1
|
Kazinka R, Roediger D, Xuan L, Yu L, Mueller BA, Camchong J, Opitz A, MacDonald A, Lim KO. tDCS-enhanced cognitive training improves attention and alters connectivity in control and somatomotor networks: A triple blind study. Neuroimage 2024; 298:120792. [PMID: 39147294 PMCID: PMC11425656 DOI: 10.1016/j.neuroimage.2024.120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Executive dysfunction such as inattention or forgetfulness can lead to disruptions in a person's daily functioning and quality of life. OBJECTIVE/HYPOTHESIS This triple-blinded randomized clinical trial assessed the efficacy of bifrontal (over the forehead) transcranial direct current stimulation (tDCS) concurrent with cognitive training to improve cognitive performance in a healthy sample. METHODS Fifty-eight participants were randomly assigned to one of three stimulation conditions (2 mA left anode-right cathode, 2 mA right anode-left cathode, or sham), which was administered with cognitive training tasks 3x/week over 12 weeks with assessments at baseline, midpoint (6 weeks), and post-training (12 weeks). We assessed cognitive performance, functional connectivity, and the influence of individual differences in training advancement. RESULTS Forty participants completed training. We found that at midpoint and post, all groups improved significantly on overall cognitive performance. The left anode group's attention & vigilance score improved significantly at post, but the other two groups did not. Greater attention training advancement predicted attention improvement by post, most notably in the left anode group. Finally, within-network connectivity decreased in the control network and increased in the somatomotor network across all groups. CONCLUSIONS These results suggest that, given cognitive training, the left anode montage is more effective at improving attention than the right anode montage and sham. Future research may focus on the application of the left anode montage during cognitive training to assess its effectiveness in improving cognition in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca Kazinka
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States; University of Minnesota, Department of Biomedical Engineering, United States
| | - Donovan Roediger
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Lei Xuan
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Lingyan Yu
- University of Minnesota, Department of Psychology, United States
| | - Bryon A Mueller
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Jazmin Camchong
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| | - Alexander Opitz
- University of Minnesota, Department of Biomedical Engineering, United States
| | - Angus MacDonald
- University of Minnesota, Department of Psychology, United States
| | - Kelvin O Lim
- University of Minnesota, Department of Psychiatry and Behavioral Sciences, United States
| |
Collapse
|
2
|
Asgarinejad M, Saviz M, Sadjadi SM, Saliminia S, Kakaei A, Esmaeili P, Hammoud A, Ebrahimzadeh E, Soltanian-Zadeh H. Repetitive transcranial magnetic stimulation (rTMS) as a tool for cognitive enhancement in healthy adults: a review study. Med Biol Eng Comput 2024; 62:653-673. [PMID: 38044385 DOI: 10.1007/s11517-023-02968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
As human beings, we have always sought to expand on our abilities, including our cognitive and motor skills. One of the still-underrated tools employed to this end is repetitive transcranial magnetic stimulation (rTMS). Until recently, rTMS was almost exclusively used in studies with rehabilitation purposes. Only a small strand of literature has focused on the application of rTMS on healthy people with the aim of enhancing cognitive abilities such as decision-making, working memory, attention, source memory, cognitive control, learning, computational speed, risk-taking, and impulsive behaviors. It, therefore, seems that the findings in this particular field are the indirect results of rehabilitation research. In this review paper, we have set to investigate such studies and evaluate the rTMS effectuality in terms of how it improves the cognitive skills in healthy subjects. Furthermore, since the most common brain site used for rTMS protocols is the dorsolateral prefrontal cortex (DLPFC), we have added theta burst stimulation (TBS) wave patterns that are similar to brain patterns to increase the effectiveness of this method. The results of this study can help people who have high-risk jobs including firefighters, surgeons, and military officers with their job performance.
Collapse
Affiliation(s)
| | - Marzieh Saviz
- Faculty of Psychology and Education, University of Tehran, Tehran, Iran.
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sarah Saliminia
- Biomedical Engineering Department, School of Electrical Engineering, Payame Noor University of North Tehran, Tehran, Iran
| | - Amineh Kakaei
- Department of Clinical Psychology, School of Behavioral Sciences and Mental Health, Iran University of Medical Sciences, Tehran, Iran
| | - Peyman Esmaeili
- Department of Health, Safety and Environment, Shahid Beheshti Medical University, Tehran, Iran
| | - Ahmad Hammoud
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
| | - Elias Ebrahimzadeh
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
3
|
Pabst A, Proksch S, Médé B, Comstock DC, Ross JM, Balasubramaniam R. A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neurosci Biobehav Rev 2022; 135:104587. [PMID: 35202646 DOI: 10.1016/j.neubiorev.2022.104587] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Intermittent theta-burst stimulation (iTBS) has been used to focally regulate excitability of neural cortex over the past decade - however there is little consensus on the generalizability of effects reported in individual studies. Many studies use small sample sizes (N < 30), and there is a considerable amount of methodological heterogeneity in application of the stimulation itself. This systematic meta-analysis aims to consolidate the extant literature and determine if up-regulatory theta-burst stimulation reliably enhances cognition through measurable behavior. Results show that iTBS - when compared to suitable control conditions - may enhance cognition when outlier studies are removed, but also that there is a significant amount of heterogeneity across studies. Significant contributors to between-study heterogeneity include location of stimulation and method of navigation to the stimulation site. Surprisingly, the type of cognitive domain investigated was not a significant contributor of heterogeneity. The findings of this meta-analysis demonstrate that standardization of iTBS is urgent and necessary to determine if neuroenhancement of particular cognitive faculties are reliable and robust, and measurable through observable behavior.
Collapse
Affiliation(s)
- Alexandria Pabst
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Accenture Labs, 415 Mission Street, San Francisco, CA 94105, USA.
| | - Shannon Proksch
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Butovens Médé
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Daniel C Comstock
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | - Jessica Marie Ross
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA; Veterans Affairs Palo Alto Healthcare System, Stanford University, 3801 Miranda Ave, Palo Alto, CA 94304, USA.
| | - Ramesh Balasubramaniam
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
4
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
5
|
Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res 2020; 238:1707-1714. [PMID: 32671422 DOI: 10.1007/s00221-020-05880-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
Repetitive transcranial stimulation (rTMS) paradigms have been used to induce lasting changes in brain activity and excitability. Previous methods of stimulation were long, often ineffective and produced short-lived and variable results. A new non-invasive brain stimulation technique was developed in John Rothwell's laboratory in the early 2000s, which was named 'theta burst stimulation' (TBS). This used rTMS applied in burst patterns of newly acquired 50 Hz rTMS machines, which emulated long-term potentiation/depression-like effects in brain slices. This stimulation paradigm created long-lasting changes in brain excitability, using efficient, very rapid stimulation, which would affect behaviour, with the aim to influence neurological diseases in humans. We describe the development of this technique, including findings and limitations identified since then. We discuss how pitfalls facing TBS reflect those involving both older and newer, non-invasive stimulation techniques, with suggestions of how to overcome these, using personalised, 'closed loop' stimulation methods. The challenge in most non-invasive stimulation techniques remains in identifying their exact mechanisms of action in the context of neurological disease models. The development of TBS provides the backdrop for describing John's contribution to the field, inspiring our own scientific endeavour thanks to his unconditional support, and unfailing kindness.
Collapse
|
6
|
Theta Burst Transcranial Magnetic Stimulation of Fronto-Parietal Networks: Modulation by Mental State. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2020; 5. [PMID: 32613082 PMCID: PMC7328938 DOI: 10.20900/jpbs.20200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcranial magnetic stimulation (TMS) treats neuropsychiatric disorders, but effects of stimulation are highly state-dependent and in most therapeutic applications, mental state is not controlled. This exploratory proposal will test the broad hypothesis that when TMS, specifically intermittent theta burst stimulation (iTBS), is applied during a controlled mental state, network changes will be facilitated, compared to stimulation when mental state is uncontrolled. We will focus on the dorsolateral prefrontal cortex (dlPFC) and the associated fronto-parietal network (FPN), which subserves cognitive control, an important neural and behavioral target of therapeutic TMS. After a baseline functional magnetic resonance imaging (fMRI) session, iTBS will be administered to 40 healthy subjects in three sessions over three days in a within-subjects, cross-over design: (1) dlPFC stimulation by iTBS alone, (2) dlPFC stimulation by iTBS while simultaneously performing a cognitive task, and (3) vertex (control) iTBS stimulation. Immediately after each iTBS session, we will measure blood oxygenation level-dependent (BOLD) activation during a cognitive control task (“n-back” task) and during the resting state, using BOLD connectivity and arterial spin labeling (ASL). We will test hypotheses that persisting neural changes and performance enhancement induced by iTBS to the dlPFC, compared to iTBS to the vertex, will affect the FPN, and these effects will be modulated by whether or not subjects receive iTBS when they are engaged in a cognitive control task. Demonstrating this interaction between iTBS and mental state will lay critical groundwork for future studies to show how controlling mental state during TMS can improve therapeutic effects.
Collapse
|
7
|
Effects of Repetitive Transcranial Magnetic Stimulation over Prefrontal Cortex on Attention in Psychiatric Disorders: A Systematic Review. J Clin Med 2019; 8:jcm8040416. [PMID: 30934685 PMCID: PMC6518000 DOI: 10.3390/jcm8040416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/20/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) may be effective for enhancing cognitive functioning. In this review, we aimed to systematically evaluate the effects of rTMS on attention in psychiatric diseases. In particular, we searched PubMed and Embase to examine the effectiveness of rTMS administered to the dorsolateral prefrontal cortex (DLPFC) on this specific cognitive domain. The search identified 24 articles, 21 of which met inclusion and exclusion criteria. Among them, nine were conducted in patients with depression, four in patients with schizophrenia, three in patients with autism spectrum disorder (ASD), two in patients with attention deficit hyperactivity disorder, one each in patients with Alzheimer's disease and in patients with alcohol or methamphetamine addiction. No evidence for cognitive adverse effects was found in all the included rTMS studies. Several studies showed a significant improvement of attentional function in patients with depression and schizophrenia. The beneficial effects on attention and other executive functions suggest that rTMS has the potential to target core features of ASD. rTMS may influence the attentional networks in alcohol-dependent and other addicted patients. We also reviewed and discussed the studies assessing the effects of rTMS on attention in the healthy population. This review suggests that prefrontal rTMS could exert procognitive effects on attention in patients with many psychiatric disorders.
Collapse
|
8
|
Induction and Quantification of Excitability Changes in Human Cortical Networks. J Neurosci 2018; 38:5384-5398. [PMID: 29875229 DOI: 10.1523/jneurosci.1088-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022] Open
Abstract
How does human brain stimulation result in lasting changes in cortical excitability? Uncertainty on this question hinders the development of personalized brain stimulation therapies. To characterize how cortical excitability is altered by stimulation, we applied repetitive direct electrical stimulation in eight human subjects (male and female) undergoing intracranial monitoring. We evaluated single-pulse corticocortical-evoked potentials (CCEPs) before and after repetitive stimulation across prefrontal (n = 4), temporal (n = 1), and motor (n = 3) cortices. We asked whether a single session of repetitive stimulation was sufficient to induce excitability changes across distributed cortical sites. We found a subset of regions at which 10 Hz prefrontal repetitive stimulation resulted in both potentiation and suppression of excitability that persisted for at least 10 min. We then asked whether these dynamics could be modeled by the prestimulation connectivity profile of each subject. We found that cortical regions (1) anatomically close to the stimulated site and (2) exhibiting high-amplitude CCEPs underwent changes in excitability following repetitive stimulation. We demonstrate high accuracy (72-95%) and discriminability (81-99%) in predicting regions exhibiting changes using individual subjects' prestimulation connectivity profile, and show that adding prestimulation connectivity features significantly improved model performance. The same features predicted regions of modulation following motor and temporal cortices stimulation in an independent dataset. Together, baseline connectivity profile can be used to predict regions susceptible to brain changes and provides a basis for personalizing brain stimulation.SIGNIFICANCE STATEMENT Brain stimulation is increasingly used to treat neuropsychiatric disorders by inducing excitability changes at specific brain regions. However, our understanding of how, when, and where these changes are induced is critically lacking. We inferred plasticity in the human brain after applying electrical stimulation to the brain's surface and measuring changes in excitability. We observed excitability changes in regions anatomically and functionally closer to the stimulation site. Those in responsive regions were accurately predicted using a classifier trained on baseline brain network characteristics. Finally, we showed that the excitability changes can potentially be monitored in real-time. These results begin to fill basic gaps in our understanding of stimulation-induced brain dynamics in humans and offer pathways to optimize stimulation protocols.
Collapse
|
9
|
Stimulating the Healthy Brain to Investigate Neural Correlates of Motor Preparation: A Systematic Review. Neural Plast 2018; 2018:5846096. [PMID: 29670648 PMCID: PMC5835236 DOI: 10.1155/2018/5846096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/30/2022] Open
Abstract
Objective Noninvasive brain stimulation techniques can be used to selectively increase or decrease the excitability of a cortical region, providing a unique opportunity to assess the causal contribution of that region to the process being assessed. The objective of this paper is to systematically examine studies investigating changes in reaction time induced by noninvasive brain stimulation in healthy participants during movement preparation. Methods A systematic review of the literature was performed in the PubMed, MEDLINE, EMBASE, PsycINFO, and Web of science databases. A combination of keywords related to motor preparation, associated behavioral outcomes, and noninvasive brain stimulation methods was used. Results Twenty-seven studies were included, and systematic data extraction and quality assessment were performed. Reaction time results were transformed in standardised mean difference and graphically pooled in forest plots depending on the targeted cortical area and the type of stimulation. Conclusions Despite methodological heterogeneity among studies, results support a functional implication of five cortical regions (dorsolateral prefrontal cortex, posterior parietal cortex, supplementary motor area, dorsal premotor cortex, and primary motor cortex), integrated into a frontoparietal network, in various components of motor preparation ranging from attentional to motor aspects.
Collapse
|
10
|
Effects of tDCS over the right DLPFC on attentional disengagement from positive and negative faces: An eye-tracking study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 16:1027-1038. [PMID: 27495805 DOI: 10.3758/s13415-016-0450-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to increase insight in the neural substrates of attention processes involved in emotion regulation. The effects of right dorsolateral prefrontal cortex (i.e., DLPFC) stimulation on attentional processing of emotional information were evaluated. A novel attention task allowing a straightforward measurement of attentional engagement toward, and attentional disengagement away from emotional faces was used. A sample of healthy participants received 20 minutes of active and sham anodal transcranial direct current stimulation (i.e., tDCS) applied over the right DLPFC on 2 separate days and completed the attention task after receiving real or sham stimulation. Compared to sham stimulation, tDCS over the right DLPFC led to impairments in attentional disengagement from both positive and negative faces. Findings demonstrate a causal role of right DLPFC activity in the generation of attentional impairments that are implicated in emotional disturbances such as depression and anxiety.
Collapse
|
11
|
The effects of high-frequency rTMS over the left DLPFC on cognitive control in young healthy participants. PLoS One 2017; 12:e0179430. [PMID: 28614399 PMCID: PMC5470713 DOI: 10.1371/journal.pone.0179430] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 01/10/2023] Open
Abstract
A large body of evidence suggests that repetitive transcranial magnetic stimulation (rTMS) is clinically effective in treating neuropsychiatric disorders and multiple sessions are commonly used. However, it is unknown whether multiple sessions of rTMS improve cognitive control, which is a function of the neural circuitry of the left dorsolateral prefrontal cortex (DLPFC)-cingulate cortex in healthy individuals. In addition, it is still unclear which stages of neural processing are altered by rTMS. In this study, we investigated the effects of high-frequency rTMS on cognitive control and explored the time course changes of cognitive processing after rTMS using event-related potentials (ERPs). For seven consecutive days, 25 young healthy participants underwent one 10-Hz rTMS session per day in which stimulation was applied over the left DLPFC, and a homogeneous participant group of 25 individuals received a sham rTMS treatment. A Stroop task was performed, and an electroencephalogram (EEG) was recorded. The results revealed that multiple sessions of rTMS can decrease reaction time (RTs) under both congruent and incongruent conditions and also increased the amplitudes of both N2 and N450 compared with sham rTMS. The negative correlations between the mean amplitudes of both N2 and N450 and the RTs were found, however, the latter correlation were restricted to incongruent trials and the correlation was enhanced significantly by rTMS. This observation supports the view that high-frequency rTMS over the left DLPFC can not only recruit more neural resources from the prefrontal cortex by inducing an electrophysiologically excitatory effect but also enhance efficiency of resources to deploy for conflict resolution during multiple stages of cognitive control processing in healthy young people.
Collapse
|
12
|
Hulst HE, Goldschmidt T, Nitsche MA, de Wit SJ, van den Heuvel OA, Barkhof F, Paulus W, van der Werf YD, Geurts JJG. rTMS affects working memory performance, brain activation and functional connectivity in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 2017; 88:386-394. [PMID: 27974394 DOI: 10.1136/jnnp-2016-314224] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the right dorsolateral prefrontal cortex (DLPFC) on working memory performance, while measuring task-related brain activation and task-related brain connectivity in patients with multiple sclerosis (MS). METHODS 17 patients with MS and 11 healthy controls (HCs) underwent 3 experimental sessions (baseline, real-rTMS, sham-rTMS), all including an N-back task (3 task loads: N1, N2, N3; control condition: N0) inside the MR scanner. Prior to imaging, real-rTMS (10 Hz) was applied to the right DLPFC. The stimulation site was defined based on individually assessed N-back task activation at baseline and located using neuronavigation. Changes in whole brain functional activation and functional connectivity with the right DLPFC were calculated. RESULTS N-back task accuracy (N2 and N3) improved after real-rTMS (and not after sham-rTMS) compared with baseline (p=0.029 and p=0.015, respectively), only in patients. At baseline, patients with MS, compared with HCs, showed higher task-related frontal activation (left DLPFC, N2>N0), which disappeared after real-rTMS. Task-related (N1>N0) functional connectivity between the right DLPFC and the right caudate nucleus and bilateral (para)cingulate gyrus increased in patients after real-rTMS when compared with sham stimulation. CONCLUSIONS In patients with MS, N-back accuracy improved while frontal hyperactivation (seen at baseline relative to HCs) disappeared after real-rTMS. Together with the changes in functional connectivity after real-rTMS in patients, these findings may represent an rTMS-induced change in network efficiency in patients with MS, shifting patients' brain function towards the healthy situation. This implicates a potentially relevant role for rTMS in cognitive rehabilitation in MS.
Collapse
Affiliation(s)
- H E Hulst
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - T Goldschmidt
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - M A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - S J de Wit
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - O A van den Heuvel
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - F Barkhof
- Department of Radiology and Nuclear Medicine, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - W Paulus
- Department of Clinical Neurophysiology, University of Göttingen, Gottingen, Germany.,Institutes of Neurology and Healthcare Engineering, UCL, London, United Kingdom
| | - Y D van der Werf
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - J J G Geurts
- Department of Anatomy and Neurosciences, Section of Clinical Neuroscience, VUmc MS Center Amsterdam, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF. The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol 2017; 128:1127-1141. [PMID: 28511125 DOI: 10.1016/j.clinph.2017.03.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/14/2017] [Accepted: 03/19/2017] [Indexed: 12/16/2022]
Abstract
The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD.
Collapse
Affiliation(s)
- Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Department of Neuroscience, University of Messina, Italy; The Fresco Institute for Parkinson's & Movement Disorders, NYU-Langone School of Medicine, New York, NY, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Giuseppe Frazzitta
- Department of Parkinson's Disease and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital, Gravedona ed Uniti, Como, Italy
| | - Maria Felice Ghilardi
- Department of Physiology, Pharmacology & Neuroscience, CUNY School of Medicine, New York, NY, USA; The Fresco Institute for Parkinson's & Movement Disorders, NYU-Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Hallam GP, Whitney C, Hymers M, Gouws AD, Jefferies E. Charting the effects of TMS with fMRI: Modulation of cortical recruitment within the distributed network supporting semantic control. Neuropsychologia 2016; 93:40-52. [PMID: 27650816 PMCID: PMC5155664 DOI: 10.1016/j.neuropsychologia.2016.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/15/2022]
Abstract
Semantic memory comprises our knowledge of the meanings of words and objects but only some of this knowledge is relevant at any given time. Thus, semantic control processes are needed to focus retrieval on relevant information. Research on the neural basis of semantic control has strongly implicated left inferior frontal gyrus (LIFG) but recent work suggests that a wider network supports semantic control, including left posterior middle temporal gyrus (pMTG), right inferior frontal gyrus (RIFG) and pre-supplementary motor area (pre-SMA). In the current study, we used repetitive transcranial magnetic stimulation (1 Hz offline TMS) over LIFG, immediately followed by fMRI, to examine modulation of the semantic network. We compared the effect of stimulation on judgements about strongly-associated words (dog-bone) and weaker associations (dog-beach), since previous studies have found that dominant links can be recovered largely automatically with little engagement of LIFG, while more distant connections require greater control. Even though behavioural performance was maintained in response to TMS, LIFG stimulation increased the effect of semantic control demands in pMTG and pre-SMA, relative to stimulation of a control site (occipital pole). These changes were accompanied by reduced recruitment of both the stimulated region (LIFG) and its right hemisphere homologue (RIFG), particularly for strong associations with low control requirements. Thus repetitive TMS to LIFG modulated the contribution of distributed regions to semantic judgements in two distinct ways. Offline rTMS was used to modulate the semantic control system. fMRI revealed post-stimulation changes in other areas of the semantic control system. Semantic retrieval requires the flexible activation of representations shaped by control processes.
Collapse
Affiliation(s)
- Glyn P Hallam
- Department of Psychology and York Neuroimaging Centre, University of York, YO10 5DD York, UK.
| | - Carin Whitney
- Department of Psychology and York Neuroimaging Centre, University of York, YO10 5DD York, UK
| | - Mark Hymers
- Department of Psychology and York Neuroimaging Centre, University of York, YO10 5DD York, UK
| | - Andre D Gouws
- Department of Psychology and York Neuroimaging Centre, University of York, YO10 5DD York, UK
| | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, YO10 5DD York, UK
| |
Collapse
|
15
|
Neuromodulation of Attentional Control in Major Depression: A Pilot DeepTMS Study. Neural Plast 2015; 2016:5760141. [PMID: 26823985 PMCID: PMC4707329 DOI: 10.1155/2016/5760141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/06/2015] [Accepted: 09/20/2015] [Indexed: 01/29/2023] Open
Abstract
While Major Depressive Disorder (MDD) is primarily characterized by mood disturbances, impaired attentional control is increasingly identified as a critical feature of depression. Deep transcranial magnetic stimulation (deepTMS), a noninvasive neuromodulatory technique, can modulate neural activity and induce neuroplasticity changes in brain regions recruited by attentional processes. This study examined whether acute and long-term high-frequency repetitive deepTMS to the dorsolateral prefrontal cortex (DLPFC) can attenuate attentional deficits associated with MDD. Twenty-one MDD patients and 26 matched control subjects (CS) were administered the Beck Depression Inventory and the Sustained Attention to Response Task (SART) at baseline. MDD patients were readministered the SART and depressive assessments following a single session (n = 21) and after 4 weeks (n = 13) of high-frequency (20 Hz) repetitive deepTMS applied to the DLPFC. To control for the practice effect, CS (n = 26) were readministered the SART a further two times. The MDD group exhibited deficits in sustained attention and cognitive inhibition. Both acute and long-term high-frequency repetitive frontal deepTMS ameliorated sustained attention deficits in the MDD group. Improvement after acute deepTMS was related to attentional recovery after long-term deepTMS. Longer-term improvement in sustained attention was not related to antidepressant effects of deepTMS treatment.
Collapse
|
16
|
Smirni D, Turriziani P, Mangano GR, Cipolotti L, Oliveri M. Modulating Memory Performance in Healthy Subjects with Transcranial Direct Current Stimulation Over the Right Dorsolateral Prefrontal Cortex. PLoS One 2015; 10:e0144838. [PMID: 26679936 PMCID: PMC4682999 DOI: 10.1371/journal.pone.0144838] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/23/2015] [Indexed: 12/03/2022] Open
Abstract
Objective The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task. Method 36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS. Results Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance. Conclusion Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects.
Collapse
Affiliation(s)
- Daniela Smirni
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione, Università degli Studi di Palermo, Palermo, Italy
- NeuroTeam Life and Science, Palermo, Italy
- * E-mail:
| | - Patrizia Turriziani
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione, Università degli Studi di Palermo, Palermo, Italy
- NeuroTeam Life and Science, Palermo, Italy
| | - Giuseppa Renata Mangano
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione, Università degli Studi di Palermo, Palermo, Italy
- NeuroTeam Life and Science, Palermo, Italy
| | - Lisa Cipolotti
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione, Università degli Studi di Palermo, Palermo, Italy
- NeuroTeam Life and Science, Palermo, Italy
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Massimiliano Oliveri
- Dipartimento di Scienze Psicologiche, Pedagogiche e della Formazione, Università degli Studi di Palermo, Palermo, Italy
- NeuroTeam Life and Science, Palermo, Italy
- IRCCS Fondazione “SantaLucia”, Roma, Italy
| |
Collapse
|
17
|
Sale MV, Mattingley JB, Zalesky A, Cocchi L. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci Biobehav Rev 2015; 57:187-98. [DOI: 10.1016/j.neubiorev.2015.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 01/28/2023]
|
18
|
Hurlemann R, Arndt S, Schlaepfer TE, Reul J, Maier W, Scheele D. Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex. Sci Rep 2015; 5:8954. [PMID: 25752944 PMCID: PMC4354029 DOI: 10.1038/srep08954] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/10/2015] [Indexed: 01/16/2023] Open
Abstract
From an evolutionary perspective the startle eye-blink response forms an integral part of the human avoidance behavioral repertoire and is typically diminished by pleasant emotional states. In major depressive disorder (MDD) appetitive motivation is impaired, evident in a reduced interference of positive emotion with the startle response. Given the pivotal role of frontostriatal neurocircuitry in orchestrating appetitive motivation, we hypothesized that inhibitory transcranial magnetic stimulation (TMS) would reduce appetitive neuromodulation in a manner similar to MDD. Based on a pre-TMS functional MRI (fMRI) experiment we selected the left dorsolateral and dorsomedial prefrontal cortices as target regions for subsequent sham-controlled inhibitory theta-burst TMS (TBS) in 40 healthy male volunteers. Consistent with our hypothesis, between-group comparisons revealed a TBS-induced inhibition of appetitive neuromodulation, manifest in a diminished startle response suppression by hedonic stimuli. Collectively, our results suggest that functional integrity of left dorsolateral and dorsomedial prefrontal cortex is critical for mediating a pleasure-induced down-regulation of avoidance responses which may protect the brain from a depressogenic preponderance of defensive stress.
Collapse
Affiliation(s)
- René Hurlemann
- 1] Department of Psychiatry, University of Bonn, 53105 Bonn, Germany [2] Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Stephan Arndt
- 1] Department of Psychiatry, University of Bonn, 53105 Bonn, Germany [2] Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| | - Thomas E Schlaepfer
- 1] Department of Psychiatry, University of Bonn, 53105 Bonn, Germany [2] Department of Psychiatry &Behavioral Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, 21287, USA
| | | | - Wolfgang Maier
- 1] Department of Psychiatry, University of Bonn, 53105 Bonn, Germany [2] German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| | - Dirk Scheele
- 1] Department of Psychiatry, University of Bonn, 53105 Bonn, Germany [2] Division of Medical Psychology, University of Bonn, 53105 Bonn, Germany
| |
Collapse
|
19
|
Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J Neurosci 2014; 34:10780-92. [PMID: 25100609 DOI: 10.1523/jneurosci.0723-14.2014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.
Collapse
|
20
|
Gratton C, Lee TG, Nomura EM, D’Esposito M. Perfusion MRI indexes variability in the functional brain effects of theta-burst transcranial magnetic stimulation. PLoS One 2014; 9:e101430. [PMID: 24992641 PMCID: PMC4081571 DOI: 10.1371/journal.pone.0101430] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/05/2014] [Indexed: 01/31/2023] Open
Abstract
Transcranial Magnetic Stimulation (TMS) is an important tool for testing causal relationships in cognitive neuroscience research. However, the efficacy of TMS can be variable across individuals and difficult to measure. This variability is especially a challenge when TMS is applied to regions without well-characterized behavioral effects, such as in studies using TMS on multi-modal areas in intrinsic networks. Here, we examined whether perfusion fMRI recordings of Cerebral Blood Flow (CBF), a quantitative measure sensitive to slow functional changes, reliably index variability in the effects of stimulation. Twenty-seven participants each completed four combined TMS-fMRI sessions during which both resting state Blood Oxygen Level Dependent (BOLD) and perfusion Arterial Spin Labeling (ASL) scans were recorded. In each session after the first baseline day, continuous theta-burst TMS (TBS) was applied to one of three locations: left dorsolateral prefrontal cortex (L dlPFC), left anterior insula/frontal operculum (L aI/fO), or left primary somatosensory cortex (L S1). The two frontal targets are components of intrinsic networks and L S1 was used as an experimental control. CBF changes were measured both before and after TMS on each day from a series of interleaved resting state and perfusion scans. Although TBS led to weak selective increases under the coil in CBF measurements across the group, individual subjects showed wide variability in their responses. TBS-induced changes in rCBF were related to TBS-induced changes in functional connectivity of the relevant intrinsic networks measured during separate resting-state BOLD scans. This relationship was selective: CBF and functional connectivity of these networks were not related before TBS or after TBS to the experimental control region (S1). Furthermore, subject groups with different directions of CBF change after TBS showed distinct modulations in the functional interactions of targeted networks. These results suggest that CBF is a marker of individual differences in the effects of TBS.
Collapse
Affiliation(s)
- Caterina Gratton
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Taraz G. Lee
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California, United States of America
| | - Emi M. Nomura
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California, United States of America
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, California, United States of America
| |
Collapse
|
21
|
Kassuba T, Klinge C, Hölig C, Röder B, Siebner HR. Short-term plasticity of visuo-haptic object recognition. Front Psychol 2014; 5:274. [PMID: 24765082 PMCID: PMC3980106 DOI: 10.3389/fpsyg.2014.00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/14/2014] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have provided ample evidence for the involvement of the lateral occipital cortex (LO), fusiform gyrus (FG), and intraparietal sulcus (IPS) in visuo-haptic object integration. Here we applied 30 min of sham (non-effective) or real offline 1 Hz repetitive transcranial magnetic stimulation (rTMS) to perturb neural processing in left LO immediately before subjects performed a visuo-haptic delayed-match-to-sample task during fMRI. In this task, subjects had to match sample (S1) and target (S2) objects presented sequentially within or across vision and/or haptics in both directions (visual-haptic or haptic-visual) and decide whether or not S1 and S2 were the same objects. Real rTMS transiently decreased activity at the site of stimulation and remote regions such as the right LO and bilateral FG during haptic S1 processing. Without affecting behavior, the same stimulation gave rise to relative increases in activation during S2 processing in the right LO, left FG, bilateral IPS, and other regions previously associated with object recognition. Critically, the modality of S2 determined which regions were recruited after rTMS. Relative to sham rTMS, real rTMS induced increased activations during crossmodal congruent matching in the left FG for haptic S2 and the temporal pole for visual S2. In addition, we found stronger activations for incongruent than congruent matching in the right anterior parahippocampus and middle frontal gyrus for crossmodal matching of haptic S2 and in the left FG and bilateral IPS for unimodal matching of visual S2, only after real but not sham rTMS. The results imply that a focal perturbation of the left LO triggers modality-specific interactions between the stimulated left LO and other key regions of object processing possibly to maintain unimpaired object recognition. This suggests that visual and haptic processing engage partially distinct brain networks during visuo-haptic object matching.
Collapse
Affiliation(s)
- Tanja Kassuba
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre Hvidovre, Denmark ; NeuroImageNord/Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Neurology, Christian-Albrechts-University Kiel, Germany
| | - Corinna Klinge
- NeuroImageNord/Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Psychiatry, Warneford Hospital Oxford, UK
| | - Cordula Hölig
- NeuroImageNord/Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Biological Psychology and Neuropsychology, University of Hamburg Hamburg, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg Hamburg, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre Hvidovre, Denmark ; NeuroImageNord/Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf Hamburg, Germany ; Department of Neurology, Christian-Albrechts-University Kiel, Germany
| |
Collapse
|
22
|
White TP, Engen NH, Sørensen S, Overgaard M, Shergill SS. Uncertainty and confidence from the triple-network perspective: voxel-based meta-analyses. Brain Cogn 2014; 85:191-200. [PMID: 24424423 DOI: 10.1016/j.bandc.2013.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022]
Abstract
Our subjective confidence about particular events is related to but independent from the objective certainty of the stimuli we encounter. Surprisingly, previous investigations of the neurophysiological correlates of confidence and uncertainty have largely been carried out separately. After systematically reviewing the blood oxygenation-level dependent functional magnetic resonance imaging (BOLD fMRI) literature, and splitting studies on the basis of their task requirements, a voxel-based meta-analysis was performed to identify: (i) those regions which are replicably modulated by the uncertainty of environmental conditions; (ii) those regions whose activity is robustly affected by our subjective confidence; and (iii) those regions differentially activated at these contrasting times. In further meta-analyses the consistency of activation between these judgement types was assessed. Increased activation was consistently observed in the salience (anterior cingulate cortex and insula) and central executive network (dorsolateral prefrontal and posterior parietal cortices) in conditions of increased uncertainty; by contrast, default mode network (midline cortical and medial temporal lobe) regions robustly exhibited a positive relationship with subjective confidence. Regions including right parahippocampal gyrus were positively modulated by magnitude across both certainty and confidence judgements. This region was also shown to be more significantly modulated by confidence magnitude as compared with degree of environmental certainty. The functional and methodological implications of these findings are discussed with a view to improving future investigation of the neural basis of metacognitive judgement.
Collapse
Affiliation(s)
- Thomas P White
- Department of Psychosis, Institute of Psychiatry, de Crespigny Park, London SE5 8AF, United Kingdom.
| | - Nina Helkjær Engen
- Cognitive Neuroscience Research Unit, Dept. of Communication & Psychology, Kroghsstraede 3, 9220 Aalborg, Denmark
| | - Susan Sørensen
- Cognitive Neuroscience Research Unit, Dept. of Communication & Psychology, Kroghsstraede 3, 9220 Aalborg, Denmark
| | - Morten Overgaard
- Cognitive Neuroscience Research Unit, Dept. of Communication & Psychology, Kroghsstraede 3, 9220 Aalborg, Denmark; Cognitive Neuroscience Research Unit, MindLab, CFIN, Aarhus University, Noerrebrogade 44, 8000 Aarhus, Denmark
| | - Sukhi S Shergill
- Department of Psychosis, Institute of Psychiatry, de Crespigny Park, London SE5 8AF, United Kingdom
| |
Collapse
|
23
|
Jay EL, Sierra M, Van den Eynde F, Rothwell JC, David AS. Testing a neurobiological model of depersonalization disorder using repetitive transcranial magnetic stimulation. Brain Stimul 2013; 7:252-9. [PMID: 24439959 PMCID: PMC3968882 DOI: 10.1016/j.brs.2013.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/15/2013] [Accepted: 12/04/2013] [Indexed: 11/25/2022] Open
Abstract
Background Depersonalization disorder (DPD) includes changes in subjective experiencing of self, encompassing emotional numbing. Functional magnetic resonance imaging (fMRI) has pointed to ventrolateral prefrontal cortex (VLPFC) inhibition of insula as a neurocognitive correlate of the disorder. Objective We hypothesized that inhibition to right VLPFC using repetitive transcranial magnetic stimulation (rTMS) would lead to increased arousal and reduced symptoms. Methods Patients with medication-resistant DSM-IV DPD (N = 17) and controls (N = 20) were randomized to receive one session of right-sided rTMS to VLPFC or temporo-parietal junction (TPJ). 1Hz rTMS was guided using neuronavigation and delivered for 15 min. Co-primary outcomes were: (a) maximum skin conductance capacity, and (b) reduction in depersonalization symptoms (Cambridge Depersonalisation Scale (CDS) [state version]). Secondary outcomes included spontaneous fluctuations (SFs) and event-related skin conductance responses. Results In patients with DPD, rTMS to VLPFC led to increased electrodermal capacity, namely maximum skin conductance deflections. Patients but not controls also showed increased SFs post rTMS. Patients who had either VLPFC or TPJ rTMS showed a similar significant reduction in symptoms. Event-related electrodermal activity did not change. Conclusions A single session of right-sided rTMS to VLPFC (but not TPJ) significantly increased physiological arousal capacity supporting our model regarding the relevance of increased VLPFC activity to emotional numbing in DPD. rTMS to both sites led to reduced depersonalization scores but since this was independent of physiological arousal, this may be a non-specific effect. TMS is a potential therapeutic option for DPD; modulation of VLPFC, if replicated, is a plausible mechanism.
Collapse
Affiliation(s)
- Emma-Louise Jay
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 8AF, UK
| | - Mauricio Sierra
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 8AF, UK
| | - Frederique Van den Eynde
- MRC Human Movement and Balance Unit, Institute of Cognitive Neuroscience, University College London, UK
| | - John C Rothwell
- Institut Universitaire en Santé Mentale, Douglas McGill University, Montreal, Canada
| | - Anthony S David
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, King's College London, Denmark Hill, London SE5 8AF, UK.
| |
Collapse
|
24
|
Application of high-frequency repetitive transcranial magnetic stimulation to the DLPFC alters human prefrontal-hippocampal functional interaction. J Neurosci 2013; 33:7050-6. [PMID: 23595762 DOI: 10.1523/jneurosci.3081-12.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural plasticity is crucial for understanding the experience-dependent reorganization of brain regulatory circuits and the pathophysiology of schizophrenia. An important circuit-level feature derived from functional magnetic resonance imaging (fMRI) is prefrontal-hippocampal seeded connectivity during working memory, the best established intermediate connectivity phenotype of schizophrenia risk to date. The phenotype is a promising marker for the effects of plasticity-enhancing interventions, such as high-frequency repetitive transcranial magnetic stimulation (rTMS), and can be studied in healthy volunteers in the absence of illness-related confounds, but the relationship to brain plasticity is unexplored. We recruited 39 healthy volunteers to investigate the effects of 5 Hz rTMS on prefrontal-hippocampal coupling during working memory and rest. In a randomized and sham-controlled experiment, neuronavigation-guided rTMS was applied to the right dorsolateral prefrontal cortex (DLPFC), and fMRI and functional connectivity analyses [seeded connectivity and psychophysiological interaction (PPI)] were used as readouts. Moreover, the test-retest reliability of working-memory related connectivity markers was evaluated. rTMS provoked a significant decrease in seeded functional connectivity of the right DLPFC and left hippocampus during working memory that proved to be relatively time-invariant and robust. PPI analyses provided evidence for a nominal effect of rTMS and poor test-retest reliability. No effects on n-back-related activation and DLPFC-hippocampus resting-state connectivity were observed. These data provide the first in vivo evidence for the effects of plasticity induction on human prefrontal-hippocampal network dynamics, offer insights into the biological mechanisms of a well established intermediate phenotype linked to schizophrenia, and underscores the importance of the choice of outcome measures in test-retest designs.
Collapse
|
25
|
Xu G, Lan Y, Huang D, Chen S, Chen L, Zeng J, Pei Z. The study on the frontoparietal networks by continuous theta burst stimulation in healthy human subjects. Behav Brain Res 2013. [DOI: 10.1016/j.bbr.2012.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Esslinger C, Schüler N, Sauer C, Gass D, Mier D, Braun U, Ochs E, Schulze TG, Rietschel M, Kirsch P, Meyer-Lindenberg A. Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Hum Brain Mapp 2012; 35:140-51. [PMID: 22965696 DOI: 10.1002/hbm.22165] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023] Open
Abstract
Neuronal plasticity is crucial for flexible interaction with a changing environment and its disruption is thought to contribute to psychiatric diseases like schizophrenia. High-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive tool to increase local excitability of neurons and induce short-time functional reorganization of cortical networks. While this has been shown for the motor system, little is known about the short-term plasticity of networks for executive cognition in humans. We examined 12 healthy control subjects in a crossover study with fMRI after real and sham 5 Hz rTMS to the right dorsolateral prefrontal cortex (DLPFC). During scanning, subjects performed an n-back working memory (WM) task and a flanker task engaging cognitive control. Reaction times during the n-back task were significantly shorter after rTMS than after sham stimulation. RTMS compared with sham stimulation caused no activation changes at the stimulation site (right DLPFC) itself, but significantly increased connectivity within the WM network during n-back and reduced activation in the anterior cingulate cortex during the flanker task. Reduced reaction times after real stimulation support an excitatory effect of high-frequency rTMS. Our findings identified plastic changes in prefrontally connected networks downstream of the stimulation site as the substrate of this behavioral effect. Using a multimodal fMRI-rTMS approach, we could demonstrate changes in cortical plasticity in humans during executive cognition. In further studies this approach could be used to study pharmacological, genetic and disease-related alterations.
Collapse
Affiliation(s)
- Christine Esslinger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
de Vries PM, de Jong BM, Bohning DE, Hinson VK, George MS, Leenders KL. Reduced parietal activation in cervical dystonia after parietal TMS interleaved with fMRI. Clin Neurol Neurosurg 2012; 114:914-21. [DOI: 10.1016/j.clineuro.2012.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
|
28
|
Kriváneková L, Baudrexel S, Bliem B, Ziemann U. Relation of brain stimulation induced changes in MEP amplitude and BOLD signal. Brain Stimul 2012; 6:330-9. [PMID: 22770886 DOI: 10.1016/j.brs.2012.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 04/17/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Non-invasive human brain stimulation can induce long-term plasticity reflected by changes in putative markers of synaptic activation, such as the motor evoked potential (MEP) amplitude elicited by transcranial magnetic stimulation or the task-dependent blood oxygenation level-dependent (BOLD) signal measured by functional magnetic resonance imaging. OBJECTIVE To study the relationship between brain stimulation induced changes in MEP amplitude and BOLD signal. METHODS Paired associative stimulation of the hand area of the left primary somatosensory cortex (S1-PAS) was applied in 15 healthy subjects to induce excitability change in the adjacent primary motor cortex (M1) [Kriváneková et al. 2011, Eur J Neurosci 34:1292-1300]. Before and after S1-PAS, MEP amplitude in a right hand muscle, and the BOLD signal during a right hand motor or somatosensory activation task were measured. RESULTS S1-PAS resulted in substantial individual MEP and BOLD signal changes, but these changes did not correlate in M1 or S1. CONCLUSIONS Findings indicate that MEP amplitude and BOLD signal within the tested M1 reflect physiologically distinct aspects of synaptic excitability change. Therefore, it is suggested that MEP amplitude and BOLD signal are complementary rather than interchangeable markers of synaptic excitability.
Collapse
Affiliation(s)
- Lucia Kriváneková
- Department of Neurology, Goethe University of Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
29
|
van den Heuvel OA, Van Gorsel HC, Veltman DJ, Van Der Werf YD. Impairment of executive performance after transcranial magnetic modulation of the left dorsal frontal-striatal circuit. Hum Brain Mapp 2011; 34:347-55. [PMID: 22076808 DOI: 10.1002/hbm.21443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 07/05/2011] [Accepted: 07/25/2011] [Indexed: 11/12/2022] Open
Abstract
The dorsal frontal-striatal circuit is implicated in executive functions, such as planning. The Tower of London task, a planning task, in combination with off-line low-frequency repetitive transcranial magnetic stimulation (rTMS), was used to investigate whether interfering with dorsolateral prefrontal function would modulate executive performance, mimicking dorsal frontal-striatal dysfunction as found in neuropsychiatric disorders. Eleven healthy controls (seven females; mean age 25.5 years) were entered in a cross-over design: two single-session treatments of low-frequency (1 Hz) rTMS (vs. sham rTMS) for 20 min on the left dorsolateral prefrontal cortex (DLPFC). Directly following the off-line rTMS treatment, the Tower of London task was performed during MRI measurements. The low-frequency rTMS treatment impaired performance, but only when the subjects had not performed the task before: we found a TMS condition-by-order effect, such that real TMS treatment in the first session led to significantly more errors (P = 0.032), whereas this TMS effect was not present in subjects who received real TMS in the second session. At the neural level, rTMS resulted in decreased activation during the rTMS versus sham condition in prefrontal brain regions (i.e., premotor, dorsolateral prefrontal and anterior prefrontal cortices) and visuospatial brain regions (i.e., precuneus/cuneus and inferior parietal cortex). The results show that low-frequency off-line rTMS on the DLPFC resulted in decreased task-related activations in the frontal and visuospatial regions during the performance of the Tower of London task, with a behavioral effect only when task experience is limited.
Collapse
|
30
|
Cárdenas-Morales L, Grön G, Kammer T. Exploring the after-effects of theta burst magnetic stimulation on the human motor cortex: a functional imaging study. Hum Brain Mapp 2010; 32:1948-60. [PMID: 21181786 DOI: 10.1002/hbm.21160] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 08/05/2010] [Accepted: 08/10/2010] [Indexed: 11/06/2022] Open
Abstract
Theta burst stimulation (TBS) is a protocol of subthreshold repetitive transcranial magnetic stimulation (rTMS) inducing changes in cortical excitability. From functional imaging studies with conventional subthreshold rTMS protocols, it remains unclear what type of modulation occurs (direction and dependency to neural activity) and whether putative effects are bound to unspecific changes in cerebral perfusion or require a functional challenge. In a within-subjects (n = 17) repeated measurement design including real TBS and a control session without stimulation, we examined neural activation in a choice-reaction task after application of intermittent TBS, a protocol, which enhances cortical excitability over the left motor cortex (M1). Brain activity was monitored by blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging interleaved with measuring regional cerebral blood flow (rCBF) at rest using MR-based perfusion imaging. On a separate day, TMS-induced compound muscle action potentials (cMAPs) amplitude of the right hand was measured after excitatory TBS. Compared to control, a significant decrease in BOLD signal due to right hand motor activity during the choice-reaction task was observed mainly in the stimulated M1 and motor-related remote areas after stimulation. This decrease might represent a facilitating effect, because cMAPs amplitude increased upon TBS compared to control. No changes in rCBF at rest were observed. The data demonstrate that subthreshold intermittent TBS targets both the stimulated cortical area as well as remote areas. The facilitation changing the efficacy of neural signal transmission seems to be reflected by a BOLD signal decrease, whereas the network at rest does not appear to be affected.
Collapse
|
31
|
Marinelli L, Perfetti B, Moisello C, Di Rocco A, Eidelberg D, Abbruzzese G, Ghilardi MF. Increased reaction time predicts visual learning deficits in Parkinson's disease. Mov Disord 2010; 25:1498-501. [PMID: 20568090 DOI: 10.1002/mds.23156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To determine whether the process involved in movement preparation of patients in the early stages of Parkinson's disease (PD) shares attentional resources with visual learning, we tested 23 patients with PD and 13 healthy controls with two different tasks. The first was a motor task where subjects were required to move as soon as possible to randomly presented targets by minimizing reaction time. The second was a visual learning task where targets were presented in a preset order and subjects were asked to learn the sequence order by attending to the display without moving. Patients with PD showed higher reaction and movement times, while visual learning was reduced compared with controls. For patients with PD, reaction times, but not movement times, displayed an inverse significant correlation with the scores of visual learning. We conclude that visual declarative learning and movement preparation might share similar attentional and working memory resources. (c) 2010 Movement Disorder Society.
Collapse
Affiliation(s)
- Lucio Marinelli
- Department of Neurosciences, Ophthalmology and Genetics, University of Genova, Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
van der Werf YD, Sanz-Arigita EJ, Menning S, van den Heuvel OA. Modulating spontaneous brain activity using repetitive transcranial magnetic stimulation. BMC Neurosci 2010; 11:145. [PMID: 21067612 PMCID: PMC2993720 DOI: 10.1186/1471-2202-11-145] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022] Open
Abstract
Background When no specific stimulus or task is presented, spontaneous fluctuations in brain activity occur. Brain regions showing such coherent fluctuations are thought to form organized networks known as 'resting-state' networks, a main representation of which is the default mode network. Spontaneous brain activity shows abnormalities in several neurological and psychiatric diseases that may reflect disturbances of ongoing thought processes. Information about the degree to which such spontaneous brain activity can be modulated may prove helpful in the development of treatment options. We investigated the effect of offline low-frequency rTMS on spontaneous neural activity, as measured with fMRI, using a sequential independent-component-analysis and regression approach to investigate local changes within the default mode network. Results We show that rTMS applied over the left dorsolateral prefrontal cortex results in distal changes of neural activity, relative to the site of stimulation, and that these changes depend on the patterns of brain network activity during 'resting-state'. Conclusions Whereas the proximal changes may reflect the off-line effect of direct stimulation of neural elements, the distal changes likely reflect modulation of functional connectivity.
Collapse
Affiliation(s)
- Ysbrand D van der Werf
- Sleep and Cognition, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
33
|
Ward NS, Bestmann S, Hartwigsen G, Weiss MM, Christensen LOD, Frackowiak RSJ, Rothwell JC, Siebner HR. Low-frequency transcranial magnetic stimulation over left dorsal premotor cortex improves the dynamic control of visuospatially cued actions. J Neurosci 2010; 30:9216-23. [PMID: 20610756 PMCID: PMC3717513 DOI: 10.1523/jneurosci.4499-09.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 03/04/2010] [Accepted: 05/10/2010] [Indexed: 11/21/2022] Open
Abstract
Left rostral dorsal premotor cortex (rPMd) and supramarginal gyrus (SMG) have been implicated in the dynamic control of actions. In 12 right-handed healthy individuals, we applied 30 min of low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) over left rPMd to investigate the involvement of left rPMd and SMG in the rapid adjustment of actions guided by visuospatial cues. After rTMS, subjects underwent functional magnetic resonance imaging while making spatially congruent button presses with the right or left index finger in response to a left- or right-sided target. Subjects were asked to covertly prepare motor responses as indicated by a directional cue presented 1 s before the target. On 20% of trials, the cue was invalid, requiring subjects to readjust their motor plan according to the target location. Compared with sham rTMS, real rTMS increased the number of correct responses in invalidly cued trials. After real rTMS, task-related activity of the stimulated left rPMd showed increased task-related coupling with activity in ipsilateral SMG and the adjacent anterior intraparietal area (AIP). Individuals who showed a stronger increase in left-hemispheric premotor-parietal connectivity also made fewer errors on invalidly cued trials after rTMS. The results suggest that rTMS over left rPMd improved the ability to dynamically adjust visuospatial response mapping by strengthening left-hemispheric connectivity between rPMd and the SMG-AIP region. These results support the notion that left rPMd and SMG-AIP contribute toward dynamic control of actions and demonstrate that low-frequency rTMS can enhance functional coupling between task-relevant brain regions and improve some aspects of motor performance.
Collapse
Affiliation(s)
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and
- Wellcome Trust Centre for Neuroimaging, University College London, Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Gesa Hartwigsen
- Department of Neurology, Christian-Albrechts University, 24105 Kiel, Germany
| | - Michael M. Weiss
- Department of Neurology, Christian-Albrechts University, 24105 Kiel, Germany
| | | | - Richard S. J. Frackowiak
- Wellcome Trust Centre for Neuroimaging, University College London, Institute of Neurology, London WC1N 3BG, United Kingdom
- Service de Neurologie, Centre Hospitalier Universitaire Vaudois BH10, 1011 Lausanne, Switzerland, and
| | | | - Hartwig R. Siebner
- Department of Neurology, Christian-Albrechts University, 24105 Kiel, Germany
- Danish Research Centre for Magnetic Resonance, Hvidovre University Hospital, 2650 Hvidovre, Denmark
| |
Collapse
|
34
|
Abstract
How do we ignore stimuli that are salient but irrelevant when our task is to select a lower salient stimulus? Since bottom-up processes favor high saliency, detection of a low-salient target in the presence of highly salient distractors requires top-down attentional guidance. Previous studies have demonstrated that top-down attention can modulate perceptual processing and also that the control of attention is driven by frontoparietal regions. However, to date, there is no direct evidence on the cause and effect relationship between control regions and perceptual processing. Here, we report the first evidence demonstrating a neural circuit for the downregulation of salient distractors when a low-salient target is selected, combining brain imaging using functional magnetic resonance imaging with brain stimulation by transcranial magnetic stimulation. Using these combined techniques, we were able to identify a cause and effect relationship in the suppression of saliency, based on an interaction between the left intraparietal sulcus (IPS) and a region implicated in visual processing in our task (the left occipital pole). In particular, low-salient stimuli were selected by the left IPS suppressing early visual areas that would otherwise respond to a high-saliency distractor in the task. Apart from providing a first documentation of the neural circuit supporting selection by saliency, these data can be critical for understanding the underlying causes of problems in ignoring irrelevant salience that are found in both acquired and neurodevelopmental disorders (e.g., attention deficit/hyperactivity disorder or autism).
Collapse
|
35
|
Acute high-frequency rTMS of the left dorsolateral prefrontal cortex and attentional control in healthy young men. Brain Res 2010; 1329:152-8. [DOI: 10.1016/j.brainres.2010.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 02/18/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
|
36
|
Rounis E, Maniscalco B, Rothwell JC, Passingham RE, Lau H. Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. Cogn Neurosci 2010; 1:165-75. [PMID: 24168333 DOI: 10.1080/17588921003632529] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We used a recently developed protocol of transcranial magnetic stimulation (TMS), theta-burst stimulation, to bilaterally depress activity in the dorsolateral prefrontal cortex as subjects performed a visual discrimination task. We found that TMS impaired subjects' ability to discriminate between correct and incorrect stimulus judgments. Specifically, after TMS subjects reported lower visibility levels for correctly identified stimuli, as if they were less fully aware of the quality of their visual information processing. A signal detection theory analysis confirmed that the results reflect a change in metacognitive sensitivity, not just response bias. The effect was specific to metacognition; TMS did not change stimulus discrimination performance, ruling out alternative explanations such as TMS impairing visual attention. Together these results suggest that activations in the prefrontal cortex in brain imaging experiments on visual awareness are not epiphenomena, but rather may reflect a critical metacognitive process.
Collapse
|
37
|
Honey CJ, Thivierge JP, Sporns O. Can structure predict function in the human brain? Neuroimage 2010; 52:766-76. [PMID: 20116438 DOI: 10.1016/j.neuroimage.2010.01.071] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/17/2010] [Accepted: 01/21/2010] [Indexed: 01/07/2023] Open
Abstract
Over the past decade, scientific interest in the properties of large-scale spontaneous neural dynamics has intensified. Concurrently, novel technologies have been developed for characterizing the connective anatomy of intra-regional circuits and inter-regional fiber pathways. It will soon be possible to build computational models that incorporate these newly detailed structural network measurements to make predictions of neural dynamics at multiple scales. Here, we review the practicality and the value of these efforts, while at the same time considering in which cases and to what extent structure does determine neural function. Studies of the healthy brain, of neural development, and of pathology all yield examples of direct correspondences between structural linkage and dynamical correlation. Theoretical arguments further support the notion that brain network topology and spatial embedding should strongly influence network dynamics. Although future models will need to be tested more quantitatively and against a wider range of empirical neurodynamic features, our present large-scale models can already predict the macroscopic pattern of dynamic correlation across the brain. We conclude that as neuroscience grapples with datasets of increasing completeness and complexity, and attempts to relate the structural and functional architectures discovered at different neural scales, the value of computational modeling will continue to grow.
Collapse
|
38
|
Rosa MJ, Bestmann S, Harrison L, Penny W. Bayesian model selection maps for group studies. Neuroimage 2010; 49:217-24. [PMID: 19732837 PMCID: PMC2791519 DOI: 10.1016/j.neuroimage.2009.08.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/16/2009] [Accepted: 08/23/2009] [Indexed: 11/05/2022] Open
Abstract
This technical note describes the construction of posterior probability maps (PPMs) for Bayesian model selection (BMS) at the group level. This technique allows neuroimagers to make inferences about regionally specific effects using imaging data from a group of subjects. These effects are characterised using Bayesian model comparisons that are analogous to the F-tests used in statistical parametric mapping, with the advantage that the models to be compared do not need to be nested. Additionally, an arbitrary number of models can be compared together. This note describes the integration of the Bayesian mapping approach with a random effects analysis model for BMS using group data. We illustrate the method using fMRI data from a group of subjects performing a target detection task.
Collapse
Affiliation(s)
- M J Rosa
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, UK.
| | | | | | | |
Collapse
|
39
|
Abstract
Recently, three accounts have emerged on the role of the anterior temporal lobes (ATLs) in semantic memory. One account claims that the ATLs are domain-general semantic hubs, another claims that they underlie knowledge of unique entities specifically, and yet another account claims that they support social conceptual knowledge generally. Here, we review neuropsychological and neuroimaging studies that bear on these three accounts and offer suggestions for future research to elucidate the roles of the ATLs in semantic memory.
Collapse
|
40
|
de Vries PM, de Jong BM, Bohning DE, Walker JA, George MS, Leenders KL. Changes in cerebral activations during movement execution and imagery after parietal cortex TMS interleaved with 3T MRI. Brain Res 2009; 1285:58-68. [PMID: 19523932 DOI: 10.1016/j.brainres.2009.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 05/31/2009] [Accepted: 06/01/2009] [Indexed: 11/27/2022]
Abstract
The left parietal cortex contributes to goal-directed hand movement. In this study, we targeted this region with transcranial magnetic stimulation (TMS) to assess the effects on a wider distributed circuitry related to motor control. Ten healthy subjects underwent 3 Tesla functional magnetic resonance imaging (fMRI) with interleaved TMS. They either executed or imagined right wrist flexion/extension movements, which was preceded by a 10-second period either with or without TMS. This was applied to the left superior parietal cortex in 10 stimuli of 1 Hz at 115% motor threshold intensity. TMS preceding the movement execution condition resulted in significantly increased activation in the bilateral prefrontal, right temporo-parietal and left posterior parietal cortices, when compared to movement without such intervention (P<0.001 voxel-level; P<0.05, volume corrected). Movement imagery after TMS showed significantly increased activation in the left medial prefrontal cortex, right lateral prefrontal cortex, left supramarginal gyrus and right occipital cortex, while a decrease was present in bilateral anterior parietal cortex (P<0.01 voxel-level; P<0.05 volume corrected). Activation changes after TMS of left superior parietal cortex thus appears to increase prefrontal and posterior parietal cortex activation, associated with a reduced function of the anterior parietal cortex, including S2. These changes are thought to reflect an impaired ability to estimate the proprioceptive consequences of movement during its preparation, which is compensated by the increased contribution of more remote parietal and prefrontal cortical regions.
Collapse
Affiliation(s)
- Paulien M de Vries
- Department of Neurology, University Medical Center Groningen, Institute of Behavioral and Cognitive Neuroscience, University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Leyman L, De Raedt R, Vanderhasselt MA, Baeken C. Influence of high-frequency repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex on the inhibition of emotional information in healthy volunteers. Psychol Med 2009; 39:1019-1028. [PMID: 18834555 DOI: 10.1017/s0033291708004431] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Evidence suggests that repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) might be a promising new treatment procedure for depression. However, underlying working mechanisms of this technique are yet unclear. Multiple sessions of rTMS may--apart from the reported antidepressant effects--cause primary improvements in attentional control over emotional information, modulated by changes in cortical brain excitability within stimulated prefrontal regions. METHOD In two experiments, we examined the temporary effects of high-frequency (HF) rTMS (10 Hz) applied over the left and right DLPFC on the attentional processing of emotional information and self-reported mood within samples of healthy volunteers. RESULTS The present study showed that one session of HF-rTMS over the right DLPFC produces instant impairments in the ability to inhibit negative information, in line with a characteristic cognitive vulnerability found in depressive pathology, whereas HF-rTMS of the left DLPFC did not lead to significant changes in attentional control. These effects could not be attributed to mood changes. CONCLUSIONS The findings of the present study may suggest a specific involvement of the right DLPFC in the attentional processing of emotional information.
Collapse
Affiliation(s)
- L Leyman
- Department of Psychology, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
42
|
Bestmann S, Ruff CC, Blankenburg F, Weiskopf N, Driver J, Rothwell JC. Mapping causal interregional influences with concurrent TMS-fMRI. Exp Brain Res 2008; 191:383-402. [PMID: 18936922 DOI: 10.1007/s00221-008-1601-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/29/2008] [Indexed: 12/20/2022]
Abstract
Transcranial magnetic stimulation (TMS) produces a direct causal effect on brain activity that can now be studied by new approaches that simultaneously combine TMS with neuroimaging methods, such as functional magnetic resonance imaging (fMRI). In this review we highlight recent concurrent TMS-fMRI studies that illustrate how this novel combined technique may provide unique insights into causal interactions among brain regions in humans. We show how fMRI can detect the spatial topography of local and remote TMS effects and how these may vary with psychological factors such as task-state. Concurrent TMS-fMRI may furthermore reveal how the brain adapts to so-called virtual lesions induced by TMS, and the distributed activity changes that may underlie the behavioural consequences often observed during cortical stimulation with TMS. We argue that combining TMS with neuroimaging techniques allows a further step in understanding the physiological underpinnings of TMS, as well as the neural correlated of TMS-evoked consequences on perception and behaviour. This can provide powerful new insights about causal interactions among brain regions in both health and disease that may ultimately lead to developing more efficient protocols for basic research and therapeutic TMS applications.
Collapse
Affiliation(s)
- Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Philiastides MG, Sajda P. EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. J Neurosci 2007; 27:13082-91. [PMID: 18045902 PMCID: PMC6673396 DOI: 10.1523/jneurosci.3540-07.2007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/25/2007] [Accepted: 10/05/2007] [Indexed: 11/21/2022] Open
Abstract
Single-unit and multiunit recordings in primates have already established that decision making involves at least two general stages of neural processing: representation of evidence from early sensory areas and accumulation of evidence to a decision threshold from decision-related regions. However, the relay of information from early sensory to decision areas, such that the accumulation process is instigated, is not well understood. Using a cued paradigm and single-trial analysis of electroencephalography (EEG), we previously reported on temporally specific components related to perceptual decision making. Here, we use information derived from our previous EEG recordings to inform the analysis of fMRI data collected for the same behavioral task to ascertain the cortical origins of each of these EEG components. We demonstrate that a cascade of events associated with perceptual decision making takes place in a highly distributed neural network. Of particular importance is an activation in the lateral occipital complex implicating perceptual persistence as a mechanism by which object decision making in the human brain is instigated.
Collapse
Affiliation(s)
- Marios G. Philiastides
- Laboratory for Intelligent Imaging and Neural Computing, Department of Biomedical Engineering, Columbia University, New York, New York 10027
| | - Paul Sajda
- Laboratory for Intelligent Imaging and Neural Computing, Department of Biomedical Engineering, Columbia University, New York, New York 10027
| |
Collapse
|
44
|
Hubl D, Nyffeler T, Wurtz P, Chaves S, Pflugshaupt T, Lüthi M, von Wartburg R, Wiest R, Dierks T, Strik WK, Hess CW, Müri RM. Time course of blood oxygenation level-dependent signal response after theta burst transcranial magnetic stimulation of the frontal eye field. Neuroscience 2007; 151:921-8. [PMID: 18160225 DOI: 10.1016/j.neuroscience.2007.10.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/26/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
The aim of the current study was to examine the effect of theta burst repetitive transcranial magnetic stimulation (rTMS) on the blood oxygenation level-dependent (BOLD) activation during repeated functional magnetic resonance imaging (fMRI) measurements. Theta burst rTMS was applied over the right frontal eye field in seven healthy subjects. Subsequently, repeated fMRI measurements were performed during a saccade-fixation task (block design) 5, 20, 35, and 60 min after stimulation. We found that theta burst rTMS induced a strong and long-lasting decrease of the BOLD signal response of the stimulated frontal eye field at 20 and 35 min. Furthermore, less pronounced alterations of the BOLD signal response with different dynamics were found for remote oculomotor areas such as the left frontal eye field, the pre-supplementary eye field, the supplementary eye field, and both parietal eye fields. Recovery of the BOLD signal changes in the anterior remote areas started earlier than in the posterior remote areas. These results show that a) the major inhibitory impact of theta burst rTMS occurs directly in the stimulated area itself, and that b) a lower effect on remote, oculomotor areas can be induced.
Collapse
Affiliation(s)
- D Hubl
- Perception and Eye Movement Laboratory, Department of Neurology and Clinical Research, University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Levkovitz Y, Roth Y, Harel EV, Braw Y, Sheer A, Zangen A. A randomized controlled feasibility and safety study of deep transcranial magnetic stimulation. Clin Neurophysiol 2007; 118:2730-44. [PMID: 17977787 DOI: 10.1016/j.clinph.2007.09.061] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The H-coils are a new development in transcranial magnetic stimulation (TMS) research, allowing direct stimulation of deeper neuronal pathways than does standard TMS. This study assessed possible health risks, and some cognitive and emotional effects, of two H-coil versions designed to stimulate deep portions of the prefrontal cortex, using several stimulation frequencies. METHODS Healthy volunteers (n=32) were randomly assigned to one of four groups: each of two H-coil designs (H1/H2), standard figure-8 coil, and sham-coil control. Subjects were tested in a pre-post design, during three increasing (single pulses, 10 Hz, and 20 Hz) stimulation sessions, as well as 24-36 h after the last stimulation. RESULTS The major finding of the present study is that stimulation with the novel H-coils was well tolerated, with no adverse physical or neurological outcomes. Computerized cognitive tests found no deterioration in cognitive functions, except for a transient short-term effect of the H1-coil on spatial recognition memory on the first day of rTMS (but not in the following treatment days). On the other hand, spatial working memory was transiently improved by the H2-coil treatment. Finally, the questionnaires showed no significant emotional or mood alterations, except for reports on 'detachment' experienced by subjects treated with the H1-coil. CONCLUSIONS This study provides additional evidence for the feasibility and safety of the two H-coil designs (H1/H2). SIGNIFICANCE The H-coils offer a safe new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions.
Collapse
Affiliation(s)
- Yechiel Levkovitz
- Cognitive and Emotional Laboratory, Shalvata Mental Health Care Center, Hod-Hasharon, Israel
| | | | | | | | | | | |
Collapse
|
46
|
Top-down control is not lost in the attentional blink: evidence from intact endogenous cuing. Exp Brain Res 2007; 185:287-95. [DOI: 10.1007/s00221-007-1153-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 09/19/2007] [Indexed: 11/27/2022]
|
47
|
Rounis E, Yarrow K, Rothwell JC. Effects of rTMS conditioning over the fronto-parietal network on motor versus visual attention. J Cogn Neurosci 2007; 19:513-24. [PMID: 17335398 DOI: 10.1162/jocn.2007.19.3.513] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Many studies have shown that visuospatial orienting attention depends on a network of frontal and parietal areas in the right hemisphere. Rushworth et al. [Rushworth, M. F., Krams, M., & Passingham, R. E. The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13, 698-710, 2001] have recently provided evidence for a left-lateralized network of parietal areas involved in motor attention. Using two variants of a cued reaction time (RT) task, we set out to investigate whether high-frequency repetitive transcranial magnetic stimulation (rTMS; 5 Hz) delivered "off-line" in a virtual lesion paradigm over the right or left dorsolateral prefrontal cortex (DLPFC) or the posterior parietal cortex (PPC) would affect performance in a motor versus a visual attention task. Although rTMS over the DLPFC on either side did not affect RT performance on a spatial orienting task, it did lead to an increase in the RTs of invalidly cued trials in a motor attention task when delivered to the left DLPFC. The opposite effect was found when rTMS was delivered to the PPC: In this case, conditioning the right PPC led to increased RTs in invalidly cued trials located in the left hemispace, in the spatial orienting task. rTMS over the PPC on either side did not affect performance in the motor attention task. This double dissociation was evident in the first 10 min after rTMS conditioning. These results enhance our understanding of the networks associated with attention. They provide evidence of a role for the left DLPFC in the mechanisms of motor preparation, and confirm Mesulam's original proposal for a right PPC dominance in spatial attention [Mesulam, M. M. A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10, 309-325, 1981].
Collapse
|
48
|
O'Shea J, Johansen-Berg H, Trief D, Göbel S, Rushworth MFS. Functionally Specific Reorganization in Human Premotor Cortex. Neuron 2007; 54:479-90. [PMID: 17481399 DOI: 10.1016/j.neuron.2007.04.021] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/04/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
After unilateral stroke, the dorsal premotor cortex (PMd) in the intact hemisphere is often more active during movement of an affected limb. Whether this contributes to motor recovery is unclear. Functional magnetic resonance imaging (fMRI) was used to investigate short-term reorganization in right PMd after transcranial magnetic stimulation (TMS) disrupted the dominant left PMd, which is specialized for action selection. Even when 1 Hz left PMd TMS had no effect on behavior, there was a compensatory increase in activity in right PMd and connected medial premotor areas. This activity was specific to task periods of action selection as opposed to action execution. Compensatory activation changes were both functionally specific and anatomically specific: the same pattern was not seen after TMS of left sensorimotor cortex. Subsequent TMS of the reorganized right PMd did disrupt performance. Thus, this pattern of functional reorganization has a causal role in preserving behavior after neuronal challenge.
Collapse
Affiliation(s)
- Jacinta O'Shea
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| | | | | | | | | |
Collapse
|