1
|
Aiba I, Ning Y, Noebels JL. Persistent Na + current couples spreading depolarization to seizures in Scn8a gain of function mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617888. [PMID: 39416109 PMCID: PMC11482884 DOI: 10.1101/2024.10.11.617888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Spreading depolarization (SD) is a slowly propagating wave of massive cellular depolarization that transiently impairs the function of affected brain regions. While SD typically arises as an isolated hemispheric event, we previously reported that reducing M-type potassium current (IKM) by ablation of Kcnq2 in forebrain excitatory neurons results in tightly coupled spontaneous bilateral seizure-SD complexes in the awake mouse cortex. Here we find that enhanced persistent Na+ current due to gain-of-function (GOF) mutations in Scn8a (N1768D/+, hereafter D/+) produces a similar compound cortical excitability phenotype. Chronic DC-band EEG recording detected spontaneous bilateral seizure-SD complexes accompanied by seizures with a profound tonic motor component, which occur predominantly during the light phase and were detected at ages between P33-100. Laser speckle contrast imaging of cerebral blood flow dynamics resolved SD as a bilateral wave of hypoperfusion and subsequent hour-lasting hypoperfusion in Scn8a D/+ cortex in awake head-restrained mice evoked by a PTZ injection. Subcortical recordings in freely moving mice revealed that approximately half of the spontaneous cortical seizure-SD complexes arose with a concurrent SD-like depolarization in the thalamus and delayed depolarization in the striatum. In contrast, SD-like DC potential shifts were rarely detected in the hippocampus or upper pons. Consistent with the high spontaneous incidence in vivo, cortical slices from Scn8a D/+ mice showed a raised SD susceptibility, and pharmacological inhibition of persistent Na+ current (INaP), which is enhanced in Scn8a D/+ neurons, inhibited SD generation in cortical slices ex vivo as well as in head-fixed mice in vivo, indicating that INaP contributes to SD susceptibility. Ex vivo Ca2+ imaging studies using acute brain slices expressing genetic Ca2+ sensor (Thy1-GCAMP6s) demonstrated that pharmacological activation of IKM suppressed Ca2+ spikes and SD, whereas an IKM inhibitor strongly increased the frequency of hippocampal Ca2+ spikes in Scn8a D/+, but not WT slices, suggesting that IKM restrains the Scn8a GOF hyperexcitability. Together, our study identifies a cortical SD phenotype in Scn8a GOF mice shared with the Kcnq2-cKO model of developmental epileptic encephalopathy, and reveals that an imbalance of non-inactivating inward and outward tonic membrane currents bidirectionally modulates spatiotemporal SD susceptibility.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurology, Baylor College of Medicine Houston TX 77030
| | - Yao Ning
- Department of Neurology, Baylor College of Medicine Houston TX 77030
| | - Jeffrey L Noebels
- Department of Neurology, Baylor College of Medicine Houston TX 77030
| |
Collapse
|
2
|
Yu W, Hill SF, Huang Y, Zhu L, Demetriou Y, Ziobro J, Reger F, Jia X, Mattis J, Meisler MH. Allele-Specific Editing of a Dominant SCN8A Epilepsy Variant Protects against Seizures and Lethality in a Murine Model. Ann Neurol 2024; 96:958-969. [PMID: 39158034 PMCID: PMC11496010 DOI: 10.1002/ana.27053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVE Developmental and epileptic encephalopathies (DEEs) can result from dominant, gain of function variants of neuronal ion channels. More than 450 de novo missense variants of the sodium channel gene SCN8A have been identified in individuals with DEE. METHODS We studied a mouse model carrying the patient Scn8a variant p.Asn1768Asp. An AAV-PHP.eB virus carrying an allele-specific single guide RNA (sgRNA) was administered by intracerebroventricular injection. Cas9 was provided by an inherited transgene. RESULTS Allele-specific disruption of the reading frame of the pathogenic transcript generated out-of-frame indels in 1/4 to 1/3 of transcripts throughout the brain. This editing efficiency was sufficient to rescue lethality and seizures. Neuronal hyperexcitability was reduced in cells expressing the virus. INTERPRETATION The data demonstrate efficient allele-specific editing of a dominant missense variant and support the feasibility of allele-specific therapy for DEE epilepsy. ANN NEUROL 2024;96:958-969.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| | - Yumei Huang
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | | | - Julie Ziobro
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Faith Reger
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Xiaoyan Jia
- Center for Genomic Technologies, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Joanna Mattis
- Department of Neurology, University of Michigan, Ann Arbor, MI
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Miralles RM, Boscia AR, Kittur S, Hanflink JC, Panchal PS, Yorek MS, Deutsch TCJ, Reever CM, Vundela SR, Wengert ER, Patel MK. Parvalbumin interneuron impairment causes synaptic transmission deficits and seizures in SCN8A developmental and epileptic encephalopathy. JCI Insight 2024; 9:e181005. [PMID: 39435659 PMCID: PMC11529981 DOI: 10.1172/jci.insight.181005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
SCN8A developmental and epileptic encephalopathy (DEE) is a severe epilepsy syndrome resulting from mutations in the voltage-gated sodium channel Nav1.6, encoded by the gene SCN8A. Nav1.6 is expressed in excitatory and inhibitory neurons, yet previous studies primarily focus on how SCN8A mutations affect excitatory neurons, with limited studies on the importance of inhibitory interneurons. Parvalbumin (PV) interneurons are a prominent inhibitory interneuron subtype that expresses Nav1.6. To assess PV interneuron function within SCN8A DEE, we used 2 mouse models harboring patient-derived SCN8A gain-of-function variants, Scn8aD/+, where the SCN8A variant N1768D is expressed globally, and Scn8aW/+-PV, where the SCN8A variant R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A variant selectively in PV interneurons led to development of spontaneous seizures and seizure-induced death. Electrophysiology studies showed that Scn8aD/+ and Scn8aW/+-PV interneurons were susceptible to depolarization block and exhibited increased persistent sodium current. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed synaptic transmission deficits in Scn8aD/+ and Scn8aW/+-PV interneurons. Together, our findings indicate that PV interneuron failure via depolarization block along with inhibitory synaptic impairment likely elicits an overall inhibitory reduction in SCN8A DEE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
Affiliation(s)
- Raquel M. Miralles
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | - Caeley M. Reever
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | - Eric R. Wengert
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manoj K. Patel
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
McCrimmon CM, Toker D, Pahos M, Lozano K, Lin JJ, Parent J, Tidball A, Zheng J, Molnár L, Mody I, Novitch BG, Samarasinghe RA. Modeling Cortical Versus Hippocampal Network Dysfunction in a Human Brain Assembloid Model of Epilepsy and Intellectual Disability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.07.611739. [PMID: 39282353 PMCID: PMC11398483 DOI: 10.1101/2024.09.07.611739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions by using human patient iPSC-derived cortical- and hippocampal-ganglionic eminence assembloids to model Developmental and Epileptic Encephalopathy 13 (DEE-13), a condition arising from gain-of-function mutations in the SCN8A gene. While cortical assembloids showed network hyperexcitability akin to epileptogenic tissue, hippocampal assembloids did not, and instead displayed network dysregulation patterns similar to in vivo hippocampal recordings from epilepsy patients. Predictive computational modeling, immunohistochemistry, and single-nucleus RNA sequencing revealed changes in excitatory and inhibitory neuron organization that were specific to hippocampal assembloids. These findings highlight the unique impacts of a single pathogenic variant across brain regions and establish hippocampal assembloids as a platform for studying neurodevelopmental disorders.
Collapse
|
5
|
Yu W, Hill SF, Zhu L, Demetriou Y, Reger F, Mattis J, Meisler MH. Dentate gyrus granule cells are a locus of pathology in Scn8a developmental encephalopathy. Neurobiol Dis 2024; 199:106591. [PMID: 38969233 DOI: 10.1016/j.nbd.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
Gain-of-function mutations in SCN8A cause developmental and epileptic encephalopathy (DEE), a disorder characterized by early-onset refractory seizures, deficits in motor and intellectual functions, and increased risk of sudden unexpected death in epilepsy. Altered activity of neurons in the corticohippocampal circuit has been reported in mouse models of DEE. We examined the effect of chronic seizures on gene expression in the hippocampus by single-nucleus RNA sequencing in mice expressing the patient mutation SCN8A-p.Asn1768Asp (N1768D). One hundred and eighty four differentially expressed genes were identified in dentate gyrus granule cells, many more than in other cell types. Electrophysiological recording from dentate gyrus granule cells demonstrated an elevated firing rate. Targeted reduction of Scn8a expression in the dentate gyrus by viral delivery of an shRNA resulted in doubling of median survival time from 4 months to 8 months, whereas delivery of shRNA to the CA1 and CA3 regions did not result in lengthened survival. These data indicate that granule cells of the dentate gyrus are a specific locus of pathology in SCN8A-DEE.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sophie F Hill
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Limei Zhu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Faith Reger
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Joanna Mattis
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Quinn S, Zhang N, Fenton TA, Brusel M, Muruganandam P, Peleg Y, Giladi M, Haitin Y, Lerche H, Bassan H, Liu Y, Ben-Shalom R, Rubinstein M. Complex biophysical changes and reduced neuronal firing in an SCN8A variant associated with developmental delay and epilepsy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167127. [PMID: 38519006 DOI: 10.1016/j.bbadis.2024.167127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.
Collapse
Affiliation(s)
- Shir Quinn
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nan Zhang
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Timothy A Fenton
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Marina Brusel
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Preethi Muruganandam
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Haim Bassan
- Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| | - Roy Ben-Shalom
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States.
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Miralles RM, Boscia AR, Kittur S, Vundela SR, Wengert ER, Patel MK. Parvalbumin Interneuron Impairment Leads to Synaptic Transmission Deficits and Seizures in SCN8A Epileptic Encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579511. [PMID: 38464208 PMCID: PMC10925130 DOI: 10.1101/2024.02.09.579511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
SCN8A epileptic encephalopathy (EE) is a severe epilepsy syndrome resulting from de novo mutations in the voltage-gated sodium channel Na v 1.6, encoded by the gene SCN8A . Na v 1.6 is expressed in both excitatory and inhibitory neurons, yet previous studies have primarily focused on the impact SCN8A mutations have on excitatory neuron function, with limited studies on the importance of inhibitory interneurons to seizure onset and progression. Inhibitory interneurons are critical in balancing network excitability and are known to contribute to the pathophysiology of other epilepsies. Parvalbumin (PV) interneurons are the most prominent inhibitory neuron subtype in the brain, making up about 40% of inhibitory interneurons. Notably, PV interneurons express high levels of Na v 1.6. To assess the role of PV interneurons within SCN8A EE, we used two mouse models harboring patient-derived SCN8A gain-of-function mutations, Scn8a D/+ , where the SCN8A mutation N1768D is expressed globally, and Scn8a W/+ -PV, where the SCN8A mutation R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A mutation selectively in PV interneurons led to the development of spontaneous seizures in Scn8a W/+ -PV mice and seizure-induced death, decreasing survival compared to wild-type. Electrophysiology studies showed that PV interneurons in Scn8a D/+ and Scn8a W/+ -PV mice were susceptible to depolarization block, a state of action potential failure. Scn8a D/+ and Scn8a W/+ -PV interneurons also exhibited increased persistent sodium current, a hallmark of SCN8A gain-of-function mutations that contributes to depolarization block. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed an increase in synaptic transmission failure at high frequencies (80-120Hz) as well as an increase in synaptic latency in Scn8a D/+ and Scn8a W/+ -PV interneurons. These data indicate a distinct impairment of synaptic transmission in SCN8A EE, potentially decreasing overall cortical network inhibition. Together, our novel findings indicate that failure of PV interneuron spiking via depolarization block along with frequency-dependent inhibitory synaptic impairment likely elicits an overall reduction in the inhibitory drive in SCN8A EE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
|
8
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Wenker IC, Boscia AR, Lewis C, Tariq A, Miralles R, Hanflink JC, Saraf P, Patel MK. Forebrain epileptiform activity is not required for seizure-induced apnea in a mouse model of Scn8a epilepsy. Front Neural Circuits 2022; 16:1002013. [PMID: 36160949 PMCID: PMC9490431 DOI: 10.3389/fncir.2022.1002013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) accounts for the deaths of 8-17% of patients with epilepsy. Although the mechanisms of SUDEP are essentially unknown, one proposed mechanism is respiratory arrest initiated by a convulsive seizure. In mice, we have previously observed that extended apnea occurs during the tonic phase of seizures. Although often survived, tonic seizures became fatal when breathing did not immediately recover postictally. We also found that respiratory muscles were tonically contracted during the apnea, suggesting that muscle contraction could be the cause of apnea. In the present study, we tested the hypothesis that pyramidal neurons of the motor cortex drive motor units during the tonic phase, which produces apnea. Mice harboring the patient-derived N1768D point mutation of an Scn8a allele were crossed with transgenic mice such that inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADD) receptors were selectively expressed in excitatory forebrain neurons. We then triggered audiogenic and hippocampal (HC) stimulated seizures under control conditions and when excitatory forebrain neurons were inhibited with the synthetic ligand Clozapine-N-Oxide (CNO). We found that inhibition with CNO was sufficient to increase seizure threshold of HC stimulated, but not audiogenic, seizures. In addition, regardless of seizure type, CNO nearly eliminated epileptiform activity that occurred proximal to the tonic phase; however, the seizure behaviors, notably the tonic phase and concomitant apnea, were unchanged. We interpret these results to indicate that while cortical neurons are likely critical for epileptogenesis and seizure initiation, the behavioral manifestations of tonic seizures are generated by neural circuitry in the mid- and/or hindbrain.
Collapse
|
10
|
Li QY, Chen SX, Liu JY, Yao PW, Duan YW, Li YY, Zang Y. Neuroinflammation in the anterior cingulate cortex: the potential supraspinal mechanism underlying the mirror-image pain following motor fiber injury. J Neuroinflammation 2022; 19:162. [PMID: 35725625 PMCID: PMC9210588 DOI: 10.1186/s12974-022-02525-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Peripheral nerve inflammation or lesion can affect contralateral healthy structures, and thus result in mirror-image pain. Supraspinal structures play important roles in the occurrence of mirror pain. The anterior cingulate cortex (ACC) is a first-order cortical region that responds to painful stimuli. In the present study, we systematically investigate and compare the neuroimmune changes in the bilateral ACC region using unilateral- (spared nerve injury, SNI) and mirror-(L5 ventral root transection, L5-VRT) pain models, aiming to explore the potential supraspinal neuroimmune mechanism underlying the mirror-image pain. Methods The up-and-down method with von Frey hairs was used to measure the mechanical allodynia. Viral injections for the designer receptors exclusively activated by designer drugs (DREADD) were used to modulate ACC glutamatergic neurons. Immunohistochemistry, immunofluorescence, western blotting, protein microarray were used to detect the regulation of inflammatory signaling. Results Increased expressions of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and chemokine CX3CL1 in ACC induced by unilateral nerve injury were observed on the contralateral side in the SNI group but on the bilateral side in the L5-VRT group, representing a stronger immune response to L5-VRT surgery. In remote ACC, both SNI and L5-VRT induced robust bilateral increase in the protein level of Nav1.6 (SCN8A), a major voltage-gated sodium channel (VGSC) that regulates neuronal activity in the mammalian nervous system. However, the L5-VRT-induced Nav1.6 response occurred at PO 3d, earlier than the SNI-induced one, 7 days after surgery. Modulating ACC glutamatergic neurons via DREADD-Gq or DREADD-Gi greatly changed the ACC CX3CL1 levels and the mechanical paw withdrawal threshold. Neutralization of endogenous ACC CX3CL1 by contralateral anti-CX3CL1 antibody attenuated the induction and the maintenance of mechanical allodynia and eliminated the upregulation of CX3CL1, TNF-α and Nav1.6 protein levels in ACC induced by SNI. Furthermore, contralateral ACC anti-CX3CL1 also inhibited the expression of ipsilateral spinal c-Fos, Iba1, CD11b, TNF-α and IL-6. Conclusions The descending facilitation function mediated by CX3CL1 and its downstream cascade may play a pivotal role, leading to enhanced pain sensitization and even mirror-image pain. Strategies that target chemokine-mediated ACC hyperexcitability may lead to novel therapies for the treatment of neuropathic pain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02525-8.
Collapse
Affiliation(s)
- Qiao-Yun Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Shao-Xia Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Jin-Yu Liu
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Pei-Wen Yao
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Yi-Wen Duan
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China
| | - Ying Zang
- Pain Research Center and Department of Physiology, Zhongshan Medical School of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
11
|
Thompson JA, Miralles RM, Wengert ER, Wagley PK, Yu W, Wenker IC, Patel MK. Astrocyte reactivity in a mouse model of SCN8A epileptic encephalopathy. Epilepsia Open 2022; 7:280-292. [PMID: 34826216 PMCID: PMC9159254 DOI: 10.1002/epi4.12564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE SCN8A epileptic encephalopathy is caused predominantly by de novo gain-of-function mutations in the voltage-gated sodium channel Nav 1.6. The disorder is characterized by early onset of seizures and developmental delay. Most patients with SCN8A epileptic encephalopathy are refractory to current anti-seizure medications. Previous studies determining the mechanisms of this disease have focused on neuronal dysfunction as Nav 1.6 is expressed by neurons and plays a critical role in controlling neuronal excitability. However, glial dysfunction has been implicated in epilepsy and alterations in glial physiology could contribute to the pathology of SCN8A encephalopathy. In the current study, we examined alterations in astrocyte and microglia physiology in the development of seizures in a mouse model of SCN8A epileptic encephalopathy. METHODS Using immunohistochemistry, we assessed microglia and astrocyte reactivity before and after the onset of spontaneous seizures. Expression of glutamine synthetase and Nav 1.6, and Kir 4.1 channel currents were assessed in astrocytes in wild-type (WT) mice and mice carrying the N1768D SCN8A mutation (D/+). RESULTS Astrocytes in spontaneously seizing D/+ mice become reactive and increase expression of glial fibrillary acidic protein (GFAP), a marker of astrocyte reactivity. These same astrocytes exhibited reduced barium-sensitive Kir 4.1 currents compared to age-matched WT mice and decreased expression of glutamine synthetase. These alterations were only observed in spontaneously seizing mice and not before the onset of seizures. In contrast, microglial morphology remained unchanged before and after the onset of seizures. SIGNIFICANCE Astrocytes, but not microglia, become reactive only after the onset of spontaneous seizures in a mouse model of SCN8A encephalopathy. Reactive astrocytes have reduced Kir 4.1-mediated currents, which would impair their ability to buffer potassium. Reduced expression of glutamine synthetase would modulate the availability of neurotransmitters to excitatory and inhibitory neurons. These deficits in potassium and glutamate handling by astrocytes could exacerbate seizures in SCN8A epileptic encephalopathy. Targeting astrocytes may provide a new therapeutic approach to seizure suppression.
Collapse
Affiliation(s)
- Jeremy A. Thompson
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Raquel M. Miralles
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Eric R. Wengert
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| | - Pravin K. Wagley
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Wenxi Yu
- Department of Human GeneticsUniversity of MichiganAnn ArborMIUSA
| | - Ian C. Wenker
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
| | - Manoj K. Patel
- Department of AnesthesiologyUniversity of Virginia Health SystemCharlottesvilleVAUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVAUSA
| |
Collapse
|
12
|
Teran FA, Bravo E, Richerson GB. Sudden unexpected death in epilepsy: Respiratory mechanisms. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:153-176. [PMID: 36031303 PMCID: PMC10191258 DOI: 10.1016/b978-0-323-91532-8.00012-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Epilepsy is one of the most common chronic neurologic diseases, with a prevalence of 1% in the US population. Many people with epilepsy live normal lives, but are at risk of sudden unexpected death in epilepsy (SUDEP). This mysterious comorbidity of epilepsy causes premature death in 17%-50% of those with epilepsy. Most SUDEP occurs after a generalized seizure, and patients are typically found in bed in the prone position. Until recently, it was thought that SUDEP was due to cardiovascular failure, but patients who died while being monitored in hospital epilepsy units revealed that most SUDEP is due to postictal central apnea. Some cases may occur when seizures invade the amygdala and activate projections to the brainstem. Evidence suggests that the pathophysiology is linked to defects in the serotonin system and central CO2 chemoreception, and that there is considerable overlap with mechanisms thought to be involved in sudden infant death syndrome (SIDS). Future work is needed to identify biomarkers for patients at highest risk, improve ascertainment, develop methods to alert caregivers when SUDEP is imminent, and find effective approaches to prevent these fatal events.
Collapse
Affiliation(s)
- Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States.
| | - Eduardo Bravo
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA, United States; Department of Molecular Physiology & Biophysics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Wengert ER, Patel MK. One Size Doesn't Fit All: Variant-Specific Effects in SCN8A Encephalopathy. Epilepsy Curr 2021; 21:183-185. [PMID: 34867099 PMCID: PMC8609588 DOI: 10.1177/15357597211002206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Variant-Specific Changes in Persistent or Resurgent Sodium Current in SCN8A-Related Epilepsy Patient-Derived Neurons Tidball AM, Lopez-Santiago LF, Yuan Y, et al. Brain. 2020;143(10):3025-3040. doi:10.1093/brain/awaa247 Missense variants in the SCN8A voltage-gated sodium channel gene are linked to early infantile epileptic encephalopathy type 13, also known as SCN8A-related epilepsy. These patients exhibit a wide spectrum of intractable seizure types, severe developmental delay, movement disorders, and elevated risk of sudden unexpected death in epilepsy. The mechanisms by which SCN8A variants lead to epilepsy are poorly understood, although heterologous expression systems and mouse models have demonstrated altered sodium current properties. To investigate these mechanisms using a patient-specific model, we generated induced pluripotent stem cells from 3 patients with missense variants in SCN8A: p.R1872>L (patient 1); p.V1592>L (patient 2); and p.N1759>S (patient 3). Using small-molecule differentiation into excitatory neurons, induced pluripotent stem cell-derived neurons from all 3 patients displayed altered sodium currents. Patients 1 and 2 had elevated persistent current, while patient 3 had increased resurgent current compared to controls. Neurons from all 3 patients displayed shorter axon initial segment lengths compared to controls. Further analyses focused on one of the patients with increased persistent sodium current (patient 1) and the patient with increased resurgent current (patient 3). Excitatory cortical neurons from both patients had prolonged action potential repolarization. Using doxycycline-inducible expression of the neuronal transcription factors neurogenin 1 and 2 to synchronize differentiation of induced excitatory cortical-like neurons, we investigated network activity and response to pharmacotherapies. Both small-molecule differentiated and induced patient neurons displayed similar abnormalities in action potential repolarization. Patient-induced neurons showed increased burstiness that was sensitive to phenytoin, currently a standard treatment for SCN8A-related epilepsy patients, or riluzole, an FDA-approved drug used in amyotrophic lateral sclerosis and known to block persistent and resurgent sodium currents, at pharmacologically relevant concentrations. Patch clamp recordings showed that riluzole suppressed spontaneous firing and increased the action potential firing threshold of patient-derived neurons to more depolarized potentials. Two of the patients in this study were prescribed riluzole off-label. Patient 1 had a 50% reduction in seizure frequency. Patient 3 experienced an immediate and dramatic seizure reduction with months of seizure freedom. An additional patient with a SCN8A variant in domain IV of Nav1.6 (p.V1757>I) had a dramatic reduction in seizure frequency for several months after starting riluzole treatment, but then seizures recurred. Our results indicate that patient-specific neurons are useful for modeling SCN8A-related epilepsy and demonstrate SCN8A variant-specific mechanisms. Moreover, these findings suggest that patient-specific neuronal disease modeling offers a useful platform for discovering precision epilepsy therapies.
Collapse
|
14
|
Liu Y, Koko M, Lerche H. A SCN8A variant associated with severe early onset epilepsy and developmental delay: Loss- or gain-of-function? Epilepsy Res 2021; 178:106824. [PMID: 34847423 DOI: 10.1016/j.eplepsyres.2021.106824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
SCN8A, encoding the voltage-gated sodium channel subunit NaV1.6, has been associated with a wide spectrum of neuropsychiatric disorders. Missense variants in SCN8A which increase the channel activity can cause a severe developmental and epileptic encephalopathy (DEE). One DEE variant (p.(Arg223Gly)) was described to cause a predominant loss-of-function (LOF) mechanism when expressed in neuroblastoma cells, which is not consistent with the genotype-phenotype correlations in this gene. To resolve this discrepancy and understand the pathophysiological mechanism of this variant, we performed comprehensive electrophysiological studies in both neuroblastoma cells and primary hippocampal neuronal cultures. Although we also found that p.(Arg223Gly) significantly decreased Na+ current density and enhanced fast inactivation compared to the wild type (WT) channel in transfected neuroblastoma cells (both LOF mechanisms), it also caused a strong hyperpolarizing shift of steady-state activation and accelerated the recovery from fast inactivation (both gain-of-function (GOF) mechanisms). In cultured neurons transfected with mutant vs. WT NaV1.6 channels, we found more depolarized resting membrane potentials and a decreased rheobase leading to enhanced action potential firing. We conclude that SCN8A p.(Arg223Gly) leads to a net GOF resulting in neuronal hyperexcitability and a higher firing rate, fitting with the central role of GOF mechanisms in DEE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
15
|
Miralles RM, Patel MK. It Takes Two to Tango: Channel Interplay Leads to Paradoxical Hyperexcitability in a Loss-of-Function Epilepsy Variant. Epilepsy Curr 2021; 22:69-71. [PMID: 35233206 PMCID: PMC8832357 DOI: 10.1177/15357597211057966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
16
|
Abstract
SCN8A epileptic encephalopathy is a devastating epilepsy syndrome caused by mutant SCN8A, which encodes the voltage-gated sodium channel NaV1.6. To date, it is unclear if and how inhibitory interneurons, which express NaV1.6, influence disease pathology. Using both sexes of a transgenic mouse model of SCN8A epileptic encephalopathy, we found that selective expression of the R1872W SCN8A mutation in somatostatin (SST) interneurons was sufficient to convey susceptibility to audiogenic seizures. Patch-clamp electrophysiology experiments revealed that SST interneurons from mutant mice were hyperexcitable but hypersensitive to action potential failure via depolarization block under normal and seizure-like conditions. Remarkably, GqDREADD-mediated activation of WT SST interneurons resulted in prolonged electrographic seizures and was accompanied by SST hyperexcitability and depolarization block. Aberrantly large persistent sodium currents, a hallmark of SCN8A mutations, were observed and were found to contribute directly to aberrant SST physiology in computational modeling and pharmacological experiments. These novel findings demonstrate a critical and previously unidentified contribution of SST interneurons to seizure generation not only in SCN8A epileptic encephalopathy, but epilepsy in general.SIGNIFICANCE STATEMENT SCN8A epileptic encephalopathy is a devastating neurological disorder that results from de novo mutations in the sodium channel isoform Nav1.6. Inhibitory neurons express NaV1.6, yet their contribution to seizure generation in SCN8A epileptic encephalopathy has not been determined. We show that mice expressing a human-derived SCN8A variant (R1872W) selectively in somatostatin (SST) interneurons have audiogenic seizures. Physiological recordings from SST interneurons show that SCN8A mutations lead to an elevated persistent sodium current which drives initial hyperexcitability, followed by premature action potential failure because of depolarization block. Furthermore, chemogenetic activation of WT SST interneurons leads to audiogenic seizure activity. These findings provide new insight into the importance of SST inhibitory interneurons in seizure initiation, not only in SCN8A epileptic encephalopathy, but for epilepsy broadly.
Collapse
|
17
|
Quattrocolo G, Dunville K, Nigro MJ. Resurgent Sodium Current in Neurons of the Cerebral Cortex. Front Cell Neurosci 2021; 15:760610. [PMID: 34658797 PMCID: PMC8517112 DOI: 10.3389/fncel.2021.760610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
In the late ’90, Dr. Indira Raman, at the time a postdoctoral fellow with Dr. Bruce Bean, at Harvard University, identified a new type of sodium current, flowing through the channels that reopens when the membrane is repolarized. This current, called “resurgent Sodium current,” was originally identified in cerebellar Purkinje neurons and has now been confirmed in around 20 different neuronal types. Since moving to Northwestern University in 1999 to establish her own research group, Dr. Raman has dedicated great efforts in identifying the mechanisms supporting the resurgent Sodium current and how its biophysical properties shape the firing of the different cell types. Her work has impacted greatly the field of cellular neurophysiology, from basic research to translation neuroscience. In fact, alterations in the resurgent sodium currents have been observed in several neuropathologies, from Huntington’s disease to epilepsy. In this Perspective we will focus on the current knowledge on the expression and function of the resurgent Sodium current in neurons of the cerebral cortex and hippocampus. We will also briefly highlight the role of Dr. Raman’s as teacher and mentor, not only for her pupils, but for the whole scientific community.
Collapse
Affiliation(s)
- Giulia Quattrocolo
- Center for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Keagan Dunville
- Center for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maximiliano José Nigro
- Center for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
18
|
Specchio N, Curatolo P. Developmental and epileptic encephalopathies: what we do and do not know. Brain 2021; 144:32-43. [PMID: 33279965 DOI: 10.1093/brain/awaa371] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Developmental encephalopathies, including intellectual disability and autistic spectrum disorder, are frequently associated with infant epilepsy. Epileptic encephalopathy is used to describe an assumed causal relationship between epilepsy and developmental delay. Developmental encephalopathies pathogenesis more independent from epilepsy is supported by the identification of several gene variants associated with both developmental encephalopathies and epilepsy, the possibility for gene-associated developmental encephalopathies without epilepsy, and the continued development of developmental encephalopathies even when seizures are controlled. Hence, 'developmental and epileptic encephalopathy' may be a more appropriate term than epileptic encephalopathy. This update considers the best studied 'developmental and epileptic encephalopathy' gene variants for illustrative support for 'developmental and epileptic encephalopathy' over epileptic encephalopathy. Moreover, the interaction between epilepsy and developmental encephalopathies is considered with respect to influence on treatment decisions. Continued research in genetic testing will increase access to clinical tests, earlier diagnosis, better application of current treatments, and potentially provide new molecular-investigated treatments.
Collapse
Affiliation(s)
- Nicola Specchio
- Department of Neuroscience, Bambino Gesu Children's Hospital, IRCCS, Full Member of European Reference Network on Rare and Complex Epilepsies EpiCARE, Piazza S, 00165 Rome, Italy
| | - Paolo Curatolo
- Systems Medicine Department, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, 00133 Rome, Italy
| |
Collapse
|
19
|
Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021; 101:1633-1689. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated sodium channels initiate action potentials in nerve, skeletal muscle, and other electrically excitable cells. Mutations in them cause a wide range of diseases. These channelopathy mutations affect every aspect of sodium channel function, including voltage sensing, voltage-dependent activation, ion conductance, fast and slow inactivation, and both biosynthesis and assembly. Mutations that cause different forms of periodic paralysis in skeletal muscle were discovered first and have provided a template for understanding structure, function, and pathophysiology at the molecular level. More recent work has revealed multiple sodium channelopathies in the brain. Here we review the well-characterized genetics and pathophysiology of the periodic paralyses of skeletal muscle and then use this information as a foundation for advancing our understanding of mutations in the structurally homologous α-subunits of brain sodium channels that cause epilepsy, migraine, autism, and related comorbidities. We include studies based on molecular and structural biology, cell biology and physiology, pharmacology, and mouse genetics. Our review reveals unexpected connections among these different types of sodium channelopathies.
Collapse
Affiliation(s)
- Massimo Mantegazza
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France.,INSERM, Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Cote d'Azur, Valbonne-Sophia Antipolis, France.,CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne-Sophia Antipolis, France
| | | |
Collapse
|
20
|
Wenker IC, Teran FA, Wengert ER, Wagley PK, Panchal PS, Blizzard EA, Saraf P, Wagnon JL, Goodkin HP, Meisler MH, Richerson GB, Patel MK. Postictal Death Is Associated with Tonic Phase Apnea in a Mouse Model of Sudden Unexpected Death in Epilepsy. Ann Neurol 2021; 89:1023-1035. [PMID: 33604927 DOI: 10.1002/ana.26053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is an unpredictable and devastating comorbidity of epilepsy that is believed to be due to cardiorespiratory failure immediately after generalized convulsive seizures. METHODS We performed cardiorespiratory monitoring of seizure-induced death in mice carrying either a p.Arg1872Trp or p.Asn1768Asp mutation in a single Scn8a allele-mutations identified from patients who died from SUDEP-and of seizure-induced death in pentylenetetrazole-treated wild-type mice. RESULTS The primary cause of seizure-induced death for all mice was apnea, as (1) apnea began during a seizure and continued for tens of minutes until terminal asystole, and (2) death was prevented by mechanical ventilation. Fatal seizures always included a tonic phase that was coincident with apnea. This tonic phase apnea was not sufficient to produce death, as it also occurred during many nonfatal seizures; however, all seizures that were fatal had tonic phase apnea. We also made the novel observation that continuous tonic diaphragm contraction occurred during tonic phase apnea, which likely contributes to apnea by preventing exhalation, and this was only fatal when breathing did not resume after the tonic phase ended. Finally, recorded seizures from a patient with developmental epileptic encephalopathy with a previously undocumented SCN8A likely pathogenic variant (p.Leu257Val) revealed similarities to those of the mice, namely, an extended tonic phase that was accompanied by apnea. INTERPRETATION We conclude that apnea coincident with the tonic phase of a seizure, and subsequent failure to resume breathing, are the determining events that cause seizure-induced death in Scn8a mutant mice. ANN NEUROL 2021;89:1023-1035.
Collapse
Affiliation(s)
- Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Frida A Teran
- Department of Neurology, University of Iowa, Iowa City, IA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA
| | - Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA.,Neuroscience Graduate Program, University of Virginia, Charlottesville, VA
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA.,Department of Neurology, University of Virginia Health System, Charlottesville, VA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Elizabeth A Blizzard
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Priyanka Saraf
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Howard P Goodkin
- Department of Neurology, University of Virginia Health System, Charlottesville, VA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - George B Richerson
- Department of Neurology, University of Iowa, Iowa City, IA.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA.,Veterans Affairs Medical Center, Iowa City, IA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
21
|
Wengert ER, Wenker IC, Wagner EL, Wagley PK, Gaykema RP, Shin JB, Patel MK. Adrenergic Mechanisms of Audiogenic Seizure-Induced Death in a Mouse Model of SCN8A Encephalopathy. Front Neurosci 2021; 15:581048. [PMID: 33762902 PMCID: PMC7982890 DOI: 10.3389/fnins.2021.581048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death amongst patients whose seizures are not adequately controlled by current therapies. Patients with SCN8A encephalopathy have an elevated risk for SUDEP. While transgenic mouse models have provided insight into the molecular mechanisms of SCN8A encephalopathy etiology, our understanding of seizure-induced death has been hampered by the inability to reliably trigger both seizures and seizure-induced death in these mice. Here, we demonstrate that mice harboring an Scn8a allele with the patient-derived mutation N1768D (D/+) are susceptible to audiogenic seizures and seizure-induced death. In adult D/+ mice, audiogenic seizures are non-fatal and have nearly identical behavioral, electrographical, and cardiorespiratory characteristics as spontaneous seizures. In contrast, at postnatal days 20–21, D/+ mice exhibit the same seizure behavior, but have a significantly higher incidence of seizure-induced death following an audiogenic seizure. Seizure-induced death was prevented by either stimulating breathing via mechanical ventilation or by acute activation of adrenergic receptors. Conversely, in adult D/+ mice inhibition of adrenergic receptors converted normally non-fatal audiogenic seizures into fatal seizures. Taken together, our studies show that in our novel audiogenic seizure-induced death model adrenergic receptor activation is necessary and sufficient for recovery of breathing and prevention of seizure-induced death.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ronald P Gaykema
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
22
|
Abstract
The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.
Collapse
|
23
|
Tidball AM, Lopez-Santiago LF, Yuan Y, Glenn TW, Margolis JL, Clayton Walker J, Kilbane EG, Miller CA, Martina Bebin E, Scott Perry M, Isom LL, Parent JM. Variant-specific changes in persistent or resurgent sodium current in SCN8A-related epilepsy patient-derived neurons. Brain 2021; 143:3025-3040. [PMID: 32968789 DOI: 10.1093/brain/awaa247] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Missense variants in the SCN8A voltage-gated sodium channel gene are linked to early-infantile epileptic encephalopathy type 13, also known as SCN8A-related epilepsy. These patients exhibit a wide spectrum of intractable seizure types, severe developmental delay, movement disorders, and elevated risk of sudden unexpected death in epilepsy. The mechanisms by which SCN8A variants lead to epilepsy are poorly understood, although heterologous expression systems and mouse models have demonstrated altered sodium current properties. To investigate these mechanisms using a patient-specific model, we generated induced pluripotent stem cells from three patients with missense variants in SCN8A: p.R1872>L (Patient 1); p.V1592>L (Patient 2); and p.N1759>S (Patient 3). Using small molecule differentiation into excitatory neurons, induced pluripotent stem cell-derived neurons from all three patients displayed altered sodium currents. Patients 1 and 2 had elevated persistent current, while Patient 3 had increased resurgent current compared to controls. Neurons from all three patients displayed shorter axon initial segment lengths compared to controls. Further analyses focused on one of the patients with increased persistent sodium current (Patient 1) and the patient with increased resurgent current (Patient 3). Excitatory cortical neurons from both patients had prolonged action potential repolarization. Using doxycycline-inducible expression of the neuronal transcription factors neurogenin 1 and 2 to synchronize differentiation of induced excitatory cortical-like neurons, we investigated network activity and response to pharmacotherapies. Both small molecule differentiated and induced patient neurons displayed similar abnormalities in action potential repolarization. Patient induced neurons showed increased burstiness that was sensitive to phenytoin, currently a standard treatment for SCN8A-related epilepsy patients, or riluzole, an FDA-approved drug used in amyotrophic lateral sclerosis and known to block persistent and resurgent sodium currents, at pharmacologically relevant concentrations. Patch-clamp recordings showed that riluzole suppressed spontaneous firing and increased the action potential firing threshold of patient-derived neurons to more depolarized potentials. Two of the patients in this study were prescribed riluzole off-label. Patient 1 had a 50% reduction in seizure frequency. Patient 3 experienced an immediate and dramatic seizure reduction with months of seizure freedom. An additional patient with a SCN8A variant in domain IV of Nav1.6 (p.V1757>I) had a dramatic reduction in seizure frequency for several months after starting riluzole treatment, but then seizures recurred. Our results indicate that patient-specific neurons are useful for modelling SCN8A-related epilepsy and demonstrate SCN8A variant-specific mechanisms. Moreover, these findings suggest that patient-specific neuronal disease modelling offers a useful platform for discovering precision epilepsy therapies.
Collapse
Affiliation(s)
- Andrew M Tidball
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Yukun Yuan
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Trevor W Glenn
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - J Clayton Walker
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Emma G Kilbane
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - E Martina Bebin
- Department of Neurology, University of Alabama Birmingham School of Medicine, Birmingham, AL, USA.,Department of Pediatrics, University of Alabama Birmingham School of Medicine, Birmingham, AL, USA
| | - M Scott Perry
- Cook Children's Health Care System, Fort Worth, Texas, USA
| | - Lori L Isom
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Ann Arbor VA Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Abstract
Voltage-gated sodium channels (VGSCs) are foundational to excitable cell function: Their coordinated passage of sodium ions into the cell is critical for the generation and propagation of action potentials throughout the nervous system. The classical paradigm of action potential physiology states that sodium passes through the membrane only transiently (1-2 milliseconds), before the channels inactivate and cease to conduct sodium ions. However, in reality, a small fraction of the total sodium current (1%-2%) remains at steady state despite prolonged depolarization. While this persistent sodium current (INaP) contributes to normal physiological functioning of neurons, accumulating evidence indicates a particularly pathogenic role for an elevated INaP in epilepsy (reviewed previously1). Due to significant advances over the past decade of epilepsy research concerning the importance of INaP in sodium channelopathies, this review seeks to summarize recent evidence and highlight promising novel anti-seizure medication strategies through preferentially targeting INaP.
Collapse
Affiliation(s)
- Eric R. Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - Manoj K. Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
25
|
Solé L, Wagnon JL, Tamkun MM. Functional analysis of three Na v1.6 mutations causing early infantile epileptic encephalopathy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165959. [PMID: 32916281 DOI: 10.1016/j.bbadis.2020.165959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
The voltage-gated sodium channel Nav1.6 is associated with more than 300 cases of epileptic encephalopathy. Nav1.6 epilepsy-causing mutations are spread over the entire channel's structure and only 10% of mutations have been characterized at the molecular level, with most of them being gain of function mutations. In this study, we analyzed three previously uncharacterized Nav1.6 epilepsy-causing mutations: G214D, N215D and V216D, located within a mutation hot-spot at the S3-S4 extracellular loop of Domain1. Voltage clamp experiments showed a 6-16 mV hyperpolarizing shift in the activation mid-point for all three mutants. V216D presented the largest shift along with decreased current amplitude, enhanced inactivation and a lack of persistent current. Recordings at hyperpolarized potentials indicated that all three mutants presented gating pore currents. Furthermore, trafficking experiments performed in cultured hippocampal neurons demonstrated that the mutants trafficked properly to the cell surface, with no significant differences regarding surface expression within the axon initial segment or soma compared to wild-type. These trafficking data suggest that the disease-causing consequences are due to only changes in the biophysical properties of the channel. Interestingly, the patient carrying the V216D mutation, which is the mutant with the greatest electrophysiological changes as compared to wild-type, exhibited the most severe phenotype. These results emphasize that these mutations will mandate unique treatment approaches, for normal sodium channel blockers may not work given that the studied mutations present gating pore currents. This study emphasizes the importance of molecular characterization of disease-causing mutations in order to improve the pharmacological treatment of patients.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO 80523, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacy L Wagnon
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Michael M Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO 80523, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
26
|
Zybura AS, Baucum AJ, Rush AM, Cummins TR, Hudmon A. CaMKII enhances voltage-gated sodium channel Nav1.6 activity and neuronal excitability. J Biol Chem 2020; 295:11845-11865. [PMID: 32611770 DOI: 10.1074/jbc.ra120.014062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/30/2020] [Indexed: 11/06/2022] Open
Abstract
Nav1.6 is the primary voltage-gated sodium channel isoform expressed in mature axon initial segments and nodes, making it critical for initiation and propagation of neuronal impulses. Thus, Nav1.6 modulation and dysfunction may have profound effects on input-output properties of neurons in normal and pathological conditions. Phosphorylation is a powerful and reversible mechanism regulating ion channel function. Because Nav1.6 and the multifunctional Ca2+/CaM-dependent protein kinase II (CaMKII) are independently linked to excitability disorders, we sought to investigate modulation of Nav1.6 function by CaMKII signaling. We show that inhibition of CaMKII, a Ser/Thr protein kinase associated with excitability, synaptic plasticity, and excitability disorders, with the CaMKII-specific peptide inhibitor CN21 reduces transient and persistent currents in Nav1.6-expressing Purkinje neurons by 87%. Using whole-cell voltage clamp of Nav1.6, we show that CaMKII inhibition in ND7/23 and HEK293 cells significantly reduces transient and persistent currents by 72% and produces a 5.8-mV depolarizing shift in the voltage dependence of activation. Immobilized peptide arrays and nanoflow LC-electrospray ionization/MS of Nav1.6 reveal potential sites of CaMKII phosphorylation, specifically Ser-561 and Ser-641/Thr-642 within the first intracellular loop of the channel. Using site-directed mutagenesis to test multiple potential sites of phosphorylation, we show that Ala substitutions of Ser-561 and Ser-641/Thr-642 recapitulate the depolarizing shift in activation and reduction in current density. Computational simulations to model effects of CaMKII inhibition on Nav1.6 function demonstrate dramatic reductions in spontaneous and evoked action potentials in a Purkinje cell model, suggesting that CaMKII modulation of Nav1.6 may be a powerful mechanism to regulate neuronal excitability.
Collapse
Affiliation(s)
- Agnes S Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Anthony J Baucum
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Biology Department, Indiana University-Purdue University Indianapolis, School of Science, Indianapolis, Indiana, USA
| | | | - Theodore R Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Biology Department, Indiana University-Purdue University Indianapolis, School of Science, Indianapolis, Indiana, USA
| | - Andy Hudmon
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA .,Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
27
|
Meisler MH. SCN8A encephalopathy: Mechanisms and models. Epilepsia 2020; 60 Suppl 3:S86-S91. [PMID: 31904118 DOI: 10.1111/epi.14703] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
De novo mutations of the neuronal sodium channel SCN8A have been identified in approximately 2% of individuals with epileptic encephalopathy. These missense mutations alter the biophysical properties of sodium channel Nav1.6 in ways that lead to neuronal hyperexcitability. We generated two mouse models carrying patient mutations N1768D and R1872W to examine the effects on neuronal function in vivo. The conditional R1872W mutation is activated by expression of CRE recombinase, permitting characterization of the effects of the mutation on different classes of neurons and at different points in postnatal development. Preclinical drug testing in these mouse models provides support for several new therapies for this devastating disorder. In contrast with the gain-of-function mutations in epilepsy, mutations of SCN8A that result in partial or complete loss of function are associated with intellectual disability and other disorders.
Collapse
Affiliation(s)
- Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
28
|
Mason ER, Cummins TR. Differential Inhibition of Human Nav1.2 Resurgent and Persistent Sodium Currents by Cannabidiol and GS967. Int J Mol Sci 2020; 21:ijms21072454. [PMID: 32244818 PMCID: PMC7177867 DOI: 10.3390/ijms21072454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Many epilepsy patients are refractory to conventional antiepileptic drugs. Resurgent and persistent currents can be enhanced by epilepsy mutations in the Nav1.2 channel, but conventional antiepileptic drugs inhibit normal transient currents through these channels, along with aberrant resurgent and persistent currents that are enhanced by Nav1.2 epilepsy mutations. Pharmacotherapies that specifically target aberrant resurgent and/or persistent currents would likely have fewer unwanted side effects and be effective in many patients with refractory epilepsy. This study investigated the effects of cannbidiol (CBD) and GS967 (each at 1 μM) on transient, resurgent, and persistent currents in human embryonic kidney (HEK) cells stably expressing wild-type hNav1.2 channels. We found that CBD preferentially inhibits resurgent currents over transient currents in this paradigm; and that GS967 preferentially inhibits persistent currents over transient currents. Therefore, CBD and GS967 may represent a new class of more targeted and effective antiepileptic drugs.
Collapse
Affiliation(s)
- Emily R. Mason
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, IUPUI campus, Indianapolis, IN 46202, USA
- Correspondence:
| | - Theodore R. Cummins
- Department of Biology, Purdue School of Science, IUPUI campus, Indianapolis, IN 46202, USA;
| |
Collapse
|
29
|
Mason ER, Wu F, Patel RR, Xiao Y, Cannon SC, Cummins TR. Resurgent and Gating Pore Currents Induced by De Novo SCN2A Epilepsy Mutations. eNeuro 2019; 6:ENEURO.0141-19.2019. [PMID: 31558572 PMCID: PMC6795554 DOI: 10.1523/eneuro.0141-19.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022] Open
Abstract
Over 150 mutations in the SCN2A gene, which encodes the neuronal Nav1.2 protein, have been implicated in human epilepsy cases. Of these, R1882Q and R853Q are two of the most commonly reported mutations. This study utilized voltage-clamp electrophysiology to characterize the biophysical effects of the R1882Q and R853Q mutations on the hNav1.2 channel, including their effects on resurgent current and gating pore current, which are not typically investigated in the study of Nav1.2 channel mutations. HEK cells transiently transfected with DNA encoding either wild-type (WT) or mutant hNav1.2 revealed that the R1882Q mutation induced a gain-of-function phenotype, including slowed fast inactivation, depolarization of the voltage dependence of inactivation, and increased persistent current. In this model system, the R853Q mutation primarily produced loss-of-function effects, including reduced transient current amplitude and density, hyperpolarization of the voltage dependence of inactivation, and decreased persistent current. The presence of a Navβ4 peptide (KKLITFILKKTREK-OH) in the pipette solution induced resurgent currents, which were increased by the R1882Q mutation and decreased by the R853Q mutation. Further study of the R853Q mutation in Xenopus oocytes indicated a reduced surface expression and revealed a robust gating pore current at negative membrane potentials, a function absent in the WT channel. This not only shows that different epileptogenic point mutations in hNav1.2 have distinct biophysical effects on the channel, but also illustrates that individual mutations can have complex consequences that are difficult to identify using conventional analyses. Distinct mutations may, therefore, require tailored pharmacotherapies in order to eliminate seizures.
Collapse
Affiliation(s)
- Emily R Mason
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1751
| | - Reesha R Patel
- Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yucheng Xiao
- School of Science, Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202
| | - Stephen C Cannon
- Department of Physiology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1751
| | - Theodore R Cummins
- School of Science, Biology Department Chair, Indiana University-Purdue University of Indianapolis, Indianapolis, IN 46202
| |
Collapse
|
30
|
Reply to: Magneto is ineffective in controlling electrical properties of cerebellar Purkinje cells, Assessing the utility of Magneto to control neuronal excitability in the somatosensory cortex and Revaluation of magnetic properties of Magneto. Nat Neurosci 2019; 23:1051-1054. [PMID: 31570860 DOI: 10.1038/s41593-019-0472-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/23/2019] [Indexed: 01/16/2023]
|
31
|
Kang YJ, Clement EM, Sumsky SL, Xiang Y, Park IH, Santaniello S, Greenfield LJ, Garcia-Rill E, Smith BN, Lee SH. The critical role of persistent sodium current in hippocampal gamma oscillations. Neuropharmacology 2019; 162:107787. [PMID: 31550457 DOI: 10.1016/j.neuropharm.2019.107787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 10/25/2022]
Abstract
Gamma network oscillations in the brain are fast rhythmic network oscillations in the gamma frequency range (~30-100 Hz), playing key roles in the hippocampus for learning, memory, and spatial processing. There is evidence indicating that GABAergic interneurons, including parvalbumin-expressing basket cells (PVBCs), contribute to cortical gamma oscillations through synaptic interactions with excitatory cells. However, the molecular, cellular, and circuit underpinnings underlying generation and maintenance of cortical gamma oscillations are largely elusive. Recent studies demonstrated that intrinsic and synaptic properties of GABAergic interneurons and excitatory cells are regulated by a slowly inactivating or non-inactivating sodium current (i.e., persistent sodium current, INaP), suggesting that INaP is involved in gamma oscillations. Here, we tested whether INaP plays a role in hippocampal gamma oscillations using pharmacological, optogenetic, and electrophysiological approaches. We found that INaP blockers, phenytoin (40 μM and 100 μM) and riluzole (10 μM), reduced gamma oscillations induced by optogenetic stimulation of CaMKII-expressing cells in CA1 networks. Whole-cell patch-clamp recordings further demonstrated that phenytoin (100 μM) reduced INaP and firing frequencies in both PVBCs and pyramidal cells without altering threshold and amplitude of action potentials, but increased rheobase in both cell types. These results suggest that INaP in pyramidal cells and PVBCs is required for hippocampal gamma oscillations, supporting a pyramidal-interneuron network gamma model. Phenytoin-mediated modulation of hippocampal gamma oscillations may be a mechanism underlying its anticonvulsant efficacy, as well as its contribution to cognitive impairments in epilepsy patients.
Collapse
Affiliation(s)
- Young-Jin Kang
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Ethan M Clement
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stefan L Sumsky
- Biomedical Engineering Department, CT Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yangfei Xiang
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - In-Hyun Park
- Department of Genetics, Yale Stem Cell Center, Yale Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sabato Santaniello
- Biomedical Engineering Department, CT Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neurology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Bret N Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
32
|
Bunton-Stasyshyn RKA, Wagnon JL, Wengert ER, Barker BS, Faulkner A, Wagley PK, Bhatia K, Jones JM, Maniaci MR, Parent JM, Goodkin HP, Patel MK, Meisler MH. Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. Brain 2019; 142:362-375. [PMID: 30601941 DOI: 10.1093/brain/awy324] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
De novo mutations of the sodium channel gene SCN8A result in an epileptic encephalopathy with refractory seizures, developmental delay, and elevated risk of sudden death. p.Arg1872Trp is a recurrent de novo SCN8A mutation reported in 14 unrelated individuals with epileptic encephalopathy that included seizure onset in the prenatal or infantile period and severe verbal and ambulatory comorbidities. The major biophysical effect of the mutation was previously shown to be impaired channel inactivation accompanied by increased current density. We have generated a conditional mouse mutation in which expression of this severe gain-of-function mutation is dependent upon Cre recombinase. Global activation of p.Arg1872Trp by EIIa-Cre resulted in convulsive seizures and lethality at 2 weeks of age. Neural activation of the p.Arg1872Trp mutation by Nestin-Cre also resulted in early onset seizures and death. Restriction of p.Arg1872Trp expression to excitatory neurons using Emx1-Cre recapitulated seizures and juvenile lethality between 1 and 2 months of age. In contrast, activation of p.Arg1872Trp in inhibitory neurons by Gad2-Cre or Dlx5/6-Cre did not induce seizures or overt neurological dysfunction. The sodium channel modulator GS967/Prax330 prolonged survival of mice with global expression of R1872W and also modulated the activity of the mutant channel in transfected cells. Activation of the p.Arg1872Trp mutation in adult mice was sufficient to generate seizures and death, indicating that successful therapy will require lifelong treatment. These findings provide insight into the pathogenic mechanism of this gain-of-function mutation of SCN8A and identify excitatory neurons as critical targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Eric R Wengert
- Department of Anesthesiology, University of Virginia, Charlottesville VA, USA.,Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia, Charlottesville VA, USA.,Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA
| | - Alexa Faulkner
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Pravin K Wagley
- Department of Neurology, University of Virginia, Charlottesville VA, USA
| | - Kritika Bhatia
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Julie M Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marissa R Maniaci
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jack M Parent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Howard P Goodkin
- Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA.,Department of Neurology, University of Virginia, Charlottesville VA, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia, Charlottesville VA, USA.,Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Amyloid β-Induced Upregulation of Na v1.6 Underlies Neuronal Hyperactivity in Tg2576 Alzheimer's Disease Mouse Model. Sci Rep 2019; 9:13592. [PMID: 31537873 PMCID: PMC6753212 DOI: 10.1038/s41598-019-50018-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Hyperexcitability and alterations in neuronal networks contribute to cognitive impairment in Alzheimer’s Disease (AD). Voltage-gated sodium channels (NaV), which are crucial for regulating neuronal excitability, have been implicated in AD-related hippocampal hyperactivity and higher incidence of spontaneous non-convulsive seizures. Here, we show by using primary hippocampal neurons exposed to amyloid-β1–42 (Aβ1–42) oligomers and from Tg2576 mouse embryos, that the selective upregulation of NaV1.6 subtype contributes to membrane depolarization and to the increase of spike frequency, thereby resulting in neuronal hyperexcitability. Interestingly, we also found that NaV1.6 overexpression is responsible for the aberrant neuronal activity observed in hippocampal slices from 3-month-old Tg2576 mice. These findings identify the NaV1.6 channels as a determinant of the hippocampal neuronal hyperexcitability induced by Aβ1–42 oligomers. The selective blockade of NaV1.6 overexpression and/or hyperactivity might therefore offer a new potential therapeutic approach to counteract early hippocampal hyperexcitability and subsequent cognitive deficits in the early stages of AD.
Collapse
|
34
|
Zaman T, Abou Tayoun A, Goldberg EM. A single-center SCN8A-related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann Clin Transl Neurol 2019; 6:1445-1455. [PMID: 31402610 PMCID: PMC6689675 DOI: 10.1002/acn3.50839] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Pathogenic variants in SCN8A, encoding the voltage‐gated sodium (Na+) channel α subunit Nav1.6, is a known cause of epilepsy. Here, we describe clinical and genetic features of all patients with SCN8A epilepsy evaluated at a single‐tertiary care center, with biophysical data on identified Nav1.6 variants and pharmacological response to selected Na+ channel blockers. Methods SCN8A variants were identified via an exome‐based panel of epilepsy‐associated genes for next generation sequencing (NGS), or via exome sequencing. Biophysical characterization was performed using voltage‐clamp recordings of ionic currents in heterologous cells. Results We observed a range in age of onset and severity of epilepsy and associated developmental delay/intellectual disability. Na+ channel blockers were highly or partially effective in most patients. Nav1.6 variants exhibited one or more biophysical defects largely consistent with gain of channel function. We found that clinical severity was correlated with the presence of multiple observed biophysical defects and the extent to which pathological Na+ channel activity could be normalized pharmacologically. For variants not previously reported, functional studies enhanced the evidence of pathogenicity. Interpretation We present a comprehensive single‐center dataset for SCN8A epilepsy that includes clinical, genetic, electrophysiologic, and pharmacologic data. We confirm a spectrum of severity and a variety of biophysical defects of Nav1.6 variants consistent with gain of channel function. Na+ channel blockers in the treatment of SCN8A epilepsy may correlate with the effect of such agents on pathological Na+ current observed in heterologous systems.
Collapse
Affiliation(s)
- Tariq Zaman
- Division of Neurology Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Ahmad Abou Tayoun
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Genetics Department, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Ethan M Goldberg
- Division of Neurology Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104.,Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104
| |
Collapse
|
35
|
Wengert ER, Saga AU, Panchal PS, Barker BS, Patel MK. Prax330 reduces persistent and resurgent sodium channel currents and neuronal hyperexcitability of subiculum neurons in a mouse model of SCN8A epileptic encephalopathy. Neuropharmacology 2019; 158:107699. [PMID: 31278928 DOI: 10.1016/j.neuropharm.2019.107699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
SCN8A epileptic encephalopathy is a severe genetic epilepsy syndrome caused by de novo gain-of-function mutations of SCN8A encoding the voltage-gated sodium (Na) channel (VGSC) NaV1.6. Therapeutic management is difficult in many patients, leading to uncontrolled seizures and risk of sudden unexpected death in epilepsy (SUDEP). There is a need to develop novel anticonvulsants that can specifically target aberrant VGSC activity associated with SCN8A gain-of-function mutations. In this study, we investigate the effects of Prax330, a novel VGSC inhibitor, on the biophysical properties of wild-type (WT) NaV1.6 and the patient mutation p.Asn1768Asp (N1768D) in ND7/23 cells. The effects of Prax330 on persistent (INaP) and resurgent (INaR) Na currents and neuronal excitability in subiculum neurons from a knock-in mouse model of the Scn8a-N1768D mutation (Scn8aD/+) were also examined. In ND7/23 cells, Prax330 reduced INaP currents recorded from cells expressing Scn8a-N1768D and hyperpolarized steady-state inactivation curves. Recordings from brain slices demonstrated elevated INaP and INaR in subiculum neurons from Scn8aD/+ mutant mice and abnormally large action potential (AP) burst-firing events in a subset of neurons. Prax330 (1 μM) reduced both INaP and INaR and suppressed AP bursts, with a smaller effect on AP waveforms that had similar morphology to WT neurons. Prax330 (1 μM) also reduced synaptically-evoked APs in Scn8aD/+ subiculum neurons but not in WT neurons. Our results highlight the efficacy of targeting INaP and INaR and inactivation parameters in controlling subiculum excitability and suggest Prax330 as a promising novel therapy for SCN8A epileptic encephalopathy.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Anusha U Saga
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
36
|
Venugopal S, Seki S, Terman DH, Pantazis A, Olcese R, Wiedau-Pazos M, Chandler SH. Resurgent Na+ Current Offers Noise Modulation in Bursting Neurons. PLoS Comput Biol 2019; 15:e1007154. [PMID: 31226124 PMCID: PMC6608983 DOI: 10.1371/journal.pcbi.1007154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 07/03/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023] Open
Abstract
Neurons utilize bursts of action potentials as an efficient and reliable way to encode information. It is likely that the intrinsic membrane properties of neurons involved in burst generation may also participate in preserving its temporal features. Here we examined the contribution of the persistent and resurgent components of voltage-gated Na+ currents in modulating the burst discharge in sensory neurons. Using mathematical modeling, theory and dynamic-clamp electrophysiology, we show that, distinct from the persistent Na+ component which is important for membrane resonance and burst generation, the resurgent Na+ can help stabilize burst timing features including the duration and intervals. Moreover, such a physiological role for the resurgent Na+ offered noise tolerance and preserved the regularity of burst patterns. Model analysis further predicted a negative feedback loop between the persistent and resurgent gating variables which mediate such gain in burst stability. These results highlight a novel role for the voltage-gated resurgent Na+ component in moderating the entropy of burst-encoded neural information.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Soju Seki
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America
| | - David H Terman
- Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
| | - Antonios Pantazis
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America.,Division of Neurobiology Department of Clinical and Experimental Medicine (IKE) and Wallenberg Center for Molecular Medicine Linköping University 581 83 Linköping Sweden
| | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Martina Wiedau-Pazos
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Scott H Chandler
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
37
|
Perucca P, Perucca E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res 2019; 152:18-30. [DOI: 10.1016/j.eplepsyres.2019.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023]
|
38
|
Müller P, Draguhn A, Egorov AV. Persistent sodium current modulates axonal excitability in CA1 pyramidal neurons. J Neurochem 2018; 146:446-458. [PMID: 29863287 DOI: 10.1111/jnc.14479] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/01/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Axonal excitability is an important determinant for the accuracy, direction, and velocity of neuronal signaling. The mechanisms underlying spike generation in the axonal initial segment and transmitter release from presynaptic terminals have been intensely studied and revealed a role for several specific ionic conductances, including the persistent sodium current (INaP ). Recent evidence indicates that action potentials can also be generated at remote locations along the axonal fiber, giving rise to ectopic action potentials during physiological states (e.g., fast network oscillations) or in pathological situations (e.g., following demyelination). Here, we investigated how ectopic axonal excitability of mouse hippocampal CA1 pyramidal neurons is regulated by INaP . Recordings of field potentials and intracellular voltage in brain slices revealed that electrically evoked antidromic spikes were readily suppressed by two different blockers of INaP , riluzole and phenytoin. The effect was mediated by a reduction of the probability of ectopic spike generation while latency was unaffected. Interestingly, the contribution of INaP to excitability was much more pronounced in axonal branches heading toward the entorhinal cortex compared with the opposite fiber direction toward fimbria. Thus, excitability of distal CA1 pyramidal cell axons is affected by persistent sodium currents in a direction-selective manner. This mechanism may be of importance for ectopic spike generation in oscillating network states as well as in pathological situations.
Collapse
Affiliation(s)
- Peter Müller
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Andreas Draguhn
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Alexei V Egorov
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
39
|
Chen C, Holth JK, Bunton-Stasyshyn R, Anumonwo CK, Meisler MH, Noebels JL, Isom LL. Mapt deletion fails to rescue premature lethality in two models of sodium channel epilepsy. Ann Clin Transl Neurol 2018; 5:982-987. [PMID: 30128323 PMCID: PMC6093838 DOI: 10.1002/acn3.599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Deletion of Mapt, encoding the microtubule‐binding protein Tau, prevents disease in multiple genetic models of hyperexcitability. To investigate whether the effect of Tau depletion is generalizable across multiple sodium channel gene‐linked models of epilepsy, we examined the Scn1b−/− mouse model of Dravet syndrome, and the Scn8aN1768D/+ model of Early Infantile Epileptic Encephalopathy. Both models display severe seizures and early mortality. We found no prolongation of survival between Scn1b−/−,Mapt+/+, Scn1b−/−,Mapt+/−, or Scn1b−/−,Mapt−/− mice or between Scn8aN1768D/+,Mapt+/+, Scn8aN1768D/+,Mapt+/−, or Scn8aN1768D/+,Mapt−/− mice. Thus, the effect of Mapt deletion on mortality in epileptic encephalopathy models is gene specific and provides further mechanistic insight.
Collapse
Affiliation(s)
- Chunling Chen
- Department of Pharmacology University of Michigan Medical School Ann Arbor Michigan 48109
| | - Jerrah K Holth
- Department of Neurology Baylor College of Medicine Houston Texas 77030.,Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas 77030.,Present address: Department of Neurology Washington University St. Louis Missouri 63110
| | - Rosie Bunton-Stasyshyn
- Department of Human Genetics University of Michigan Medical School Ann Arbor Michigan 48109
| | - Charles K Anumonwo
- Department of Pharmacology University of Michigan Medical School Ann Arbor Michigan 48109
| | - Miriam H Meisler
- Department of Human Genetics University of Michigan Medical School Ann Arbor Michigan 48109
| | - Jeffrey L Noebels
- Department of Neurology Baylor College of Medicine Houston Texas 77030.,Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas 77030
| | - Lori L Isom
- Department of Pharmacology University of Michigan Medical School Ann Arbor Michigan 48109
| |
Collapse
|
40
|
Baker EM, Thompson CH, Hawkins NA, Wagnon JL, Wengert ER, Patel MK, George AL, Meisler MH, Kearney JA. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia 2018; 59:1166-1176. [PMID: 29782051 DOI: 10.1111/epi.14196] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE De novo mutations of SCN8A, encoding the voltage-gated sodium channel NaV 1.6, have been associated with a severe infant onset epileptic encephalopathy. Individuals with SCN8A encephalopathy have a mean age of seizure onset of 4-5 months, with multiple seizure types that are often refractory to treatment with available drugs. Anecdotal reports suggest that high-dose phenytoin is effective for some patients, but there are associated adverse effects and potential for toxicity. Functional characterization of several SCN8A encephalopathy variants has shown that elevated persistent sodium current is one of several common biophysical defects. Therefore, specifically targeting elevated persistent current may be a useful therapeutic strategy in some cases. METHODS The novel sodium channel modulator GS967 has greater preference for persistent as opposed to peak current and nearly 10-fold greater potency than phenytoin. We evaluated the therapeutic effect of GS967 in the Scn8aN1768D/+ mouse model carrying an SCN8A patient mutation that results in elevated persistent sodium current. We also performed patch clamp recordings to assess the effect of GS967 on peak and persistent sodium current and excitability in hippocampal neurons from Scn8aN1768D/+ mice. RESULTS GS967 potently blocked persistent sodium current without affecting peak current, normalized action potential morphology, and attenuated excitability in neurons from heterozygous Scn8aN1768D/+ mice. Acute treatment with GS967 provided dose-dependent protection against maximal electroshock-induced seizures in Scn8aN1768D/+ and wild-type mice. Chronic treatment of Scn8aN1768D/+ mice with GS967 resulted in lower seizure burden and complete protection from seizure-associated lethality observed in untreated Scn8aN1768D/+ mice. Protection was achieved at a chronic dose that did not cause overt behavioral toxicity or sedation. SIGNIFICANCE Persistent sodium current modulators like GS967 may be an effective precision targeting strategy for SCN8A encephalopathy and other functionally similar channelopathies when elevated persistent sodium current is the primary dysfunction.
Collapse
Affiliation(s)
- Erin M Baker
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicole A Hawkins
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Carpenter JC, Schorge S. The voltage-gated channelopathies as a paradigm for studying epilepsy-causing genes. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|