behaviors, maintaining peripheral nerve functions during peripheral nerve development, and being strongly upregulated after nerve injury to promote peripheral nerve regeneration. Moreover, its biological properties, such as low immunogenicity, excellent biocompatibility, and biodegradability make it a suitable biomaterial for peripheral nerve repair. Collagen provides a suitable microenvironment to support Schwann cells’ growth, proliferation, and migration, thereby improving the regeneration and functional recovery of peripheral nerves. This review aims to summarize the characteristics of collagen as a biomaterial, analyze its role in peripheral nerve regeneration, and provide a detailed overview of the recent advances concerning the optimization of collagen nerve conduits in terms of physical properties and structure, as well as the application of the combination with the bioactive component in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Hao
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pediatrics, First Hospital of Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| | - Yue Zhuo
- School of Acupuncture-Moxi Bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Peng Lei, ; Yue Zhuo,
| |
Collapse
|
9
|
Adipocyte-Specific Laminin Alpha 4 Deletion Preserves Adipose Tissue Health despite Increasing Adiposity. Biomedicines 2022; 10:biomedicines10092077. [PMID: 36140178 PMCID: PMC9495590 DOI: 10.3390/biomedicines10092077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
Laminins are heterotrimeric glycoproteins with structural and functional roles in basement membranes. The predominant laminin alpha chain found in adipocyte basement membranes is laminin α4 (LAMA4). Global LAMA4 deletion in mice leads to reduced adiposity and increased energy expenditure, but also results in vascular defects that complicate the interpretation of metabolic data. Here, we describe the generation and initial phenotypic analysis of an adipocyte-specific LAMA4 knockout mouse (Lama4AKO). We first performed an in-silico analysis to determine the degree to which laminin α4 was expressed in human and murine adipocytes. Next, male Lama4AKO and control mice were fed chow or high-fat diets and glucose tolerance was assessed along with serum insulin and leptin levels. Adipocyte area was measured in both epididymal and inguinal white adipose tissue (eWAT and iWAT, respectively), and eWAT was used for RNA-sequencing. We found that laminin α4 was highly expressed in human and murine adipocytes. Further, chow-fed Lama4AKO mice are like control mice in terms of body weight, body composition, and glucose tolerance, although they have larger eWAT adipocytes and lower insulin levels. High-fat-fed Lama4AKO mice are fatter and more glucose tolerant when compared to control mice. Transcriptionally, the eWAT of high-fat fed Lama4AKO mice resembles that of chow-fed control mice. We conclude from these findings that adipocyte-specific LAMA4 deletion is protective in an obesogenic environment, even though overall adiposity is increased.
Collapse
|
10
|
Delta/Notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression. Proc Natl Acad Sci U S A 2022; 119:e2110097119. [PMID: 35969789 PMCID: PMC9407389 DOI: 10.1073/pnas.2110097119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have made a surprising discovery linking Delta/Notch signaling in subperineurial glia (SPG) to the regulation of nerve ensheathment and neurotransmitter release at the Drosophila neuromuscular junction (NMJ). SPG, the counterpart of the endothelial layer in the vertebrate blood–brain barrier, form the key cellular layer that is critical for axonal ensheathment and the blood–brain barrier in Drosophila. Our findings demonstrate that Delta/Notch signaling exerts a constitutive negative inhibition on JNK signaling in SPG, thereby limiting the expression of Mmp1, a matrix metalloproteinase. SPG-specific and temporally regulated knockdown of Delta leads to breakdown of barrier function and compromises neurotransmitter release at the NMJ. Our results provide a mechanistic insight into the biology of barrier function and glia–neuron interactions. While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood–brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type–specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.
Collapse
|
11
|
Ma J, Li J, Hu S, Wang X, Li M, Xie J, Shi Q, Li B, Lafu S, Chen H. Collagen Modified Anisotropic PLA Scaffold as a base for Peripheral Nerve Regeneration. Macromol Biosci 2022; 22:e2200119. [PMID: 35526091 DOI: 10.1002/mabi.202200119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/28/2022] [Indexed: 11/09/2022]
Abstract
Reconstruction of damaged nerves remains a significant unmet challenge in clinical medicine. Topographical and mechanical stimulations play important roles to repair peripheral nerve injury. The synergistic effects of topography and mechanical rigidity may significantly accelerate nerve regeneration. In this work, we developed a nerve-guiding collagen/polylactic acid (PLA) electrospun scaffold to facilitate peripheral nerve repair. The obtained anisotropic PLA electrospun scaffolds simulated the directional arranged structure of nerve realistically and promoted axonal regeneration after sciatic nerve injury when compared with the isotropic PLA electrospun scaffolds. Moreover, the collagen-modified PLA electrospun scaffolds further provided sufficient mechanical support and favorable microenvironment for axon regeneration. In addition, we observed that collagen-modified PLA electrospun scaffolds facilitated the axon regeneration by regulating YAP molecular pathway. Taken together, we engineered collagen-modified anisotropic PLA electrospun scaffolds may be a potential candidate to combine topography and mechanical rigidity for peripheral nerve regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinjin Ma
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jiaying Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Sihan Hu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingran Wang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meimei Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Jile Xie
- Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Qin Shi
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Saiji Lafu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Hao Chen
- Affiliated Hospital & Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
13
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
14
|
Amran A, Pigatto L, Pocock R, Gopal S. Functions of the extracellular matrix in development: Lessons from Caenorhabditis elegans. Cell Signal 2021; 84:110006. [PMID: 33857577 DOI: 10.1016/j.cellsig.2021.110006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Cell-extracellular matrix interactions are crucial for the development of an organism from the earliest stages of embryogenesis. The main constituents of the extracellular matrix are collagens, laminins, proteoglycans and glycosaminoglycans that form a network of interactions. The extracellular matrix and its associated molecules provide developmental cues and structural support from the outside of cells during development. The complex nature of the extracellular matrix and its ability for continuous remodeling poses challenges when investigating extracellular matrix-based signaling during development. One way to address these challenges is to employ invertebrate models such as Caenorhabditis elegans, which are easy to genetically manipulate and have an invariant developmental program. C. elegans also expresses fewer extracellular matrix protein isoforms and exhibits reduced redundancy compared to mammalian models, thus providing a simpler platform for exploring development. This review summarizes our current understanding of how the extracellular matrix controls the development of neurons, muscles and the germline in C. elegans.
Collapse
Affiliation(s)
- Aqilah Amran
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Lara Pigatto
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia; Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
16
|
Lang AE, Lundquist EA. The Collagens DPY-17 and SQT-3 Direct Anterior-Posterior Migration of the Q Neuroblasts in C. elegans. J Dev Biol 2021; 9:jdb9010007. [PMID: 33669899 PMCID: PMC8006237 DOI: 10.3390/jdb9010007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cell adhesion molecules and their extracellular ligands control morphogenetic events such as directed cell migration. The migration of neuroblasts and neural crest cells establishes the structure of the central and peripheral nervous systems. In C. elegans, the bilateral Q neuroblasts and their descendants undergo long-range migrations with left/right asymmetry. QR and its descendants on the right migrate anteriorly, and QL and its descendants on the left migrate posteriorly, despite identical patterns of cell division, cell death, and neuronal generation. The initial direction of protrusion of the Q cells relies on the left/right asymmetric functions of the transmembrane receptors UNC-40/DCC and PTP-3/LAR in the Q cells. Here, we show that Q cell left/right asymmetry of migration is independent of the GPA-16/Gα pathway which regulates other left/right asymmetries, including nervous system L/R asymmetry. No extracellular cue has been identified that guides initial Q anterior versus posterior migrations. We show that collagens DPY-17 and SQT-3 control initial Q direction of protrusion. Genetic interactions with UNC-40/DCC and PTP-3/LAR suggest that DPY-17 and SQT-3 drive posterior migration and might act with both receptors or in a parallel pathway. Analysis of mutants in other collagens and extracellular matrix components indicated that general perturbation of collagens and the extracellular matrix (ECM) did not result in directional defects, and that the effect of DPY-17 and SQT-3 on Q direction is specific. DPY-17 and SQT-3 are components of the cuticle, but a role in the basement membrane cannot be excluded. Possibly, DPY-17 and SQT-3 are part of a pattern in the cuticle and/or basement membrane that is oriented to the anterior–posterior axis of the animal and that is deciphered by the Q cells in a left–right asymmetric fashion. Alternatively, DPY-17 and SQT-3 might be involved in the production or stabilization of a guidance cue that directs Q migrations. In any case, these results describe a novel role for the DPY-17 and SQT-3 collagens in directing posterior Q neuroblast migration.
Collapse
|
17
|
Feltri ML, Weaver MR, Belin S, Poitelon Y. The Hippo pathway: Horizons for innovative treatments of peripheral nerve diseases. J Peripher Nerv Syst 2021; 26:4-16. [PMID: 33449435 DOI: 10.1111/jns.12431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/19/2022]
Abstract
Initially identified in Drosophila, the Hippo signaling pathway regulates how cells respond to their environment by controlling proliferation, migration and differentiation. Many recent studies have focused on characterizing Hippo pathway function and regulation in mammalian cells. Here, we present a brief overview of the major components of the Hippo pathway, as well as their regulation and function. We comprehensively review the studies that have contributed to our understanding of the Hippo pathway in the function of the peripheral nervous system and in peripheral nerve diseases. Finally, we discuss innovative approaches that aim to modulate Hippo pathway components in diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
18
|
Song R, Zhang L. Cardiac ECM: Its Epigenetic Regulation and Role in Heart Development and Repair. Int J Mol Sci 2020; 21:ijms21228610. [PMID: 33203135 PMCID: PMC7698074 DOI: 10.3390/ijms21228610] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) is the non-cellular component in the cardiac microenvironment, and serves essential structural and regulatory roles in establishing and maintaining tissue architecture and cellular function. The patterns of molecular and biochemical ECM alterations in developing and adult hearts depend on the underlying injury type. In addition to exploring how the ECM regulates heart structure and function in heart development and repair, this review conducts an inclusive discussion of recent developments in the role, function, and epigenetic guidelines of the ECM. Moreover, it contributes to the development of new therapeutics for cardiovascular disease.
Collapse
Affiliation(s)
- Rui Song
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| | - Lubo Zhang
- Correspondence: (R.S.); (L.Z.); Tel.: +1-909-558-4325 (R.S. & L.Z.)
| |
Collapse
|
19
|
Wilson ER, Della-Flora Nunes G, Weaver MR, Frick LR, Feltri ML. Schwann cell interactions during the development of the peripheral nervous system. Dev Neurobiol 2020; 81:464-489. [PMID: 32281247 DOI: 10.1002/dneu.22744] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
Abstract
Schwann cells play a critical role in the development of the peripheral nervous system (PNS), establishing important relationships both with the extracellular milieu and other cell types, particularly neurons. In this review, we discuss various Schwann cell interactions integral to the proper establishment, spatial arrangement, and function of the PNS. We include signals that cascade onto Schwann cells from axons and from the extracellular matrix, bidirectional signals that help to establish the axo-glial relationship and how Schwann cells in turn support the axon. Further, we speculate on how Schwann cell interactions with other components of the developing PNS ultimately promote the complete construction of the peripheral nerve.
Collapse
Affiliation(s)
- Emma R Wilson
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Michael R Weaver
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Luciana R Frick
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
20
|
Previtali SC, Zambon AA. LAMA2 Neuropathies: Human Findings and Pathomechanisms From Mouse Models. Front Mol Neurosci 2020; 13:60. [PMID: 32390798 PMCID: PMC7190814 DOI: 10.3389/fnmol.2020.00060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Merosin deficient Congenital Muscular Dystrophy (MDC1A), or LAMA2-related muscular dystrophy (LAMA2-RD), is a recessive disorder resulting from mutations in the LAMA2 gene, encoding for the alpha-2 chain of laminin-211. The disease is predominantly characterized by progressive muscular dystrophy affecting patient motor function and reducing life expectancy. However, LAMA2-RD also comprises a developmentally-associated dysmyelinating neuropathy that contributes to the disease progression, in addition to brain abnormalities; the latter often underappreciated. In this brief review, we present data supporting the impact of peripheral neuropathy in the LAMA2-RD phenotype, including both mouse models and human studies. We discuss the molecular mechanisms underlying nerve abnormalities and involved in the laminin-211 pathway, which affects axon sorting, ensheathing and myelination. We conclude with some final considerations of consequences on nerve regeneration and potential therapeutic strategies.
Collapse
Affiliation(s)
- Stefano Carlo Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
21
|
Bretaud S, Guillon E, Karppinen SM, Pihlajaniemi T, Ruggiero F. Collagen XV, a multifaceted multiplexin present across tissues and species. Matrix Biol Plus 2020; 6-7:100023. [PMID: 33543021 PMCID: PMC7852327 DOI: 10.1016/j.mbplus.2020.100023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 01/09/2023] Open
Abstract
Type XV collagen is a non-fibrillar collagen that is associated with basement membranes and belongs to the multiplexin subset of the collagen superfamily. Collagen XV was initially studied because of its sequence homology with collagen XVIII/endostatin whose anti-angiogenic and anti-tumorigenic properties were subjects of wide interest in the past years. But during the last fifteen years, collagen XV has gained growing attention with increasing number of studies that have attributed new functions to this widely distributed collagen/proteoglycan hybrid molecule. Despite the cumulative evidence of its functional pleiotropy and its evolutionary conserved function, no review compiling the current state of the art about collagen XV is currently available. Here, we thus provide the first comprehensive view of the knowledge gathered so far on the molecular structure, tissue distribution and functions of collagen XV in development, tissue homeostasis and disease with an evolutionary perspective. We hope that our review will open new roads for promising research on collagen XV in the coming years. Type XV collagen belongs to the multiplexin subset of the collagen superfamily. It is evolutionarily conserved collagen and associated with basement membranes. This collagen/proteoglycan hybrid molecule contains an anti-angiogenic restin domain. It has important functions in the cardiovascular and the neuromuscular systems. Its expression is dysregulated in various diseases including cancers.
Collapse
Key Words
- Animal models
- BM, basement membrane
- BMZ, basement membrane zone
- COL, collagenous domain
- CS, chondroitin sulfate
- CSPG, chondroitin sulfate proteoglycan
- Collagen-related disease
- Collagens
- Development
- ECM, extracellular matrix
- Evolution
- Extracellular matrix
- GAG, glycosaminoglycan
- HFD, High fat diet
- HS, heparan sulfate
- HSPG, heparan sulfate proteoglycan
- Multiplexin
- NC, non-collagenous domain
- TD, trimerization domain
- TSPN, Thrombospondin-1 N-terminal like domain
- dpf, day post-fertilization
Collapse
Affiliation(s)
- Sandrine Bretaud
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Emilie Guillon
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| | - Sanna-Maria Karppinen
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Taina Pihlajaniemi
- Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7C, FI-90230 Oulu, Finland
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, UMR CNRS 5242, University of Lyon, Lyon 69364, France
| |
Collapse
|
22
|
Wu S, Yan M, Ge R, Cheng CY. Crosstalk between Sertoli and Germ Cells in Male Fertility. Trends Mol Med 2019; 26:215-231. [PMID: 31727542 DOI: 10.1016/j.molmed.2019.09.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is supported by intricate crosstalk between Sertoli cells and germ cells including spermatogonia, spermatocytes, haploid spermatids, and spermatozoa, which takes place in the epithelium of seminiferous tubules. Sertoli cells, also known as 'mother' or 'nurse' cells, provide nutrients, paracrine factors, cytokines, and other biomolecules to support germ cell development. Sertoli cells facilitate the generation of several biologically active peptides, which include F5-, noncollagenous 1 (NC1)-, and laminin globular (LG)3/4/5-peptide, to modulate cellular events across the epithelium. Here, we critically evaluate the involvement of these peptides in facilitating crosstalk between Sertoli and germ cells to support spermatogenesis and thus fertility. Modulating or mimicking the activity of F5-, NC1-, and LG3/4/5-peptide could be used to enhance the transport across the blood-testis barrier (BTB) of contraceptive drugs or to treat male infertility.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
23
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|
24
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
25
|
Bretaud S, Nauroy P, Malbouyres M, Ruggiero F. Fishing for collagen function: About development, regeneration and disease. Semin Cell Dev Biol 2019; 89:100-108. [DOI: 10.1016/j.semcdb.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/06/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
|
26
|
Gregorio I, Braghetta P, Bonaldo P, Cescon M. Collagen VI in healthy and diseased nervous system. Dis Model Mech 2018; 11:dmm032946. [PMID: 29728408 PMCID: PMC6031366 DOI: 10.1242/dmm.032946] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Collagen VI is a major extracellular matrix protein exerting a number of functions in different tissues, spanning from biomechanical to regulatory signals in the cell survival processes, and playing key roles in maintaining the stemness or determining the differentiation of several types of cells. In the last couple of years, emerging findings on collagen VI have led to increased interest in its role in the nervous system. The role of this protein in the peripheral nervous system was intensely studied and characterized in detail. Collagen VI acts as a regulator of Schwann cell differentiation and is required for preserving peripheral nerve myelination, function and structure, as well as for orchestrating nerve regeneration after injury. Although the role and distribution of collagen VI in the peripheral nervous system is now well established, the role of this distinctive extracellular matrix component in the central nervous system, along with its links to human neurological and neurodegenerative disorders, remains an open field of investigation. In this Review, we summarize and discuss a number of recent findings related to collagen VI in the central and peripheral nervous systems. We further link these findings to different aspects of the protein that are relevant to human diseases in these compartments in order to provide a comprehensive overview of the roles of this key matrix component in the nervous system.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
27
|
Collagen XIII Is Required for Neuromuscular Synapse Regeneration and Functional Recovery after Peripheral Nerve Injury. J Neurosci 2018; 38:4243-4258. [PMID: 29626165 DOI: 10.1523/jneurosci.3119-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/02/2018] [Accepted: 03/30/2018] [Indexed: 11/21/2022] Open
Abstract
Collagen XIII occurs as both a transmembrane-bound and a shed extracellular protein and is able to regulate the formation and function of neuromuscular synapses. Its absence results in myasthenia: presynaptic and postsynaptic defects at the neuromuscular junction (NMJ), leading to destabilization of the motor nerves, muscle regeneration and atrophy. Mutations in COL13A1 have recently been found to cause congenital myasthenic syndrome, characterized by fatigue and chronic muscle weakness, which may be lethal. We show here that muscle defects in collagen XIII-deficient mice stabilize in adulthood, so that the disease is not progressive until very late. Sciatic nerve crush was performed to examine how the lack of collagen XIII or forced expression of its transmembrane form affects the neuromuscular synapse regeneration and functional recovery following injury. We show that collagen XIII-deficient male mice are unable to achieve complete NMJ regeneration and functional recovery. This is mainly attributable to presynaptic defects that already existed in the absence of collagen XIII before injury. Shedding of the ectodomain is not required, as the transmembrane form of collagen XIII alone fully rescues the phenotype. Thus, collagen XIII could serve as a therapeutic agent in cases of injury-induced PNS regeneration and functional recovery. We conclude that intrinsic alterations at the NMJ in Col13a1-/- mice contribute to impaired and incomplete NMJ regeneration and functional recovery after peripheral nerve injury. However, such alterations do not progress once they have stabilized in early adulthood, emphasizing the role of collagen XIII in NMJ maturation.SIGNIFICANCE STATEMENT Collagen XIII is required for gaining and maintaining the normal size, complexity, and functional capacity of neuromuscular synapses. Loss-of-function mutations in COL13A1 cause congenital myasthenic syndrome 19, characterized by postnatally progressive muscle fatigue, which compromises patients' functional capacity. We show here in collagen XIII-deficient mice that the disease stabilizes in adulthood once the NMJs have matured. This study also describes a relevant contribution of the altered NMJ morphology and function to neuromuscular synapses, and PNS regeneration and functional recovery in collagen XIII-deficient mice after peripheral nerve injury. Correlating the animal model data on collagen XIII-associated congenital myasthenic syndrome, it can be speculated that neuromuscular connections in congenital myasthenic syndrome patients are not able to fully regenerate and restore normal functionality if exposed to peripheral nerve injury.
Collapse
|
28
|
Lee KM, Chand KK, Hammond LA, Lavidis NA, Noakes PG. Functional decline at the aging neuromuscular junction is associated with altered laminin-α4 expression. Aging (Albany NY) 2017; 9:880-899. [PMID: 28301326 PMCID: PMC5391237 DOI: 10.18632/aging.101198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/03/2017] [Indexed: 12/04/2022]
Abstract
Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice (lama4−/−). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama4−/− NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama4−/−. Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama4−/−. Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.
Collapse
Affiliation(s)
- Kah Meng Lee
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kirat K Chand
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia
| | - Luke A Hammond
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.,Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
29
|
Heart Failure and MEF2 Transcriptome Dynamics in Response to β-Blockers. Sci Rep 2017; 7:4476. [PMID: 28667250 PMCID: PMC5493616 DOI: 10.1038/s41598-017-04762-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023] Open
Abstract
Myocyte Enhancer Factor 2 (MEF2) mediates cardiac remodelling in heart failure (HF) and is also a target of β-adrenergic signalling, a front-line treatment for HF. We identified global gene transcription networks involved in HF with and without β-blocker treatment. Experimental HF by transverse aortic constriction (TAC) in a MEF2 “sensor” mouse model (6 weeks) was followed by four weeks of β-blockade with Atenolol (AT) or Solvent (Sol) treatment. Transcriptome analysis (RNA-seq) from left ventricular RNA samples and MEF2A depleted cardiomyocytes was performed. AT treatment resulted in an overall improvement in cardiac function of TAC mice and repression of MEF2 activity. RNA-seq identified 65 differentially expressed genes (DEGs) due to TAC treatment with enriched GO clusters including the inflammatory system, cell migration and apoptosis. These genes were mapped against DEGs in cardiomyocytes in which MEF2A expression was suppressed. Of the 65 TAC mediated DEGs, AT reversed the expression of 28 mRNAs. Rarres2 was identified as a novel MEF2 target gene that is upregulated with TAC in vivo and isoproterenol treatment in vitro which may have implications in cardiomyocyte apoptosis and hypertrophy. These studies identify a cohort of genes with vast potential for disease diagnosis and therapeutic intervention in heart failure.
Collapse
|
30
|
Durgin BG, Cherepanova OA, Gomez D, Karaoli T, Alencar GF, Butcher JT, Zhou YQ, Bendeck MP, Isakson BE, Owens GK, Connelly JJ. Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol 2017; 312:H943-H958. [PMID: 28283548 PMCID: PMC5451587 DOI: 10.1152/ajpheart.00029.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that 1) we have previously identified a Col15a1 sequence variant associated with age-related atherosclerosis, 2) COL15A1 is a matrix organizer enhancing tissue structural integrity, and 3) small interfering RNA-mediated Col15a1 knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific Col15a1 knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific Col15a1 knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC Col15a1 knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis.NEW & NOTEWORTHY We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC Col15a1 knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.
Collapse
Affiliation(s)
- Brittany G Durgin
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Delphine Gomez
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Themistoclis Karaoli
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Jessica J Connelly
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; .,Department of Psychology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
31
|
Lack of collagen XV is protective after ischemic stroke in mice. Cell Death Dis 2017; 8:e2541. [PMID: 28079884 PMCID: PMC5386367 DOI: 10.1038/cddis.2016.456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023]
Abstract
Collagens are key structural components of basement membranes, providing a scaffold for other components or adhering cells. Collagens and collagen-derived active fragments contribute to biological activities such as cell growth, differentiation and migration. Here, we report that collagen XV knock-out (ColXV KO) mice are resistant to experimental ischemic stroke. Interestingly, the infarcts of ColXV KO mice were as small as those of wild-type (WT) mice thrombolysed with recombinant tissue plasminogen activator (rtPA), the actual treatment for ischemic stroke. Importantly, there were no differences in the architecture of cerebrovascular anatomy between WT and ColXV KO mice. We found a twofold increase of the most potent pro-angiogenic factor, type A vascular growth endothelial factor (VEGF-A) in the ipsilateral cortex of rtPA-treated ischemic WT mice compared with untreated ischemic and sham-operated counterparts. A similar increase of VEGF-A was also found in both rtPA and untreated ischemic ColXV KO mice compared with sham ColXV KO mice. Finally, we evidenced that the levels of ColXV were increased in the plasma of WT mice treated with rtPA compared with untreated ischemic counterparts. Altogether, this study indicates that the lack ColXV is protective after stroke and that the degradation of endothelial ColXV may contribute to the beneficial effect of rtPA after ischemic stroke. The neuroprotection observed in ColXV KO mice may be attributed to the increased VEGF-A production following stroke in the ischemic territory.
Collapse
|
32
|
Mehta P, Piao X. Adhesion G-protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Dev Dyn 2017; 246:275-284. [PMID: 27859941 DOI: 10.1002/dvdy.24473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large family of transmembrane proteins that play important roles in many processes during development, primarily through cell-cell and cell-extracellular matrix (ECM) interactions. In the nervous system, they have been linked to the complex process of myelination, both in the central and peripheral nervous system. GPR126 is essential in Schwann cell-mediated myelination in the peripheral nervous system (PNS), while GPR56 is involved in oligodendrocyte development central nervous system (CNS) myelination. VLGR1 is another aGPCR that is associated with the expression of myelin-associated glycoprotein (MAG) which has inhibitory effects on the process of nerve repair. The ECM is composed of a vast array of structural proteins, three of which interact specifically with aGPCRs: collagen III/GPR56, collagen IV/GPR126, and laminin-211/GPR126. As druggable targets, aGPCRs are valuable in their ability to unlock treatment for a wide variety of currently debilitating myelin disorders. Developmental Dynamics 246:275-284, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paulomi Mehta
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Chand KK, Lee KM, Lavidis NA, Noakes PG. Loss of laminin‐a4 results in pre‐ and postsynaptic modifications at the neuromuscular junction. FASEB J 2016; 31:1323-1336. [DOI: 10.1096/fj.201600899r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Kirat K. Chand
- School of Biomedical Sciences St. Lucia Queensland Australia
| | - Kah Meng Lee
- School of Biomedical Sciences St. Lucia Queensland Australia
| | | | - Peter G. Noakes
- School of Biomedical Sciences St. Lucia Queensland Australia
- Queensland Brain InstituteThe University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
34
|
Slow Muscle Precursors Lay Down a Collagen XV Matrix Fingerprint to Guide Motor Axon Navigation. J Neurosci 2016; 36:2663-76. [PMID: 26937007 DOI: 10.1523/jneurosci.2847-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The extracellular matrix (ECM) provides local positional information to guide motoneuron axons toward their muscle target. Collagen XV is a basement membrane component mainly expressed in skeletal muscle. We have identified two zebrafish paralogs of the human COL15A1 gene, col15a1a and col15a1b, which display distinct expression patterns. Here we show that col15a1b is expressed and deposited in the motor path ECM by slow muscle precursors also called adaxial cells. We further demonstrate that collagen XV-B deposition is both temporally and spatially regulated before motor axon extension from the spinal cord in such a way that it remains in this region after the adaxial cells have migrated toward the periphery of the myotome. Loss- and gain-of-function experiments in zebrafish embryos demonstrate that col15a1b expression and subsequent collagen XV-B deposition and organization in the motor path ECM depend on a previously undescribed two-step mechanism involving Hedgehog/Gli and unplugged/MuSK signaling pathways. In silico analysis predicts a putative Gli binding site in the col15a1b proximal promoter. Using col15a1b promoter-reporter constructs, we demonstrate that col15a1b participates in the slow muscle genetic program as a direct target of Hedgehog/Gli signaling. Loss and gain of col15a1b function provoke pathfinding errors in primary and secondary motoneuron axons both at and beyond the choice point where axon pathway selection takes place. These defects result in muscle atrophy and compromised swimming behavior, a phenotype partially rescued by injection of a smyhc1:col15a1b construct. These reveal an unexpected and novel role for collagen XV in motor axon pathfinding and neuromuscular development. SIGNIFICANCE STATEMENT In addition to the archetypal axon guidance cues, the extracellular matrix provides local information that guides motor axons from the spinal cord to their muscle targets. Many of the proteins involved are unknown. Using the zebrafish model, we identified an unexpected role of the extracellular matrix collagen XV in motor axon pathfinding. We show that the synthesis of collagen XV-B by slow muscle precursors and its deposition in the common motor path are dependent on a novel two-step mechanism that determines axon decisions at a choice point during motor axonogenesis. Zebrafish and humans use common molecular cues and regulatory mechanisms for the neuromuscular system development. And as such, our study reveals COL15A1 as a candidate gene for orphan neuromuscular disorders.
Collapse
|
35
|
Rossi A, Wistlich L, Heffels KH, Walles H, Groll J. Isotropic Versus Bipolar Functionalized Biomimetic Artificial Basement Membranes and Their Evaluation in Long-Term Human Cell Co-Culture. Adv Healthc Mater 2016; 5:1939-48. [PMID: 27283510 DOI: 10.1002/adhm.201600224] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/21/2016] [Indexed: 01/19/2023]
Abstract
In addition to dividing tissues into compartments, basement membranes are crucial as cell substrates and to regulate cellular behavior. The development of artificial basement membranes is indispensable for the ultimate formation of functional engineered tissues; however, pose a challenge due to their complex structure. Herein, biodegradable electrospun polyester meshes are presented, exhibiting isotropic or bipolar bioactivation as a biomimetic and biofunctional model of the natural basement membrane. In a one-step preparation process, reactive star-shaped prepolymer additives, which generate a hydrophilic fiber surface, are electrospun with cell-adhesion-mediating peptides, derived from major components of the basement membrane. Human skin cells adhere to the functionalized meshes, and long-term co-culture experiments confirm that the artificial basement membranes recapitulate and preserve tissue specific functions. Several layers of immortalized human keratinocytes grow on the membranes, differentiating toward the surface and expressing typical epithelial markers. Fibroblasts migrate into the reticular lamina mimicking part of the mesh. Both cells types begin to produce extracellular matrix proteins and to remodel the initial membrane. It is shown at the example of skin that the artificial basement membrane design provokes biomimetic responses of different cell types and can thus be used as basis for the future development of basement membrane containing tissues.
Collapse
Affiliation(s)
- Angela Rossi
- Chair for Tissue Engineering and Regenerative Medicine; University of Würzburg; Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Diseases”; Würzburg Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology; Röntgenring 11 97070 Würzburg Germany
- Chair for Functional Materials in Medicine and Dentistry; University of Würzburg; Pleicherwall 2 97070 Würzburg Germany
| | - Laura Wistlich
- Chair for Functional Materials in Medicine and Dentistry; University of Würzburg; Pleicherwall 2 97070 Würzburg Germany
| | - Karl-Heinz Heffels
- Chair for Functional Materials in Medicine and Dentistry; University of Würzburg; Pleicherwall 2 97070 Würzburg Germany
| | - Heike Walles
- Chair for Tissue Engineering and Regenerative Medicine; University of Würzburg; Translational Center Würzburg “Regenerative Therapies in Oncology and Musculoskeletal Diseases”; Würzburg Branch of the Fraunhofer Institute for Interfacial Engineering and Biotechnology; Röntgenring 11 97070 Würzburg Germany
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry; University of Würzburg; Pleicherwall 2 97070 Würzburg Germany
| |
Collapse
|
36
|
Walia A, Yang JF, Huang YH, Rosenblatt MI, Chang JH, Azar DT. Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:2422-38. [PMID: 26367079 PMCID: PMC4624607 DOI: 10.1016/j.bbagen.2015.09.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Angiogenesis is the process of neovascularization from pre-existing vasculature and is involved in various physiological and pathological processes. Inhibitors of angiogenesis, administered either as individual drugs or in combination with other chemotherapy, have been shown to benefit patients with various cancers. Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one of the most potent inhibitors of angiogenesis. SCOPE OF REVIEW We discuss the biology behind endostatin in the context of its endogenous production, the various receptors to which it binds, and the mechanisms by which it acts. We focus on its inhibitory role in angiogenesis, lymphangiogenesis, and cancer metastasis. We also present emerging clinical applications for endostatin and its potential as a therapeutic agent in the form a short peptide. MAJOR CONCLUSIONS The delicate balance between pro- and anti-angiogenic factors can be modulated to result in physiological wound healing or pathological tumor metastasis. Research in the last decade has emphasized an emerging clinical potential for endostatin as a biomarker and as a therapeutic short peptide. Moreover, elevated or depressed endostatin levels in diseased states may help explain the pathophysiological mechanisms of the particular disease. GENERAL SIGNIFICANCE Endostatin was once sought after as the 'be all and end all' for cancer treatment; however, research throughout the last decade has made it apparent that endostatin's effects are complex and involve multiple mechanisms. A better understanding of newly discovered mechanisms and clinical applications still has the potential to lead to future advances in the use of endostatin in the clinic.
Collapse
Affiliation(s)
- Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
37
|
Regulation of Peripheral Nerve Myelin Maintenance by Gene Repression through Polycomb Repressive Complex 2. J Neurosci 2015; 35:8640-52. [PMID: 26041929 DOI: 10.1523/jneurosci.2257-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myelination of peripheral nerves by Schwann cells requires coordinate regulation of gene repression as well as gene activation. Several chromatin remodeling pathways critical for peripheral nerve myelination have been identified, but the functions of histone methylation in the peripheral nerve have not been elucidated. To determine the role of histone H3 Lys27 methylation, we have generated mice with a Schwann cell-specific knock-out of Eed, which is an essential subunit of the polycomb repressive complex 2 (PRC2) that catalyzes methylation of histone H3 Lys27. Analysis of this mutant revealed no significant effects on early postnatal development of myelin. However, its loss eventually causes progressive hypermyelination of small-diameter axons and apparent fragmentation of Remak bundles. These data identify the PRC2 complex as an epigenomic modulator of mature myelin thickness, which is associated with changes in Akt phosphorylation. Interestingly, we found that Eed inactivation causes derepression of several genes, e.g., Sonic hedgehog (Shh) and Insulin-like growth factor-binding protein 2 (Igfbp2), that become activated after nerve injury, but without activation of a primary regulator of the injury program, c-Jun. Analysis of the activated genes in cultured Schwann cells showed that Igfbp2 regulates Akt activation. Our results identify an epigenomic pathway required for establishing thickness of mature myelin and repressing genes that respond to nerve injury.
Collapse
|
38
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
39
|
Abstract
Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
Morris AWJ, Carare RO, Schreiber S, Hawkes CA. The Cerebrovascular Basement Membrane: Role in the Clearance of β-amyloid and Cerebral Amyloid Angiopathy. Front Aging Neurosci 2014; 6:251. [PMID: 25285078 PMCID: PMC4168721 DOI: 10.3389/fnagi.2014.00251] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/05/2014] [Indexed: 11/13/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA), the accumulation of β-amyloid (Aβ) peptides in the walls of cerebral blood vessels, is observed in the majority of Alzheimer’s disease (AD) brains and is thought to be due to a failure of the aging brain to clear Aβ. Perivascular drainage of Aβ along cerebrovascular basement membranes (CVBMs) is one of the mechanisms by which Aβ is removed from the brain. CVBMs are specialized sheets of extracellular matrix that provide structural and functional support for cerebral blood vessels. Changes in CVBM composition and structure are observed in the aged and AD brain and may contribute to the development and progression of CAA. This review summarizes the properties of the CVBM, its role in mediating clearance of interstitial fluids and solutes from the brain, and evidence supporting a role for CVBM in the etiology of CAA.
Collapse
Affiliation(s)
- Alan W J Morris
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton , Southampton , UK
| | - Roxana O Carare
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton , Southampton , UK
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University , Magdeburg , Germany ; German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association , Magdeburg , Germany
| | - Cheryl A Hawkes
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton , Southampton , UK
| |
Collapse
|
41
|
Chen P, Cescon M, Bonaldo P. The Role of Collagens in Peripheral Nerve Myelination and Function. Mol Neurobiol 2014; 52:216-25. [PMID: 25143238 DOI: 10.1007/s12035-014-8862-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/11/2014] [Indexed: 02/07/2023]
Abstract
In the peripheral nervous system, myelin is formed by Schwann cells, which are surrounded by a basal lamina. Extracellular matrix (ECM) molecules in the basal lamina play an important role in regulating Schwann cell functions, including adhesion, survival, spreading, and myelination, as well as in supporting neurite outgrowth. Collagens are a major component of ECM molecules, which include 28 types that differ in structure and function. A growing body of evidence suggests that collagens are key components of peripheral nerves, where they not only provide a structural support but also affect cell behavior by triggering intracellular signals. In this review, we will summarize the main properties of collagen family, discuss the role of extensively studied collagen types (collagens IV, V, VI, and XV) in Schwann cell function and myelination, and provide a detailed overview of the recent advances with respect to these collagens in peripheral nerve function.
Collapse
Affiliation(s)
- Peiwen Chen
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy,
| | | | | |
Collapse
|
42
|
Abstract
During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the β1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with β1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding β1 integrins in Schwann cells and show that only α6β1 and α7β1 integrins are required and that α7β1 compensates for the absence of α6β1 during development. The absence of either α7β1 or α6β1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all β1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6β1 and α7β1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell β1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.
Collapse
|
43
|
Abstract
Chemical synapses allow neurons to perform complex computations and regulate other systems of the body. At a chemical synapse, pre- and postsynaptic sites are separated by a small space (the synaptic cleft) and surrounded by astrocytes. The basement membrane (BM), a sheetlike, specialized extracellular matrix (ECM), is found ubiquitously in the PNS. It has become clear that the ECMs not only play a structural role but also serve as barriers and filters in the PNS and CNS. Moreover, proteoglycans and tenascin family proteins in the ECM regulate synapse formation and synaptic plasticity. Although CNS synapses lack the BMs, recent results indicate that the BM-associated collagens are also present in the CNS synaptic cleft and affect synaptogenesis in both the CNS and the PNS. The C1q domain-containing family proteins are important components of the CNS synaptic cleft in regulating synapse formation, maintenance, and the pruning process. The ECM is regarded as a crucial component of the tetrapartite synapse, consisting of pre- and postsynaptic neurons, astrocyte, and ECM.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University, Bochum, Germany
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
44
|
Chen P, Cescon M, Megighian A, Bonaldo P. Collagen VI regulates peripheral nerve myelination and function. FASEB J 2013; 28:1145-56. [PMID: 24277578 DOI: 10.1096/fj.13-239533] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen VI is an extracellular matrix protein with broad distribution in several tissues. Although Col6a1 is expressed by Schwann cells, the role of collagen VI in the peripheral nervous system (PNS) is yet unknown. Here we show that Schwann cells, but not axons, contribute to collagen VI deposition in peripheral nerves. By using Col6a1-null mice, in which collagen VI deposition is compromised, we demonstrate that lack of collagen VI leads to increased myelin thickness (P<0.001) along with 60-130% up-regulation in myelin-associated proteins and disorganized C fibers in the PNS. The hypermyelination of PNS in Col6a1(-/-) mice is supported by alterations of signaling pathways involved in myelination, including increase of P-FAK, P-AKT, P-ERK1, P-ERK2, and P-p38 (4.15, 1.67, 2.47, 3.34, and 2.60-fold, respectively) and reduction of vimentin (0.49-fold), P-JNK (0.74-fold), and P-c-Jun (0.50-fold). Pathologically, Col6a1(-/-) mice display an impairment of nerve conduction velocity and motor coordination (P<0.05), as well as a delayed response to acute pain stimuli (P<0.001), indicating that lack of collagen VI causes functional defects of peripheral nerves. Altogether, these results indicate that collagen VI is a critical component of PNS contributing to the structural integrity and proper function of peripheral nerves.
Collapse
Affiliation(s)
- Peiwen Chen
- 2Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | | | | | | |
Collapse
|
45
|
Anliker B, Choi JW, Lin ME, Gardell SE, Rivera RR, Kennedy G, Chun J. Lysophosphatidic acid (LPA) and its receptor, LPA1 , influence embryonic schwann cell migration, myelination, and cell-to-axon segregation. Glia 2013; 61:2009-22. [PMID: 24115248 DOI: 10.1002/glia.22572] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/31/2013] [Accepted: 08/13/2013] [Indexed: 01/08/2023]
Abstract
Schwann cell (SC) migration is an important step preceding myelination and remyelination in the peripheral nervous system, and can be promoted by peptide factors like neuregulins. Here we present evidence that a lipid factor, lysophosphatidic acid (LPA), influences both SC migration and peripheral myelination through its cognate G protein-coupled receptor (GPCR) known as LPA1 . Ultrastructural analyses of peripheral nerves in mouse null-mutants for LPA1 showed delayed SC-to-axon segregation, polyaxonal myelination by single SCs, and thinner myelin sheaths. In primary cultures, LPA promoted SC migration through LPA1 , while analysis of conditioned media from purified dorsal root ganglia neurons using HPLC/MS supported the production of LPA by these neurons. The heterotrimeric G-alpha protein, Gαi , and the small GTPase, Rac1, were identified as important downstream signaling components of LPA1 . These results identify receptor mediated LPA signaling between neurons and SCs that promote SC migration and contribute to the normal development of peripheral nerves through effects on SC-axon segregation and myelination.
Collapse
Affiliation(s)
- Brigitte Anliker
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California
| | | | | | | | | | | | | |
Collapse
|
46
|
Clementz AG, Harris A. Collagen XV: exploring its structure and role within the tumor microenvironment. Mol Cancer Res 2013; 11:1481-6. [PMID: 24043668 DOI: 10.1158/1541-7786.mcr-12-0662] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) is a critical component of stroma-to-cell interactions that subsequently activate intracellular signaling cascades, many of which are associated with tumor invasion and metastasis. The ECM contains a wide range of proteins with multiple functions, including cytokines, cleaved cell-surface receptors, secreted epithelial cell proteins, and structural scaffolding. Fibrillar collagens, abundant in the normal ECM, surround cellular structures and provide structural integrity. However during the initial stages of invasive cancers, the ECM is among the first compartments to be compromised. Also present in the normal ECM is the nonfibrillar collagen XV, which is seen in the basement membrane zone but is lost prior to tumor metastasis in several organs. In contrast, the tumor microenvironment often exhibits increased synthesis of fibrillar collagen I and collagen IV, which are associated with fibrosis. The unique localization of collagen XV and its disappearance prior to tumor invasion suggests a fundamental role in maintaining basement membrane integrity and preventing the migration of tumor cells across this barrier. This review examines the structure of collagen XV, its functional domains, and its involvement in cell-surface receptor-mediated signaling pathways, thus providing further insight into its critical role in the suppression of malignancy.
Collapse
Affiliation(s)
- Anthony George Clementz
- Human Molecular Genetics Program, Lurie Children's Research Center, 2430 North Halsted Street, Chicago, IL 60614.
| | | |
Collapse
|
47
|
Collagen XV inhibits epithelial to mesenchymal transition in pancreatic adenocarcinoma cells. PLoS One 2013; 8:e72250. [PMID: 23991074 PMCID: PMC3750028 DOI: 10.1371/journal.pone.0072250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023] Open
Abstract
Collagen XV (COLXV) is a secreted non-fibrillar collagen found within basement membrane (BM) zones of the extracellular matrix (ECM). Its ability to alter cellular growth in vitro and to reduce tumor burden and increase survival in vivo support a role as a tumor suppressor. Loss of COLXV during the progression of several aggressive cancers precedes basement membrane invasion and metastasis. The resultant lack of COLXV subjacent to the basement membrane and subsequent loss of its interactions with other proteins in this zone may directly impact tumor progression. Here we show that COLXV significantly reduces invasion of pancreatic adenocarcinoma cells through a collagen I (COLI) matrix. Moreover, we demonstrate that epithelial to mesenchymal transition (EMT) in these cells, which is recapitulated in vitro by cell scattering on a COLI substrate, is inhibited by over-expression of COLXV. We identify critical collagen-binding surface receptors on the tumor cells, including the discoidin domain receptor 1 (DDR1) and E-Cadherin (E-Cad), which interact with COLXV and appear to mediate its function. In the presence of COLXV, the intracellular redistribution of E-Cad from the cell periphery, which is associated with COLI-activated EMT, is inhibited and concurrently, DDR1 signaling is suppressed. Furthermore, continuous exposure of the pancreatic adenocarcinoma cells to high levels of COLXV suppresses endogenous levels of N-Cadherin (N-Cad). These data reveal a novel mechanism whereby COLXV can function as a tumor suppressor in the basement membrane zone.
Collapse
|
48
|
Connelly JJ, Cherepanova OA, Doss JF, Karaoli T, Lillard TS, Markunas CA, Nelson S, Wang T, Ellis PD, Langford CF, Haynes C, Seo DM, Goldschmidt-Clermont PJ, Shah SH, Kraus WE, Hauser ER, Gregory SG. Epigenetic regulation of COL15A1 in smooth muscle cell replicative aging and atherosclerosis. Hum Mol Genet 2013; 22:5107-20. [PMID: 23912340 DOI: 10.1093/hmg/ddt365] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Smooth muscle cell (SMC) proliferation is a hallmark of vascular injury and disease. Global hypomethylation occurs during SMC proliferation in culture and in vivo during neointimal formation. Regardless of the programmed or stochastic nature of hypomethylation, identifying these changes is important in understanding vascular disease, as maintenance of a cells' epigenetic profile is essential for maintaining cellular phenotype. Global hypomethylation of proliferating aortic SMCs and concomitant decrease of DNMT1 expression were identified in culture during passage. An epigenome screen identified regions of the genome that were hypomethylated during proliferation and a region containing Collagen, type XV, alpha 1 (COL15A1) was selected by 'genomic convergence' for characterization. COL15A1 transcript and protein levels increased with passage-dependent decreases in DNA methylation and the transcript was sensitive to treatment with 5-Aza-2'-deoxycytidine, suggesting DNA methylation-mediated gene expression. Phenotypically, knockdown of COL15A1 increased SMC migration and decreased proliferation and Col15a1 expression was induced in an atherosclerotic lesion and localized to the atherosclerotic cap. A sequence variant in COL15A1 that is significantly associated with atherosclerosis (rs4142986, P = 0.017, OR = 1.434) was methylated and methylation of the risk allele correlated with decreased gene expression and increased atherosclerosis in human aorta. In summary, hypomethylation of COL15A1 occurs during SMC proliferation and the consequent increased gene expression may impact SMC phenotype and atherosclerosis formation. Hypomethylated genes, such as COL15A1, provide evidence for concomitant epigenetic regulation and genetic susceptibility, and define a class of causal targets that sit at the intersection of genetic and epigenetic predisposition in the etiology of complex disease.
Collapse
|
49
|
Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity--BM functions and diverse roles of bridging molecules nidogen and perlecan. BIOMED RESEARCH INTERNATIONAL 2013; 2013:179784. [PMID: 23586018 PMCID: PMC3618921 DOI: 10.1155/2013/179784] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
The epidermis functions in skin as first defense line or barrier against environmental impacts, resting on extracellular matrix (ECM) of the dermis underneath. Both compartments are connected by the basement membrane (BM), composed of a set of distinct glycoproteins and proteoglycans. Herein we are reviewing molecular aspects of BM structure, composition, and function regarding not only (i) the dermoepidermal interface but also (ii) the resident microvasculature, primarily focusing on the per se nonscaffold forming components perlecan and nidogen-1 and nidogen-2. Depletion or functional deficiencies of any BM component are lethal at some stage of development or around birth, though BM defects vary between organs and tissues. Lethality problems were overcome by developmental stage- and skin-specific gene targeting or by cell grafting and organotypic (3D) cocultures of normal or defective cells, which allows recapitulating BM formation de novo. Thus, evidence is accumulating that BM assembly and turnover rely on mechanical properties and composition of the adjacent ECM and the dynamics of molecular assembly, including further "minor" local components, nidogens largely functioning as catalysts or molecular adaptors and perlecan as bridging stabilizer. Collectively, orchestration of BM assembly, remodeling, and the role of individual players herein are determined by the developmental, tissue-specific, or functional context.
Collapse
Affiliation(s)
- Dirk Breitkreutz
- Department of Dermatology, University of Cologne, Kerpener Strasse 62, 50937 Cologne, Germany.
| | | | | | | |
Collapse
|
50
|
Momota R, Narasaki M, Komiyama T, Naito I, Ninomiya Y, Ohtsuka A. Drosophila type XV/XVIII collagen mutants manifest integrin mediated mitochondrial dysfunction, which is improved by cyclosporin A and losartan. Int J Biochem Cell Biol 2013; 45:1003-11. [PMID: 23454281 DOI: 10.1016/j.biocel.2013.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/06/2013] [Accepted: 02/04/2013] [Indexed: 02/07/2023]
Abstract
Vertebrate collagen types XV and XVIII are broadly distributed basement membrane components, classified into a structurally distinct subgroup called "multiplexin collagens". Mutations in mammalian multiplexins are identified in some degenerative diseases such as Knobloch syndrome 1 (KNO1) or skeletal/cardiac myopathies, however, these progressive properties have not been elucidated. Here we investigated Drosophila mutants of Multiplexin (Mp), the only orthologue of vertebrate collagen types XV and XVIII, to understand the pathogenesis of multiplexin-related diseases. The mp mutants exhibited morphological changes in cardiomyocytes and progressive dysfunction of the skeletal muscles, reminiscent phenotypes observed in Col15a1-null mice. Ultrastructural analysis revealed morphologically altered mitochondria in mutants' indirect flight muscles (IFMs), resulting in severely attenuated ATP production and enhanced reactive oxygen species (ROS) production. In addition, mutants' IFMs exhibited diminished βPS integrin clustering and abolished focal adhesion kinase (FAK) phosphorylation. Furthermore, mutants' defective IFMs are improved by the administrations of cyclosporin A, an inhibitor against mitochondrial permeability transition pore (mPTP) opening or losartan, an angiotensin II type 1 receptor (AT1R) blocker. Thus, our results suggest that Mp modulates mPTP opening and AT1R activity through its binding to integrin and that lack of Mp causes unregulated mPTP opening and AT1R activity, leading to mitochondrial dysfunctions. Hence, our results provide new insights towards the roles of multiplexin collagens in mitochondrial homeostasis and may serve as pharmacological evidences for the potential use of cyclosporin A or losartan for the therapeutic strategies.
Collapse
Affiliation(s)
- Ryusuke Momota
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita, Okayama 7008558, Japan.
| | | | | | | | | | | |
Collapse
|