1
|
Goldenkoff ER, Deluisi JA, Destiny DP, Lee TG, Michon KJ, Brissenden JA, Taylor SF, Polk TA, Vesia M. The behavioral and neural effects of parietal theta burst stimulation on the grasp network are stronger during a grasping task than at rest. Front Neurosci 2023; 17:1198222. [PMID: 37954875 PMCID: PMC10637360 DOI: 10.3389/fnins.2023.1198222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (TMS) is widely used in neuroscience and clinical settings to modulate human cortical activity. The effects of TMS on neural activity depend on the excitability of specific neural populations at the time of stimulation. Accordingly, the brain state at the time of stimulation may influence the persistent effects of repetitive TMS on distal brain activity and associated behaviors. We applied intermittent theta burst stimulation (iTBS) to a region in the posterior parietal cortex (PPC) associated with grasp control to evaluate the interaction between stimulation and brain state. Across two experiments, we demonstrate the immediate responses of motor cortex activity and motor performance to state-dependent parietal stimulation. We randomly assigned 72 healthy adult participants to one of three TMS intervention groups, followed by electrophysiological measures with TMS and behavioral measures. Participants in the first group received iTBS to PPC while performing a grasping task concurrently. Participants in the second group received iTBS to PPC while in a task-free, resting state. A third group of participants received iTBS to a parietal region outside the cortical grasping network while performing a grasping task concurrently. We compared changes in motor cortical excitability and motor performance in the three stimulation groups within an hour of each intervention. We found that parietal stimulation during a behavioral manipulation that activates the cortical grasping network increased downstream motor cortical excitability and improved motor performance relative to stimulation during rest. We conclude that constraining the brain state with a behavioral task during brain stimulation has the potential to optimize plasticity induction in cortical circuit mechanisms that mediate movement processes.
Collapse
Affiliation(s)
| | - Joseph A. Deluisi
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Danielle P. Destiny
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Taraz G. Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine J. Michon
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - James A. Brissenden
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Thad A. Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
3
|
Disrupting Short-Term Memory Maintenance in Premotor Cortex Affects Serial Dependence in Visuomotor Integration. J Neurosci 2021; 41:9392-9402. [PMID: 34607968 DOI: 10.1523/jneurosci.0380-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
Human behavior is biased by past experience. For example, when intercepting a moving target, the speed of previous targets will bias responses in future trials. Neural mechanisms underlying this so-called serial dependence are still under debate. Here, we tested the hypothesis that the previous trial leaves a neural trace in brain regions associated with encoding task-relevant information in visual and/or motor regions. We reasoned that injecting noise by means of transcranial magnetic stimulation (TMS) over premotor and visual areas would degrade such memory traces and hence reduce serial dependence. To test this hypothesis, we applied bursts of TMS pulses to right visual motion processing region hV5/MT+ and to left dorsal premotor cortex (PMd) during intertrial intervals of a coincident timing task performed by twenty healthy human participants (15 female). Without TMS, participants presented a bias toward the speed of the previous trial when intercepting moving targets. TMS over PMd decreased serial dependence in comparison to the control Vertex stimulation, whereas TMS applied over hV5/MT+ did not. In addition, TMS seems to have specifically affected the memory trace that leads to serial dependence, as we found no evidence that participants' behavior worsened after applying TMS. These results provide causal evidence that an implicit short-term memory mechanism in premotor cortex keeps information from one trial to the next, and that this information is blended with current trial information so that it biases behavior in a visuomotor integration task with moving objects.SIGNIFICANCE STATEMENT Human perception and action are biased by the recent past. The origin of such serial bias is still not fully understood, but a few components seem to be fundamental for its emergence: the brain needs to keep previous trial information in short-term memory and blend it with incoming information. Here, we present evidence that a premotor area has a potential role in storing previous trial information in short-term memory in a visuomotor task and that this information is responsible for biasing ongoing behavior. These results corroborate the perspective that areas associated with processing information of a stimulus or task also participate in maintaining that information in short-term memory even when this information is no longer relevant for current behavior.
Collapse
|
4
|
Bergmann TO, Varatheeswaran R, Hanlon CA, Madsen KH, Thielscher A, Siebner HR. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement. Neuroimage 2021; 237:118093. [PMID: 33940146 DOI: 10.1016/j.neuroimage.2021.118093] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The experimental manipulation of neural activity by neurostimulation techniques overcomes the inherent limitations of correlative recordings, enabling the researcher to investigate causal brain-behavior relationships. But only when stimulation and recordings are combined, the direct impact of the stimulation on neural activity can be evaluated. In humans, this can be achieved non-invasively through the concurrent combination of transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging (fMRI). Concurrent TMS-fMRI allows the assessment of the neurovascular responses evoked by TMS with excellent spatial resolution and full-brain coverage. This enables the functional mapping of both local and remote network effects of TMS in cortical as well as deep subcortical structures, offering unique opportunities for basic research and clinical applications. The purpose of this review is to introduce the reader to this powerful tool. We will introduce the technical challenges and state-of-the art solutions and provide a comprehensive overview of the existing literature and the available experimental approaches. We will highlight the unique insights that can be gained from concurrent TMS-fMRI, including the state-dependent assessment of neural responsiveness and inter-regional effective connectivity, the demonstration of functional target engagement, and the systematic evaluation of stimulation parameters. We will also discuss how concurrent TMS-fMRI during a behavioral task can help to link behavioral TMS effects to changes in neural network activity and to identify peripheral co-stimulation confounds. Finally, we will review the use of concurrent TMS-fMRI for developing TMS treatments of psychiatric and neurological disorders and suggest future improvements for further advancing the application of concurrent TMS-fMRI.
Collapse
Affiliation(s)
- Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany.
| | - Rathiga Varatheeswaran
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Resilience Research, Wallstraße 7-9, 55122, Mainz, Germany
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, 1 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 2020; 224:117449. [PMID: 33059054 DOI: 10.1016/j.neuroimage.2020.117449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Motor and cognitive functions are organized in large-scale networks in the human brain that interact to enable flexible adaptation of information exchange to ever-changing environmental conditions. In this review, we discuss the unique potential of the consecutive combination of repetitive transcranial magnetic stimulation (rTMS) and functional neuroimaging to probe network organization and reorganization in the healthy and lesioned brain. First, we summarize findings highlighting the flexible (re-)distribution and short-term reorganization in motor and cognitive networks in the healthy brain. Plastic after-effects of rTMS result in large-scale changes on the network level affecting both local and remote activity within the stimulated network as well as interactions between the stimulated and distinct functional networks. While the number of combined rTMS-fMRI studies in patients with brain lesions remains scarce, preliminary evidence suggests that the lesioned brain flexibly (re-)distributes its computational capacities to functionally reorganize impaired brain functions, using a similar set of mechanisms to achieve adaptive network plasticity compared to short-term reorganization observed in the healthy brain after rTMS. In general, both short-term reorganization in the healthy brain and stroke-induced reorganization seem to rely on three general mechanisms of adaptive network plasticity that allow to maintain and recover function: i) interhemispheric changes, including increased contribution of homologous regions in the contralateral hemisphere and increased interhemispheric connectivity, ii) increased interactions between differentially specialized networks and iii) increased contributions of domain-general networks after disruption of more specific functions. These mechanisms may allow for computational flexibility of large-scale neural networks underlying motor and cognitive functions. Future studies should use complementary approaches to address the functional relevance of adaptive network plasticity and further delineate how these general mechanisms interact to enable network flexibility. Besides furthering our neurophysiological insights into brain network interactions, identifying approaches to support and enhance adaptive network plasticity may result in clinically relevant diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany.
| | - Lukas J Volz
- Department of Neurology, University of Cologne, Kerpener Str. 62, D-50937 Cologne, Germany.
| |
Collapse
|
6
|
Sheets JR, Briggs RG, Bai MY, Poologaindran A, Young IM, Conner AK, Baker CM, Glenn CA, Sughrue ME. Parcellation-based modeling of the dorsal premotor area. J Neurol Sci 2020; 415:116907. [DOI: 10.1016/j.jns.2020.116907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
7
|
Wang X, Li L, Wei W, Zhu T, Huang GF, Li X, Ma HB, Lv Y. Altered activation in sensorimotor network after applying rTMS over the primary motor cortex at different frequencies. Brain Behav 2020; 10:e01670. [PMID: 32506744 PMCID: PMC7375128 DOI: 10.1002/brb3.1670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) over the primary motor cortex (M1) can modulate brain activity both in the stimulated site and remote brain areas of the sensorimotor network. However, the modulatory effects of rTMS at different frequencies remain unclear. Here, we employed finger-tapping task-based fMRI to investigate alterations in activation of the sensorimotor network after the application of rTMS over the left M1 at different frequencies. MATERIALS AND METHODS Forty-five right-handed healthy participants were randomly divided into three groups by rTMS frequency (HF, high-frequency, 3 Hz; LF, low-frequency, 1 Hz; and SHAM) and underwent two task-fMRI sessions (RH, finger-tapping with right index finger; LH, finger-tapping with left index finger) before and after applying rTMS over the left M1. We defined regions of interest (ROIs) in the sensorimotor network based on group-level activation maps (pre-rTMS) from RH and LH tasks and calculated the percentage signal change (PSC) for each ROI. We then assessed the differences of PSC within HF or LF groups and between groups. RESULTS Application of rTMS at different frequencies resulted in a change in activation of several areas of the sensorimotor network. We observed the increased PSC in M1 after high-frequency stimulation, while we detected the reduced PSC in the primary sensory cortex (S1), ventral premotor cortex (PMv), supplementary motor cortex (SMA), and putamen after low-frequency stimulation. Moreover, the PSC in the SMA, dorsal premotor cortex (PMd), and putamen in the HF group was higher than in the LF group after stimulation. CONCLUSION Our findings suggested that activation alterations within sensorimotor network are dependent on the frequency of rTMS. Therefore, our findings contribute to understanding the effects of rTMS on brain activation in healthy individuals and ultimately may further help to suggest mechanisms of how rTMS could be employed as a therapeutic tool.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lingyu Li
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Shandong Huayu University of Technology, Dezhou, China
| | - Wei Wei
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Tingting Zhu
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Guo-Feng Huang
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Xue Li
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Hui-Bin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China.,Integrated Medical Research School, Jiamusi University, Jiamusi, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
8
|
Martínez-Vázquez P, Gail A. Directed Interaction Between Monkey Premotor and Posterior Parietal Cortex During Motor-Goal Retrieval from Working Memory. Cereb Cortex 2019; 28:1866-1881. [PMID: 29481586 PMCID: PMC5907360 DOI: 10.1093/cercor/bhy035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/31/2018] [Indexed: 12/04/2022] Open
Abstract
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Collapse
Affiliation(s)
- Pablo Martínez-Vázquez
- German Primate Center, Cognitive Neuroscience Lab, Kellnerweg 4, 37077 Göttingen, Germany
| | - Alexander Gail
- German Primate Center, Cognitive Neuroscience Lab, Kellnerweg 4, 37077 Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
9
|
Saleh S, Sandroff BM, Vitiello T, Owoeye O, Hoxha A, Hake P, Goverover Y, Wylie G, Yue G, DeLuca J. The Role of Premotor Areas in Dual Tasking in Healthy Controls and Persons With Multiple Sclerosis: An fNIRS Imaging Study. Front Behav Neurosci 2018; 12:296. [PMID: 30618658 PMCID: PMC6297844 DOI: 10.3389/fnbeh.2018.00296] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
Persons with multiple sclerosis (pwMS) experience declines in physical and cognitive abilities and are challenged by dual-tasks. Dual-tasking causes a drop in performance, or what is known as dual-task cost (DTC). This study examined DTC of walking speed (WS) and cognitive performance (CP) in pwMS and healthy controls (HCs) and the effect of dual-tasking on cortical activation of bilateral premotor cortices (PMC) and bilateral supplementary motor area (SMA). Fourteen pwMS and 14 HCs performed three experimental tasks: (1) single cognitive task while standing (SingCog); (2) single walking task (SingWalk); and (3) dual-task (DualT) that included concurrent performance of the SingCog and SingWalk. Six trials were collected for each condition and included measures of cortical activation, WS and CP. WS of pwMS was significantly lower than HC, but neuropsychological (NP) measures were not significantly different. pwMS and HC groups had similar DTC of WS, while DTC of CP was only significant in the MS group; processing speed and visual memory predicted 55% of this DTC. DualT vs. SingWalk recruited more right-PMC activation only in HCs and was associated with better processing speed. DualT vs. SingCog recruited more right-PMC activation and bilateral-SMA activation in both HC and pwMS. Lower baseline WS and worse processing speed measures in pwMS predicted higher recruitment of right-SMA (rSMA) activation suggesting maladaptive recruitment. Lack of significant difference in NP measures between groups does not rule out the influence of cognitive factors on dual-tasking performance and cortical activations in pwMS, which might have a negative impact on quality of life.
Collapse
Affiliation(s)
- Soha Saleh
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Brian M Sandroff
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tyler Vitiello
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Oyindamola Owoeye
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Armand Hoxha
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Patrick Hake
- Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States
| | - Yael Goverover
- Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States.,Department of Occupational Therapy, New York University, New York, NY, United States
| | - Glenn Wylie
- Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States
| | - Guang Yue
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, United States.,Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John DeLuca
- Rutgers New Jersey Medical School, Newark, NJ, United States.,Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States
| |
Collapse
|
10
|
Fernandez L, Huys R, Issartel J, Azulay JP, Eusebio A. Movement Speed-Accuracy Trade-Off in Parkinson's Disease. Front Neurol 2018; 9:897. [PMID: 30405521 PMCID: PMC6208126 DOI: 10.3389/fneur.2018.00897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
Patients with Parkinson's disease (PD) often have difficulties generating rhythmic movements, and also difficulties on movement adjustments to accuracy constraints. In the reciprocal aiming task, maintaining a high accuracy comes with the cost of diminished movement speed, whereas increasing movement speed disrupts end-point accuracy, a phenomenon well known as the speed-accuracy trade-off. The aim of this study was to examine how PD impacts speed-accuracy trade-off during rhythmic aiming movements by studying the structural kinematic movement organization and to determine the influence of dopamine replacement therapy on continuous movement speed and accuracy. Eighteen patients with advanced idiopathic Parkinson's disease performed a reciprocal aiming task, where the difficulty of the task was manipulated through target width. All patients were tested in two different sessions: ON-medication and OFF-medication state. A control group composed of healthy age-matched participants was also included in the study. The following variables were used for the analyses: Movement time, Error rate, effective target width, and Performance Index. Percentage of acceleration time and percentage of non-linearity were completed with kinematics patterns description using Rayleigh-Duffing model. Both groups traded off speed against accuracy as the constraints pertaining to the latter increased. The trade-off was more pronounced with the PD patients. Dopamine therapy allowed the PD patients to move faster, but at the cost of movement accuracy. Surprisingly, the structural kinematic organization did not differ across group nor across medication condition. These results suggest that PD patients, when involved in a reciprocal aiming task, are able to produce rhythmic movements. PD patients' overall slowing down seems to reflect a global adaptation to the disease in the absence of a structurally altered kinematic organization.
Collapse
Affiliation(s)
| | - Raoul Huys
- Université de Toulouse, UMR 5549 CERCO (Centre de Recherche Cerveau et Cognition), UPS, CNRS, Toulouse, France
| | - Johann Issartel
- Multisensory Motor Learning Lab, School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | - Jean-Philippe Azulay
- Aix-Marseille Université, APHM, CHU Timone, Department of Neurology and Movement Disorders, Marseille, France
| | - Alexandre Eusebio
- Aix-Marseille Université, APHM, CHU Timone, Department of Neurology and Movement Disorders, Marseille, France.,Aix-Marseille Université, CNRS, UMR 7289, Institut de Neurosciences de la Timone, Marseille, France
| |
Collapse
|
11
|
Pellegrino G, Tomasevic L, Herz DM, Larsen KM, Siebner HR. Theta Activity in the Left Dorsal Premotor Cortex During Action Re-Evaluation and Motor Reprogramming. Front Hum Neurosci 2018; 12:364. [PMID: 30297991 PMCID: PMC6161550 DOI: 10.3389/fnhum.2018.00364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
The ability to rapidly adjust our actions to changes in the environment is a key function of human motor control. Previous work implicated the dorsal premotor cortex (dPMC) in the up-dating of action plans based on environmental cues. Here we used electroencephalography (EEG) to identify neural signatures of up-dating cue-action relationships in the dPMC and connected frontoparietal areas. Ten healthy subjects performed a pre-cued alternate choice task. Simple geometric shapes cued button presses with the right or left index finger. The shapes of the pre-cue and go-cue differed in two third of trials. In these incongruent trials, the go-cue prompted a re-evaluation of the pre-cued action plan, slowing response time relative to trials with identical cues. This re-evaluation selectively increased theta band activity without modifying activity in alpha and beta band. Source-based analysis revealed a widespread theta increase in dorsal and mesial frontoparietal areas, including dPMC, supplementary motor area (SMA), primary motor and posterior parietal cortices (PPC). Theta activity scaled positively with response slowing and increased more strongly when the pre-cue was invalid and required subjects to select the alternate response. Together, the results indicate that theta activity in dPMC and connected frontoparietal areas is involved in the re-adjustment of cue-induced action tendencies.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,San Camillo Hospital IRCCS, Venice, Italy
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Damian Marc Herz
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Kit Melissa Larsen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| |
Collapse
|
12
|
Daugherty DA, Runyan JD, Steenbergh TA, Fratzke BJ, Fry BN, Westra E. Smartphone delivery of a hope intervention: Another way to flourish. PLoS One 2018; 13:e0197930. [PMID: 29856805 PMCID: PMC5983435 DOI: 10.1371/journal.pone.0197930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/10/2018] [Indexed: 11/18/2022] Open
Abstract
Positive interventions have shown promise for fostering hedonic (happiness) and eudaimonic (flourishing) well-being. However, few studies have focused on positive interventions that target hope as a means of increasing well-being, and none have examined the use of smartphone app-based systems for delivering interventions in the moments and contexts of daily life-an approach called ecological momentary intervention (EMI). We conducted a quasi-experimental pilot study using a pretest and posttest design to examine the feasibility and potential impact of a mobile app-based hope EMI. Participants appeared to engage with the intervention and found the experience to be user-friendly, helpful, and enjoyable. Relative to the control group, those receiving the intervention demonstrated significantly greater increases in hope; however, there were no between-group differences in hedonic and eudaimonic well-being. The authors recommend future research to examine the potential of EMI mobile apps to cultivate hope and promote flourishing.
Collapse
Affiliation(s)
- Douglas A. Daugherty
- Psychology Department, Behavioral Sciences Division, Indiana Wesleyan University, Marion, Indiana, United States of America
- LifeData, LLC, Marion, Indiana, United States of America
- * E-mail:
| | - Jason D. Runyan
- Psychology Department, Behavioral Sciences Division, Indiana Wesleyan University, Marion, Indiana, United States of America
- LifeData, LLC, Marion, Indiana, United States of America
- Lumen Research Institute, Excelsia College, Sydney, Australia
| | - Timothy A. Steenbergh
- Psychology Department, Behavioral Sciences Division, Indiana Wesleyan University, Marion, Indiana, United States of America
- LifeData, LLC, Marion, Indiana, United States of America
- Lumen Research Institute, Excelsia College, Sydney, Australia
| | - Betty Jane Fratzke
- Psychology Department, Behavioral Sciences Division, Indiana Wesleyan University, Marion, Indiana, United States of America
| | - Brian N. Fry
- Sociology Department, Marion, Indiana, United States of America
| | - Emma Westra
- Psychology Department, Behavioral Sciences Division, Indiana Wesleyan University, Marion, Indiana, United States of America
| |
Collapse
|
13
|
Leitão J, Thielscher A, Lee H, Tuennerhoff J, Noppeney U. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection. Eur J Neurosci 2017; 46:2807-2816. [DOI: 10.1111/ejn.13743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Joana Leitão
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- Computational Neuroscience and Cognitive Robotics Centre University of Birmingham B15 2TT Birmingham UK
- Laboratory for Behavioral Neurology and Imaging of Cognition Department of Neuroscience University of Geneva Geneva Switzerland
| | - Axel Thielscher
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- Department of Electrical Engineering Technical University of Denmark Lyngby Denmark
- DRCMR Copenhagen University Hospital Hvidovre Hvidovre Denmark
| | - Hweeling Lee
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
| | - Johannes Tuennerhoff
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- University Clinic of Neurology Tübingen Germany
| | - Uta Noppeney
- Max Planck Institute for Biological Cybernetics Tübingen Germany
- Computational Neuroscience and Cognitive Robotics Centre University of Birmingham B15 2TT Birmingham UK
| |
Collapse
|
14
|
Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128:2125-2139. [PMID: 28938143 DOI: 10.1016/j.clinph.2017.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.
Collapse
Affiliation(s)
- Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Riccardo Di Iorio
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy; Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jung E Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Robert Chen
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, USA
| | - Antonio P Strafella
- Krembil Research Institute, University of Toronto, Toronto, Canada; Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| |
Collapse
|
15
|
Brain Network Mechanisms Underlying Motor Enhancement by Transcranial Entrainment of Gamma Oscillations. J Neurosci 2017; 36:12053-12065. [PMID: 27881788 DOI: 10.1523/jneurosci.2044-16.2016] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022] Open
Abstract
Gamma and beta oscillations are routinely observed in motor-related brain circuits during movement preparation and execution. Entrainment of gamma or beta oscillations via transcranial alternating current stimulation (tACS) over primary motor cortex (M1) has opposite effects on motor performance, suggesting a causal role of these brain rhythms for motor control. However, it is largely unknown which brain mechanisms characterize these changes in motor performance brought about by tACS. In particular, it is unclear whether these effects result from brain activity changes only in the targeted areas or within functionally connected brain circuits. Here we investigated this issue by applying gamma-band and beta-band tACS over M1 in healthy humans during a visuomotor task and concurrent functional magnetic resonance imaging (fMRI). Gamma tACS indeed improved both the velocity and acceleration of visually triggered movements, compared with both beta tACS and sham stimulation. Beta tACS induced a numerical decrease in velocity compared with sham stimulation, but this was not statistically significant. Crucially, gamma tACS induced motor performance enhancements correlated with changed BOLD activity in the stimulated M1. Moreover, we found frequency- and task-specific neural compensatory activity modulations in the dorsomedial prefrontal cortex (dmPFC), suggesting a key regulatory role of this region in motor performance. Connectivity analyses revealed that the dmPFC interacted functionally with M1 and with regions within the executive motor system. These results suggest a role of the dmPFC for motor control and show that tACS-induced behavioral changes not only result from activity modulations underneath the stimulation electrode but also reflect compensatory modulation within connected and functionally related brain networks. More generally, our results illustrate how combined tACS-fMRI can be used to resolve the causal link between cortical rhythms, brain systems, and behavior. SIGNIFICANCE STATEMENT Recent research has suggested a causal role for gamma oscillations during movement preparation and execution. Here we combine transcranial alternating current stimulation (tACS) with functional magnetic resonance imaging (fMRI) to identify the neural mechanisms that accompany motor performance enhancements triggered by gamma tACS over the primary motor cortex. We show that the tACS-induced motor performance enhancements correlate with changed neural activity in the stimulated area and modulate, in a frequency- and task-specific manner, the neural activity in the dorsomedial prefrontal cortex. This suggests a regulatory role of this region for motor control. More generally, we show that combined tACS-fMRI can elucidate the causal link between brain oscillations, neural systems, and behavior.
Collapse
|
16
|
Leitão J, Thielscher A, Tuennerhoff J, Noppeney U. Comparing TMS perturbations to occipital and parietal cortices in concurrent TMS-fMRI studies-Methodological considerations. PLoS One 2017; 12:e0181438. [PMID: 28767670 PMCID: PMC5540584 DOI: 10.1371/journal.pone.0181438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
Neglect and hemianopia are two neuropsychological syndromes that are associated with reduced awareness for visual signals in patients’ contralesional hemifield. They offer the unique possibility to dissociate the contributions of retino-geniculate and retino-colliculo circuitries in visual perception. Yet, insights from patient fMRI studies are limited by heterogeneity in lesion location and extent, long-term functional reorganization and behavioural compensation after stroke. Transcranial magnetic stimulation (TMS) has therefore been proposed as a complementary method to investigate the effect of transient perturbations on functional brain organization. This concurrent TMS-fMRI study applied TMS perturbation to occipital and parietal cortices with the aim to ‘mimick’ neglect and hemianopia. Based on the challenges and interpretational limitations of our own study we aim to provide tutorial guidance on how future studies should compare TMS to primary sensory and association areas that are governed by distinct computational principles, neural dynamics and functional architecture.
Collapse
Affiliation(s)
- Joana Leitão
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Axel Thielscher
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
- DRCMR, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Johannes Tuennerhoff
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- University Clinic of Neurology, Tübingen, Germany
| | - Uta Noppeney
- Max Planck Institute for biological Cybernetics, Tübingen, Germany
- Computational Neuroscience and Cognitive Robotics Centre, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Wang WT, Xu B, Butman JA. Improved SNR for combined TMS-fMRI: A support device for commercially available body array coil. J Neurosci Methods 2017; 289:1-7. [PMID: 28673806 DOI: 10.1016/j.jneumeth.2017.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation tool extensively used in clinical and cognitive neuroscience research. TMS has been applied during functional magnetic resonance imaging (i.e., concurrent/interleaved TMS-fMRI) to understand neural mechanisms underlying cognitive functions. However, no advanced commercial multi-channel whole-brain array MR coils can fit the large TMS coil. We developed a low-cost and easy-to-configure setup that takes advantage of the superior signal-to-noise ratio (SNR) performance of commercially available flexible body array coils that can accommodate the TMS coil. NEW METHOD Two flexible MRI body array coils (i.e., the Combo coil) were fitted on a simple coil support with a TMS-coil holder. Phantom and in vivo images acquired using the Combo coil with and without a TMS coil were compared with those from a product 12-channel (12CH) form-fit head array coil. RESULTS Relative to the 12CH head coil, images acquired using the Combo coil were of similar quality, but with increased noise levels, leading to moderately reduced temporal SNR values. COMPARISON WITH EXISTING METHOD A previous study reported that the temporal SNR of a product 12CH head coil was twice that of a transmit/receive volume birdcage coil commonly used in combined TMS-fMRI. Together with the results of the present work, they indicate that the Combo-coil setup improves SNR performance for combined TMS-fMRI acquisition. CONCLUSION The inexpensive and easy-to-configure Combo-coil setup offers an effective and likely superior alternative to transmit/receive birdcage coil for combined TMS-fMRI.
Collapse
Affiliation(s)
- Wen-Tung Wang
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA.
| | - Benjamin Xu
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA; National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - John A Butman
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA; Radiology and Imaging Science, Clinical Center, NIH, Bethesda, MD, USA
| |
Collapse
|
18
|
Son SJ, Kim J, Park H. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer's disease patients. PLoS One 2017; 12:e0173426. [PMID: 28333946 PMCID: PMC5363868 DOI: 10.1371/journal.pone.0173426] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/19/2017] [Indexed: 02/04/2023] Open
Abstract
Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer's disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint.
Collapse
Affiliation(s)
- Seong-Jin Son
- Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Jonghoon Kim
- Department of Electronic, Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
19
|
Navarro de Lara LI, Tik M, Woletz M, Frass-Kriegl R, Moser E, Laistler E, Windischberger C. High-sensitivity TMS/fMRI of the Human Motor Cortex Using a Dedicated Multichannel MR Coil. Neuroimage 2017; 150:262-269. [PMID: 28254457 DOI: 10.1016/j.neuroimage.2017.02.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To validate a novel setup for concurrent TMS/fMRI in the human motor cortex based on a dedicated, ultra-thin, multichannel receive MR coil positioned between scalp and TMS system providing greatly enhanced sensitivity compared to the standard birdcage coil setting. METHODS A combined TMS/fMRI design was applied over the primary motor cortex based on 1Hz stimulation with stimulation levels of 80%, 90%, 100%, and 110% of the individual active motor threshold, respectively. Due to the use of a multichannel receive coil we were able to use multiband-accelerated (MB=2) EPI sequences for the acquisition of functional images. Data were analysed with SPM12 and BOLD-weighted signal intensity time courses were extracted in each subject from two local maxima (individual functional finger tapping localiser, fixed MNI coordinate of the hand knob) next to the hand area of the primary motor cortex (M1) and from the global maximum. RESULTS We report excellent image quality without noticeable signal dropouts or image distortions. Parameter estimates in the three peak voxels showed monotonically ascending activation levels over increasing stimulation intensities. Across all subjects, mean BOLD signal changes for 80%, 90%, 100%, 110% of the individual active motor threshold were 0.43%, 0.63%, 1.01%, 2.01% next to the individual functional finger tapping maximum, 0.73%, 0.91%, 1.34%, 2.21% next to the MNI-defined hand knob and 0.88%, 1.09%, 1.65%, 2.77% for the global maximum, respectively. CONCLUSION Our results show that the new setup for concurrent TMS/fMRI experiments using a dedicated MR coil array allows for high-sensitivity fMRI particularly at the site of stimulation. Contrary to the standard birdcage approach, the results also demonstrate that the new coil can be successfully used for multiband-accelerated EPI acquisition. The gain in flexibility due to the new coil can be easily combined with neuronavigation within the MR scanner to allow for accurate targeting in TMS/fMRI experiments.
Collapse
Affiliation(s)
- Lucia I Navarro de Lara
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Martin Tik
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Michael Woletz
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Roberta Frass-Kriegl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria
| | - Christian Windischberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Guertel 18-20, A-1090 Wien, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage 2016; 140:4-19. [DOI: 10.1016/j.neuroimage.2016.02.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
|
21
|
Abstract
UNLABELLED Adaptive behavior relies on combining bottom-up sensory inputs with top-down control signals to guide responses in line with current goals and task demands. Over the past decade, accumulating evidence has suggested that the dorsal and ventral frontoparietal attentional systems are recruited interactively in this process. This fMRI study used concurrent transcranial magnetic stimulation (TMS) as a causal perturbation approach to investigate the interactions between dorsal and ventral attentional systems and sensory processing areas. In a sustained spatial attention paradigm, human participants detected weak visual targets that were presented in the lower-left visual field on 50% of the trials. Further, we manipulated the presence/absence of task-irrelevant auditory signals. Critically, on each trial we applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS). IPS-TMS relative to Sham-TMS increased activation in the parietal cortex regardless of sensory stimulation, confirming the neural effectiveness of TMS stimulation. Visual targets increased activations in the anterior insula, a component of the ventral attentional system responsible for salience detection. Conversely, they decreased activations in the ventral visual areas. Importantly, IPS-TMS abolished target-evoked activation increases in the right temporoparietal junction (TPJ) of the ventral attentional system, whereas it eliminated target-evoked activation decreases in the right fusiform. Our results demonstrate that IPS-TMS exerts profound directional causal influences not only on visual areas but also on the TPJ as a critical component of the ventral attentional system. They reveal a complex interplay between dorsal and ventral attentional systems during target detection under sustained spatial attention. SIGNIFICANCE STATEMENT Adaptive behavior relies on combining bottom-up sensory inputs with top-down attentional control. Although the dorsal and ventral frontoparietal systems are key players in attentional control, their distinct contributions remain unclear. In this TMS-fMRI study, participants attended to the left visual field to detect weak visual targets presented on half of the trials. We applied brief TMS bursts (or Sham-TMS) to the dorsal intraparietal sulcus (IPS) 100 ms after visual stimulus onset. IPS-TMS abolished the visual induced response suppression in the ventral occipitotemporal cortex and the response enhancement to visual targets in the temporoparietal junction. Our results demonstrate that IPS causally influences neural activity in the ventral attentional system 100 ms poststimulus. They have important implications for our understanding of the neural mechanisms underlying attentional control.
Collapse
|
22
|
Hartwigsen G, Bergmann TO, Herz DM, Angstmann S, Karabanov A, Raffin E, Thielscher A, Siebner HR. Modeling the effects of noninvasive transcranial brain stimulation at the biophysical, network, and cognitive level. PROGRESS IN BRAIN RESEARCH 2015; 222:261-87. [PMID: 26541384 DOI: 10.1016/bs.pbr.2015.06.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Noninvasive transcranial brain stimulation (NTBS) is widely used to elucidate the contribution of different brain regions to various cognitive functions. Here we present three modeling approaches that are informed by functional or structural brain mapping or behavior profiling and discuss how these approaches advance the scientific potential of NTBS as an interventional tool in cognitive neuroscience. (i) Leveraging the anatomical information provided by structural imaging, the electric field distribution in the brain can be modeled and simulated. Biophysical modeling approaches generate testable predictions regarding the impact of interindividual variations in cortical anatomy on the injected electric fields or the influence of the orientation of current flow on the physiological stimulation effects. (ii) Functional brain mapping of the spatiotemporal neural dynamics during cognitive tasks can be used to construct causal network models. These models can identify spatiotemporal changes in effective connectivity during distinct cognitive states and allow for examining how effective connectivity is shaped by NTBS. (iii) Modeling the NTBS effects based on neuroimaging can be complemented by behavior-based cognitive models that exploit variations in task performance. For instance, NTBS-induced changes in response speed and accuracy can be explicitly modeled in a cognitive framework accounting for the speed-accuracy trade-off. This enables to dissociate between behavioral NTBS effects that emerge in the context of rapid automatic responses or in the context of slow deliberate responses. We argue that these complementary modeling approaches facilitate the use of NTBS as a means of dissecting the causal architecture of cognitive systems of the human brain.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany.
| | - Til Ole Bergmann
- Department of Psychology, Christian-Albrechts-University, Kiel, Germany
| | - Damian Marc Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steffen Angstmann
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Anke Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Estelle Raffin
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Grenoble Institute of Neuroscience, Research Centre U836 Inserm-UJF, Team 11 Brain Function & Neuromodulation, Grenoble, France
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Biomedical Engineering Section, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.
| |
Collapse
|
23
|
A setup for administering TMS to medial and lateral cortical areas during whole-brain FMRI recording. J Clin Neurophysiol 2015; 31:474-87. [PMID: 25271688 DOI: 10.1097/wnp.0000000000000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SUMMARY Stimulating brain areas with transcranial magnetic stimulation (TMS) while concurrently and noninvasively recording brain activity changes through functional MRI enables a new range of investigations about causal interregional interactions in the human brain. However, standard head-coil arrangements for current methods for concurrent TMS-functional MRI somewhat restrict the cortical brain regions that can be targeted with TMS because space in typical MR head coils is limited. Another limitation for concurrent TMS-functional MRI approaches concerns the estimation of the precise stimulation site, which can limit the interpretation of the activity changes induced by TMS and increase the variability of the stimulation effects. Here, we present a novel approach using flexible MR receiver coils, allowing for stimulation of a large part of the cortex including more lateral areas. Furthermore, we present a fast and economical method to determine the precise location of the stimulation coil during scanning. This point-based registration method can accurately compute, during scanning, where TMS pulses are delivered. We validated this approach by stimulating medial (M1) and more lateral (dorsal part of the supramarginal gyrus) brain areas concurrently with functional MRI. Activation close to but not directly at the stimulated location and in distal areas connected to the targeted site was observed. This study provides a proof of concept that TMS of medial and lateral brain areas is feasible without significantly compromising brain coverage and that one can precisely determine the exact coil location inside the bore to verify targeting of brain areas.
Collapse
|
24
|
Runyan JD, Steinke EG. Virtues, ecological momentary assessment/intervention and smartphone technology. Front Psychol 2015; 6:481. [PMID: 25999869 PMCID: PMC4422021 DOI: 10.3389/fpsyg.2015.00481] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/02/2015] [Indexed: 12/30/2022] Open
Abstract
Virtues, broadly understood as stable and robust dispositions for certain responses across morally relevant situations, have been a growing topic of interest in psychology. A central topic of discussion has been whether studies showing that situations can strongly influence our responses provide evidence against the existence of virtues (as a kind of stable and robust disposition). In this review, we examine reasons for thinking that the prevailing methods for examining situational influences are limited in their ability to test dispositional stability and robustness; or, then, whether virtues exist. We make the case that these limitations can be addressed by aggregating repeated, cross-situational assessments of environmental, psychological and physiological variables within everyday life-a form of assessment often called ecological momentary assessment (EMA, or experience sampling). We, then, examine how advances in smartphone application (app) technology, and their mass adoption, make these mobile devices an unprecedented vehicle for EMA and, thus, the psychological study of virtue. We, additionally, examine how smartphones might be used for virtue development by promoting changes in thought and behavior within daily life; a technique often called ecological momentary intervention (EMI). While EMA/I have become widely employed since the 1980s for the purposes of understanding and promoting change amongst clinical populations, few EMA/I studies have been devoted to understanding or promoting virtues within non-clinical populations. Further, most EMA/I studies have relied on journaling, PDAs, phone calls and/or text messaging systems. We explore how smartphone app technology provides a means of making EMA a more robust psychological method, EMI a more robust way of promoting positive change, and, as a result, opens up new possibilities for studying and promoting virtues.
Collapse
Affiliation(s)
- Jason D. Runyan
- Psychology Department, Indiana Wesleyan UniversityMarion, IN, USA
| | | |
Collapse
|
25
|
Cocchi L, Sale MV, Lord A, Zalesky A, Breakspear M, Mattingley JB. Dissociable effects of local inhibitory and excitatory theta-burst stimulation on large-scale brain dynamics. J Neurophysiol 2015; 113:3375-85. [PMID: 25717162 DOI: 10.1152/jn.00850.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/21/2015] [Indexed: 12/12/2022] Open
Abstract
Normal brain function depends on a dynamic balance between local specialization and large-scale integration. It remains unclear, however, how local changes in functionally specialized areas can influence integrated activity across larger brain networks. By combining transcranial magnetic stimulation with resting-state functional magnetic resonance imaging, we tested for changes in large-scale integration following the application of excitatory or inhibitory stimulation on the human motor cortex. After local inhibitory stimulation, regions encompassing the sensorimotor module concurrently increased their internal integration and decreased their communication with other modules of the brain. There were no such changes in modular dynamics following excitatory stimulation of the same area of motor cortex nor were there changes in the configuration and interactions between core brain hubs after excitatory or inhibitory stimulation of the same area. These results suggest the existence of selective mechanisms that integrate local changes in neural activity, while preserving ongoing communication between brain hubs.
Collapse
Affiliation(s)
- Luca Cocchi
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia;
| | - Martin V Sale
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Anton Lord
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Melbourne School of Engineering, The University of Melbourne, Melbourne, Australia; and
| | | | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia; School of Psychology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Läppchen C, Ringer T, Blessin J, Schulz K, Seidel G, Lange R, Hamzei F. Daily iTBS worsens hand motor training — A combined TMS, fMRI and mirror training study. Neuroimage 2015; 107:257-265. [DOI: 10.1016/j.neuroimage.2014.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022] Open
|
27
|
Michely J, Volz LJ, Barbe MT, Hoffstaedter F, Viswanathan S, Timmermann L, Eickhoff SB, Fink GR, Grefkes C. Dopaminergic modulation of motor network dynamics in Parkinson's disease. Brain 2015; 138:664-78. [PMID: 25567321 PMCID: PMC4339773 DOI: 10.1093/brain/awu381] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Using connectivity analyses based on functional MRI, Michely et al. investigate dopaminergic modulation of neural network dynamics involved in motor control in Parkinson’s disease. The findings provide insights into the pathophysiology underlying bradykinesia and deficits in executive function, and help to explain why dopaminergic treatments have a greater effect on the former. Although characteristic motor symptoms of Parkinson’s disease such as bradykinesia typically improve under dopaminergic medication, deficits in higher motor control are less responsive. We here investigated the dopaminergic modulation of network dynamics underlying basic motor performance, i.e. finger tapping, and higher motor control, i.e. internally and externally cued movement preparation and selection. Twelve patients, assessed ON and OFF medication, and 12 age-matched healthy subjects underwent functional magnetic resonance imaging. Dynamic causal modelling was used to assess effective connectivity in a motor network comprising cortical and subcortical regions. In particular, we investigated whether impairments in basic and higher motor control, and the effects induced by dopaminergic treatment are due to connectivity changes in (i) the mesial premotor loop comprising the supplementary motor area; (ii) the lateral premotor loop comprising lateral premotor cortex; and (iii) cortico-subcortical interactions. At the behavioural level, we observed a marked slowing of movement preparation and selection when patients were internally as opposed to externally cued. Preserved performance during external cueing was associated with enhanced connectivity between prefrontal cortex and lateral premotor cortex OFF medication, compatible with a context-dependent compensatory role of the lateral premotor loop in the hypodopaminergic state. Dopaminergic medication significantly improved finger tapping speed in patients, which correlated with a drug-induced coupling increase of prefrontal cortex with the supplementary motor area, i.e. the mesial premotor loop. In addition, only in the finger tapping condition, patients ON medication showed enhanced excitatory influences exerted by cortical premotor regions and the thalamus upon the putamen. In conclusion, the amelioration of bradykinesia by dopaminergic medication seems to be driven by enhanced connectivity within the mesial premotor loop and cortico-striatal interactions. In contrast, medication did not improve internal motor control deficits concurrent to missing effects at the connectivity level. This differential effect of dopaminergic medication on the network dynamics underlying motor control provides new insights into the clinical finding that in Parkinson’s disease dopaminergic drugs especially impact on bradykinesia but less on executive functions.
Collapse
Affiliation(s)
- Jochen Michely
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 2 Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Lukas J Volz
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 2 Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne, Germany
| | - Michael T Barbe
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - Felix Hoffstaedter
- 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany 4 Department of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Shivakumar Viswanathan
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - Lars Timmermann
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany
| | - Simon B Eickhoff
- 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany 4 Department of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gereon R Fink
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| | - Christian Grefkes
- 1 Department of Neurology, Cologne University Hospital, Kerpener Str. 62, 50937 Cologne, Germany 2 Max Planck Institute for Neurological Research, Gleueler Str. 50, 50931 Cologne, Germany 3 Institute of Neuroscience and Medicine (INM-1, INM-3), Research Centre Jülich, 52425 Jülich, Germany
| |
Collapse
|
28
|
Navarro de Lara LI, Windischberger C, Kuehne A, Woletz M, Sieg J, Bestmann S, Weiskopf N, Strasser B, Moser E, Laistler E. A novel coil array for combined TMS/fMRI experiments at 3 T. Magn Reson Med 2014; 74:1492-501. [PMID: 25421603 PMCID: PMC4737243 DOI: 10.1002/mrm.25535] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022]
Abstract
Purpose To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. Methods The state‐of‐the‐art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7‐channel receive‐only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state‐of‐the‐art setup. Results MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g‐factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. Conclusion The novel coil array is safe, strongly improves signal‐to‐noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. Magn Reson Med 74:1492–1501, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Lucia I Navarro de Lara
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Christian Windischberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Andre Kuehne
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Michael Woletz
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Jürgen Sieg
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | - Bernhard Strasser
- MR Centre of Excellence, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Elmar Laistler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,MR Centre of Excellence, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Chakrabarti S, Martinez-Vazquez P, Gail A. Synchronization patterns suggest different functional organization in parietal reach region and dorsal premotor cortex. J Neurophysiol 2014; 112:3138-53. [PMID: 25231609 DOI: 10.1152/jn.00621.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parietal reach region (PRR) and dorsal premotor cortex (PMd) form part of the fronto-parietal reach network. While neural selectivity profiles of single-cell activity in these areas can be remarkably similar, other data suggest that both areas serve different computational functions in visually guided reaching. Here we test the hypothesis that different neural functional organizations characterized by different neural synchronization patterns might be underlying the putatively different functional roles. We use cross-correlation analysis on single-unit activity (SUA) and multiunit activity (MUA) to determine the prevalence of synchronized neural ensembles within each area. First, we reliably find synchronization in PRR but not in PMd. Second, we demonstrate that synchronization in PRR is present in different cognitive states, including "idle" states prior to task-relevant instructions and without neural tuning. Third, we show that local field potentials (LFPs) in PRR but not PMd are characterized by an increased power and spike field coherence in the beta frequency range (12-30 Hz), further indicating stronger synchrony in PRR compared with PMd. Finally, we show that neurons with similar tuning properties tend to be correlated in their random spike rate fluctuations in PRR but not in PMd. Our data support the idea that PRR and PMd, despite striking similarity in single-cell tuning properties, are characterized by unequal local functional organization, which likely reflects different network architectures to support different functional roles within the fronto-parietal reach network.
Collapse
Affiliation(s)
- Shubhodeep Chakrabarti
- Bernstein Center for Computational Neuroscience, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany; Systems Neurophysiology Group, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; and Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Pablo Martinez-Vazquez
- Bernstein Center for Computational Neuroscience, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Alexander Gail
- Bernstein Center for Computational Neuroscience, German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany;
| |
Collapse
|
30
|
Volz LJ, Hamada M, Rothwell JC, Grefkes C. What Makes the Muscle Twitch: Motor System Connectivity and TMS-Induced Activity. Cereb Cortex 2014; 25:2346-53. [PMID: 24610120 DOI: 10.1093/cercor/bhu032] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) evokes several volleys of corticospinal activity. While the earliest wave (D-wave) originates from axonal activation of cortico-spinal neurons (CSN), later waves (I-waves) result from activation of mono- and polysynaptic inputs to CSNs. Different coil orientations preferentially stimulate cortical elements evoking different outputs: latero-medial-induced current (LM) elicits D-waves and short-latency electromyographic responses (MEPs); posterior-anterior current (PA) evokes early I-waves. Anterior-posterior current (AP) is more variable and tends to recruit later I-waves, featuring longer onset latencies compared with PA-TMS. We tested whether the variability in response to AP-TMS was related to functional connectivity of the stimulated M1 in 20 right-handed healthy subjects who underwent functional magnetic resonance imaging while performing an isometric contraction task. The MEP-latency after AP-TMS (relative to LM-TMS) was strongly correlated with functional connectivity between the stimulated M1 and a network involving cortical premotor areas. This indicates that stronger premotor-M1 connectivity increases the probability that AP-TMS recruits shorter latency input to CSNs. In conclusion, our data strongly support the hypothesis that TMS of M1 activates distinct neuronal pathways depending on the orientation of the stimulation coil. Particularly, AP currents seem to recruit short latency cortico-cortical projections from premotor areas.
Collapse
Affiliation(s)
- Lukas J Volz
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Masashi Hamada
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London WC1N 3BG, UK Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Christian Grefkes
- Max Planck Institute for Neurological Research, 50931 Cologne, Germany Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany Institute of Neuroscience and Medicine (INM-3), Juelich Research Centre, Germany
| |
Collapse
|
31
|
Zanon M, Battaglini PP, Jarmolowska J, Pizzolato G, Busan P. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study. Front Hum Neurosci 2013; 7:803. [PMID: 24324426 PMCID: PMC3839000 DOI: 10.3389/fnhum.2013.00803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022] Open
Abstract
The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG). Toward this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 ms to about 200 ms after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 ms after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 ms. Finally, a likely “rebounding” activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans.
Collapse
Affiliation(s)
- Marco Zanon
- Cognitive Neuroscience Sector, International School for Advanced Studies, SISSA Trieste, Italy
| | | | | | | | | |
Collapse
|
32
|
Sugawara K, Onishi H, Yamashiro K, Kirimoto H, Tsubaki A, Suzuki M, Tamaki H, Murakami H, Kameyama S. Activation of the Human Premotor Cortex During Motor Preparation in Visuomotor Tasks. Brain Topogr 2013; 26:581-90. [DOI: 10.1007/s10548-013-0299-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
|
33
|
Bestmann S, Feredoes E. Combined neurostimulation and neuroimaging in cognitive neuroscience: past, present, and future. Ann N Y Acad Sci 2013; 1296:11-30. [PMID: 23631540 PMCID: PMC3760762 DOI: 10.1111/nyas.12110] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Modern neurostimulation approaches in humans provide controlled inputs into the operations of cortical regions, with highly specific behavioral consequences. This enables causal structure–function inferences, and in combination with neuroimaging, has provided novel insights into the basic mechanisms of action of neurostimulation on distributed networks. For example, more recent work has established the capacity of transcranial magnetic stimulation (TMS) to probe causal interregional influences, and their interaction with cognitive state changes. Combinations of neurostimulation and neuroimaging now face the challenge of integrating the known physiological effects of neurostimulation with theoretical and biological models of cognition, for example, when theoretical stalemates between opposing cognitive theories need to be resolved. This will be driven by novel developments, including biologically informed computational network analyses for predicting the impact of neurostimulation on brain networks, as well as novel neuroimaging and neurostimulation techniques. Such future developments may offer an expanded set of tools with which to investigate structure–function relationships, and to formulate and reconceptualize testable hypotheses about complex neural network interactions and their causal roles in cognition.
Collapse
Affiliation(s)
- Sven Bestmann
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, United Kingdom.
| | | |
Collapse
|