1
|
Leske S, Endestad T, Volehaugen V, Foldal MD, Blenkmann AO, Solbakk AK, Danielsen A. Beta oscillations predict the envelope sharpness in a rhythmic beat sequence. Sci Rep 2025; 15:3510. [PMID: 39875442 PMCID: PMC11775266 DOI: 10.1038/s41598-025-86895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms and patterns in human behavior, such as walking, dancing, and speech do not, however, display strict isochrony but are instead quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks. In the same vein, research on rhythm processing in music supports the notion that perceptual timing precision varies systematically with the sharpness of acoustic onset edges, conceptualized in the beat bin hypothesis. Increased envelope sharpness induces increased precision in localizing a sound in time. Despite this tight relationship between envelope shape and temporal processing, it is currently unknown how the brain uses predictive information about envelope features to optimize temporal perception. With the current EEG study, we show that the predicted sharpness of the amplitude envelope is encoded by pre-target neural activity in the beta band (15-25 Hz), and has an impact on the temporal perception of target sounds. We used probabilistic sound cues in a timing judgment task to inform participants about the sharpness of the amplitude envelope of an upcoming target sound embedded in a beat sequence. The predictive information about the envelope shape modulated task performance and pre-target beta power. Interestingly, these conditional beta-power modulations correlated positively with behavioral performance in the timing judgment task and with perceptual temporal precision in a click-alignment task. This study provides new insight into the neural processes underlying prediction of the sharpness of the amplitude envelope during beat perception, which modulate the temporal perception of sounds. This finding could reflect a process that is involved in temporal prediction, exerting top-down control on neural entrainment via the prediction of acoustic edges in the auditory stream.
Collapse
Affiliation(s)
- Sabine Leske
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway.
- Department of Musicology, University of Oslo, Oslo, Norway.
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway.
| | - Tor Endestad
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Vegard Volehaugen
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Maja D Foldal
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Alejandro O Blenkmann
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Anne-Kristin Solbakk
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anne Danielsen
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, Oslo, 0373, Norway
- Department of Musicology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Zhu M, Chen F, Shi C, Zhang Y. Amplitude envelope onset characteristics modulate phase locking for speech auditory-motor synchronization. Psychon Bull Rev 2024; 31:1661-1669. [PMID: 38227125 DOI: 10.3758/s13423-023-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
The spontaneous speech-to-speech synchronization (SSS) test has been shown to be an effective behavioral method to estimate cortical speech auditory-motor coupling strength through phase-locking value (PLV) between auditory input and motor output. This study further investigated how amplitude envelope onset variations of the auditory speech signal may influence the speech auditory-motor synchronization. Sixty Mandarin-speaking adults listened to a stream of randomly presented syllables at an increasing speed while concurrently whispering in synchrony with the rhythm of the auditory stimuli whose onset consistency was manipulated, consisting of aspirated, unaspirated, and mixed conditions. The participants' PLVs for the three conditions in the SSS test were derived and compared. Results showed that syllable rise time affected the speech auditory-motor synchronization in a bifurcated fashion. Specifically, PLVs were significantly higher in the temporally more consistent conditions (aspirated or unaspirated) than those in the less consistent condition (mixed) for high synchronizers. In contrast, low synchronizers tended to be immune to the onset consistency. Overall, these results validated how syllable onset consistency in the rise time of amplitude envelope may modulate the strength of speech auditory-motor coupling. This study supports the application of the SSS test to examine individual differences in the integration of perception and production systems, which has implications for those with speech and language disorders that have difficulty with processing speech onset characteristics such as rise time.
Collapse
Affiliation(s)
- Min Zhu
- School of Foreign Languages, Hunan University, Changsha, China
| | - Fei Chen
- School of Foreign Languages, Hunan University, Changsha, China.
| | - Chenxin Shi
- School of Foreign Languages, Hunan University, Changsha, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, The University of Minnesota, Twin Cities, MN, USA.
| |
Collapse
|
3
|
Mittelstadt JK, Shilling-Scrivo KV, Kanold PO. Long-term training alters response dynamics in the aging auditory cortex. Hear Res 2024; 444:108965. [PMID: 38364511 PMCID: PMC11186583 DOI: 10.1016/j.heares.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Age-related auditory dysfunction, presbycusis, is caused in part by functional changes in the auditory cortex (ACtx) such as altered response dynamics and increased population correlations. Given the ability of cortical function to be altered by training, we tested if performing auditory tasks might benefit auditory function in old age. We examined this by training adult mice on a low-effort tone-detection task for at least six months and then investigated functional responses in ACtx at an older age (∼18 months). Task performance remained stable well into old age. Comparing sound-evoked responses of thousands of ACtx neurons using in vivo 2-photon Ca2+ imaging, we found that many aspects of youthful neuronal activity, including low activity correlations, lower neural excitability, and a greater proportion of suppressed responses, were preserved in trained old animals as compared to passively-exposed old animals. Thus, consistent training on a low-effort task can benefit age-related functional changes in ACtx and may preserve many aspects of auditory function.
Collapse
Affiliation(s)
- Jonah K Mittelstadt
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Kelson V Shilling-Scrivo
- Department of Biology, University of Maryland, College Park, MD 20742, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21230, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biology, University of Maryland, College Park, MD 20742, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Liu J, Stohl J, Overath T. Hidden hearing loss: Fifteen years at a glance. Hear Res 2024; 443:108967. [PMID: 38335624 DOI: 10.1016/j.heares.2024.108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Hearing loss affects approximately 18% of the population worldwide. Hearing difficulties in noisy environments without accompanying audiometric threshold shifts likely affect an even larger percentage of the global population. One of the potential causes of hidden hearing loss is cochlear synaptopathy, the loss of synapses between inner hair cells (IHC) and auditory nerve fibers (ANF). These synapses are the most vulnerable structures in the cochlea to noise exposure or aging. The loss of synapses causes auditory deafferentation, i.e., the loss of auditory afferent information, whose downstream effect is the loss of information that is sent to higher-order auditory processing stages. Understanding the physiological and perceptual effects of this early auditory deafferentation might inform interventions to prevent later, more severe hearing loss. In the past decade, a large body of work has been devoted to better understand hidden hearing loss, including the causes of hidden hearing loss, their corresponding impact on the auditory pathway, and the use of auditory physiological measures for clinical diagnosis of auditory deafferentation. This review synthesizes the findings from studies in humans and animals to answer some of the key questions in the field, and it points to gaps in knowledge that warrant more investigation. Specifically, recent studies suggest that some electrophysiological measures have the potential to function as indicators of hidden hearing loss in humans, but more research is needed for these measures to be included as part of a clinical test battery.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Psychology and Neuroscience, Duke University, Durham, USA.
| | - Joshua Stohl
- North American Research Laboratory, MED-EL Corporation, Durham, USA
| | - Tobias Overath
- Department of Psychology and Neuroscience, Duke University, Durham, USA
| |
Collapse
|
5
|
Panela RA, Copelli F, Herrmann B. Reliability and generalizability of neural speech tracking in younger and older adults. Neurobiol Aging 2024; 134:165-180. [PMID: 38103477 DOI: 10.1016/j.neurobiolaging.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
Neural tracking of spoken speech is considered a potential clinical biomarker for speech-processing difficulties, but the reliability of neural speech tracking is unclear. Here, younger and older adults listened to stories in two sessions while electroencephalography was recorded to investigate the reliability and generalizability of neural speech tracking. Speech tracking amplitude was larger for older than younger adults, consistent with an age-related loss of inhibition. The reliability of neural speech tracking was moderate (ICC ∼0.5-0.75) and tended to be higher for older adults. However, reliability was lower for speech tracking than for neural responses to noise bursts (ICC >0.8), which we used as a benchmark for maximum reliability. Neural speech tracking generalized moderately across different stories (ICC ∼0.5-0.6), which appeared greatest for audiobook-like stories spoken by the same person. Hence, a variety of stories could possibly be used for clinical assessments. Overall, the current data are important for developing a biomarker of speech processing but suggest that further work is needed to increase the reliability to meet clinical standards.
Collapse
Affiliation(s)
- Ryan A Panela
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada
| | - Francesca Copelli
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada
| | - Björn Herrmann
- Rotman Research Institute, Baycrest Academy for Research and Education, M6A 2E1 North York, ON, Canada; Department of Psychology, University of Toronto, M5S 1A1 Toronto, ON, Canada.
| |
Collapse
|
6
|
McClaskey CM. Neural hyperactivity and altered envelope encoding in the central auditory system: Changes with advanced age and hearing loss. Hear Res 2024; 442:108945. [PMID: 38154191 PMCID: PMC10942735 DOI: 10.1016/j.heares.2023.108945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Temporal modulations are ubiquitous features of sound signals that are important for auditory perception. The perception of temporal modulations, or temporal processing, is known to decline with aging and hearing loss and negatively impact auditory perception in general and speech recognition specifically. However, neurophysiological literature also provides evidence of exaggerated or enhanced encoding of specifically temporal envelopes in aging and hearing loss, which may arise from changes in inhibitory neurotransmission and neuronal hyperactivity. This review paper describes the physiological changes to the neural encoding of temporal envelopes that have been shown to occur with age and hearing loss and discusses the role of disinhibition and neural hyperactivity in contributing to these changes. Studies in both humans and animal models suggest that aging and hearing loss are associated with stronger neural representations of both periodic amplitude modulation envelopes and of naturalistic speech envelopes, but primarily for low-frequency modulations (<80 Hz). Although the frequency dependence of these results is generally taken as evidence of amplified envelope encoding at the cortex and impoverished encoding at the midbrain and brainstem, there is additional evidence to suggest that exaggerated envelope encoding may also occur subcortically, though only for envelopes with low modulation rates. A better understanding of how temporal envelope encoding is altered in aging and hearing loss, and the contexts in which neural responses are exaggerated/diminished, may aid in the development of interventions, assistive devices, and treatment strategies that work to ameliorate age- and hearing-loss-related auditory perceptual deficits.
Collapse
Affiliation(s)
- Carolyn M McClaskey
- Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, MSC 550, Charleston, SC 29425, United States.
| |
Collapse
|
7
|
Wang S, Chen Y, Liu Y, Yang L, Wang Y, Fu X, Hu J, Pugh E, Wang S. Aging effects on dual-route speech processing networks during speech perception in noise. Hum Brain Mapp 2024; 45:e26577. [PMID: 38224542 PMCID: PMC10789214 DOI: 10.1002/hbm.26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
Healthy aging leads to complex changes in the functional network of speech processing in a noisy environment. The dual-route neural architecture has been applied to the study of speech processing. Although evidence suggests that senescent increases activity in the brain regions across the dorsal and ventral stream regions to offset reduced periphery, the regulatory mechanism of dual-route functional networks underlying such compensation remains largely unknown. Here, by utilizing functional near-infrared spectroscopy (fNIRS), we investigated the compensatory mechanism of the dual-route functional connectivity, and its relationship with healthy aging by using a speech perception task at varying signal-to-noise ratios (SNR) in healthy individuals (young adults, middle-aged adults, and older adults). Results showed that the speech perception scores showed a significant age-related decrease with the reduction of the SNR. The analysis results of dual-route speech processing networks showed that the functional connection of Wernicke's area and homolog Wernicke's area were age-related increases. Further to clarify the age-related characteristics of the dual-route speech processing networks, graph-theoretical network analysis revealed an age-related increase in the efficiency of the networks, and the age-related differences in nodal characteristics were found both in Wernicke's area and homolog Wernicke's area under noise environment. Thus, Wernicke's area might be a key network hub to maintain efficient information transfer across the speech process network with healthy aging. Moreover, older adults would recruit more resources from the homologous Wernicke's area in a noisy environment. The recruitment of the homolog of Wernicke's area might provide a means of compensation for older adults for decoding speech in an adverse listening environment. Together, our results characterized dual-route speech processing networks at varying noise environments and provided new insight for the compensatory theories of how aging modulates the dual-route speech processing functional networks.
Collapse
Affiliation(s)
- Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yi Liu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| | - Jiong Hu
- Department of AudiologyUniversity of the PacificSan FranciscoCaliforniaUSA
| | | | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology‐Head and Neck SurgeryKey Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Xu N, Qin X, Zhou Z, Shan W, Ren J, Yang C, Lu L, Wang Q. Age differentially modulates the cortical tracking of the lower and higher level linguistic structures during speech comprehension. Cereb Cortex 2023; 33:10463-10474. [PMID: 37566910 DOI: 10.1093/cercor/bhad296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Speech comprehension requires listeners to rapidly parse continuous speech into hierarchically-organized linguistic structures (i.e. syllable, word, phrase, and sentence) and entrain the neural activities to the rhythm of different linguistic levels. Aging is accompanied by changes in speech processing, but it remains unclear how aging affects different levels of linguistic representation. Here, we recorded magnetoencephalography signals in older and younger groups when subjects actively and passively listened to the continuous speech in which hierarchical linguistic structures of word, phrase, and sentence were tagged at 4, 2, and 1 Hz, respectively. A newly-developed parameterization algorithm was applied to separate the periodically linguistic tracking from the aperiodic component. We found enhanced lower-level (word-level) tracking, reduced higher-level (phrasal- and sentential-level) tracking, and reduced aperiodic offset in older compared with younger adults. Furthermore, we observed the attentional modulation on the sentential-level tracking being larger for younger than for older ones. Notably, the neuro-behavior analyses showed that subjects' behavioral accuracy was positively correlated with the higher-level linguistic tracking, reversely correlated with the lower-level linguistic tracking. Overall, these results suggest that the enhanced lower-level linguistic tracking, reduced higher-level linguistic tracking and less flexibility of attentional modulation may underpin aging-related decline in speech comprehension.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Xiaoxiao Qin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Ziqi Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Jiechuan Ren
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Chunqing Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing 100083, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- National Clinical Research Center for Neurological Diseases, Beijing 100070, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
9
|
Karunathilake IMD, Dunlap JL, Perera J, Presacco A, Decruy L, Anderson S, Kuchinsky SE, Simon JZ. Effects of aging on cortical representations of continuous speech. J Neurophysiol 2023; 129:1359-1377. [PMID: 37096924 PMCID: PMC10202479 DOI: 10.1152/jn.00356.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.
Collapse
Affiliation(s)
- I M Dushyanthi Karunathilake
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
| | - Jason L Dunlap
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Janani Perera
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Alessandro Presacco
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Lien Decruy
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
| | - Samira Anderson
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland, United States
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Jonathan Z Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland, United States
- Institute for Systems Research, University of Maryland, College Park, Maryland, United States
- Department of Biology, University of Maryland, College Park, Maryland, United States
| |
Collapse
|
10
|
Regev J, Zaar J, Relaño-Iborra H, Dau T. Age-related reduction of amplitude modulation frequency selectivity. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:2298. [PMID: 37092934 DOI: 10.1121/10.0017835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The perception of amplitude modulations (AMs) has been characterized by a frequency-selective process in the temporal envelope domain and simulated in computational auditory processing and perception models using a modulation filterbank. Such AM frequency-selective processing has been argued to be critical for the perception of complex sounds, including speech. This study aimed at investigating the effects of age on behavioral AM frequency selectivity in young (n = 11, 22-29 years) versus older (n = 10, 57-77 years) listeners with normal hearing, using a simultaneous AM masking paradigm with a sinusoidal carrier (2.8 kHz), target modulation frequencies of 4, 16, 64, and 128 Hz, and narrowband-noise modulation maskers. A reduction of AM frequency selectivity by a factor of up to 2 was found in the older listeners. While the observed AM selectivity co-varied with the unmasked AM detection sensitivity, the age-related broadening of the masked threshold patterns remained stable even when AM sensitivity was similar across groups for an extended stimulus duration. The results from the present study might provide a valuable basis for further investigations exploring the effects of age and reduced AM frequency selectivity on complex sound perception as well as the interaction of age and hearing impairment on AM processing and perception.
Collapse
Affiliation(s)
- Jonathan Regev
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Johannes Zaar
- Eriksholm Research Centre, Snekkersten, 3070, Denmark
| | - Helia Relaño-Iborra
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
11
|
Herrmann B, Maess B, Johnsrude IS. Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age. Hear Res 2023; 428:108677. [PMID: 36580732 DOI: 10.1016/j.heares.2022.108677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Perception of speech requires sensitivity to features, such as amplitude and frequency modulations, that are often temporally regular. Previous work suggests age-related changes in neural responses to temporally regular features, but little work has focused on age differences for different types of modulations. We recorded magnetoencephalography in younger (21-33 years) and older adults (53-73 years) to investigate age differences in neural responses to slow (2-6 Hz sinusoidal and non-sinusoidal) modulations in amplitude, frequency, or combined amplitude and frequency. Audiometric pure-tone average thresholds were elevated in older compared to younger adults, indicating subclinical hearing impairment in the recruited older-adult sample. Neural responses to sound onset (independent of temporal modulations) were increased in magnitude in older compared to younger adults, suggesting hyperresponsivity and a loss of inhibition in the aged auditory system. Analyses of neural activity to modulations revealed greater neural synchronization with amplitude, frequency, and combined amplitude-frequency modulations for older compared to younger adults. This potentiated response generalized across different degrees of temporal regularity (sinusoidal and non-sinusoidal), although neural synchronization was generally lower for non-sinusoidal modulation. Despite greater synchronization, sustained neural activity was reduced in older compared to younger adults for sounds modulated both sinusoidally and non-sinusoidally in frequency. Our results suggest age differences in the sensitivity of the auditory system to features present in speech and other natural sounds.
Collapse
Affiliation(s)
- Björn Herrmann
- Rotman Research Institute, Baycrest, North York, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Burkhard Maess
- Max Planck Institute for Human Cognitive and Brain Sciences, Brain Networks Unit, Leipzig 04103, Germany
| | - Ingrid S Johnsrude
- Department of Psychology & Brain and Mind Institute, The University of Western Ontario, London, ON N6A 3K7, Canada; School of Communication Sciences & Disorders, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
12
|
Irsik VC, Johnsrude IS, Herrmann B. Age-related deficits in dip-listening evident for isolated sentences but not for spoken stories. Sci Rep 2022; 12:5898. [PMID: 35393472 PMCID: PMC8991280 DOI: 10.1038/s41598-022-09805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Fluctuating background sounds facilitate speech intelligibility by providing speech ‘glimpses’ (masking release). Older adults benefit less from glimpses, but masking release is typically investigated using isolated sentences. Recent work indicates that using engaging, continuous speech materials (e.g., spoken stories) may qualitatively alter speech-in-noise listening. Moreover, neural sensitivity to different amplitude envelope profiles (ramped, damped) changes with age, but whether this affects speech listening is unknown. In three online experiments, we investigate how masking release in younger and older adults differs for masked sentences and stories, and how speech intelligibility varies with masker amplitude profile. Intelligibility was generally greater for damped than ramped maskers. Masking release was reduced in older relative to younger adults for disconnected sentences, and stories with a randomized sentence order. Critically, when listening to stories with an engaging and coherent narrative, older adults demonstrated equal or greater masking release compared to younger adults. Older adults thus appear to benefit from ‘glimpses’ as much as, or more than, younger adults when the speech they are listening to follows a coherent topical thread. Our results highlight the importance of cognitive and motivational factors for speech understanding, and suggest that previous work may have underestimated speech-listening abilities in older adults.
Collapse
Affiliation(s)
- Vanessa C Irsik
- Department of Psychology & The Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| | - Ingrid S Johnsrude
- Department of Psychology & The Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada.,School of Communication and Speech Disorders, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Björn Herrmann
- Department of Psychology & The Brain and Mind Institute, The University of Western Ontario, London, ON, N6A 3K7, Canada.,Rotman Research Institute, Baycrest, Toronto, ON, M6A 2E1, Canada.,Department of Psychology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| |
Collapse
|
13
|
Rumschlag JA, Razak KA. Age-related changes in event related potentials, steady state responses and temporal processing in the auditory cortex of mice with severe or mild hearing loss. Hear Res 2021; 412:108380. [PMID: 34758398 DOI: 10.1016/j.heares.2021.108380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Age-related changes in auditory processing affect the quality of life of older adults with and without hearing loss. To distinguish between the effects of sensorineural hearing loss and aging on cortical processing, the main goal of the present study was to compare cortical responses using the same stimulus paradigms and recording conditions in two strains of mice (C57BL/6J and FVB) that differ in the degree of age-related hearing loss. Electroencephalogram (EEG) recordings were obtained from freely moving young and old mice using epidural screw electrodes. We measured event related potentials (ERP) and 40 Hz auditory steady-state responses (ASSR). We used a novel stimulus, termed the gap-ASSR stimulus, which elicits an ASSR by rapidly presenting short gaps in continuous noise. By varying the gap widths and modulation depths, we probed the limits of temporal processing in young and old mice. Temporal fidelity of ASSR and gap-ASSR responses were measured as phase consistency across trials (inter-trial phase clustering; ITPC). The old C57 mice, which show severe hearing loss, produced larger ERP amplitudes compared to young mice. Despite robust ERPs, the old C57 mice showed significantly diminished ITPC in the ASSR and gap-ASSR responses, even with 100% modulation depth. The FVB mice, which show mild hearing loss with age, generated similar ERP amplitudes and ASSR ITPC across the age groups tested. However, the old FVB mice showed decreased gap-ASSR responses compared to young mice, particularly for modulation depths <100%. The C57 mice data suggest that severe presbycusis leads to increased gain in the auditory cortex, but with reduced temporal fidelity. The FVB mice data suggest that with mild hearing loss, age-related changes in temporal processing become apparent only when tested with more challenging sounds (shorter gaps and shallower modulation).
Collapse
Affiliation(s)
| | - Khaleel A Razak
- Graduate Neuroscience Program, Riverside, United States; Psychology Department, University of California, Riverside, United States.
| |
Collapse
|
14
|
Bures Z, Pysanenko K, Syka J. The influence of developmental noise exposure on the temporal processing of acoustical signals in the auditory cortex of rats. Hear Res 2021; 409:108306. [PMID: 34311267 DOI: 10.1016/j.heares.2021.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Previous experiments have acknowledged that inappropriate or missing auditory inputs during the critical period of development cause permanent changes of the structure and function of the auditory system (Bures et al., 2017). We explore in this study how developmental noise exposure influences the coding of temporally structured stimuli in the neurons of the primary auditory cortex (AC) in Long Evans rats. The animals were exposed on postnatal day 14 (P14) for 12 minutes to a loud (125 dB SPL) broad-band noise. The responses to an amplitude-modulated (AM) noise, frequency-modulated (FM) tones, and click trains, were recorded from the right AC of rats of two age groups: young-adult (ca. 6 months old) and adult (ca. 2 years old), both in the exposed animals and in control unexposed rats. The neonatal exposure resulted in a higher synchronization ability (phase-locking) of the AC neurons for all three stimuli; furthermore, the similarity of neuronal response patterns to repetitive stimulation was higher in the exposed rats. On the other hand, the exposed animals showed a steeper decline of modulation-transfer functions towards higher modulation frequencies/repetition rates. Differences between the two age groups were also apparent; in general, aging had qualitatively the same effect as the developmental exposure. The current results demonstrate that brief noise exposure during the maturation of the auditory system influences both the temporal and the rate coding of periodically modulated sounds in the AC of rats; the changes are permanent and observable up to late adulthood.
Collapse
Affiliation(s)
- Zbynek Bures
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Jugoslávských partyzánů 1580/3, 160 00 Prague 6, Czech Republic.
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|