1
|
Wilkinson MP, Robinson ES, Mellor JR. Analysis of hippocampal synaptic function in a rodent model of early life stress. Wellcome Open Res 2024; 9:300. [PMID: 39221440 PMCID: PMC11362746 DOI: 10.12688/wellcomeopenres.22276.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Early life stress (ELS) is an important risk factor in the aetiology of depression. Developmental glucocorticoid exposure impacts multiple brain regions with the hippocampus being particularly vulnerable. Hippocampal mediated behaviours are dependent upon the ability of neurones to undergo long-term potentiation (LTP), an N-methyl-D-aspartate receptor (NMDAR) mediated process. In this study we investigated the effect of ELS upon hippocampal NMDAR function. Methods Hooded Long-Evans rat pups (n=82) were either undisturbed or maternally separated for 180 minutes per day (MS180) between post-natal day (PND) 1 and PND14. Model validation consisted of sucrose preference (n=18) and novelty supressed feeding (NSFT, n=34) tests alongside assessment of corticosterone (CORT) and paraventricular nucleus (PVN) cFos reactivity to stress and hippocampal neurogenesis (all n=18). AMPA/NMDA ratios (n=19), miniEPSC currents (n=19) and LTP (n=15) were assessed in whole-cell patch clamp experiments in CA1 pyramidal neurones. Results MS180 animals showed increased feeding latency in the NSFT alongside increased overall CORT in the restraint stress experiment and increased PVN cFos expression in males but no changes in neurogenesis or sucrose preference. MS180 was associated with a lower AMPA/NMDA ratio with no change in miniEPSC amplitude or area. There was no difference in short- or long-term potentiation between MS180 and control animals nor were there any changes during the induction protocol. Conclusions The MS180 model showed a behavioural phenotype consistent with previous work. MS180 animals showed increased NMDAR function with preliminary evidence suggesting that this was not concurrent with an increase in LTP.
Collapse
Affiliation(s)
- Matthew P. Wilkinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
- Hello Bio Ltd, Bristol, BS11 0QL, UK
| | - Emma S.J. Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| | - Jack R. Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, England, BS8 1TD, UK
| |
Collapse
|
2
|
Topczewska A, Giacalone E, Pratt WS, Migliore M, Dolphin AC, Shah MM. T-type Ca 2+ and persistent Na + currents synergistically elevate ventral, not dorsal, entorhinal cortical stellate cell excitability. Cell Rep 2023; 42:112699. [PMID: 37368752 PMCID: PMC10687207 DOI: 10.1016/j.celrep.2023.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dorsal and ventral medial entorhinal cortex (mEC) regions have distinct neural network firing patterns to differentially support functions such as spatial memory. Accordingly, mEC layer II dorsal stellate neurons are less excitable than ventral neurons. This is partly because the densities of inhibitory conductances are higher in dorsal than ventral neurons. Here, we report that T-type Ca2+ currents increase 3-fold along the dorsal-ventral axis in mEC layer II stellate neurons, with twice as much CaV3.2 mRNA in ventral mEC compared with dorsal mEC. Long depolarizing stimuli trigger T-type Ca2+ currents, which interact with persistent Na+ currents to elevate the membrane voltage and spike firing in ventral, not dorsal, neurons. T-type Ca2+ currents themselves prolong excitatory postsynaptic potentials (EPSPs) to enhance their summation and spike coupling in ventral neurons only. These findings indicate that T-type Ca2+ currents critically influence the dorsal-ventral mEC stellate neuron excitability gradient and, thereby, mEC dorsal-ventral circuit activity.
Collapse
Affiliation(s)
| | | | - Wendy S Pratt
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michele Migliore
- Institute of Biophysics, National Research Council, 90146 Palermo, Italy
| | - Annette C Dolphin
- Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Mala M Shah
- Pharmacology, School of Pharmacy, University College London, London WC1N 4AX, UK.
| |
Collapse
|
3
|
Contreras A, Djebari S, Temprano-Carazo S, Múnera A, Gruart A, Delgado-Garcia JM, Jiménez-Díaz L, Navarro-López JD. Impairments in hippocampal oscillations accompany the loss of LTP induced by GIRK activity blockade. Neuropharmacology 2023:109668. [PMID: 37474000 DOI: 10.1016/j.neuropharm.2023.109668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Learning and memory occurrence requires of hippocampal long-term synaptic plasticity and precise neural activity orchestrated by brain network oscillations, both processes reciprocally influencing each other. As G-protein-gated inwardly rectifying potassium (GIRK) channels rule synaptic plasticity that supports hippocampal-dependent memory, here we assessed their unknown role in hippocampal oscillatory activity in relation to synaptic plasticity induction. In alert male mice, pharmacological GIRK modulation did not alter neural oscillations before long-term potentiation (LTP) induction. However, after an LTP generating protocol, both gain- and loss-of basal GIRK activity transformed LTP into long-term depression, but only specific suppression of constitutive GIRK activity caused a disruption of network synchronization (δ, α, γ bands), even leading to long-lasting ripples and fast ripples pathological oscillations. Together, our data showed that constitutive GIRK activity plays a key role in the tuning mechanism of hippocampal oscillatory activity during long-term synaptic plasticity processes that underlies hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Ana Contreras
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Souhail Djebari
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Alejandro Múnera
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain; Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, 111321, Bogotá, Colombia
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, 41013, Seville, Spain
| | | | - Lydia Jiménez-Díaz
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| | - Juan D Navarro-López
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina, University of Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
4
|
Colombo S, Reddy HP, Petri S, Williams DJ, Shalomov B, Dhindsa RS, Gelfman S, Krizay D, Bera AK, Yang M, Peng Y, Makinson CD, Boland MJ, Frankel WN, Goldstein DB, Dascal N. Epilepsy in a mouse model of GNB1 encephalopathy arises from altered potassium (GIRK) channel signaling and is alleviated by a GIRK inhibitor. Front Cell Neurosci 2023; 17:1175895. [PMID: 37275776 PMCID: PMC10232839 DOI: 10.3389/fncel.2023.1175895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
De novo mutations in GNB1, encoding the Gβ1 subunit of G proteins, cause a neurodevelopmental disorder with global developmental delay and epilepsy, GNB1 encephalopathy. Here, we show that mice carrying a pathogenic mutation, K78R, recapitulate aspects of the disorder, including developmental delay and generalized seizures. Cultured mutant cortical neurons also display aberrant bursting activity on multi-electrode arrays. Strikingly, the antiepileptic drug ethosuximide (ETX) restores normal neuronal network behavior in vitro and suppresses spike-and-wave discharges (SWD) in vivo. ETX is a known blocker of T-type voltage-gated Ca2+ channels and G protein-coupled potassium (GIRK) channels. Accordingly, we present evidence that K78R results in a gain-of-function (GoF) effect by increasing the activation of GIRK channels in cultured neurons and a heterologous model (Xenopus oocytes)-an effect we show can be potently inhibited by ETX. This work implicates a GoF mechanism for GIRK channels in epilepsy, identifies a new mechanism of action for ETX in preventing seizures, and establishes this mouse model as a pre-clinical tool for translational research with predicative value for GNB1 encephalopathy.
Collapse
Affiliation(s)
- Sophie Colombo
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Haritha P. Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Damian J. Williams
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Daniel Krizay
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Amal K. Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Mouse NeuroBehavior Core Facility, Columbia University Irving Medical Center, New York, NY, United States
| | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Christopher D. Makinson
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neuroscience, Columbia University, New York, NY, United States
| | - Michael J. Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Jami SA, Wilkinson BJ, Guglietta R, Hartel N, Babiec WE, Graham NA, Coba MP, O'Dell TJ. Functional and phosphoproteomic analysis of β-adrenergic receptor signaling at excitatory synapses in the CA1 region of the ventral hippocampus. Sci Rep 2023; 13:7493. [PMID: 37161045 PMCID: PMC10170123 DOI: 10.1038/s41598-023-34401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
Activation of β-adrenergic receptors (β-ARs) not only enhances learning and memory but also facilitates the induction of long-term potentiation (LTP), a form of synaptic plasticity involved in memory formation. To identify the mechanisms underlying β-AR-dependent forms of LTP we examined the effects of the β-AR agonist isoproterenol on LTP induction at excitatory synapses onto CA1 pyramidal cells in the ventral hippocampus. LTP induction at these synapses is inhibited by activation of SK-type K+ channels, suggesting that β-AR activation might facilitate LTP induction by inhibiting SK channels. However, although the SK channel blocker apamin enhanced LTP induction, it did not fully mimic the effects of isoproterenol. We therefore searched for potential alternative mechanisms using liquid chromatography-tandem mass spectrometry to determine how β-AR activation regulates phosphorylation of postsynaptic density (PSD) proteins. Strikingly, β-AR activation regulated hundreds of phosphorylation sites in PSD proteins that have diverse roles in dendritic spine structure and function. Moreover, within the core scaffold machinery of the PSD, β-AR activation increased phosphorylation at several sites previously shown to be phosphorylated after LTP induction. Together, our results suggest that β-AR activation recruits a diverse set of signaling pathways that likely act in a concerted fashion to regulate LTP induction.
Collapse
Affiliation(s)
- Shekib A Jami
- Molecular, Cellular, and Integrative Physiology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Ryan Guglietta
- Interdepartmental PhD Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Walter E Babiec
- Undergraduate Interdepartmental Program for Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, Los Angeles, CA, USA
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas J O'Dell
- Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Recognition Memory Induces Natural LTP-like Hippocampal Synaptic Excitation and Inhibition. Int J Mol Sci 2022; 23:ijms231810806. [PMID: 36142727 PMCID: PMC9501019 DOI: 10.3390/ijms231810806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic plasticity is a cellular process involved in learning and memory by which specific patterns of neural activity adapt the synaptic strength and efficacy of the synaptic transmission. Its induction is governed by fine tuning between excitatory/inhibitory synaptic transmission. In experimental conditions, synaptic plasticity can be artificially evoked at hippocampal CA1 pyramidal neurons by repeated stimulation of Schaffer collaterals. However, long-lasting synaptic modifications studies during memory formation in physiological conditions in freely moving animals are very scarce. Here, to study synaptic plasticity phenomena during recognition memory in the dorsal hippocampus, field postsynaptic potentials (fPSPs) evoked at the CA3–CA1 synapse were recorded in freely moving mice during object-recognition task performance. Paired pulse stimuli were applied to Schaffer collaterals at the moment that the animal explored a new or a familiar object along different phases of the test. Stimulation evoked a complex synaptic response composed of an ionotropic excitatory glutamatergic fEPSP, followed by two inhibitory responses, an ionotropic, GABAA-mediated fIPSP and a metabotropic, G-protein-gated inwardly rectifying potassium (GirK) channel-mediated fIPSP. Our data showed the induction of LTP-like enhancements for both the glutamatergic and GirK-dependent components of the dorsal hippocampal CA3–CA1 synapse during the exploration of novel but not familiar objects. These results support the contention that synaptic plasticity processes that underlie hippocampal-dependent memory are sustained by fine tuning mechanisms that control excitatory and inhibitory neurotransmission balance.
Collapse
|
7
|
A. Samara M, Oikonomou GD, Trompoukis G, Madarou G, Adamopoulou M, Papatheodoropoulos C. Septotemporal variation in modulation of synaptic transmission, paired-pulse ratio and frequency facilitation/depression by adenosine and GABA B receptors in the rat hippocampus. Brain Neurosci Adv 2022; 6:23982128221106315. [PMID: 35782711 PMCID: PMC9240614 DOI: 10.1177/23982128221106315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/19/2022] [Indexed: 11/26/2022] Open
Abstract
Short-term synaptic plasticity represents a fundamental mechanism in
neural information processing and is regulated by neuromodulators.
Here, using field recordings from the CA1 region of adult rat
hippocampal slices, we show that excitatory synaptic transmission is
suppressed by strong but not moderate activation of adenosine
A1 receptors by
2-Chloro-N6-cyclopentyladenosine (CCPA) more in the dorsal
than the ventral hippocampus; in contrast, both mild and strong
activation of GABAB receptors by baclofen (1 μM, 10 μM)
suppress synaptic transmission more in the ventral than the dorsal
hippocampus. Using a 10-pulse stimulation train of variable frequency,
we found that CCPA modulates short-term synaptic plasticity
independently of the suppression of synaptic transmission in both
segments of the hippocampus and at stimulation frequencies greater
than 10 Hz. However, specifically regarding the paired-pulse ratio
(PPR) and frequency facilitation/depression (FF/D) we found
significant drug action before but not after adjusting conditioning
responses to control levels. Activation of GABABRs by
baclofen suppressed synaptic transmission more in the ventral than the
dorsal hippocampus. Furthermore, relatively high (10 μM) but not low
(1 μM) baclofen concentration enhanced both PPR and FF in both
hippocampal segments at stimulation frequencies greater than 1 Hz,
independently of the suppression of synaptic transmission by baclofen.
These results show that A1Rs and GABABRs control
synaptic transmission more effectively in the dorsal and the ventral
hippocampus, respectively, and suggest that these receptors modulate
PPR and FF/D at different frequency bands of afferent input, in both
segments of the hippocampus.
Collapse
Affiliation(s)
- Maria A. Samara
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George D. Oikonomou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - George Trompoukis
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Georgia Madarou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | - Maria Adamopoulou
- Laboratory of Neurophysiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
8
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Zheng F, Valero-Aracama MJ, Schaefer N, Alzheimer C. Activin A Reduces GIRK Current to Excite Dentate Gyrus Granule Cells. Front Cell Neurosci 2022; 16:920388. [PMID: 35711474 PMCID: PMC9197229 DOI: 10.3389/fncel.2022.920388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A, a member of the TGF-β family, is recognized as a multifunctional protein in the adult brain with a particular impact on neuronal circuits associated with cognitive and affective functions. Activin receptor signaling in mouse hippocampus is strongly enhanced by the exploration of an enriched environment (EE), a behavioral paradigm known to improve performance in learning and memory tasks and to ameliorate depression-like behaviors. To interrogate the relationship between EE, activin signaling, and cellular excitability in the hippocampus, we performed ex vivo whole-cell recordings from dentate gyrus (DG) granule cells (GCs) of wild type mice and transgenic mice expressing a dominant-negative mutant of activin receptor IB (dnActRIB), which disrupts activin signaling in a forebrain-specific fashion. We found that, after overnight EE housing, GC excitability was strongly enhanced in an activin-dependent fashion. Moreover, the effect of EE on GC firing was mimicked by pre-treatment of hippocampal slices from control mice with recombinant activin A for several hours. The excitatory effect of activin A was preserved when canonical SMAD-dependent signaling was pharmacologically suppressed but was blocked by inhibitors of ERK-MAPK and PKA signaling. The involvement of a non-genomic signaling cascade was supported by the fact that the excitatory effect of activin A was already achieved within minutes of application. With respect to the ionic mechanism underlying the increase in intrinsic excitability, voltage-clamp recordings revealed that activin A induced an apparent inward current, which resulted from the suppression of a standing G protein-gated inwardly rectifying K+ (GIRK) current. The link between EE, enhanced activin signaling, and inhibition of GIRK current was strengthened by the following findings: (i) The specific GIRK channel blocker tertiapin Q (TQ) occluded the characteristic electrophysiological effects of activin A in both current- and voltage-clamp recordings. (ii) The outward current evoked by the GIRK channel activator adenosine was significantly reduced by preceding EE exploration as well as by recombinant activin A in control slices. In conclusion, our study identifies GIRK current suppression via non-canonical activin signaling as a mechanism that might at least in part contribute to the beneficial effects of EE on cognitive performance and affective behavior.
Collapse
Affiliation(s)
- Fang Zheng
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Alzheimer Fang Zheng
| | - Maria Jesus Valero-Aracama
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Alzheimer
- Institute of Physiology
and Pathophysiology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Alzheimer Fang Zheng
| |
Collapse
|
10
|
Moore JJ, Robert V, Rashid SK, Basu J. Assessing Local and Branch-specific Activity in Dendrites. Neuroscience 2022; 489:143-164. [PMID: 34756987 PMCID: PMC9125998 DOI: 10.1016/j.neuroscience.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
Dendrites are elaborate neural processes which integrate inputs from various sources in space and time. While decades of work have suggested an independent role for dendrites in driving nonlinear computations for the cell, only recently have technological advances enabled us to capture the variety of activity in dendrites and their coupling dynamics with the soma. Under certain circumstances, activity generated in a given dendritic branch remains isolated, such that the soma or even sister dendrites are not privy to these localized signals. Such branch-specific activity could radically increase the capacity and flexibility of coding for the cell as a whole. Here, we discuss these forms of localized and branch-specific activity, their functional relevance in plasticity and behavior, and their supporting biophysical and circuit-level mechanisms. We conclude by showcasing electrical and optical approaches in hippocampal area CA3, using original experimental data to discuss experimental and analytical methodology and key considerations to take when investigating the functional relevance of independent dendritic activity.
Collapse
Affiliation(s)
- Jason J Moore
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Vincent Robert
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Shannon K Rashid
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Malik R, Li Y, Schamiloglu S, Sohal VS. Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell 2022; 185:1602-1617.e17. [PMID: 35487191 PMCID: PMC10027400 DOI: 10.1016/j.cell.2022.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.
Collapse
Affiliation(s)
- Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Yi Li
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Selin Schamiloglu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Mishra P, Narayanan R. Conjunctive changes in multiple ion channels mediate activity-dependent intrinsic plasticity in hippocampal granule cells. iScience 2022; 25:103922. [PMID: 35252816 PMCID: PMC8894279 DOI: 10.1016/j.isci.2022.103922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Plasticity in the brain is ubiquitous. How do neurons and networks encode new information and simultaneously maintain homeostasis in the face of such ubiquitous plasticity? Here, we unveil a form of neuronal plasticity in rat hippocampal granule cells, which is mediated by conjunctive changes in HCN, inward-rectifier potassium, and persistent sodium channels induced by theta-modulated burst firing, a behaviorally relevant activity pattern. Cooperation and competition among these simultaneous changes resulted in a unique physiological signature: sub-threshold excitability and temporal summation were reduced without significant changes in action potential firing, together indicating a concurrent enhancement of supra-threshold excitability. This form of intrinsic plasticity was dependent on calcium influx through L-type calcium channels and inositol trisphosphate receptors. These observations demonstrate that although brain plasticity is ubiquitous, strong systemic constraints govern simultaneous plasticity in multiple components-referred here as plasticity manifolds-thereby providing a cellular substrate for concomitant encoding and homeostasis in engram cells.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Larkum ME, Wu J, Duverdin SA, Gidon A. The guide to dendritic spikes of the mammalian cortex in vitro and in vivo. Neuroscience 2022; 489:15-33. [PMID: 35182699 DOI: 10.1016/j.neuroscience.2022.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 02/01/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. Despite their prevalence, we only have a glimpse into their role in the behaving animal. This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare them in vivo versus in vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on dendritic spikes in neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
Collapse
Affiliation(s)
- Matthew E Larkum
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster, Charité - Universitätsmedizin Berlin, Germany
| | - Jiameng Wu
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sarah A Duverdin
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert Gidon
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Humphries R, Mellor JR, O'Donnell C. Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model. Neuroscience 2021; 489:69-83. [PMID: 34780920 DOI: 10.1016/j.neuroscience.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Acetylcholine has been proposed to facilitate the formation of memory ensembles within the hippocampal CA3 network, by enhancing plasticity at CA3-CA3 recurrent synapses. Regenerative NMDA receptor (NMDAR) activation in CA3 neuron dendrites (NMDA spikes) increase synaptic Ca2+ influx and can trigger this synaptic plasticity. Acetylcholine inhibits potassium channels which enhances dendritic excitability and therefore could facilitate NMDA spike generation. Here, we investigate NMDAR-mediated nonlinear synaptic integration in stratum radiatum (SR) and stratum lacunosum moleculare (SLM) dendrites in a reconstructed CA3 neuron computational model and study the effect of cholinergic inhibition of potassium conductances on this nonlinearity. We found that distal SLM dendrites, with a higher input resistance, had a lower threshold for NMDA spike generation compared to SR dendrites. Simulating acetylcholine by blocking potassium channels (M-type, A-type, Ca2+-activated, and inwardly-rectifying) increased dendritic excitability and reduced the number of synapses required to generate NMDA spikes, particularly in the SR dendrites. The magnitude of this effect was heterogeneous across different dendritic branches within the same neuron. These results predict that acetylcholine facilitates dendritic integration and NMDA spike generation in selected CA3 dendrites which could strengthen connections between specific CA3 neurons to form memory ensembles.
Collapse
Affiliation(s)
- Rachel Humphries
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK; Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Jack R Mellor
- Center for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Cian O'Donnell
- Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK; School of Computing, Engineering and Intelligent Systems, Ulster University, Magee Campus, Northland Road, Derry/Londonderry BT48 7JL, UK.
| |
Collapse
|
15
|
Sinha M, Narayanan R. Active Dendrites and Local Field Potentials: Biophysical Mechanisms and Computational Explorations. Neuroscience 2021; 489:111-142. [PMID: 34506834 PMCID: PMC7612676 DOI: 10.1016/j.neuroscience.2021.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/27/2022]
Abstract
Neurons and glial cells are endowed with membranes that express a rich repertoire of ion channels, transporters, and receptors. The constant flux of ions across the neuronal and glial membranes results in voltage fluctuations that can be recorded from the extracellular matrix. The high frequency components of this voltage signal contain information about the spiking activity, reflecting the output from the neurons surrounding the recording location. The low frequency components of the signal, referred to as the local field potential (LFP), have been traditionally thought to provide information about the synaptic inputs that impinge on the large dendritic trees of various neurons. In this review, we discuss recent computational and experimental studies pointing to a critical role of several active dendritic mechanisms that can influence the genesis and the location-dependent spectro-temporal dynamics of LFPs, spanning different brain regions. We strongly emphasize the need to account for the several fast and slow dendritic events and associated active mechanisms - including gradients in their expression profiles, inter- and intra-cellular spatio-temporal interactions spanning neurons and glia, heterogeneities and degeneracy across scales, neuromodulatory influences, and activitydependent plasticity - towards gaining important insights about the origins of LFP under different behavioral states in health and disease. We provide simple but essential guidelines on how to model LFPs taking into account these dendritic mechanisms, with detailed methodology on how to account for various heterogeneities and electrophysiological properties of neurons and synapses while studying LFPs.
Collapse
Affiliation(s)
- Manisha Sinha
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
16
|
Septotemporal variation in beta-adrenergic modulation of short-term dynamics in the hippocampus. IBRO Neurosci Rep 2021; 11:64-72. [PMID: 34409401 PMCID: PMC8363828 DOI: 10.1016/j.ibneur.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Recent evidence shows a greater facilitating effect of beta-adrenergic receptors (β-ARs) on long-term synaptic plasticity in the ventral versus the dorsal hippocampus. Here, using field potentials from the CA1 area and a ten-pulse stimulation train of varying frequency we show that activation of β-ARs by isoproterenol preferentially facilitates the output from the dorsal hippocampus at the frequency range of 3–40 Hz without affecting short-term synaptic plasticity. Furthermore, isoproterenol increases basal synaptic transmission in the dorsal hippocampus only and enhances basal neuronal excitation more in the dorsal than the ventral hippocampus. These results suggest that β-AR-modulation of short-term neuronal dynamics differs along the longitudinal axis of the hippocampus, thereby contributing to functional specialization along the same axis. We studied the effects of isoproterenol (ISO) in dorsal (DH) and ventral (VH) hippocampus. ISO increased synaptic transmission and population spike more in DH than VH. ISO modulated short-term changes of population spike in the dorsal hippocampus only. ISO did not affect short-term changes of synaptic transmission in DH or VH. β adrenergic receptors modulate short-term changes in excitation in DH only.
Collapse
|
17
|
Lippiello P, Hoxha E, Tempia F, Miniaci MC. GIRK1-Mediated Inwardly Rectifying Potassium Current Is a Candidate Mechanism Behind Purkinje Cell Excitability, Plasticity, and Neuromodulation. THE CEREBELLUM 2021; 19:751-761. [PMID: 32617840 DOI: 10.1007/s12311-020-01158-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
G-protein-coupled inwardly rectifying potassium (GIRK) channels contribute to the resting membrane potential of many neurons and play an important role in controlling neuronal excitability. Although previous studies have revealed a high expression of GIRK subunits in the cerebellum, their functional role has never been clearly described. Using patch-clamp recordings in mice cerebellar slices, we examined the properties of the GIRK currents in Purkinje cells (PCs) and investigated the effects of a selective agonist of GIRK1-containing channels, ML297 (ML), on PC firing and synaptic plasticity. We demonstrated that GIRK channel activation decreases the PC excitability by inhibiting both sodium and calcium spikes and, in addition, modulates the complex spike response evoked by climbing fiber stimulation. Our results indicate that GIRK channels have also a marked effect on synaptic plasticity of the parallel fiber-PC synapse, as the application of ML297 increased the expression of LTP while preventing LTD. We, therefore, propose that the recruitment of GIRK channels represents a crucial mechanism by which neuromodulators can control synaptic strength and membrane conductance for proper refinement of the neural network involved in memory storage and higher cognitive functions.
Collapse
Affiliation(s)
- Pellegrino Lippiello
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Eriola Hoxha
- Department of Neuroscience, University of Turin, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy
| | - Filippo Tempia
- Department of Neuroscience, University of Turin, Turin, Italy. .,Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy. .,National Institute of Neuroscience (INN), Turin, Italy.
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
18
|
Djebari S, Iborra-Lázaro G, Temprano-Carazo S, Sánchez-Rodríguez I, Nava-Mesa MO, Múnera A, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. G-Protein-Gated Inwardly Rectifying Potassium (Kir3/GIRK) Channels Govern Synaptic Plasticity That Supports Hippocampal-Dependent Cognitive Functions in Male Mice. J Neurosci 2021; 41:7086-7102. [PMID: 34261700 PMCID: PMC8372024 DOI: 10.1523/jneurosci.2849-20.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 01/17/2023] Open
Abstract
The G-protein-gated inwardly rectifying potassium (Kir3/GIRK) channel is the effector of many G-protein-coupled receptors (GPCRs). Its dysfunction has been linked to the pathophysiology of Down syndrome, Alzheimer's and Parkinson's diseases, psychiatric disorders, epilepsy, drug addiction, or alcoholism. In the hippocampus, GIRK channels decrease excitability of the cells and contribute to resting membrane potential and inhibitory neurotransmission. Here, to elucidate the role of GIRK channels activity in the maintenance of hippocampal-dependent cognitive functions, their involvement in controlling neuronal excitability at different levels of complexity was examined in C57BL/6 male mice. For that purpose, GIRK activity in the dorsal hippocampus CA3-CA1 synapse was pharmacologically modulated by two drugs: ML297, a GIRK channel opener, and Tertiapin-Q (TQ), a GIRK channel blocker. Ex vivo, using dorsal hippocampal slices, we studied the effect of pharmacological GIRK modulation on synaptic plasticity processes induced in CA1 by Schaffer collateral stimulation. In vivo, we performed acute intracerebroventricular (i.c.v.) injections of the two GIRK modulators to study their contribution to electrophysiological properties and synaptic plasticity of dorsal hippocampal CA3-CA1 synapse, and to learning and memory capabilities during hippocampal-dependent tasks. We found that pharmacological disruption of GIRK channel activity by i.c.v. injections, causing either function gain or function loss, induced learning and memory deficits by a mechanism involving neural excitability impairments and alterations in the induction and maintenance of long-term synaptic plasticity processes. These results support the contention that an accurate control of GIRK activity must take place in the hippocampus to sustain cognitive functions.SIGNIFICANCE STATEMENT Cognitive processes of learning and memory that rely on hippocampal synaptic plasticity processes are critically ruled by a finely tuned neural excitability. G-protein-gated inwardly rectifying K+ (GIRK) channels play a key role in maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Here, we demonstrate that modulation of GIRK channels activity, causing either function gain or function loss, transforms high-frequency stimulation (HFS)-induced long-term potentiation (LTP) into long-term depression (LTD), inducing deficits in hippocampal-dependent learning and memory. Together, our data show a crucial GIRK-activity-mediated mechanism that governs synaptic plasticity direction and modulates subsequent hippocampal-dependent cognitive functions.
Collapse
Affiliation(s)
- Souhail Djebari
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Guillermo Iborra-Lázaro
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Sara Temprano-Carazo
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Irene Sánchez-Rodríguez
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Mauricio O Nava-Mesa
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
- Neuroscience Research Group (NEUROS), Universidad del Rosario, Bogotá, Colombia 111711
| | - Alejandro Múnera
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
- Behavioral Neurophysiology Laboratory, Universidad Nacional de Colombia, Bogotá, Colombia 111321
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, Spain 41013
| | | | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, Facultad de Medicina de Ciudad Real, Spain 13071
| |
Collapse
|
19
|
Mishra P, Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol Rep 2021; 9:e14963. [PMID: 34342171 PMCID: PMC8329439 DOI: 10.14814/phy2.14963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Degeneracy, the ability of multiple structural components to elicit the same characteristic functional properties, constitutes an elegant mechanism for achieving biological robustness. In this study, we sought electrophysiological signatures for the expression of ion-channel degeneracy in the emergence of intrinsic properties of rat hippocampal granule cells. We measured the impact of four different ion-channel subtypes-hyperpolarization-activated cyclic-nucleotide-gated (HCN), barium-sensitive inward rectifier potassium (Kir ), tertiapin-Q-sensitive inward rectifier potassium, and persistent sodium (NaP) channels-on 21 functional measurements employing pharmacological agents, and report electrophysiological data on two characteristic signatures for the expression of ion-channel degeneracy in granule cells. First, the blockade of a specific ion-channel subtype altered several, but not all, functional measurements. Furthermore, any given functional measurement was altered by the blockade of many, but not all, ion-channel subtypes. Second, the impact of blocking each ion-channel subtype manifested neuron-to-neuron variability in the quantum of changes in the electrophysiological measurements. Specifically, we found that blocking HCN or Ba-sensitive Kir channels enhanced action potential firing rate, but blockade of NaP channels reduced firing rate of granule cells. Subthreshold measures of granule cell intrinsic excitability (input resistance, temporal summation, and impedance amplitude) were enhanced by blockade of HCN or Ba-sensitive Kir channels, but were not significantly altered by NaP channel blockade. We confirmed that the HCN and Ba-sensitive Kir channels independently altered sub- and suprathreshold properties of granule cells through sequential application of pharmacological agents that blocked these channels. Finally, we found that none of the sub- or suprathreshold measurements of granule cells were significantly altered upon treatment with tertiapin-Q. Together, the heterogeneous many-to-many mapping between ion channels and single-neuron intrinsic properties emphasizes the need to account for ion-channel degeneracy in cellular- and network-scale physiology.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
20
|
Hu B, Boyle CA, Lei S. Roles of PLCβ, PIP 2 , and GIRK channels in arginine vasopressin-elicited excitation of CA1 pyramidal neurons. J Cell Physiol 2021; 237:660-674. [PMID: 34287874 DOI: 10.1002/jcp.30535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Arginine vasopressin (AVP) is a hormone exerting vasoconstrictive and antidiuretic action in the periphery and serves as a neuromodulator in the brain. Although the hippocampus receives vasopressinergic innervation and AVP has been shown to facilitate the excitability of CA1 pyramidal neurons, the involved ionic and signaling mechanisms have not been determined. Here we found that AVP excited CA1 pyramidal neurons by activation of V1a receptors. Functions of G proteins and phospholipase Cβ (PLCβ) were required for AVP-elicited excitation of CA1 pyramidal neurons, whereas intracellular Ca2+ release and protein kinase C were unnecessary. PLCβ-mediated depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 ) was required for AVP-elicited excitation of CA1 pyramidal neurons. AVP augmented the input resistance and increased the time constants of CA1 pyramidal neurons. AVP induced an inward current in K+ -containing intracellular solution, whereas no inward currents were observed with Cs+ -containing intracellular solution. AVP-sensitive currents showed inward rectification with a reversal potential close to the K+ reversal potential, suggesting the involvement of inwardly rectifying K+ channels. AVP-induced currents were sensitive to the micromolar concentration of Ba2+ and tertiapin-Q, whereas application of ML 133, a selective Kir2 channel blocker had no effects, suggesting that AVP excited CA1 pyramidal neurons by depressing G protein-gated inwardly rectifying K+ channels. Activation of V1a receptors in the CA1 region facilitated glutamatergic transmission onto subicular pyramidal neurons, suggesting that AVP modulates network activity in the brain. Our results may provide one of the cellular and molecular mechanisms to explain the in vivo physiological functions of AVP.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Cody A Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
21
|
Ordemann GJ, Apgar CJ, Chitwood RA, Brager DH. Altered A-Type Potassium Channel Function Impairs Dendritic Spike Initiation and Temporoammonic Long-Term Potentiation in Fragile X Syndrome. J Neurosci 2021; 41:5947-5962. [PMID: 34083256 PMCID: PMC8265803 DOI: 10.1523/jneurosci.0082-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenetic cause of cognitive impairment and autism spectrum disorder. Area CA1 of the hippocampus receives current information about the external world from the entorhinal cortex via the temporoammonic (TA) pathway. Given its role in learning and memory, it is surprising that little is known about TA long-term potentiation (TA-LTP) in FXS. We found that TA-LTP was impaired in male fmr1 KO mice. Although there were no significant differences in basal synaptic transmission, synaptically evoked dendritic calcium signals were smaller in KO neurons. Using dendritic recording, we found no difference in complex spikes or pharmacologically isolated Ca2+ spikes; however, the threshold for fast, Na+-dependent dendritic spikes was depolarized in fmr1 KO mice. Cell-attached patch-clamp recordings found no difference in Na+ channels between wild-type and fmr1 KO CA1 dendrites. Dendritic spike threshold and TA-LTP were restored by blocking A-type K+ channels with either 150 µm Ba2+ or the more specific toxin AmmTx3. The impairment of TA-LTP shown here, coupled with previously described enhanced Schaffer collateral LTP, may contribute to spatial memory alterations in FXS. Furthermore, as both of these LTP phenotypes are attributed to changes in A-type K+ channels in FXS, our findings provide a potential therapeutic target to treat cognitive impairments in FXS.SIGNIFICANCE STATEMENT Alterations in synaptic function and plasticity are likely contributors to learning and memory impairments in many neurologic disorders. Fragile X syndrome is marked by dysfunctional learning and memory and changes in synaptic structure and function. This study shows a lack of LTP at temporoammonic synapses in CA1 neurons associated with biophysical differences in A-type K+ channels in fmr1 KO CA1 neurons. Our results, along with previous findings on A-type K+ channel effects on Schaffer collateral LTP, reveal differential effects of a single ion channelopathy on LTP at the two major excitatory pathways of CA1 pyramidal neurons. These findings expand our understanding of memory deficits in FXS and provide a potential therapeutic target for the treatment of memory dysfunction in FXS.
Collapse
Affiliation(s)
- Gregory J Ordemann
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Christopher J Apgar
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Raymond A Chitwood
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
22
|
Tikidji-Hamburyan RA, Colonnese MT. Polynomial, piecewise-Linear, Step (PLS): A Simple, Scalable, and Efficient Framework for Modeling Neurons. Front Neuroinform 2021; 15:642933. [PMID: 34025382 PMCID: PMC8134741 DOI: 10.3389/fninf.2021.642933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 01/04/2023] Open
Abstract
Biological neurons can be modeled with different levels of biophysical/biochemical details. The accuracy with which a model reflects the actual physiological processes and ultimately the information function of a neuron, can range from very detailed to a schematic phenomenological representation. This range exists due to the common problem: one needs to find an optimal trade-off between the level of details needed to capture the necessary information processing in a neuron and the computational load needed to compute 1 s of model time. An increase in modeled network size or model-time, for which the solution should be obtained, makes this trade-off pivotal in model development. Numerical simulations become incredibly challenging when an extensive network with a detailed representation of each neuron needs to be modeled over a long time interval to study slow evolving processes, e.g., development of the thalamocortical circuits. Here we suggest a simple, powerful and flexible approach in which we approximate the right-hand sides of differential equations by combinations of functions from three families: Polynomial, piecewise-Linear, Step (PLS). To obtain a single coherent framework, we provide four core principles in which PLS functions should be combined. We show the rationale behind each of the core principles. Two examples illustrate how to build a conductance-based or phenomenological model using the PLS-framework. We use the first example as a benchmark on three different computational platforms: CPU, GPU, and mobile system-on-chip devices. We show that the PLS-framework speeds up computations without increasing the memory footprint and maintains high model fidelity comparable to the fully-computed model or with lookup-table approximation. We are convinced that the full range of neuron models: from biophysical to phenomenological and even to abstract models, may benefit from using the PLS-framework.
Collapse
Affiliation(s)
| | - Matthew T Colonnese
- School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
23
|
Tao S, Wang Y, Peng J, Zhao Y, He X, Yu X, Liu Q, Jin S, Xu F. Whole-Brain Mapping the Direct Inputs of Dorsal and Ventral CA1 Projection Neurons. Front Neural Circuits 2021; 15:643230. [PMID: 33935658 PMCID: PMC8079783 DOI: 10.3389/fncir.2021.643230] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The CA1, an important subregion of the hippocampus, is anatomically and functionally heterogeneous in the dorsal and ventral hippocampus. Here, to dissect the distinctions between the dorsal (dCA1) and ventral CA1 (vCA1) in anatomical connections, we systematically analyzed the direct inputs to dCA1 and vCA1 projection neurons (PNs) with the rabies virus-mediated retrograde trans-monosynaptic tracing system in Thy1-Cre mice. Our mapping results revealed that the input proportions and distributions of dCA1 and vCA1 PNs varied significantly. Inside the hippocampal region, dCA1 and vCA1 PNs shared the same upstream brain regions, but with distinctive distribution patterns along the rostrocaudal axis. The intrahippocampal inputs to the dCA1 and vCA1 exhibited opposite trends, decreasing and increasing gradually along the dorsoventral axis, respectively. For extrahippocampal inputs, dCA1 and vCA1 shared some monosynaptic projections from certain regions such as pallidum, striatum, hypothalamus, and thalamus. However, vCA1, not dCA1, received innervations from the subregions of olfactory areas and amygdala nuclei. Characterization of the direct input networks of dCA1 and vCA1 PNs may provide a structural basis to understand the differential functions of dCA1 and vCA1.
Collapse
Affiliation(s)
- Sijue Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yihang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Jundan Peng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Zhao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaobin He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Yu
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Sen Jin
- Materials and Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Foglio B, Rossini L, Garbelli R, Regondi MC, Mercurio S, Bertacchi M, Avagliano L, Bulfamante G, Coras R, Maiorana A, Nicolis S, Studer M, Frassoni C. Dynamic expression of NR2F1 and SOX2 in developing and adult human cortex: comparison with cortical malformations. Brain Struct Funct 2021; 226:1303-1322. [PMID: 33661352 DOI: 10.1007/s00429-021-02242-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
The neocortex, the most recently evolved brain region in mammals, is characterized by its unique areal and laminar organization. Distinct cortical layers and areas can be identified by the presence of graded expression of transcription factors and molecular determinants defining neuronal identity. However, little is known about the expression of key master genes orchestrating human cortical development. In this study, we explored the expression dynamics of NR2F1 and SOX2, key cortical genes whose mutations in human patients cause severe neurodevelopmental syndromes. We focused on physiological conditions, spanning from mid-late gestational ages to adulthood in unaffected specimens, but also investigated gene expression in a pathological context, a developmental cortical malformation termed focal cortical dysplasia (FCD). We found that NR2F1 follows an antero-dorsallow to postero-ventralhigh gradient as in the murine cortex, suggesting high evolutionary conservation. While SOX2 is mainly expressed in neural progenitors next to the ventricular surface, NR2F1 is found in both mitotic progenitors and post-mitotic neurons at GW18. Interestingly, both proteins are highly co-expressed in basal radial glia progenitors of the outer sub-ventricular zone (OSVZ), a proliferative region known to contribute to cortical expansion and complexity in humans. Later on, SOX2 becomes largely restricted to astrocytes and oligodendrocytes although it is also detected in scattered mature interneurons. Differently, NR2F1 maintains its distinct neuronal expression during the whole process of cortical development. Notably, we report here high levels of NR2F1 in dysmorphic neurons and NR2F1 and SOX2 in balloon cells of surgical samples from patients with FCD, suggesting their potential use in the histopathological characterization of this dysplasia.
Collapse
Affiliation(s)
- Benedetta Foglio
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Laura Rossini
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Rita Garbelli
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Maria Cristina Regondi
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy
| | - Sara Mercurio
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | - Michele Bertacchi
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Laura Avagliano
- Departement of Health Sciences, San Paolo Hospital Medical School University of Milan, Milan, Italy
| | - Gaetano Bulfamante
- Departement of Health Sciences, San Paolo Hospital Medical School University of Milan, Milan, Italy
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Antonino Maiorana
- Department of Medical and Surgical Sciences, Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Nicolis
- Department of Biotechnology and Bioscience, University of Milan-Bicocca, Milan, Italy
| | | | - Carolina Frassoni
- Clinical and Experimental Epileptology Unit, C/O AmadeoLab, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
25
|
Xue X, Shi J, Xu H, Qin Y, Yang Z, Feng S, Liu D, Jian L, Hua L, Wang Y, Zhang Q, Huang X, Zhang X, Li X, Chen C, Guo J, Tang W, Liu J. Dynamics of binding ability prediction between spike protein and human ACE2 reveals the adaptive strategy of SARS-CoV-2 in humans. Sci Rep 2021; 11:3187. [PMID: 33542420 PMCID: PMC7862608 DOI: 10.1038/s41598-021-82938-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel coronavirus causing the COVID-19 pandemic in 2020. High adaptive plasticity on the spike protein of SASR-CoV-2 enables it to transmit across different host species. In the present study, we collected 2092 high-quality genome sequences of SARS-CoV-2 from 160 regions in over 50 countries and reconstructed their phylogeny. We also analyzed the polymorphic interaction between spike protein and human ACE2 (hACE2). Phylogenetic analysis of SARS-CoV-2 suggests that SARS-CoV-2 is probably originated from a recombination event on the spike protein between a bat coronavirus and a pangolin coronavirus that endows it humans infectivity. Compared with other regions in the S gene of SARS-CoV-2, the direct-binding sites of the receptor-binding domain (RBD) is more conserved. We focused on 3,860 amino acid mutations in spike protein RBD (T333-C525) of SARS-CoV-2 and simulated their differential stability and binding affinity to hACE2 (S19-D615). The results indicate no preference for SARS-CoV-2 infectivity on people of different ethnic groups. The variants in the spike protein of SARS-CoV-2 may also be a good indicator demonstrating the transmission route of SARS-CoV-2 from its natural reservoir to human hosts.
Collapse
Affiliation(s)
- Xia Xue
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,National Centre for International Research in Cell and Gene Therapy, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongen Xu
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yaping Qin
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zengguang Yang
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuaisheng Feng
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Danhua Liu
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liguo Jian
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Hua
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Centre for International Research in Cell and Gene Therapy, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Center for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Qi Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueyong Huang
- Henan Province Center for Disease Control and Prevention, Zhengzhou, China
| | - Xiaoju Zhang
- Henan Provincial People's Hospital, Zhengzhou, China
| | - Xinxin Li
- Henan Hospital of Infectious Diseases, Zhengzhou, China
| | | | - Jiancheng Guo
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Wenxue Tang
- Academy of Medical Sciences, Precision Medicine Center of The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China. .,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China. .,BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jianbo Liu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
26
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
27
|
Lieberman OJ, Bartolini F, Miniaci MC. GIRK channels in Alzheimer's disease. Aging (Albany NY) 2020; 12:18793-18794. [PMID: 33052882 PMCID: PMC7732278 DOI: 10.18632/aging.104026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Ori J. Lieberman
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA,Medical Scientist Training Program, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
28
|
Sun Q, Jiang YQ, Lu MC. Topographic heterogeneity of intrinsic excitability in mouse hippocampal CA3 pyramidal neurons. J Neurophysiol 2020; 124:1270-1284. [PMID: 32937083 DOI: 10.1152/jn.00147.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Area CA3 in the hippocampus is traditionally thought to act as a homogeneous neural circuit that is vital for spatial navigation and episodic memories. However, recent studies have revealed that CA3 pyramidal neurons in dorsal hippocampus display marked anatomic and functional heterogeneity along the proximodistal (transverse) axis. The hippocampus is also known to be functionally segregated along the dorsoventral (longitudinal) axis, with dorsal hippocampus strongly involved in spatial navigation and ventral hippocampus associated with emotion and anxiety. Surprisingly, however, relatively little is known about CA3 functional heterogeneity along the dorsoventral axis. Here, we carried out mouse-brain-slice patch-clamp recordings and morphological analyses to examine the heterogeneity of CA3 cellular properties along both proximodistal and dorsoventral axes. We find that CA3 pyramidal neurons exhibit considerable heterogeneity of somatodendritic morphology and intrinsic membrane properties, with ventral CA3 (vCA3) displaying more elaborate somatodendritic morphology, lower intrinsic excitability, smaller input resistance, greater cell capacitance, and more prominent hyperpolarization-activated current than dorsal CA3 (dCA3). Furthermore, although both dCA3 and vCA3 exhibit proximal-to-distal gradients in intrinsic properties and neuronal morphology, these proximal-to-distal gradients in vCA3 are more moderate than those in dCA3. Taken together, our results extend previous findings on the proximodistal heterogeneity of dCA3 function and uncover a complex, yet orderly, pattern of topographic organization of CA3 neuronal features that extends to multiple anatomic dimensions and may contribute to its in vivo functional diversity.NEW & NOTEWORTHY Area CA3 is a major hippocampal region that is classically thought to act as a homogeneous neural network vital for spatial navigation and episodic memories. Here, we report that CA3 pyramidal neurons exhibit marked heterogeneity of somatodendritic morphology and cellular electrical properties along both proximodistal and dorsoventral axes. These new results uncover a complex, yet orderly, pattern of topographic organization of CA3 neuronal features that may contribute to its in vivo functional diversity.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Melissa C Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
29
|
Trompoukis G, Rigas P, Leontiadis LJ, Papatheodoropoulos C. I h, GIRK, and KCNQ/Kv7 channels differently modulate sharp wave - ripples in the dorsal and ventral hippocampus. Mol Cell Neurosci 2020; 107:103531. [PMID: 32711112 DOI: 10.1016/j.mcn.2020.103531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Sharp waves and ripples (SPW-Rs) are endogenous transient patterns of hippocampus local network activity implicated in several functions including memory consolidation, and they are diversified between the dorsal and the ventral hippocampus. Ion channels in the neuronal membrane play important roles in cell and local network function. In this study, using transverse slices and field potential recordings from the CA1 field of rat hippocampus we show that GIRK and KCNQ2/3 potassium channels play a higher role in modulating SPW-Rs in the dorsal hippocampus, while Ih and other KCNQ (presumably KCNQ5) channels, contribute to shaping SPW-R activity more in the ventral than in dorsal hippocampus. Specifically, blockade of Ih channels by ZD 7288 reduced the rate of occurrence of SPW-Rs and increased the generation of SPW-Rs in the form of clusters in both hippocampal segments, while enhanced the amplitude of SPW-Rs only in the ventral hippocampus. Most effects of ZD 7288 appeared to be independent of NMDA receptors' activity. However, the effects of blockade of NMDA receptors depended on the functional state of Ih channels in both hippocampal segments. Blockade of GIRK channels by Tertiapin-Q increased the rate of occurrence of SPW-Rs only in the dorsal hippocampus and the probability of clusters in both segments of the hippocampus. Blockade of KCNQ2/3 channels by XE 991 increased the rate of occurrence of SPW-Rs and the probability of clusters in the dorsal hippocampus, and only reduced the clustered generation of SPW-Rs in the ventral hippocampus. The blocker of KCNQ1/2 channels, that also enhances KCNQ5 channels, UCL 2077, increased the probability of clusters and the power of the ripple oscillation in the ventral hippocampus only. These results suggest that GIRK, KCNQ and Ih channels represent a key mechanism for modulation of SPW-R activity which act differently in the dorsal and ventral hippocampus, fundamentally supporting functional diversification along the dorsal-ventral axis of the hippocampus.
Collapse
Affiliation(s)
- George Trompoukis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Pavlos Rigas
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | - Leonidas J Leontiadis
- Laboratory of Physiology, Department of Medicine, University of Patras, Rion, Greece
| | | |
Collapse
|
30
|
Kim CS, Johnston D. Antidepressant Effects of (S)-Ketamine through a Reduction of Hyperpolarization-Activated Current I h. iScience 2020; 23:101239. [PMID: 32629607 PMCID: PMC7322259 DOI: 10.1016/j.isci.2020.101239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 11/11/2019] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
Compelling evidence suggests that a single sub-anesthetic dose of (R,S)-ketamine exerts rapid and robust antidepressant effects. However, the cellular mechanisms underlying the antidepressant effects of (R,S)-ketamine remain unclear. Here, we show that (S)-ketamine reduced dendritic but not somatic hyperpolarization-activated current Ih of dorsal CA1 neurons in unstressed rats, whereas (S)-ketamine decreased both somatic and dendritic Ih in chronic unpredictable stress (CUS) rats. The reduction of Ih by (S)-ketamine was independent of NMDA receptors, barium-sensitive conductances, and cAMP-dependent signaling pathways in both unstressed and CUS groups. (S)-ketamine pretreatment before the onset of depression prevented CUS-induced behavioral phenotypes and neuropathological changes of dorsal CA1 neurons. Finally, in vivo infusion of thapsigargin-induced anxiogenic- and anhedonic-like behaviors and upregulation of functional Ih, but these were reversed by (S)-ketamine. Our results suggest that (S)-ketamine reduces or prevents Ih from being increased following CUS, which contributes to the rapid antidepressant effects and resiliency to CUS. (S)-ketamine reduced the CUS-induced upregulation of somatic Ih This was independent of NMDAR, Ba2+-sensitive conductances, and cAMP signaling (S)-ketamine pretreatment before the onset of depression provided resiliency to CUS In vivo thapsigargin-induced changes in behaviors were reversed by (S)-ketamine
Collapse
Affiliation(s)
- Chung Sub Kim
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, 1 University Station Stop, C7000, Austin, TX 78712, USA.
| | - Daniel Johnston
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, 1 University Station Stop, C7000, Austin, TX 78712, USA
| |
Collapse
|
31
|
Wang W, Kiyoshi CM, Du Y, Taylor AT, Sheehan ER, Wu X, Zhou M. TREK-1 Null Impairs Neuronal Excitability, Synaptic Plasticity, and Cognitive Function. Mol Neurobiol 2020; 57:1332-1346. [PMID: 31728930 PMCID: PMC8808335 DOI: 10.1007/s12035-019-01828-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
TREK-1, a two-pore-domain K+ channel, is highly expressed in the central nervous system. Although aberrant expression of TREK-1 is implicated in cognitive impairment, the cellular and functional mechanism underlying this channelopathy is poorly understood. Here we examined TREK-1 contribution to neuronal morphology, excitability, synaptic plasticity, and cognitive function in mice deficient in TREK-1 expression. TREK-1 immunostaining signal mainly appeared in hippocampal pyramidal neurons, but not in astrocytes. TREK-1 gene knockout (TREK-1 KO) increases dendritic sprouting and the number of immature spines in hippocampal CA1 pyramidal neurons. Functionally, TREK-1 KO increases neuronal excitability and enhances excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs). The increased EPSCs appear to be attributed to an increased release probability of presynaptic glutamate and functional expression of postsynaptic AMPA receptors. TREK-1 KO decreased the paired-pulse ratio and severely occluded the long-term potentiation (LTP) in the CA1 region. These altered synaptic transmission and plasticity are associated with recognition memory deficit in TREK-1 KO mice. Although astrocytic expression of TREK-1 has been reported in previous studies, TREK-1 KO does not alter astrocyte membrane K+ conductance or the syncytial network function in terms of syncytial isopotentiality. Altogether, TREK-1 KO profoundly affects the cellular structure and function of hippocampal pyramidal neurons. Thus, the impaired cognitive function in diseases associated with aberrant expression of TREK-1 should be attributed to the failure of this K+ channel in regulating neuronal morphology, excitability, synaptic transmission, and plasticity.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Conrad M Kiyoshi
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Yixing Du
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anne T Taylor
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Erica R Sheehan
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Xiao Wu
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Min Zhou
- Department of Neuroscience, Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Fernández-Fernández D, Lamas JA. Metabotropic Modulation of Potassium Channels During Synaptic Plasticity. Neuroscience 2020; 456:4-16. [PMID: 32114098 DOI: 10.1016/j.neuroscience.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
Besides their primary function mediating the repolarization phase of action potentials, potassium channels exquisitely and ubiquitously regulate the resting membrane potential of neurons and therefore have a key role establishing their intrinsic excitability. This group of proteins is composed of a very diverse collection of voltage-dependent and -independent ion channels, whose specific distribution is finely tuned at the level of the synapse. Both at the presynaptic and postsynaptic membranes, different types of potassium channels are subjected to modulation by second messenger signaling cascades triggered by metabotropic receptors, which in this way serve as a link between neurotransmitter actions and changes in the neuron membrane excitability. On the one hand, by regulating the resting membrane potential of the postsynaptic membrane, potassium channels appear to be critical towards setting the threshold for the induction of long-term potentiation and depression. On the other hand, these channels maintain the presynaptic membrane potential under control, therefore influencing the probability of neurotransmitter release underlying different forms of short-term plasticity. In the present review, we examine in detail the role of metabotropic receptors translating their activation by different neurotransmitters into a final effect modulating several types of potassium channels. Furthermore, we evaluate the consequences that this interplay has on the induction and maintenance of different forms of synaptic plasticity.
Collapse
Affiliation(s)
- D Fernández-Fernández
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain.
| | - J A Lamas
- Laboratory of Neuroscience, Biomedical Research Center (CINBIO), University of Vigo, Vigo, Galicia, Spain
| |
Collapse
|
33
|
Mishra P, Narayanan R. Heterogeneities in intrinsic excitability and frequency-dependent response properties of granule cells across the blades of the rat dentate gyrus. J Neurophysiol 2020; 123:755-772. [PMID: 31913748 PMCID: PMC7052640 DOI: 10.1152/jn.00443.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/25/2019] [Accepted: 01/07/2020] [Indexed: 12/18/2022] Open
Abstract
The dentate gyrus (DG), the input gate to the hippocampus proper, is anatomically segregated into three different sectors, namely, the suprapyramidal blade, the crest region, and the infrapyramidal blade. Although there are well-established differences between these sectors in terms of neuronal morphology, connectivity patterns, and activity levels, differences in electrophysiological properties of granule cells within these sectors have remained unexplored. Here, employing somatic whole cell patch-clamp recordings from the rat DG, we demonstrate that granule cells in these sectors manifest considerable heterogeneities in their intrinsic excitability, temporal summation, action potential characteristics, and frequency-dependent response properties. Across sectors, these neurons showed positive temporal summation of their responses to inputs mimicking excitatory postsynaptic currents and showed little to no sag in their voltage responses to pulse currents. Consistently, the impedance amplitude profile manifested low-pass characteristics and the impedance phase profile lacked positive phase values at all measured frequencies and voltages and for all sectors. Granule cells in all sectors exhibited class I excitability, with broadly linear firing rate profiles, and granule cells in the crest region fired significantly fewer action potentials compared with those in the infrapyramidal blade. Finally, we found weak pairwise correlations across the 18 different measurements obtained individually from each of the three sectors, providing evidence that these measurements are indeed reporting distinct aspects of neuronal physiology. Together, our analyses show that granule cells act as integrators of afferent information and emphasize the need to account for the considerable physiological heterogeneities in assessing their roles in information encoding and processing.NEW & NOTEWORTHY We employed whole cell patch-clamp recordings from granule cells in the three subregions of the rat dentate gyrus to demonstrate considerable heterogeneities in their intrinsic excitability, temporal summation, action potential characteristics, and frequency-dependent response properties. Across sectors, granule cells did not express membrane potential resonance, and their impedance profiles lacked inductive phase leads at all measured frequencies. Our analyses also show that granule cells manifest class I excitability characteristics, categorizing them as integrators of afferent information.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
34
|
Sánchez-Rodríguez I, Djebari S, Temprano-Carazo S, Vega-Avelaira D, Jiménez-Herrera R, Iborra-Lázaro G, Yajeya J, Jiménez-Díaz L, Navarro-López JD. Hippocampal long-term synaptic depression and memory deficits induced in early amyloidopathy are prevented by enhancing G-protein-gated inwardly rectifying potassium channel activity. J Neurochem 2020; 153:362-376. [PMID: 31875959 PMCID: PMC7217154 DOI: 10.1111/jnc.14946] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
Hippocampal synaptic plasticity disruption by amyloid‐β (Aβ) peptides + thought to be responsible for learning and memory impairments in Alzheimer's disease (AD) early stage. Failures in neuronal excitability maintenance seems to be an underlying mechanism. G‐protein‐gated inwardly rectifying potassium (GirK) channels control neural excitability by hyperpolarization in response to many G‐protein‐coupled receptors activation. Here, in early in vitro and in vivo amyloidosis mouse models, we study whether GirK channels take part of the hippocampal synaptic plasticity impairments generated by Aβ1–42. In vitro electrophysiological recordings from slices showed that Aβ1–42 alters synaptic plasticity by switching high‐frequency stimulation (HFS) induced long‐term potentiation (LTP) to long‐term depression (LTD), which led to in vivo hippocampal‐dependent memory deficits. Remarkably, selective pharmacological activation of GirK channels with ML297 rescued both HFS‐induced LTP and habituation memory from Aβ1–42 action. Moreover, when GirK channels were specifically blocked by Tertiapin‐Q, their activation with ML297 failed to rescue LTP from the HFS‐dependent LTD induced by Aβ1–42. On the other hand, the molecular analysis of the recorded slices by western blot showed that the expression of GIRK1/2 subunits, which form the prototypical GirK channel in the hippocampus, was not significantly regulated by Aβ1–42. However, immunohistochemical examination of our in vivo amyloidosis model showed Aβ1–42 to down‐regulate hippocampal GIRK1 subunit expression. Together, our results describe an Aβ‐mediated deleterious synaptic mechanism that modifies the induction threshold for hippocampal LTP/LTD and underlies memory alterations observed in amyloidosis models. In this scenario, GirK activation assures memory formation by preventing the transformation of HFS‐induced LTP into LTD. ![]()
Collapse
Affiliation(s)
- Irene Sánchez-Rodríguez
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Souhail Djebari
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - David Vega-Avelaira
- Departamento de Ciencias Biomédicas Básicas, European University of Madrid, Madrid, Spain
| | - Raquel Jiménez-Herrera
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Guillermo Iborra-Lázaro
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Javier Yajeya
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain
| | - Lydia Jiménez-Díaz
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Juan D Navarro-López
- NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
35
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
36
|
Dougherty KA. Differential developmental refinement of the intrinsic electrophysiological properties of CA1 pyramidal neurons from the rat dorsal and ventral hippocampus. Hippocampus 2019; 30:233-249. [PMID: 31490612 DOI: 10.1002/hipo.23152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
The dorsal and ventral regions of the rat longitudinal hippocampal axis are functionally distinct. That is, each region is associated with different behavioral tasks and disease susceptibilities due to underlying anatomical, and physiological differences. These differences are especially pronounced in area CA1, where significant differences in morphology, synaptic physiology, intrinsic excitability, and gene expression have been reported between CA1 pyramidal neurons from the dorsal (DHC) and ventral hippocampus (VHC). However, despite a significant amount of recent attention, a cogent picture of the intrinsic electrophysiological profile of DHC and VHC neurons has remained elusive, due, in part, to experiments performed on rats at different developmental time points. Moreover, the resulting intrinsic electrophysiological profiles are sufficiently different as to warrant a thorough investigation of the spatial and temporal changes in the intrinsic excitability of CA1 pyramidal neurons across developmental time. Accordingly, in this study, I have characterized the intrinsic electrophysiological properties of CA1 pyramidal neurons from acute hippocampal slices prepared from the DHC and VHC throughout an approximately 3-week developmental period (P14-P37). DHC and VHC neurons exhibited distinct intra-region changes (DHC or VHC) and inter-region differences (DHC versus VHC) in their intrinsic electrophysiological properties, which yielded two developmental timelines: (a) a common developmental timeline describing changes observed in both DHC and VHC neurons, and (b) a differential developmental timeline highlighting unique features observed in DHC neurons. Specifically, DHC neurons exhibited significant inter-region differences in RMP, input resistance, threshold, and spike frequency adaptation relative to VHC neurons, as well as an intra-region change in the rebound slope (a proxy for Ih ). These observations both integrate and reconcile previous work performed with rats at different developmental stages and suggest a distinct developmental trajectory for DHC neurons that might shed light on the normal physiological functions and disease susceptibility of the DHC.
Collapse
|
37
|
Sánchez-Rodríguez I, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. Role of GirK Channels in Long-Term Potentiation of Synaptic Inhibition in an In Vivo Mouse Model of Early Amyloid- β Pathology. Int J Mol Sci 2019; 20:ijms20051168. [PMID: 30866445 PMCID: PMC6429279 DOI: 10.3390/ijms20051168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/01/2023] Open
Abstract
Imbalances of excitatory/inhibitory synaptic transmission occur early in the pathogenesis of Alzheimer’s disease (AD), leading to hippocampal hyperexcitability and causing synaptic, network, and cognitive dysfunctions. G-protein-gated potassium (GirK) channels play a key role in the control of neuronal excitability, contributing to inhibitory signaling. Here, we evaluate the relationship between GirK channel activity and inhibitory hippocampal functionality in vivo. In a non-transgenic mouse model of AD, field postsynaptic potentials (fPSPs) from the CA3–CA1 synapse in the dorsal hippocampus were recorded in freely moving mice. Intracerebroventricular (ICV) injections of amyloid-β (Aβ) or GirK channel modulators impaired ionotropic (GABAA-mediated fPSPs) and metabotropic (GirK-mediated fPSPs) inhibitory signaling and disrupted the potentiation of synaptic inhibition. However, the activation of GirK channels prevented Aβ-induced changes in GABAA components. Our data shows, for the first time, the presence of long-term potentiation (LTP) for both the GABAA and GirK-mediated inhibitory postsynaptic responses in vivo. In addition, our results support the importance of an accurate level of GirK-dependent signaling for dorsal hippocampal performance in early amyloid pathology models by controlling the excess of excitation that disrupts synaptic plasticity processes.
Collapse
Affiliation(s)
- Irene Sánchez-Rodríguez
- Neurophysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, 41013 Seville, Spain.
| | | | - Lydia Jiménez-Díaz
- Neurophysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| | - Juan D Navarro-López
- Neurophysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain.
| |
Collapse
|
38
|
Ordemann GJ, Apgar CJ, Brager DH. D-type potassium channels normalize action potential firing between dorsal and ventral CA1 neurons of the mouse hippocampus. J Neurophysiol 2019; 121:983-995. [PMID: 30673366 PMCID: PMC6520617 DOI: 10.1152/jn.00737.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022] Open
Abstract
Specific memory processes and neurological disorders can be ascribed to different dorsoventral regions of the hippocampus. Recently, differences in the anatomical and physiological properties between dorsal and ventral hippocampal CA1 neurons were described for both the rat and mouse hippocampus and have greatly contributed to our understanding of these processes. While differences in the subthreshold properties were similar between rat and mouse neurons, differences in action potential output between dorsal and ventral neurons were strikingly less divergent in mouse compared with rat CA1 neurons. Here, we investigate the mechanism underlying the lack of difference in action potential firing between dorsal and ventral CA1 pyramidal neurons in mouse hippocampus. Consistent with rat, we found that ventral CA1 neurons had a more depolarized resting membrane potential and higher input resistance than dorsal CA1 neurons in the mouse hippocampus. Despite these differences, action potential output in response to current injection was not significantly different. We found that ventral neurons have a more depolarized action potential threshold compared with dorsal neurons and that threshold in ventral neurons was more sensitive to block of KV1 channels compared with dorsal neurons. Outside-out voltage-clamp recordings found that slowly inactivating K+ currents were larger in ventral CA1 neurons. These results suggest that, despite differences in subthreshold properties between dorsal and ventral CA1 neurons, action potential output is normalized by the differential functional expression of D-type K+ channels. NEW & NOTEWORTHY Understanding differences in neurons within a brain region is integral in the reliable interpretation of comparative studies. Our findings identify a novel mechanism by which D-type potassium channels normalize action potential firing between dorsal and ventral CA1 neurons of mouse hippocampus despite differences in subthreshold intrinsic properties. Action potential threshold in ventral neurons is influenced by a greater functional expression of D-type potassium channels resulting in a depolarized action potential threshold compared with dorsal hippocampus.
Collapse
Affiliation(s)
- Gregory J Ordemann
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin , Austin, Texas
| | - Christopher J Apgar
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin , Austin, Texas
| | - Darrin H Brager
- Department of Neuroscience, Institute for Neuroscience, Center for Learning and Memory, University of Texas at Austin , Austin, Texas
| |
Collapse
|
39
|
Ashhad S, Narayanan R. Stores, Channels, Glue, and Trees: Active Glial and Active Dendritic Physiology. Mol Neurobiol 2019; 56:2278-2299. [PMID: 30014322 PMCID: PMC6394607 DOI: 10.1007/s12035-018-1223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Glial cells and neuronal dendrites were historically assumed to be passive structures that play only supportive physiological roles, with no active contribution to information processing in the central nervous system. Research spanning the past few decades has clearly established this assumption to be far from physiological realities. Whereas the discovery of active channel conductances and their localized plasticity was the turning point for dendritic structures, the demonstration that glial cells release transmitter molecules and communicate across the neuroglia syncytium through calcium wave propagation constituted path-breaking discoveries for glial cell physiology. An additional commonality between these two structures is the ability of calcium stores within their endoplasmic reticulum (ER) to support active propagation of calcium waves, which play crucial roles in the spatiotemporal integration of information within and across cells. Although there have been several demonstrations of regulatory roles of glial cells and dendritic structures in achieving common physiological goals such as information propagation and adaptability through plasticity, studies assessing physiological interactions between these two active structures have been few and far. This lacuna is especially striking given the strong connectivity that is known to exist between these two structures through several complex and tightly intercoupled mechanisms that also recruit their respective ER structures. In this review, we present brief overviews of the parallel literatures on active dendrites and active glial physiology and make a strong case for future studies to directly assess the strong interactions between these two structures in regulating physiology and pathophysiology of the brain.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
40
|
Fletcher LN, Williams SR. Neocortical Topology Governs the Dendritic Integrative Capacity of Layer 5 Pyramidal Neurons. Neuron 2019; 101:76-90.e4. [DOI: 10.1016/j.neuron.2018.10.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/03/2018] [Accepted: 10/25/2018] [Indexed: 10/27/2022]
|
41
|
Association of mGluR-Dependent LTD of Excitatory Synapses with Endocannabinoid-Dependent LTD of Inhibitory Synapses Leads to EPSP to Spike Potentiation in CA1 Pyramidal Neurons. J Neurosci 2018; 39:224-237. [PMID: 30459224 DOI: 10.1523/jneurosci.2935-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 01/10/2023] Open
Abstract
The input-output relationships in neural circuits are determined not only by synaptic efficacy but also by neuronal excitability. Activity-dependent alterations of synaptic efficacy have been extensively investigated, but relatively less is known about how the neuronal output is modulated when synaptic efficacy changes are associated with neuronal excitability changes. In this study, we demonstrate that paired pulses of low-frequency stimulation (PP-LFS) induced metabotropic glutamate receptor (mGluR)-dependent LTD at Schaffer collateral (SC)-CA1 synapses in Sprague Dawley rats (both sexes), and this LTD was associated with EPSP to spike (E-S) potentiation, leading to the increase in action potential (AP) outputs. Threshold voltage (Vth) for APs evoked by synaptic stimulation and that by somatic current injection were hyperpolarized significantly after PP-LFS. Blockers of GABA receptors mimicked and occluded PP-LFS effects on E-S potentiation and Vth hyperpolarization, suggesting that suppression of GABAergic mechanisms is involved in E-S potentiation after PP-LFS. Indeed, IPSCs and tonic inhibitory currents were reduced after PP-LFS. The IPSC reduction was accompanied by increased paired-pulse ratio, and abolished by AM251, a blocker for Type 1 cannabinoid receptors, suggesting that PP-LFS suppresses presynaptic GABA release by mGluR-dependent endocannabinoids signaling. By contrast, a Group 1 mGluR agonist, 3, 5-dihydroxyphenylglycine, induced LTD at SC-CA1 synapses but failed to induce significant IPSC reduction and AP output increase. We propose that mGluR signaling that induces LTD coexpression at excitatory and inhibitory synapses regulates an excitation-inhibition balance to increase neuronal output in CA1 neurons.SIGNIFICANCE STATEMENT Long-lasting forms of synaptic plasticity are usually associated with excitability changes, the ability to fire action potentials. However, excitability changes have been regarded to play subsidiary roles to synaptic plasticity in modifying neuronal output. We demonstrate that, when metabotropic glutamate receptor-dependent LTD is induced by paired pulses of low-frequency stimulation, the action potential output in response to a given input paradoxically increases, indicating that increased excitability is more powerful than synaptic depression. This increase is mediated by the suppression of a presynaptic GABA release via metabotropic glutamate receptor-dependent endocannabinoid signaling. Our study shows that neuronal output changes do not always follow the direction of synaptic plasticity at excitatory synapses, highlighting the importance of regulating inhibitory tone via endocannabinoid signaling.
Collapse
|
42
|
Cleland CL. Characteristics, Emergent Properties and Functions of Somato-dendritic T- and L-Type Calcium Channels. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2018; 16:R39-R43. [PMID: 30057508 PMCID: PMC6057774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The primary literature, as an adjunct to textbooks, lectures, problem sets, and laboratories, has become integral to most undergraduate neuroscience courses by extending learning to topics outside the scope of introductory textbooks, providing insight into experimental methods and design, and offering a platform for critical thinking, independent learning, and student presentations. While introductory and intermediate textbooks cover "Hodgkin-Huxley" (H-H) Na and K channels thoroughly, the characteristics of diverse calcium, chloride, and other sodium and potassium channels, and especially the resulting emergent cellular properties and their functional consequences, receive far less coverage. The specific aim of this report is to identify, summarize, and pedagogically evaluate six articles that describe the biophysical channel properties, resulting cellular emergent properties, and potential functions of two types of somato-dendritic calcium channels: type T- and L- type channels. The three-tier vertical organization (channel, emergence, function) across multiple channels (T-, L-type) will help students connect information across parallel and hierarchical levels of analysis.
Collapse
Affiliation(s)
- Corey L Cleland
- Department of Biology, James Madison University, Harrisonburg, VA 22807
| |
Collapse
|
43
|
Evans MC, Dougherty KA. Carbamazepine-induced suppression of repetitive firing in CA1 pyramidal neurons is greater in the dorsal hippocampus than the ventral hippocampus. Epilepsy Res 2018; 145:63-72. [PMID: 29913405 DOI: 10.1016/j.eplepsyres.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Medial temporal lobe epilepsy (mTLE)-the most common form of focal epilepsy-is defined by recurrent partial seizures originating within the medial temporal lobe. Such seizures are commonly associated with the anterior hippocampus (as opposed to the posterior hippocampus), and refractory to the currently available anti-epileptic drugs (AED) for about one third of patients. Unfortunately, the mechanisms driving seizure generation and AED efficacy along the longitudinal hippocampal axis remain poorly understood. Recently, several groups investigating differences in excitability along the rodent longitudinal hippocampal axis have demonstrated that CA1 pyramidal neurons from the rodent ventral hippocampus (the rodent homolog of the human anterior hippocampus) are intrinsically more excitable than their dorsal counterparts (the rodent homolog of the human posterior hippocampus). This phenotypic difference is accompanied by significant differences in gene expression along the longitudinal hippocampal axis, which include gene products-such as voltage-gated sodium channel β-subunits-known to influence AED efficacy. Given this phenotypic heterogeneity, and the differential expression of gene products known to influence anti-epileptic drug efficacy, we sought to investigate the efficacy of the classical use-dependent sodium channel blocker, carbamazepine, in CA1 pyramidal neurons across the longitudinal hippocampal axis. Accordingly, we performed whole-cell current-clamp recordings on CA1 pyramidal neurons from acute hippocampal slices prepared from the dorsal and ventral hippocampus, and found that acute exposure to 100 μM carbamazepine induced a significantly greater suppression of repetitive firing for dorsal neurons relative to ventral neurons by inducing profound spike frequency adaptation (SFA). Moreover, we observed a small, but significant depolarization of resting membrane potential (RMP) for dorsal neurons (but not ventral neurons), following exposure to carbamazepine. Together, these observations demonstrate that carbamazepine's effect is concentrated in the dorsal hippocampus, which could provide meaningful insight into the side effect profile of carbamazepine (and related anti-epileptic drugs) in non-epileptic tissue, and inform future work investigating the mechanisms of carbamazepine resistance in epileptic tissue.
Collapse
Affiliation(s)
| | - Kelly Ann Dougherty
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN, 38112, USA.
| |
Collapse
|
44
|
Edelmann E, Lessmann V. Dopaminergic innervation and modulation of hippocampal networks. Cell Tissue Res 2018; 373:711-727. [PMID: 29470647 DOI: 10.1007/s00441-018-2800-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The catecholamine dopamine plays an important role in hippocampus-dependent plasticity and related learning and memory processes. Dopamine secretion in the hippocampus is activated by, e.g., salient or novel stimuli, thereby helping to establish and to stabilize hippocampus-dependent memories. Disturbed dopaminergic function in the hippocampus leads to severe pathophysiological conditions. While the role and importance of dopaminergic modulation of hippocampal networks have been unequivocally proven, there is still a lack of detailed molecular and cellular mechanistic understanding of how dopamine orchestrates these hippocampal processes. In this chapter of the special issue "Hippocampal structure and function," we will discuss the current understanding of dopaminergic modulation of basal synaptic transmission and long-lasting, activity-dependent potentiation or depression.
Collapse
Affiliation(s)
- Elke Edelmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
| |
Collapse
|
45
|
Masurkar AV. Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer's disease across anatomical axes. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:412. [PMID: 29928558 PMCID: PMC6005196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hippocampus has been a primary region of study with regards to synaptic and functional changes in Alzheimer’s disease (AD) due to its involvement in early stages, specifically area CA1. However, most work in this area has treated CA1 as a homogeneous structure comprised of uniform neural circuits. Yet, there is a plethora of evidence that CA1 varies in its structure and function across anatomical axes. Here I review the heterogeneity of the functional and circuit architecture of hippocampal area CA1 across three primary anatomical axes. I also summarize evidence that AD differentially affects these subregions, as well as hypotheses as to why this may occur.
Collapse
Affiliation(s)
- Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology, Department of Neuroscience & Physiology, NYU School of Medicine
| |
Collapse
|
46
|
Sánchez-Rodríguez I, Temprano-Carazo S, Nájera A, Djebari S, Yajeya J, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. Activation of G-protein-gated inwardly rectifying potassium (Kir3/GirK) channels rescues hippocampal functions in a mouse model of early amyloid-β pathology. Sci Rep 2017; 7:14658. [PMID: 29116174 PMCID: PMC5676742 DOI: 10.1038/s41598-017-15306-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
The hippocampus plays a critical role in learning and memory. Its correct performance relies on excitatory/inhibitory synaptic transmission balance. In early stages of Alzheimer’s disease (AD), neuronal hyperexcitability leads to network dysfunction observed in cortical regions such as the hippocampus. G-protein-gated potassium (GirK) channels induce neurons to hyperpolarize, contribute to the resting membrane potential and could compensate any excesses of excitation. Here, we have studied the relationship between GirK channels and hippocampal function in a mouse model of early AD pathology. Intracerebroventricular injections of amyloid-β (Aβ1-42) peptide—which have a causal role in AD pathogenesis—were performed to evaluate CA3–CA1 hippocampal synapse functionality in behaving mice. Aβ increased the excitability of the CA3–CA1 synapse, impaired long-term potentiation (LTP) and hippocampal oscillatory activity, and induced deficits in novel object recognition (NOR) tests. Injection of ML297 alone, a selective GirK activator, was also translated in LTP and NOR deficits. However, increasing GirK activity rescued all hippocampal deficits induced by Aβ due to the restoration of excitability values in the CA3–CA1 synapse. Our results show a synaptic mechanism, through GirK channel modulation, for the prevention of the hyperexcitability that causally contributes to synaptic, network, and cognitive deficits found in early AD pathogenesis.
Collapse
Affiliation(s)
- Irene Sánchez-Rodríguez
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Sara Temprano-Carazo
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Alberto Nájera
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Souhail Djebari
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain
| | - Javier Yajeya
- University of Salamanca, Instituto de Neurociencias de Castilla y León, Salamanca, Spain
| | - Agnès Gruart
- Pablo de Olavide University, Division of Neurosciences, Seville, Spain
| | | | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Laboratory, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, Ciudad Real, Spain.
| |
Collapse
|
47
|
Dascal N, Rubinstein M. Lithium reduces the span of G protein-activated K + (GIRK) channel inhibition in hippocampal neurons. Bipolar Disord 2017; 19:568-574. [PMID: 28895268 DOI: 10.1111/bdi.12536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Lithium (Li+ ) is one of the most widely used treatments for bipolar disorder (BD). However, the molecular and neuronal basis of BD, as well as the mechanisms of Li+ actions are poorly understood. Cellular and biochemical studies identified G proteins as being among the cellular targets for Li+ action, while genetic studies indicated an association with the KCNJ3 gene, which encodes the G protein-activated inwardly rectifying K+ (GIRK) channels. GIRK channels regulate neuronal excitability by mediating the inhibitory effects of multiple neurotransmitters and contribute to the resting potassium conductance. Here, we explored the effects of therapeutic dose of Li+ on neuronal excitability and the role of GIRK channels in Li+ actions. METHODS Effects of Li+ on excitability were studied in hippocampal brain slices using whole-cell electrophysiological recordings. RESULTS A therapeutic dose of Li+ (1 mM) dually regulated the function of GIRK channels in hippocampal slices. Li+ hyperpolarized the resting membrane potential of hippocampal CA1 pyramidal neurons and prolonged the latency to reach the action potential threshold and peak. These effects were abolished in the presence of tertiapin, a specific GIRK channel blocker, and at doses above the therapeutic window (2 mM). In contrast, Li+ reduced GIRK channel opening induced by GABAB receptor (GABAB R) activation, causing reduced hyperpolarization of the membrane potential, attenuated reduction of input resistance, and a smaller decrease of neuronal firing. CONCLUSIONS A therapeutic dose of Li+ reduces the span of GIRK channel-mediated inhibition due to enhancement of basal GIRK currents and inhibition of GABAB R evoked responses, providing an important link between Li+ action, neuronal excitability, and cellular and genetic targets of BD.
Collapse
Affiliation(s)
- Nathan Dascal
- The Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Goldschleger Eye Research Institute, Sheba Medical Center, Tel Hashomer, Israel.,The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
48
|
Kahanovitch U, Berlin S, Dascal N. Collision coupling in the GABA
B
receptor–G protein–GIRK signaling cascade. FEBS Lett 2017; 591:2816-2825. [DOI: 10.1002/1873-3468.12756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Uri Kahanovitch
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Shai Berlin
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
| | - Nathan Dascal
- Department of Physiology and Pharmacology Sackler School of Medicine Tel Aviv University Israel
- Sagol School of Neuroscience Tel Aviv University Israel
| |
Collapse
|
49
|
Pacheco A, Aguayo FI, Aliaga E, Muñoz M, García-Rojo G, Olave FA, Parra-Fiedler NA, García-Pérez A, Tejos-Bravo M, Rojas PS, Parra CS, Fiedler JL. Chronic Stress Triggers Expression of Immediate Early Genes and Differentially Affects the Expression of AMPA and NMDA Subunits in Dorsal and Ventral Hippocampus of Rats. Front Mol Neurosci 2017; 10:244. [PMID: 28848384 PMCID: PMC5554379 DOI: 10.3389/fnmol.2017.00244] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
Previous studies in rats have demonstrated that chronic restraint stress triggers anhedonia, depressive-like behaviors, anxiety and a reduction in dendritic spine density in hippocampal neurons. In this study, we compared the effect of repeated stress on the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in dorsal and ventral hippocampus (VH). Adult male Sprague-Dawley rats were randomly divided into control and stressed groups, and were daily restrained in their motion (2.5 h/day) during 14 days. We found that chronic stress promotes an increase in c-Fos mRNA levels in both hippocampal areas, although it was observed a reduction in the immunoreactivity at pyramidal cell layer. Furthermore, Arc mRNAs levels were increased in both dorsal and VH, accompanied by an increase in Arc immunoreactivity in dendritic hippocampal layers. Furthermore, stress triggered a reduction in PSD-95 and NR1 protein levels in whole extract of dorsal and VH. Moreover, a reduction in NR2A/NR2B ratio was observed only in dorsal pole. In synaptosomal fractions, we detected a rise in NR1 in dorsal hippocampus (DH). By indirect immunofluorescence we found that NR1 subunits rise, especially in neuropil areas of dorsal, but not VH. In relation to AMPA receptor (AMPAR) subunits, chronic stress did not trigger any change, either in dorsal or ventral hippocampal areas. These data suggest that DH is more sensitive than VH to chronic stress exposure, mainly altering the expression of NMDA receptor (NMDAR) subunits, and probably favors changes in the configuration of this receptor that may influence the function of this area.
Collapse
Affiliation(s)
- Anibal Pacheco
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Felipe I Aguayo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Esteban Aliaga
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del MauleTalca, Chile
| | - Mauricio Muñoz
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Gonzalo García-Rojo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Felipe A Olave
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Nicolas A Parra-Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Alexandra García-Pérez
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Macarena Tejos-Bravo
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Paulina S Rojas
- Faculty of Medicine, School of Pharmacy, Universidad Andres BelloSantiago, Chile
| | - Claudio S Parra
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| | - Jenny L Fiedler
- Laboratory of Neuroplasticity and Neurogenetics, Faculty of Chemical and Pharmaceutical Sciences, Department of Biochemistry and Molecular Biology, Universidad de ChileIndependencia, Chile
| |
Collapse
|
50
|
Prominent differences in sharp waves, ripples and complex spike bursts between the dorsal and the ventral rat hippocampus. Neuroscience 2017; 352:131-143. [DOI: 10.1016/j.neuroscience.2017.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
|