1
|
Cocuzza CV, Sanchez-Romero R, Ito T, Mill RD, Keane BP, Cole MW. Distributed network flows generate localized category selectivity in human visual cortex. PLoS Comput Biol 2024; 20:e1012507. [PMID: 39436929 PMCID: PMC11530028 DOI: 10.1371/journal.pcbi.1012507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/01/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
A central goal of neuroscience is to understand how function-relevant brain activations are generated. Here we test the hypothesis that function-relevant brain activations are generated primarily by distributed network flows. We focused on visual processing in human cortex, given the long-standing literature supporting the functional relevance of brain activations in visual cortex regions exhibiting visual category selectivity. We began by using fMRI data from N = 352 human participants to identify category-specific responses in visual cortex for images of faces, places, body parts, and tools. We then systematically tested the hypothesis that distributed network flows can generate these localized visual category selective responses. This was accomplished using a recently developed approach for simulating - in a highly empirically constrained manner - the generation of task-evoked brain activations by modeling activity flowing over intrinsic brain connections. We next tested refinements to our hypothesis, focusing on how stimulus-driven network interactions initialized in V1 generate downstream visual category selectivity. We found evidence that network flows directly from V1 were sufficient for generating visual category selectivity, but that additional, globally distributed (whole-cortex) network flows increased category selectivity further. Using null network architectures we also found that each region's unique intrinsic "connectivity fingerprint" was key to the generation of category selectivity. These results generalized across regions associated with all four visual categories tested (bodies, faces, places, and tools), and provide evidence that the human brain's intrinsic network organization plays a prominent role in the generation of functionally relevant, localized responses.
Collapse
Affiliation(s)
- Carrisa V. Cocuzza
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
- Behavioral and Neural Sciences PhD Program, Rutgers University, Newark, New Jersey, United States of America
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Takuya Ito
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Ravi D. Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Brian P. Keane
- Department of Psychiatry and Neuroscience, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Visual Science, University of Rochester, Rochester, New York, United States of America
- Department of Brain and Cognitive Science, University of Rochester, Rochester, New York, United States of America
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
2
|
Arcaro M, Livingstone M. A Whole-Brain Topographic Ontology. Annu Rev Neurosci 2024; 47:21-40. [PMID: 38360565 DOI: 10.1146/annurev-neuro-082823-073701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.
Collapse
Affiliation(s)
- Michael Arcaro
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
3
|
Wegner-Clemens K, Malcolm GL, Shomstein S. Predicting attentional allocation in real-world environments: The need to investigate crossmodal semantic guidance. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1675. [PMID: 38243393 DOI: 10.1002/wcs.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
Real-world environments are multisensory, meaningful, and highly complex. To parse these environments in a highly efficient manner, a subset of this information must be selected both within and across modalities. However, the bulk of attention research has been conducted within sensory modalities, with a particular focus on vision. Visual attention research has made great strides, with over a century of research methodically identifying the underlying mechanisms that allow us to select critical visual information. Spatial attention, attention to features, and object-based attention have all been studied extensively. More recently, research has established semantics (meaning) as a key component to allocating attention in real-world scenes, with the meaning of an item or environment affecting visual attentional selection. However, a full understanding of how semantic information modulates real-world attention requires studying more than vision in isolation. The world provides semantic information across all senses, but with this extra information comes greater complexity. Here, we summarize visual attention (including semantic-based visual attention), crossmodal attention, and argue for the importance of studying crossmodal semantic guidance of attention. This article is categorized under: Psychology > Attention Psychology > Perception and Psychophysics.
Collapse
Affiliation(s)
- Kira Wegner-Clemens
- Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| | | | - Sarah Shomstein
- Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Brands AM, Devore S, Devinsky O, Doyle W, Flinker A, Friedman D, Dugan P, Winawer J, Groen IIA. Temporal dynamics of short-term neural adaptation across human visual cortex. PLoS Comput Biol 2024; 20:e1012161. [PMID: 38815000 PMCID: PMC11166327 DOI: 10.1371/journal.pcbi.1012161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024] Open
Abstract
Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and prolonged adaptation to single stimuli and slower recovery from adaptation to repeated stimuli compared to V1-V3. For category-selective electrodes, recovery from adaptation is slower for preferred than non-preferred stimuli. To model neural adaptation we augment our delayed divisive normalization (DN) model by scaling the input strength as a function of stimulus category, enabling the model to accurately predict neural responses across multiple image categories. The model fits suggest that differences in adaptation patterns arise from slower normalization dynamics in higher visual areas interacting with differences in input strength resulting from category selectivity. Our results reveal systematic differences in temporal adaptation of neural population responses between lower and higher visual brain areas and show that a single computational model of history-dependent normalization dynamics, fit with area-specific parameters, accounts for these differences.
Collapse
Affiliation(s)
| | - Sasha Devore
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Orrin Devinsky
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Werner Doyle
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Adeen Flinker
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Patricia Dugan
- New York University Grossman School of Medicine, New York, New York, United States of America
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, New York, United States of America
| | | |
Collapse
|
5
|
Brands AM, Devore S, Devinsky O, Doyle W, Flinker A, Friedman D, Dugan P, Winawer J, Groen IIA. Temporal dynamics of short-term neural adaptation across human visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.13.557378. [PMID: 37745548 PMCID: PMC10515883 DOI: 10.1101/2023.09.13.557378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Neural responses in visual cortex adapt to prolonged and repeated stimuli. While adaptation occurs across the visual cortex, it is unclear how adaptation patterns and computational mechanisms differ across the visual hierarchy. Here we characterize two signatures of short-term neural adaptation in time-varying intracranial electroencephalography (iEEG) data collected while participants viewed naturalistic image categories varying in duration and repetition interval. Ventral- and lateral-occipitotemporal cortex exhibit slower and prolonged adaptation to single stimuli and slower recovery from adaptation to repeated stimuli compared to V1-V3. For category-selective electrodes, recovery from adaptation is slower for preferred than non-preferred stimuli. To model neural adaptation we augment our delayed divisive normalization (DN) model by scaling the input strength as a function of stimulus category, enabling the model to accurately predict neural responses across multiple image categories. The model fits suggest that differences in adaptation patterns arise from slower normalization dynamics in higher visual areas interacting with differences in input strength resulting from category selectivity. Our results reveal systematic differences in temporal adaptation of neural population responses across the human visual hierarchy and show that a single computational model of history-dependent normalization dynamics, fit with area-specific parameters, accounts for these differences.
Collapse
|
6
|
Kreichman O, Gilaie‐Dotan S. Parafoveal vision reveals qualitative differences between fusiform face area and parahippocampal place area. Hum Brain Mapp 2024; 45:e26616. [PMID: 38379465 PMCID: PMC10879909 DOI: 10.1002/hbm.26616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
The center-periphery visual field axis guides early visual system organization with enhanced resources devoted to central vision leading to reduced peripheral performance relative to that of central vision (i.e., behavioral eccentricity effect) for many visual functions. The center-periphery organization extends to high-order visual cortex where, for example, the well-studied face-sensitive fusiform face area (FFA) shows sensitivity to central vision and the place-sensitive parahippocampal place area (PPA) shows sensitivity to peripheral vision. As we have recently found that face perception is more sensitive to eccentricity than place perception, here we examined whether these behavioral findings reflect differences in FFA's and PPA's sensitivities to eccentricity. We assumed FFA would show higher sensitivity to eccentricity than PPA would, but that both regions' modulation by eccentricity would be invariant to the viewed category. We parametrically investigated (fMRI, n = 32) how FFA's and PPA's activations are modulated by eccentricity (≤8°) and category (upright/inverted faces/houses) while keeping stimulus size constant. As expected, FFA showed an overall higher sensitivity to eccentricity than PPA. However, both regions' activation modulations by eccentricity were dependent on the viewed category. In FFA, a reduction of activation with growing eccentricity ("BOLD eccentricity effect") was found (with different amplitudes) for all categories. In PPA however, qualitatively different BOLD eccentricity effect modulations were found (e.g., at 8° mild BOLD eccentricity effect for houses but a reverse BOLD eccentricity effect for faces and no modulation for inverted faces). Our results emphasize that peripheral vision investigations are critical to further our understanding of visual processing.
Collapse
Affiliation(s)
- Olga Kreichman
- School of Optometry and Vision Science, Faculty of Life ScienceBar Ilan UniversityRamat GanIsrael
- The Gonda Multidisciplinary Brain Research CenterBar Ilan UniversityRamat GanIsrael
| | - Sharon Gilaie‐Dotan
- School of Optometry and Vision Science, Faculty of Life ScienceBar Ilan UniversityRamat GanIsrael
- The Gonda Multidisciplinary Brain Research CenterBar Ilan UniversityRamat GanIsrael
- UCL Institute of Cognitive NeuroscienceLondonUK
| |
Collapse
|
7
|
Hauptman M, Elli G, Pant R, Bedny M. Neural specialization for 'visual' concepts emerges in the absence of vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.552701. [PMID: 37662234 PMCID: PMC10473738 DOI: 10.1101/2023.08.23.552701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Vision provides a key source of information about many concepts, including 'living things' (e.g., tiger) and visual events (e.g., sparkle). According to a prominent theoretical framework, neural specialization for different conceptual categories is shaped by sensory features, e.g., living things are neurally dissociable from navigable places because living things concepts depend more on visual features. We tested this framework by comparing the neural basis of 'visual' concepts across sighted (n=22) and congenitally blind (n=21) adults. Participants judged the similarity of words varying in their reliance on vision while undergoing fMRI. We compared neural responses to living things nouns (birds, mammals) and place nouns (natural, manmade). In addition, we compared visual event verbs (e.g., 'sparkle') to non-visual events (sound emission, hand motion, mouth motion). People born blind exhibited distinctive univariate and multivariate responses to living things in a temporo-parietal semantic network activated by nouns, including the precuneus (PC). To our knowledge, this is the first demonstration that neural selectivity for living things does not require vision. We additionally observed preserved neural signatures of 'visual' light events in the left middle temporal gyrus (LMTG+). Across a wide range of semantic types, neural representations of sensory concepts develop independent of sensory experience.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Giulia Elli
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rashi Pant
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Psychology & Neuropsychology, Universität Hamburg, Germany
| | - Marina Bedny
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
O'Bryan SR, Jung S, Mohan AJ, Scolari M. Category Learning Selectively Enhances Representations of Boundary-Adjacent Exemplars in Early Visual Cortex. J Neurosci 2024; 44:e1039232023. [PMID: 37968121 PMCID: PMC10860654 DOI: 10.1523/jneurosci.1039-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023] Open
Abstract
Category learning and visual perception are fundamentally interactive processes, such that successful categorization often depends on the ability to make fine visual discriminations between stimuli that vary on continuously valued dimensions. Research suggests that category learning can improve perceptual discrimination along the stimulus dimensions that predict category membership and that these perceptual enhancements are a byproduct of functional plasticity in the visual system. However, the precise mechanisms underlying learning-dependent sensory modulation in categorization are not well understood. We hypothesized that category learning leads to a representational sharpening of underlying sensory populations tuned to values at or near the category boundary. Furthermore, such sharpening should occur largely during active learning of new categories. These hypotheses were tested using fMRI and a theoretically constrained model of vision to quantify changes in the shape of orientation representations while human adult subjects learned to categorize physically identical stimuli based on either an orientation rule (N = 12) or an orthogonal spatial frequency rule (N = 13). Consistent with our predictions, modeling results revealed relatively enhanced reconstructed representations of stimulus orientation in visual cortex (V1-V3) only for orientation rule learners. Moreover, these reconstructed representations varied as a function of distance from the category boundary, such that representations for challenging stimuli near the boundary were significantly sharper than those for stimuli at the category centers. These results support an efficient model of plasticity wherein only the sensory populations tuned to the most behaviorally relevant regions of feature space are enhanced during category learning.
Collapse
Affiliation(s)
- Sean R O'Bryan
- Department of Psychological Sciences, Texas Tech University, Lubbock, Texas 79409
| | - Shinyoung Jung
- Department of Psychological Sciences, Texas Tech University, Lubbock, Texas 79409
| | - Anto J Mohan
- Department of Psychological Sciences, Texas Tech University, Lubbock, Texas 79409
| | - Miranda Scolari
- Department of Psychological Sciences, Texas Tech University, Lubbock, Texas 79409
| |
Collapse
|
9
|
Leferink CA, DeKraker J, Brunec IK, Köhler S, Moscovitch M, Walther DB. Organization of pRF size along the AP axis of the hippocampus and adjacent medial temporal cortex is related to specialization for scenes versus faces. Cereb Cortex 2024; 34:bhad429. [PMID: 37991278 DOI: 10.1093/cercor/bhad429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023] Open
Abstract
The hippocampus is largely recognized for its integral contributions to memory processing. By contrast, its role in perceptual processing remains less clear. Hippocampal properties vary along the anterior-posterior (AP) axis. Based on past research suggesting a gradient in the scale of features processed along the AP extent of the hippocampus, the representations have been proposed to vary as a function of granularity along this axis. One way to quantify such granularity is with population receptive field (pRF) size measured during visual processing, which has so far received little attention. In this study, we compare the pRF sizes within the hippocampus to its activation for images of scenes versus faces. We also measure these functional properties in surrounding medial temporal lobe (MTL) structures. Consistent with past research, we find pRFs to be larger in the anterior than in the posterior hippocampus. Critically, our analysis of surrounding MTL regions, the perirhinal cortex, entorhinal cortex, and parahippocampal cortex shows a similar correlation between scene sensitivity and larger pRF size. These findings provide conclusive evidence for a tight relationship between the pRF size and the sensitivity to image content in the hippocampus and adjacent medial temporal cortex.
Collapse
Affiliation(s)
- Charlotte A Leferink
- Department of Psychology, University of Toronto, Department of Psychology, 100 St George Street, Toronto, ON M5S 3G3, Canada
| | - Jordan DeKraker
- Department of Psychology, Western University, Social Science Centre Rm 7418, Western University, London, ON N6A 3K7, Canada
| | - Iva K Brunec
- Department of Psychology, University of Pennsylvania, 425 S. University Ave, Stephen A. Levin Bldg. Philadelphia, PA, 19104-6241, United States
| | - Stefan Köhler
- Department of Psychology, Western University, Social Science Centre Rm 7418, Western University, London, ON N6A 3K7, Canada
| | - Morris Moscovitch
- Department of Psychology, University of Toronto, Department of Psychology, 100 St George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada
| | - Dirk B Walther
- Department of Psychology, University of Toronto, Department of Psychology, 100 St George Street, Toronto, ON M5S 3G3, Canada
- Rotman Research Institute, Baycrest, Baycrest Centre for Geriatric Care, 3560 Bathurst Street, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
10
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Jeong SK. Perceived image size modulates visual memory. Psychon Bull Rev 2023; 30:2282-2288. [PMID: 37268748 DOI: 10.3758/s13423-023-02313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Previous studies have demonstrated that visual memory is improved when stimuli are processed by larger cortical regions. For example, a physically large stimulus that recruits larger areas of the retinotopic cortex is better remembered. However, the spatial extent of neural responses in the visual cortex is not only modulated by the retinal size of a stimulus, but also by the perceived size of the stimulus. In this online study, we modulated the perceived size of the visual stimuli using the Ebbinghaus illusion and asked participants to remember the stimuli. The results showed that perceptually larger images were remembered better than perceptually smaller but physically same-sized images. Our finding supports the idea that visual memory is modulated by top-down feedback from higher visual regions to the early visual cortex.
Collapse
Affiliation(s)
- Su Keun Jeong
- Department of Psychology, Chungbuk National University, Chungdae-ro 1, Seowon- Gu, Cheongju, Chungbuk, Korea, 28644.
| |
Collapse
|
12
|
Cavanagh P, Caplovitz GP, Lytchenko TK, Maechler MR, Tse PU, Sheinberg DL. The Architecture of Object-Based Attention. Psychon Bull Rev 2023; 30:1643-1667. [PMID: 37081283 DOI: 10.3758/s13423-023-02281-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2023] [Indexed: 04/22/2023]
Abstract
The allocation of attention to objects raises several intriguing questions: What are objects, how does attention access them, what anatomical regions are involved? Here, we review recent progress in the field to determine the mechanisms underlying object-based attention. First, findings from unconscious priming and cueing suggest that the preattentive targets of object-based attention can be fully developed object representations that have reached the level of identity. Next, the control of object-based attention appears to come from ventral visual areas specialized in object analysis that project downward to early visual areas. How feedback from object areas can accurately target the object's specific locations and features is unknown but recent work in autoencoding has made this plausible. Finally, we suggest that the three classic modes of attention may not be as independent as is commonly considered, and instead could all rely on object-based attention. Specifically, studies show that attention can be allocated to the separated members of a group-without affecting the space between them-matching the defining property of feature-based attention. At the same time, object-based attention directed to a single small item has the properties of space-based attention. We outline the architecture of object-based attention, the novel predictions it brings, and discuss how it works in parallel with other attention pathways.
Collapse
Affiliation(s)
- Patrick Cavanagh
- Department of Psychology, Glendon College, 2275 Bayview Avenue, North York, ON, M4N 3M6, Canada.
- CVR, York University, Toronto, ON, Canada.
| | | | | | | | | | - David L Sheinberg
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
13
|
Kurzawski JW, Burchell A, Thapa D, Winawer J, Majaj NJ, Pelli DG. The Bouma law accounts for crowding in 50 observers. J Vis 2023; 23:6. [PMID: 37540179 PMCID: PMC10408772 DOI: 10.1167/jov.23.8.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/16/2023] [Indexed: 08/05/2023] Open
Abstract
Crowding is the failure to recognize an object due to surrounding clutter. Our visual crowding survey measured 13 crowding distances (or "critical spacings") twice in each of 50 observers. The survey includes three eccentricities (0, 5, and 10 deg), four cardinal meridians, two orientations (radial and tangential), and two fonts (Sloan and Pelli). The survey also tested foveal acuity, twice. Remarkably, fitting a two-parameter model-the well-known Bouma law, where crowding distance grows linearly with eccentricity-explains 82% of the variance for all 13 × 50 measured log crowding distances, cross-validated. An enhanced Bouma law, with factors for meridian, crowding orientation, target kind, and observer, explains 94% of the variance, again cross-validated. These additional factors reveal several asymmetries, consistent with previous reports, which can be expressed as crowding-distance ratios: 0.62 horizontal:vertical, 0.79 lower:upper, 0.78 right:left, 0.55 tangential:radial, and 0.78 Sloan-font:Pelli-font. Across our observers, peripheral crowding is independent of foveal crowding and acuity. Evaluation of the Bouma factor, b (the slope of the Bouma law), as a biomarker of visual health would be easier if there were a way to compare results across crowding studies that use different methods. We define a standardized Bouma factor b' that corrects for differences from Bouma's 25 choice alternatives, 75% threshold criterion, and linearly symmetric flanker placement. For radial crowding on the right meridian, the standardized Bouma factor b' is 0.24 for this study, 0.35 for Bouma (1970), and 0.30 for the geometric mean across five representative modern studies, including this one, showing good agreement across labs, including Bouma's. Simulations, confirmed by data, show that peeking can skew estimates of crowding (e.g., greatly decreasing the mean or doubling the SD of log b). Using gaze tracking to prevent peeking, individual differences are robust, as evidenced by the much larger 0.08 SD of log b across observers than the mere 0.03 test-retest SD of log b measured in half an hour. The ease of measurement of crowding enhances its promise as a biomarker for dyslexia and visual health.
Collapse
Affiliation(s)
- Jan W Kurzawski
- Department of Psychology, New York University, New York, NY, USA
| | - Augustin Burchell
- Cognitive Science & Computer Science, Swarthmore College, Swarthmore, PA, USA
| | - Darshan Thapa
- Center for Neural Science, New York University, New York, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Najib J Majaj
- Center for Neural Science, New York University, New York, NY, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
14
|
Burge J, Burge T. Shape, perspective, and what is and is not perceived: Comment on Morales, Bax, and Firestone (2020). Psychol Rev 2023; 130:1125-1136. [PMID: 35549319 PMCID: PMC11366222 DOI: 10.1037/rev0000363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Psychology and philosophy have long reflected on the role of perspective in vision. Since the dawn of modern vision science-roughly, since Helmholtz in the late 1800s-scientific explanations in vision have focused on understanding the computations that transform the sensed retinal image into percepts of the three-dimensional environment. The standard view in the science is that distal properties-viewpoint-independent properties of the environment (object shape) and viewpoint-dependent relational properties (3D orientation relative to the viewer)-are perceptually represented and that properties of the proximal stimulus (in vision, the retinal image) are not. This view is woven into the nature of scientific explanation in perceptual psychology, and has guided impressive advances over the past 150 years. A recently published article suggests that in shape perception, the standard view must be revised. It argues, on the basis of new empirical data, that a new entity-perspectival shape-should be introduced into scientific explanations of shape perception. Specifically, the article's centrally advertised claim is that, in addition to distal shape, perspectival shape is perceived. We argue that this claim rests on a series of mistakes. Problems in experimental design entail that the article provides no empirical support for any claims regarding either perspective or the perception of shape. There are further problems in scientific reasoning and conceptual development. Detailing these criticisms and explaining how science treats these issues are meant to clarify method and theory, and to improve exchanges between the science and philosophy of perception. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Johannes Burge
- Department of Psychology, University of Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania
- Bioengineering Graduate Group, University of Pennsylvania
| | - Tyler Burge
- Department of Philosophy, University of California, Los Angeles
| |
Collapse
|
15
|
Coggan DD, Tong F. Spikiness and animacy as potential organizing principles of human ventral visual cortex. Cereb Cortex 2023; 33:8194-8217. [PMID: 36958809 PMCID: PMC10321104 DOI: 10.1093/cercor/bhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3-4 topographical maps arranged along the macaque inferotemporal (IT) cortex. The maps articulated a two-dimensional space based on the spikiness and animacy of visual objects, with "inanimate-spiky" and "inanimate-stubby" regions of the maps constituting two previously unidentified cortical networks. The goal of our study was to determine whether a similar functional organization might exist in human IT. To address this question, we presented the same object stimuli and images from "classic" object categories (bodies, faces, houses) to humans while recording fMRI activity at 7 Tesla. Contrasts designed to reveal the spikiness-animacy object space evoked extensive significant activation across human IT. However, unlike the macaque, we did not observe a clear sequence of complete maps, and selectivity for the spikiness-animacy space was deeply and mutually entangled with category-selectivity. Instead, we observed multiple new stimulus preferences in category-selective regions, including functional sub-structure related to object spikiness in scene-selective cortex. Taken together, these findings highlight spikiness as a promising organizing principle of human IT and provide new insights into the role of category-selective regions in visual object processing.
Collapse
Affiliation(s)
- David D Coggan
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Frank Tong
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| |
Collapse
|
16
|
Tiesinga P, Platonov A, Pelliccia V, LoRusso G, Sartori I, Orban GA. Uncovering the fast, directional signal flow through the human temporal pole during semantic processing. Sci Rep 2023; 13:6831. [PMID: 37100843 PMCID: PMC10133264 DOI: 10.1038/s41598-023-33318-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
The temporal pole (TP) plays a central role in semantic memory, yet its neural machinery is unknown. Intracerebral recordings in patients discriminating visually the gender or actions of an actor, yielded gender discrimination responses in the ventrolateral (VL) and tip (T) regions of right TP. Granger causality revealed task-specific signals travelling first forward from VL to T, under control of orbitofrontal cortex (OFC) and neighboring prefrontal cortex, and then, strongly, backwards from T to VL. Many other cortical regions provided inputs to or received outputs from both TP regions, often with longer delays, with ventral temporal afferents to VL signaling the actor's physical appearance. The TP response timing reflected more that of the connections to VL, controlled by OFC, than that of the input leads themselves. Thus, visual evidence for gender categories, collected by VL, activates category labels in T, and consequently, category features in VL, indicating a two-stage representation of semantic categories in TP.
Collapse
Affiliation(s)
- P Tiesinga
- Neuroinformatics Department, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands.
| | - A Platonov
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy
| | - V Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G LoRusso
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - I Sartori
- Claudio Munari Center for Epilepsy Surgery, Ospedale Niguarda-Ca' Granda, 20162, Milan, Italy
| | - G A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39/E, 43125, Parma, Italy.
| |
Collapse
|
17
|
Bartsch MV, Merkel C, Strumpf H, Schoenfeld MA, Tsotsos JK, Hopf JM. A cortical zoom-in operation underlies covert shifts of visual spatial attention. SCIENCE ADVANCES 2023; 9:eade7996. [PMID: 36888705 PMCID: PMC9995033 DOI: 10.1126/sciadv.ade7996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Shifting the focus of attention without moving the eyes poses challenges for signal coding in visual cortex in terms of spatial resolution, signal routing, and cross-talk. Little is known how these problems are solved during focus shifts. Here, we analyze the spatiotemporal dynamic of neuromagnetic activity in human visual cortex as a function of the size and number of focus shifts in visual search. We find that large shifts elicit activity modulations progressing from highest (IT) through mid-level (V4) to lowest hierarchical levels (V1). Smaller shifts cause those modulations to start at lower levels in the hierarchy. Successive shifts involve repeated backward progressions through the hierarchy. We conclude that covert focus shifts arise from a cortical coarse-to-fine process progressing from retinotopic areas with larger toward areas with smaller receptive fields. This process localizes the target and increases the spatial resolution of selection, which resolves the above issues of cortical coding.
Collapse
Affiliation(s)
- Mandy V. Bartsch
- Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands
| | - Christian Merkel
- Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Otto-von-Guericke University, Magdeburg, Germany
| | | | - Mircea A. Schoenfeld
- Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Otto-von-Guericke University, Magdeburg, Germany
- Kliniken Schmieder, Heidelberg, Germany
| | - John K. Tsotsos
- Department of Electrical Engineering and Computer Science, York University, Toronto, Canada
- Centre for Innovation in Computing at Lassonde, York University, Toronto, Canada
- Centre for Vision Research, York University, Toronto, Canada
- Department of Computer Science, University of Toronto, Canada
| | - Jens-Max Hopf
- Leibniz-Institute for Neurobiology, Magdeburg, Germany
- Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
18
|
Hu W, Zhu S, Briggs F, Doyley MM. Functional ultrasound imaging reveals 3D structure of orientation domains in ferret primary visual cortex. Neuroimage 2023; 268:119889. [PMID: 36681137 PMCID: PMC9999292 DOI: 10.1016/j.neuroimage.2023.119889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE The sensory cortex is organized into "maps" that represent sensory space across cortical space. In primary visual cortex (V1) of highly visual mammals, multiple visual feature maps are organized into a functional architecture anchored by orientation domains: regions containing neurons preferring the same stimulus orientation. Although the pinwheel-like structure of orientation domains is well-characterized in the superficial cortical layers in dorsal regions of V1, the 3D shape of orientation domains spanning all 6 cortical layers and across dorsal and ventral regions of V1 has never been revealed. METHODS We utilized an emerging research method in neuroscience, functional ultrasound imaging (fUS), to resolve the 3D structure of orientation domains throughout V1 in anesthetized female ferrets. fUS measures blood flow from which neuronal population activity is inferred with improved spatial resolution over fMRI. RESULTS fUS activations in response to drifting gratings placed at multiple locations in visual space generated unique activation patterns in V1 and visual thalamus, confirming prior observations that fUS can resolve retinotopy. Iso-orientation domains, determined from clusters of activations driven by large oriented gratings, were cone-shaped and present in both dorsal and ventral regions of V1. The spacing between iso-orientation domains was consistent with spacing measured previously using optical imaging methods. CONCLUSIONS Orientation domains are cones rather than columns. Their width and intra-domain distances may vary across dorsal and ventral regions of V1. These findings demonstrate the power of fUS at revealing 3D functional architecture in cortical regions not accessible to traditional surface imaging methods.
Collapse
Affiliation(s)
- Wentao Hu
- Department of Electrical and Computer Engineering, University of Rochester, 518 Computer Studies Building, Box 270231, Rochester, NY 14627-2031, USA
| | - Silei Zhu
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, USA; Ernest J. Del Monte Institute for Neuroscience, University of Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester NY, USA; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA; Center for Visual Science, University of Rochester, Rochester, NY, USA
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, 518 Computer Studies Building, Box 270231, Rochester, NY 14627-2031, USA.
| |
Collapse
|
19
|
Impact of glaucoma on the spatial frequency processing of scenes in central vision. Vis Neurosci 2023; 40:E001. [PMID: 36752177 PMCID: PMC9970733 DOI: 10.1017/s0952523822000086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Glaucoma is an eye disease characterized by a progressive vision loss usually starting in peripheral vision. However, a deficit for scene categorization is observed even in the preserved central vision of patients with glaucoma. We assessed the processing and integration of spatial frequencies in the central vision of patients with glaucoma during scene categorization, considering the severity of the disease, in comparison to age-matched controls. In the first session, participants had to categorize scenes filtered in low-spatial frequencies (LSFs) and high-spatial frequencies (HSFs) as a natural or an artificial scene. Results showed that the processing of spatial frequencies was impaired only for patients with severe glaucoma, in particular for HFS scenes. In the light of proactive models of visual perception, we investigated how LSF could guide the processing of HSF in a second session. We presented hybrid scenes (combining LSF and HSF from two scenes belonging to the same or different semantic category). Participants had to categorize the scene filtered in HSF while ignoring the scene filtered in LSF. Surprisingly, results showed that the semantic influence of LSF on HSF was greater for patients with early glaucoma than controls, and then disappeared for the severe cases. This study shows that a progressive destruction of retinal ganglion cells affects the spatial frequency processing in central vision. This deficit may, however, be compensated by increased reliance on predictive mechanisms at early stages of the disease which would however decline in more severe cases.
Collapse
|
20
|
Investigating the mechanisms by which selective attention affects subsequent preferences and choice. Sci Rep 2022; 12:19345. [PMID: 36369473 PMCID: PMC9652248 DOI: 10.1038/s41598-022-23859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
In two experiments, we investigated two untested assumptions regarding the mechanism by which selective attention during search affects subsequent preferences for objects. First, we tested whether an increase in visual competition during search increases preferences for relevant objects and decreases preferences for irrelevant objects subsequent to search. Second, we tested whether searching for objects increases the perceived fluency to process relevant objects and decreases the perceived fluency to process irrelevant objects. Our results show that search can affect relevant and irrelevant objects differently. Selective attention increased preferences for target objects subsequent to search, whereas selective attention did not affect preferences for distractors. Furthermore, our results indicate that searching for a target object increased the perceived fluency for this target object during choice, whereas ignoring a distractor product blocked mere exposure effects. Contrary to assumptions made in previous research, we found no indication that the competition for visual resources during search is linked to preferences for targets or distractors.
Collapse
|
21
|
Peng L, Luo Z, Zeng LL, Hou C, Shen H, Zhou Z, Hu D. Parcellating the human brain using resting-state dynamic functional connectivity. Cereb Cortex 2022; 33:3575-3590. [PMID: 35965076 DOI: 10.1093/cercor/bhac293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 11/14/2022] Open
Abstract
Brain cartography has expanded substantially over the past decade. In this regard, resting-state functional connectivity (FC) plays a key role in identifying the locations of putative functional borders. However, scant attention has been paid to the dynamic nature of functional interactions in the human brain. Indeed, FC is typically assumed to be stationary across time, which may obscure potential or subtle functional boundaries, particularly in regions with high flexibility and adaptability. In this study, we developed a dynamic FC (dFC)-based parcellation framework, established a new functional human brain atlas termed D-BFA (DFC-based Brain Functional Atlas), and verified its neurophysiological plausibility by stereo-EEG data. As the first dFC-based whole-brain atlas, the proposed D-BFA delineates finer functional boundaries that cannot be captured by static FC, and is further supported by good correspondence with cytoarchitectonic areas and task activation maps. Moreover, the D-BFA reveals the spatial distribution of dynamic variability across the brain and generates more homogenous parcels compared with most alternative parcellations. Our results demonstrate the superiority and practicability of dFC in brain parcellation, providing a new template to exploit brain topographic organization from a dynamic perspective. The D-BFA will be publicly available for download at https://github.com/sliderplm/D-BFA-618.
Collapse
Affiliation(s)
- Limin Peng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhiguo Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Chenping Hou
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zongtan Zhou
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|
22
|
Himmelberg MM, Winawer J, Carrasco M. Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field. Nat Commun 2022; 13:3309. [PMID: 35697680 PMCID: PMC9192713 DOI: 10.1038/s41467-022-31041-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022] Open
Abstract
A central question in neuroscience is how the organization of cortical maps relates to perception, for which human primary visual cortex (V1) is an ideal model system. V1 nonuniformly samples the retinal image, with greater cortical magnification (surface area per degree of visual field) at the fovea than periphery and at the horizontal than vertical meridian. Moreover, the size and cortical magnification of V1 varies greatly across individuals. Here, we used fMRI and psychophysics in the same observers to quantify individual differences in V1 cortical magnification and contrast sensitivity at the four polar angle meridians. Across observers, the overall size of V1 and localized cortical magnification positively correlated with contrast sensitivity. Moreover, greater cortical magnification and higher contrast sensitivity at the horizontal than the vertical meridian were strongly correlated. These data reveal a link between cortical anatomy and visual perception at the level of individual observer and stimulus location.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York, NY, 10003, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Jonathan Winawer
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, 10003, USA
- Center for Neural Science, New York University, New York, NY, 10003, USA
| |
Collapse
|
23
|
Beyh A, Dell'Acqua F, Cancemi D, De Santiago Requejo F, Ffytche D, Catani M. The medial occipital longitudinal tract supports early stage encoding of visuospatial information. Commun Biol 2022; 5:318. [PMID: 35383284 PMCID: PMC8983765 DOI: 10.1038/s42003-022-03265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 03/08/2022] [Indexed: 12/27/2022] Open
Abstract
Visuospatial learning depends on the parahippocampal place area (PPA), a functionally heterogenous area which current visuospatial processing models place downstream from parietal cortex and only from area V4 of early visual cortex (EVC). However, evidence for anatomical connections between the PPA and other EVC areas is inconsistent, and these connections are not discussed in current models. Through a data-driven analysis based on diffusion MRI tractography, we present evidence that the PPA sits at the confluence of two white matter systems. The first conveys information from the retrosplenial complex to the anterior PPA and runs within the cingulum bundle. The second system connects all peripheral EVC areas to the posterior PPA and corresponds to the medial occipital longitudinal tract (MOLT), a white matter pathway that is distinct from the cingulum and that we describe here in detail. Based on further functional connectivity analysis and meta-analytic data, we propose that the MOLT supports early stage encoding of visuospatial information by allowing direct reciprocal exchange between the PPA and EVC. Our findings may improve symptom interpretation in stroke and tumour patients with damage to the medial occipito-temporal region and call for revisiting current visuospatial processing models. A white matter pathway (termed, MOLT) connecting the parahippocampal place area and the medial early visual cortex contributes to visuospatial learning in humans.
Collapse
Affiliation(s)
- Ahmad Beyh
- NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK. .,NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Flavio Dell'Acqua
- NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Daniele Cancemi
- NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Francisco De Santiago Requejo
- NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dominic Ffytche
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Marco Catani
- NatBrainLab, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.,NatBrainLab, Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| |
Collapse
|
24
|
Himmelberg MM, Kurzawski JW, Benson NC, Pelli DG, Carrasco M, Winawer J. Cross-dataset reproducibility of human retinotopic maps. Neuroimage 2021; 244:118609. [PMID: 34582948 PMCID: PMC8560578 DOI: 10.1016/j.neuroimage.2021.118609] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/11/2022] Open
Abstract
Population receptive field (pRF) models fit to fMRI data are used to non-invasively measure retinotopic maps in human visual cortex, and these maps are a fundamental component of visual neuroscience experiments. Here, we examined the reproducibility of retinotopic maps across two datasets: a newly acquired retinotopy dataset from New York University (NYU) (n = 44) and a public dataset from the Human Connectome Project (HCP) (n = 181). Our goal was to assess the degree to which pRF properties are similar across datasets, despite substantial differences in their experimental protocols. The two datasets simultaneously differ in their stimulus apertures, participant pool, fMRI protocol, MRI field strength, and preprocessing pipeline. We assessed the cross-dataset reproducibility of the two datasets in terms of the similarity of vertex-wise pRF estimates and in terms of large-scale polar angle asymmetries in cortical magnification. Within V1, V2, V3, and hV4, the group-median NYU and HCP vertex-wise polar angle estimates were nearly identical. Both eccentricity and pRF size estimates were also strongly correlated between the two datasets, but with a slope different from 1; the eccentricity and pRF size estimates were systematically greater in the NYU data. Next, to compare large-scale map properties, we quantified two polar angle asymmetries in V1 cortical magnification previously identified in the HCP data. The NYU dataset confirms earlier reports that more cortical surface area represents horizontal than vertical visual field meridian, and lower than upper vertical visual field meridian. Together, our findings show that the retinotopic properties of V1, V2, V3, and hV4 can be reliably measured across two datasets, despite numerous differences in their experimental design. fMRI-derived retinotopic maps are reproducible because they rely on an explicit computational model of the fMRI response. In the case of pRF mapping, the model is grounded in physiological evidence of how visual receptive fields are organized, allowing one to quantitatively characterize the BOLD signal in terms of stimulus properties (i.e., location and size). The new NYU Retinotopy Dataset will serve as a useful benchmark for testing hypotheses about the organization of visual areas and for comparison to the HCP 7T Retinotopy Dataset.
Collapse
Affiliation(s)
- Marc M Himmelberg
- Department of Psychology, New York University, New York 10003, NY, USA.
| | - Jan W Kurzawski
- Department of Psychology, New York University, New York 10003, NY, USA
| | - Noah C Benson
- eScience Institute, University of Washington, Seattle 98195, WA, USA
| | - Denis G Pelli
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| | - Jonathan Winawer
- Department of Psychology, New York University, New York 10003, NY, USA; Center for Neural Sciences, New York University, New York 10003, NY, USA
| |
Collapse
|
25
|
Ribeiro FL, Bollmann S, Puckett AM. Predicting the retinotopic organization of human visual cortex from anatomy using geometric deep learning. Neuroimage 2021; 244:118624. [PMID: 34607019 DOI: 10.1016/j.neuroimage.2021.118624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022] Open
Abstract
Whether it be in a single neuron or a more complex biological system like the human brain, form and function are often directly related. The functional organization of human visual cortex, for instance, is tightly coupled with the underlying anatomy with cortical shape having been shown to be a useful predictor of the retinotopic organization in early visual cortex. Although the current state-of-the-art in predicting retinotopic maps is able to account for gross individual differences, such models are unable to account for any idiosyncratic differences in the structure-function relationship from anatomical information alone due to their initial assumption of a template. Here we developed a geometric deep learning model capable of exploiting the actual structure of the cortex to learn the complex relationship between brain function and anatomy in human visual cortex such that more realistic and idiosyncratic maps could be predicted. We show that our neural network was not only able to predict the functional organization throughout the visual cortical hierarchy, but that it was also able to predict nuanced variations across individuals. Although we demonstrate its utility for modeling the relationship between structure and function in human visual cortex, our approach is flexible and well-suited for a range of other applications involving data structured in non-Euclidean spaces.
Collapse
Affiliation(s)
- Fernanda L Ribeiro
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander M Puckett
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Groen IIA, Dekker TM, Knapen T, Silson EH. Visuospatial coding as ubiquitous scaffolding for human cognition. Trends Cogn Sci 2021; 26:81-96. [PMID: 34799253 DOI: 10.1016/j.tics.2021.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 01/28/2023]
Abstract
For more than 100 years we have known that the visual field is mapped onto the surface of visual cortex, imposing an inherently spatial reference frame on visual information processing. Recent studies highlight visuospatial coding not only throughout visual cortex, but also brain areas not typically considered visual. Such widespread access to visuospatial coding raises important questions about its role in wider cognitive functioning. Here, we synthesise these recent developments and propose that visuospatial coding scaffolds human cognition by providing a reference frame through which neural computations interface with environmental statistics and task demands via perception-action loops.
Collapse
Affiliation(s)
- Iris I A Groen
- Institute for Informatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Tessa M Dekker
- Institute of Ophthalmology, University College London, London, UK
| | - Tomas Knapen
- Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Spinoza Centre for NeuroImaging, Royal Dutch Academy of Sciences, Amsterdam, The Netherlands
| | - Edward H Silson
- Department of Psychology, School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Direct comparison of contralateral bias and face/scene selectivity in human occipitotemporal cortex. Brain Struct Funct 2021; 227:1405-1421. [PMID: 34727232 PMCID: PMC9046350 DOI: 10.1007/s00429-021-02411-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/08/2021] [Indexed: 10/27/2022]
Abstract
Human visual cortex is organised broadly according to two major principles: retinotopy (the spatial mapping of the retina in cortex) and category-selectivity (preferential responses to specific categories of stimuli). Historically, these principles were considered anatomically separate, with retinotopy restricted to the occipital cortex and category-selectivity emerging in the lateral-occipital and ventral-temporal cortex. However, recent studies show that category-selective regions exhibit systematic retinotopic biases, for example exhibiting stronger activation for stimuli presented in the contra- compared to the ipsilateral visual field. It is unclear, however, whether responses within category-selective regions are more strongly driven by retinotopic location or by category preference, and if there are systematic differences between category-selective regions in the relative strengths of these preferences. Here, we directly compare contralateral and category preferences by measuring fMRI responses to scene and face stimuli presented in the left or right visual field and computing two bias indices: a contralateral bias (response to the contralateral minus ipsilateral visual field) and a face/scene bias (preferred response to scenes compared to faces, or vice versa). We compare these biases within and between scene- and face-selective regions and across the lateral and ventral surfaces of the visual cortex more broadly. We find an interaction between surface and bias: lateral surface regions show a stronger contralateral than face/scene bias, whilst ventral surface regions show the opposite. These effects are robust across and within subjects, and appear to reflect large-scale, smoothly varying gradients. Together, these findings support distinct functional roles for the lateral and ventral visual cortex in terms of the relative importance of the spatial location of stimuli during visual information processing.
Collapse
|
28
|
Wurm MF, Caramazza A. Two 'what' pathways for action and object recognition. Trends Cogn Sci 2021; 26:103-116. [PMID: 34702661 DOI: 10.1016/j.tics.2021.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
The ventral visual stream is conceived as a pathway for object recognition. However, we also recognize the actions an object can be involved in. Here, we show that action recognition critically depends on a pathway in lateral occipitotemporal cortex, partially overlapping and topographically aligned with object representations that are precursors for action recognition. By contrast, object features that are more relevant for object recognition, such as color and texture, are typically found in ventral occipitotemporal cortex. We argue that occipitotemporal cortex contains similarly organized lateral and ventral 'what' pathways for action and object recognition, respectively. This account explains a number of observed phenomena, such as the duplication of object domains and the specific representational profiles in lateral and ventral cortex.
Collapse
Affiliation(s)
- Moritz F Wurm
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy.
| | - Alfonso Caramazza
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy; Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, USA
| |
Collapse
|
29
|
Lowndes R, Molz B, Warriner L, Herbik A, de Best PB, Raz N, Gouws A, Ahmadi K, McLean RJ, Gottlob I, Kohl S, Choritz L, Maguire J, Kanowski M, Käsmann-Kellner B, Wieland I, Banin E, Levin N, Hoffmann MB, Morland AB, Baseler HA. Structural Differences Across Multiple Visual Cortical Regions in the Absence of Cone Function in Congenital Achromatopsia. Front Neurosci 2021; 15:718958. [PMID: 34720857 PMCID: PMC8551799 DOI: 10.3389/fnins.2021.718958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Most individuals with congenital achromatopsia (ACHM) carry mutations that affect the retinal phototransduction pathway of cone photoreceptors, fundamental to both high acuity vision and colour perception. As the central fovea is occupied solely by cones, achromats have an absence of retinal input to the visual cortex and a small central area of blindness. Additionally, those with complete ACHM have no colour perception, and colour processing regions of the ventral cortex also lack typical chromatic signals from the cones. This study examined the cortical morphology (grey matter volume, cortical thickness, and cortical surface area) of multiple visual cortical regions in ACHM (n = 15) compared to normally sighted controls (n = 42) to determine the cortical changes that are associated with the retinal characteristics of ACHM. Surface-based morphometry was applied to T1-weighted MRI in atlas-defined early, ventral and dorsal visual regions of interest. Reduced grey matter volume in V1, V2, V3, and V4 was found in ACHM compared to controls, driven by a reduction in cortical surface area as there was no significant reduction in cortical thickness. Cortical surface area (but not thickness) was reduced in a wide range of areas (V1, V2, V3, TO1, V4, and LO1). Reduction in early visual areas with large foveal representations (V1, V2, and V3) suggests that the lack of foveal input to the visual cortex was a major driving factor in morphological changes in ACHM. However, the significant reduction in ventral area V4 coupled with the lack of difference in dorsal areas V3a and V3b suggest that deprivation of chromatic signals to visual cortex in ACHM may also contribute to changes in cortical morphology. This research shows that the congenital lack of cone input to the visual cortex can lead to widespread structural changes across multiple visual areas.
Collapse
Affiliation(s)
- Rebecca Lowndes
- Department of Psychology, University of York, York, United Kingdom
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Barbara Molz
- Department of Psychology, University of York, York, United Kingdom
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Lucy Warriner
- Department of Psychology, University of York, York, United Kingdom
| | - Anne Herbik
- Department of Ophthalmology, University Hospital, Otto von Guericke University, Magdeburg, Germany
| | - Pieter B. de Best
- MRI Unit, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Noa Raz
- MRI Unit, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Andre Gouws
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Khazar Ahmadi
- Department of Ophthalmology, University Hospital, Otto von Guericke University, Magdeburg, Germany
| | - Rebecca J. McLean
- University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Irene Gottlob
- University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Tübingen, Germany
| | - Lars Choritz
- Department of Ophthalmology, University Hospital, Otto von Guericke University, Magdeburg, Germany
| | - John Maguire
- School of Optometry and Vision Sciences, University of Bradford, Bradford, United Kingdom
| | - Martin Kanowski
- Department of Neurology, University Hospital, Otto von Guericke University, Magdeburg, Germany
| | - Barbara Käsmann-Kellner
- Department of Ophthalmology, Saarland University Hospital and Medical Faculty of the Saarland University Hospital, Homburg, Germany
| | - Ilse Wieland
- Department of Molecular Genetics, Institute for Human Genetics, University Hospital, Otto von Guericke University, Magdeburg, Germany
| | - Eyal Banin
- Degenerative Diseases of the Retina Unit, Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| | - Netta Levin
- MRI Unit, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Michael B. Hoffmann
- Department of Ophthalmology, University Hospital, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Antony B. Morland
- Department of Psychology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Heidi A. Baseler
- Department of Psychology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
30
|
Natu VS, Rosenke M, Wu H, Querdasi FR, Kular H, Lopez-Alvarez N, Grotheer M, Berman S, Mezer AA, Grill-Spector K. Infants' cortex undergoes microstructural growth coupled with myelination during development. Commun Biol 2021; 4:1191. [PMID: 34650227 PMCID: PMC8516989 DOI: 10.1038/s42003-021-02706-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Development of cortical tissue during infancy is critical for the emergence of typical brain functions in cortex. However, how cortical microstructure develops during infancy remains unknown. We measured the longitudinal development of cortex from birth to six months of age using multimodal quantitative imaging of cortical microstructure. Here we show that infants' cortex undergoes profound microstructural tissue growth during the first six months of human life. Comparison of postnatal to prenatal transcriptomic gene expression data demonstrates that myelination and synaptic processes are dominant contributors to this postnatal microstructural tissue growth. Using visual cortex as a model system, we find hierarchical microstructural growth: higher-level visual areas have less mature tissue at birth than earlier visual areas but grow at faster rates. This overturns the prominent view that visual areas that are most mature at birth develop fastest. Together, in vivo, longitudinal, and quantitative measurements, which we validated with ex vivo transcriptomic data, shed light on the rate, sequence, and biological mechanisms of developing cortical systems during early infancy. Importantly, our findings propose a hypothesis that cortical myelination is a key factor in cortical development during early infancy, which has important implications for diagnosis of neurodevelopmental disorders and delays in infants.
Collapse
Affiliation(s)
- Vaidehi S. Natu
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Mona Rosenke
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Hua Wu
- Center for Cognitive and Neurobiological Imaging, Stanford, CA 94305 USA
| | - Francesca R. Querdasi
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA ,grid.19006.3e0000 0000 9632 6718Department of Psychology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Holly Kular
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Nancy Lopez-Alvarez
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA
| | - Mareike Grotheer
- grid.168010.e0000000419368956Department of Psychology, Stanford University, Stanford, CA 94305 USA ,grid.10253.350000 0004 1936 9756Department of Psychology, University of Marburg, Marburg, 35039 Germany ,grid.513205.0Center for Mind, Brain and Behavior – CMBB, Philipps-Universität Marburg and Justus-Liebig-Universität Giessen, Marburg, 35039 Germany
| | - Shai Berman
- grid.9619.70000 0004 1937 0538Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Aviv A. Mezer
- grid.9619.70000 0004 1937 0538Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA. .,Neurosciences Program, Stanford University, Stanford, CA, 94305, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Hansen BC, Greene MR, Field DJ. Dynamic Electrode-to-Image (DETI) mapping reveals the human brain's spatiotemporal code of visual information. PLoS Comput Biol 2021; 17:e1009456. [PMID: 34570753 PMCID: PMC8496831 DOI: 10.1371/journal.pcbi.1009456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/07/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
A number of neuroimaging techniques have been employed to understand how visual information is transformed along the visual pathway. Although each technique has spatial and temporal limitations, they can each provide important insights into the visual code. While the BOLD signal of fMRI can be quite informative, the visual code is not static and this can be obscured by fMRI’s poor temporal resolution. In this study, we leveraged the high temporal resolution of EEG to develop an encoding technique based on the distribution of responses generated by a population of real-world scenes. This approach maps neural signals to each pixel within a given image and reveals location-specific transformations of the visual code, providing a spatiotemporal signature for the image at each electrode. Our analyses of the mapping results revealed that scenes undergo a series of nonuniform transformations that prioritize different spatial frequencies at different regions of scenes over time. This mapping technique offers a potential avenue for future studies to explore how dynamic feedforward and recurrent processes inform and refine high-level representations of our visual world. The visual information that we sample from our environment undergoes a series of neural modifications, with each modification state (or visual code) consisting of a unique distribution of responses across neurons along the visual pathway. However, current noninvasive neuroimaging techniques provide an account of that code that is coarse with respect to time or space. Here, we present dynamic electrode-to-image (DETI) mapping, an analysis technique that capitalizes on the high temporal resolution of EEG to map neural signals to each pixel within a given image to reveal location-specific modifications of the visual code. The DETI technique reveals maps of features that are associated with the neural signal at each pixel and at each time point. DETI mapping shows that real-world scenes undergo a series of nonuniform modifications over both space and time. Specifically, we find that the visual code varies in a location-specific manner, likely reflecting that neural processing prioritizes different features at different image locations over time. DETI mapping therefore offers a potential avenue for future studies to explore how each modification state informs and refines the conceptual meaning of our visual world.
Collapse
Affiliation(s)
- Bruce C. Hansen
- Colgate University, Department of Psychological & Brain Sciences, Neuroscience Program, Hamilton New York, United States of America
- * E-mail:
| | - Michelle R. Greene
- Bates College, Neuroscience Program, Lewiston, Maine, United States of America
| | - David J. Field
- Cornell University, Department of Psychology, Ithaca, New York, United States of America
| |
Collapse
|
32
|
Poltoratski S, Kay K, Finzi D, Grill-Spector K. Holistic face recognition is an emergent phenomenon of spatial processing in face-selective regions. Nat Commun 2021; 12:4745. [PMID: 34362883 PMCID: PMC8346587 DOI: 10.1038/s41467-021-24806-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior.
Collapse
Affiliation(s)
| | - Kendrick Kay
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Dawn Finzi
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
33
|
Dwivedi K, Bonner MF, Cichy RM, Roig G. Unveiling functions of the visual cortex using task-specific deep neural networks. PLoS Comput Biol 2021; 17:e1009267. [PMID: 34388161 PMCID: PMC8407579 DOI: 10.1371/journal.pcbi.1009267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/31/2021] [Accepted: 07/11/2021] [Indexed: 11/20/2022] Open
Abstract
The human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We related human brain responses to scene images measured with functional MRI (fMRI) systematically to a diverse set of deep neural networks (DNNs) optimized to perform different scene perception tasks. We found a structured mapping between DNN tasks and brain regions along the ventral and dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimensional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped onto the ventral stream. This mapping was of high fidelity, with more than 60% of the explainable variance in nine key regions being explained. Together, our results provide a novel functional mapping of the human visual cortex and demonstrate the power of the computational approach.
Collapse
Affiliation(s)
- Kshitij Dwivedi
- Department of Education and Psychology, Freie Universität Berlin, Germany
- Department of Computer Science, Goethe University, Frankfurt am Main, Germany
| | - Michael F. Bonner
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Gemma Roig
- Department of Computer Science, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
34
|
Retinotopic organization of visual cortex in human infants. Neuron 2021; 109:2616-2626.e6. [PMID: 34228960 DOI: 10.1016/j.neuron.2021.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
Vision develops rapidly during infancy, yet how visual cortex is organized during this period is unclear. In particular, it is unknown whether functional maps that organize the mature adult visual cortex are present in the infant striate and extrastriate cortex. Here, we test the functional maturity of infant visual cortex by performing retinotopic mapping with functional magnetic resonance imaging (fMRI). Infants aged 5-23 months had retinotopic maps, with alternating preferences for vertical and horizontal meridians indicating the boundaries of visual areas V1 to V4 and an orthogonal gradient of preferences from high to low spatial frequencies. The presence of multiple visual maps throughout visual cortex in infants indicates a greater maturity of extrastriate cortex than previously appreciated. The areas showed subtle age-related fine-tuning, suggesting that early maturation undergoes continued refinement. This early maturation of area boundaries and tuning may scaffold subsequent developmental changes.
Collapse
|
35
|
Attention expedites target selection by prioritizing the neural processing of distractor features. Commun Biol 2021; 4:814. [PMID: 34188169 PMCID: PMC8242025 DOI: 10.1038/s42003-021-02305-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
Whether doing the shopping, or driving the car – to navigate daily life, our brain has to rapidly identify relevant color signals among distracting ones. Despite a wealth of research, how color attention is dynamically adjusted is little understood. Previous studies suggest that the speed of feature attention depends on the time it takes to enhance the neural gain of cortical units tuned to the attended feature. To test this idea, we had human participants switch their attention on the fly between unpredicted target color alternatives, while recording the electromagnetic brain response to probes matching the target, a non-target, or a distracting alternative target color. Paradoxically, we observed a temporally prioritized processing of distractor colors. A larger neural modulation for the distractor followed by its stronger attenuation expedited target identification. Our results suggest that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations. In order to investigate underlying mechanisms of color attention, Bartsch et al measured electromagnetic brain responses in participants who were challenged to switch their attention in accordance with unpredicted target colors changes in the absence or presence of ‘distractor colors’. They demonstrated that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations.
Collapse
|
36
|
Abstract
The scientific study of reading has a rich history that spans disciplines from vision science to linguistics, psychology, cognitive neuroscience, neurology, and education. The study of reading can elucidate important general mechanisms in spatial vision, attentional control, object recognition, and perceptual learning, as well as the principles of plasticity and cortical topography. However, literacy also prompts the development of specific neural circuits to process a unique and artificial stimulus. In this review, we describe the sequence of operations that transforms visual features into language, how the key neural circuits are sculpted by experience during development, and what goes awry in children for whom learning to read is a struggle. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, California 93405, USA; .,Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Psychology, Stanford University, Stanford, California 94305, USA
| | - Alex L White
- Graduate School of Education, Stanford University, Stanford, California 93405, USA; .,Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Neuroscience and Behavior, Barnard College, New York, New York 10027, USA
| |
Collapse
|
37
|
de Haas B, Sereno MI, Schwarzkopf DS. Inferior Occipital Gyrus Is Organized along Common Gradients of Spatial and Face-Part Selectivity. J Neurosci 2021; 41:5511-5521. [PMID: 34016715 PMCID: PMC8221599 DOI: 10.1523/jneurosci.2415-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
The ventral visual stream of the human brain is subdivided into patches with categorical stimulus preferences, like faces or scenes. However, the functional organization within these areas is less clear. Here, we used functional magnetic resonance imaging and vertex-wise tuning models to independently probe spatial and face-part preferences in the inferior occipital gyrus (IOG) of healthy adult males and females. The majority of responses were well explained by Gaussian population tuning curves for both retinotopic location and the preferred relative position within a face. Parameter maps revealed a common gradient of spatial and face-part selectivity, with the width of tuning curves drastically increasing from posterior to anterior IOG. Tuning peaks clustered more idiosyncratically but were also correlated across maps of visual and face space. Preferences for the upper visual field went along with significantly increased coverage of the upper half of the face, matching recently discovered biases in human perception. Our findings reveal a broad range of neural face-part selectivity in IOG, ranging from narrow to "holistic." IOG is functionally organized along this gradient, which in turn is correlated with retinotopy.SIGNIFICANCE STATEMENT Brain imaging has revealed a lot about the large-scale organization of the human brain and visual system. For example, occipital cortex contains map-like representations of the visual field, while neurons in ventral areas cluster into patches with categorical preferences, like faces or scenes. Much less is known about the functional organization within these areas. Here, we focused on a well established face-preferring area-the inferior occipital gyrus (IOG). A novel neuroimaging paradigm allowed us to map the retinotopic and face-part tuning of many recording sites in IOG independently. We found a steep posterior-anterior gradient of decreasing face-part selectivity, which correlated with retinotopy. This suggests the functional role of ventral areas is not uniform and may follow retinotopic "protomaps."
Collapse
Affiliation(s)
- Benjamin de Haas
- Department of Psychology, Justus Liebig Universität, 35394 Giessen, Germany
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
| | - Martin I Sereno
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
- SDSU Imaging Center, San Diego State University, San Diego, California 92182
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, London WC1E 6BT, United Kingdom
- School of Optometry and Vision Science, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
38
|
Duwell EJ, Woertz EN, Mathis J, Carroll J, DeYoe EA. Aberrant visual population receptive fields in human albinism. J Vis 2021; 21:19. [PMID: 34007988 PMCID: PMC8142699 DOI: 10.1167/jov.21.5.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Retinotopic organization is a fundamental feature of visual cortex thought to play a vital role in encoding spatial information. One important aspect of normal retinotopy is the representation of the right and left hemifields in contralateral visual cortex. However, in human albinism, many temporal retinal afferents decussate aberrantly at the optic chiasm resulting in partially superimposed representations of opposite hemifields in each hemisphere of visual cortex. Previous functional magnetic resonance imaging (fMRI) studies in human albinism suggest that the right and left hemifield representations are superimposed in a mirror-symmetric manner. This should produce imaging voxels which respond to two separate locations mirrored across the vertical meridian. However, it is not yet clear how retino-cortical miswiring in albinism manifests at the level of single voxel population receptive fields (pRFs). Here, we used pRF modeling to fit both single and dual pRF models to the visual responses of voxels in visual areas V1 to V3 of five subjects with albinism. We found that subjects with albinism (but not controls) have sizable clusters of voxels with unequivocal dual pRFs consistently corresponding to, but not fully coextensive with, regions of hemifield overlap. These dual pRFs were typically positioned at locations roughly mirrored across the vertical meridian and were uniquely clustered within a portion of the visual field for each subject.
Collapse
Affiliation(s)
- Ethan J Duwell
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,
| | - Erica N Woertz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,
| | - Jedidiah Mathis
- Department of Neurology, Medical College of Wisconsin, USA.,
| | - Joseph Carroll
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.,
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.,
| |
Collapse
|
39
|
Kim NY, Pinsk MA, Kastner S. Neural Basis of Biased Competition in Development: Sensory Competition in Visual Cortex of School-Aged Children. Cereb Cortex 2021; 31:3107-3121. [PMID: 33565579 DOI: 10.1093/cercor/bhab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fundamental receptive field (RF) architecture in human visual cortex becomes adult-like by age 5. However, visuo-spatial functions continue to develop until teenage years. This suggests that, despite the early maturation of the RF structure, functional interactions within and across RFs may mature slowly. Here, we used fMRI to investigate functional interactions among multiple stimuli in the visual cortex of school children (ages 8 to 12) in the context of biased competition theory. In the adult visual system, multiple objects presented in the same visual field compete for neural representation. These competitive interactions occur at the level of the RF and are therefore closely linked to the RF architecture. Like in adults, we found suppression of evoked responses in children's visual cortex when multiple stimuli were presented simultaneously. Such suppression effects were modulated by the spatial distance between the stimuli as a function of RF size across the visual system. Our findings suggest that basic competitive interactions in the visual cortex of children above age 8 operate in an adult-like manner, with subtle differences in early visual areas and area MT. Our study establishes a paradigm and provides baseline data to investigate the neural basis of visuo-spatial processing in typical and atypical development.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Kastner
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
40
|
Choi BJ, Chen YCD, Desplan C. Building a circuit through correlated spontaneous neuronal activity in the developing vertebrate and invertebrate visual systems. Genes Dev 2021; 35:677-691. [PMID: 33888564 PMCID: PMC8091978 DOI: 10.1101/gad.348241.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the development of the vertebrate nervous systems, genetic programs assemble an immature circuit that is subsequently refined by neuronal activity evoked by external stimuli. However, prior to sensory experience, the intrinsic property of the developing nervous system also triggers correlated network-level neuronal activity, with retinal waves in the developing vertebrate retina being the best documented example. Spontaneous activity has also been found in the visual system of Drosophila Here, we compare the spontaneous activity of the developing visual system between mammalian and Drosophila and suggest that Drosophila is an emerging model for mechanistic and functional studies of correlated spontaneous activity.
Collapse
Affiliation(s)
- Ben Jiwon Choi
- Department of Biology, New York University, New York, New York 10003, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
41
|
The contribution of object size, manipulability, and stability on neural responses to inanimate objects. Neuroimage 2021; 237:118098. [PMID: 33940141 DOI: 10.1016/j.neuroimage.2021.118098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 04/24/2021] [Indexed: 11/20/2022] Open
Abstract
In human occipitotemporal cortex, brain responses to depicted inanimate objects have a large-scale organization by real-world object size. Critically, the size of objects in the world is systematically related to behaviorally-relevant properties: small objects are often grasped and manipulated (e.g., forks), while large objects tend to be less motor-relevant (e.g., tables), though this relationship does not always have to be true (e.g., picture frames and wheelbarrows). To determine how these two dimensions interact, we measured brain activity with functional magnetic resonance imaging while participants viewed a stimulus set of small and large objects with either low or high motor-relevance. The results revealed that the size organization was evident for objects with both low and high motor-relevance; further, a motor-relevance map was also evident across both large and small objects. Targeted contrasts revealed that typical combinations (small motor-relevant vs. large non-motor-relevant) yielded more robust topographies than the atypical covariance contrast (small non-motor-relevant vs. large motor-relevant). In subsequent exploratory analyses, a factor analysis revealed that the construct of motor-relevance was better explained by two underlying factors: one more related to manipulability, and the other to whether an object moves or is stable. The factor related to manipulability better explained responses in lateral small-object preferring regions, while the factor related to object stability (lack of movement) better explained responses in ventromedial large-object preferring regions. Taken together, these results reveal that the structure of neural responses to objects of different sizes further reflect behavior-relevant properties of manipulability and stability, and contribute to a deeper understanding of some of the factors that help the large-scale organization of object representation in high-level visual cortex.
Collapse
|
42
|
Bo K, Yin S, Liu Y, Hu Z, Meyyappan S, Kim S, Keil A, Ding M. Decoding Neural Representations of Affective Scenes in Retinotopic Visual Cortex. Cereb Cortex 2021; 31:3047-3063. [PMID: 33594428 DOI: 10.1093/cercor/bhaa411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/28/2022] Open
Abstract
The perception of opportunities and threats in complex visual scenes represents one of the main functions of the human visual system. The underlying neurophysiology is often studied by having observers view pictures varying in affective content. It has been shown that viewing emotionally engaging, compared with neutral, pictures (1) heightens blood flow in limbic, frontoparietal, and anterior visual structures and (2) enhances the late positive event-related potential (LPP). The role of retinotopic visual cortex in this process has, however, been contentious, with competing theories predicting the presence versus absence of emotion-specific signals in retinotopic visual areas. Recording simultaneous electroencephalography-functional magnetic resonance imaging while observers viewed pleasant, unpleasant, and neutral affective pictures, and applying multivariate pattern analysis, we found that (1) unpleasant versus neutral and pleasant versus neutral decoding accuracy were well above chance level in retinotopic visual areas, (2) decoding accuracy in ventral visual cortex (VVC), but not in early or dorsal visual cortex, was correlated with LPP, and (3) effective connectivity from amygdala to VVC predicted unpleasant versus neutral decoding accuracy, whereas effective connectivity from ventral frontal cortex to VVC predicted pleasant versus neutral decoding accuracy. These results suggest that affective scenes evoke valence-specific neural representations in retinotopic visual cortex and that these representations are influenced by reentry signals from anterior brain regions.
Collapse
Affiliation(s)
- Ke Bo
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Siyang Yin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Yuelu Liu
- Center for Mind and Brain, University of California, Davis, CA 95618, USA
| | - Zhenhong Hu
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sreenivasan Meyyappan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Sungkean Kim
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Mingzhou Ding
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
43
|
Rosenke M, van Hoof R, van den Hurk J, Grill-Spector K, Goebel R. A Probabilistic Functional Atlas of Human Occipito-Temporal Visual Cortex. Cereb Cortex 2021; 31:603-619. [PMID: 32968767 PMCID: PMC7727347 DOI: 10.1093/cercor/bhaa246] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 11/12/2022] Open
Abstract
Human visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a large body of functional magnetic resonance imaging research, significantly expanding our understanding of visual processing. As studying these regions requires accurate localization of their cortical location, researchers perform functional localizer scans to identify these regions in each individual. However, it is not always possible to conduct these localizer scans. Here, we developed and validated a functional region of interest (ROI) atlas of early visual and category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of functionally defined ROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear volumetric alignment. Furthermore, we demonstrate that 1) the atlas accurately predicts the location of an independent dataset of ventral temporal cortex ROIs and other atlases of place selectivity, motion selectivity, and retinotopy. Next, 2) we show that the majority of voxel within our atlas is responding mostly to the labeled category in a left-out subject cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.com/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g., blind people, infants) in which functional localizers cannot be run.
Collapse
Affiliation(s)
- Mona Rosenke
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Rick van Hoof
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
| | - Job van den Hurk
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
- Scannexus MRI Center, Maastricht, 6229 EV, The Netherlands
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, 94305 CA, USA
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, 6229 EV, The Netherlands
| |
Collapse
|
44
|
Unified Visual Working Memory without the Anterior Corpus Callosum. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
One of the most fundamental, and most studied, human cognitive functions is working memory. Yet, it is currently unknown how working memory is unified. In other words, why does a healthy human brain have one integrated capacity of working memory, rather than one capacity per visual hemifield, for instance. Thus, healthy subjects can memorize roughly as many items, regardless of whether all items are presented in one hemifield, rather than throughout two visual hemifields. In this current research, we investigated two patients in whom either most, or the entire, corpus callosum has been cut to alleviate otherwise untreatable epilepsy. Crucially, in both patients the anterior parts connecting the frontal and most of the parietal cortices, are entirely removed. This is essential, since it is often posited that working memory resides in these areas of the cortex. We found that despite the lack of direct connections between the frontal cortices in these patients, working memory capacity is similar regardless of whether stimuli are all presented in one visual hemifield or across two visual hemifields. This indicates that in the absence of the anterior parts of the corpus callosum working memory remains unified. Moreover, it is important to note that memory performance was not similar across visual fields. In fact, capacity was higher when items appeared in the left visual hemifield than when they appeared in the right visual hemifield. Visual information in the left hemifield is processed by the right hemisphere and vice versa. Therefore, this indicates that visual working memory is not symmetric, with the right hemisphere having a superior visual working memory. Nonetheless, a (subcortical) bottleneck apparently causes visual working memory to be integrated, such that capacity does not increase when items are presented in two, rather than one, visual hemifield.
Collapse
|
45
|
Donohue SE, Schoenfeld MA, Hopf JM. Parallel fast and slow recurrent cortical processing mediates target and distractor selection in visual search. Commun Biol 2020; 3:689. [PMID: 33214640 PMCID: PMC7677324 DOI: 10.1038/s42003-020-01423-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Visual search has been commonly used to study the neural correlates of attentional allocation in space. Recent electrophysiological research has disentangled distractor processing from target processing, showing that these mechanisms appear to operate in parallel and show electric fields of opposite polarity. Nevertheless, the localization and exact nature of this activity is unknown. Here, using MEG in humans, we provide a spatiotemporal characterization of target and distractor processing in visual cortex. We demonstrate that source activity underlying target- and distractor-processing propagates in parallel as fast and slow sweep from higher to lower hierarchical levels in visual cortex. Importantly, the fast propagating target-related source activity bypasses intermediate levels to go directly to V1, and this V1 activity correlates with behavioral performance. These findings suggest that reentrant processing is important for both selection and attenuation of stimuli, and such processing operates in parallel feedback loops. Sarah E. Donohue et al. characterize the spatiotemporal propagation of target and distractor processing in the human visual cortex. They show that these signals propagate in parallel as fast and slow sweeps from higher to lower hierarchical levels, and that the fast target processing signal can bypass intermediate levels correlating with behavioral performance.
Collapse
Affiliation(s)
- Sarah E Donohue
- Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.,Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.,University of Illinois College of Medicine Peoria, 61605, Peoria, IL, USA
| | - Mircea A Schoenfeld
- Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany.,Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.,Kliniken Schmieder Heidelberg, 69117, Heidelberg, Germany
| | - Jens-Max Hopf
- Otto-von-Guericke University Magdeburg, 39120, Magdeburg, Germany. .,Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| |
Collapse
|
46
|
Rutland JW, Delman BN, Huang KH, Verma G, Benson NC, Villavisanis DF, Lin HM, Bederson JB, Chelnis J, Shrivastava RK, Balchandani P. Primary visual cortical thickness in correlation with visual field defects in patients with pituitary macroadenomas: a structural 7-Tesla retinotopic analysis. J Neurosurg 2020; 133:1371-1381. [PMID: 31628280 PMCID: PMC7205160 DOI: 10.3171/2019.7.jns191712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/26/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Vision loss remains a debilitating complication of pituitary adenomas, although there is considerable variability in visual impairment before and after decompression surgery. Growing evidence suggests secondary damage to remote visual structures may contribute to vision loss in patients with chiasmatic compression. The present study leverages ultrahigh field 7-T MRI to study the retinotopic organization of the primary visual cortex (V1), and correlates visual defects with cortical thinning in V1 to characterize consequences of pituitary adenomas on the posterior visual system. METHODS Eight patients (4 males and 4 females, mean age 44.3 years) with pituitary adenomas who exhibited chiasmatic compression and visual field defects, as well as 8 matched healthy controls (4 males and 4 females, mean age 43.3 years), were scanned at 7-T MRI for this prospective study. Whole-brain cortical thickness was calculated using an automated algorithm. A previously published surface-based algorithm was applied to associate the eccentricity and polar angle with each position in V1. Cortical thickness was calculated at each point in the retinotopic organization, and a cortical thickness ratio was generated against matched controls for each point in the visual fields. Patients with adenoma additionally underwent neuroophthalmological examination including 24-2 Humphrey automated visual field perimetry. Pattern deviation (PD) of each point in the visual field, i.e., the deviation in point detection compared with neurologically healthy controls, was correlated with cortical thickness at corresponding polar and eccentricity angles in V1. RESULTS Whole-brain cortical thickness was successfully derived for all patients and controls. The mean tumor volume was 19.4 cm3. The median global thickness of V1 did not differ between patients (mean ± SD 2.21 ± 0.12 cm), compared with controls (2.06 ± 0.13 cm, p > 0.05). Surface morphometry-based retinotopic maps revealed that all 8 patients with adenoma showed a significant positive correlation between PD and V1 thickness ratios (r values ranged from 0.31 to 0.53, p < 0.05). Mixed-procedure analysis revealed that PD = -8.0719 + 5.5873*[Median V1 Thickness Ratio]. CONCLUSIONS All 8 patients showed significant positive correlations between V1 thickness and visual defect. These findings provide retinotopic maps of localized V1 cortical neurodegeneration spatially corresponding to impairments in the visual field. These results further characterize changes in the posterior visual pathway associated with chiasmatic compression, and may prove useful in the neuroophthalmological workup for patients with pituitary macroadenoma.
Collapse
Affiliation(s)
- John W Rutland
- 1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
- 2Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Bradley N Delman
- 1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
- 3Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai
| | - Kuang-Han Huang
- 1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
| | - Gaurav Verma
- 1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
| | | | - Dillan F Villavisanis
- 1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
| | - Hung-Mo Lin
- 5Department of Population Health Science and Policy, Mount Sinai Hospital; and
| | - Joshua B Bederson
- 2Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - James Chelnis
- 6Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Raj K Shrivastava
- 2Department of Neurosurgery, Icahn School of Medicine at Mount Sinai
| | - Priti Balchandani
- 1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
47
|
Gallivan JP, Chapman CS, Gale DJ, Flanagan JR, Culham JC. Selective Modulation of Early Visual Cortical Activity by Movement Intention. Cereb Cortex 2020; 29:4662-4678. [PMID: 30668674 DOI: 10.1093/cercor/bhy345] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded-prior to movement-from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Craig S Chapman
- Faculty of Physical Education and Recreation, University of Alberta, Alberta, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
48
|
Spang K, Grimsen C, Prass M, Brunner F, Köhnlein M, Kehrer S, Kraft A, Brandt SA, Fahle M. Midlevel visual deficits after strokes involving area human V4. Cortex 2020; 134:207-222. [PMID: 33291046 DOI: 10.1016/j.cortex.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/28/2019] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
We present the results of 51 stroke patients with free central visual fields of which about half suffer from clear deficits of midlevel vision undetected by standard clinical tests. These patients yield significantly elevated thresholds for detection and/or discrimination between forms defined by motion, colour, or line orientation ('texture'). As demonstrated by voxel-based lesion-symptom mapping (VLSM) the underlying lesions involve mainly area human V4 (hV4) located in the posterior third of the fusiform gyrus and extending into the lingual gyrus. Patient's detection thresholds correlate only very weakly between the submodalities tested, indicating partly separate neural networks on mid-level vision for colour, motion, and texture detection. Correlations are far stronger for form discrimination tasks, indicating partly shared mechanisms for even simple form discrimination of distinct visual submodalities. We conclude that deficits of visual perception are far more common after strokes in visual brain areas than is apparent in clinical practice. Our results further clarify the functional organization of midlevel visual cortical areas.
Collapse
Affiliation(s)
- Karoline Spang
- Department of Human Neurobiology, University of Bremen, Bremen, Germany.
| | - Cathleen Grimsen
- Department of Human Neurobiology, University of Bremen, Bremen, Germany
| | - Maren Prass
- Department of Human Neurobiology, University of Bremen, Bremen, Germany
| | | | - Martin Köhnlein
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin-Mitte, Germany
| | - Stefanie Kehrer
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin-Mitte, Germany
| | - Antje Kraft
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin-Mitte, Germany
| | - Stephan A Brandt
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin-Mitte, Germany
| | - Manfred Fahle
- Department of Human Neurobiology, University of Bremen, Bremen, Germany
| |
Collapse
|
49
|
Zhang A, Farivar R. Intersubject Spatial Pattern Correlations During Movie Viewing Are Stimulus-Driven and Nonuniform Across the Cortex. Cereb Cortex Commun 2020; 1:tgaa076. [PMID: 33251511 PMCID: PMC7679429 DOI: 10.1093/texcom/tgaa076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
A fundamental step to predicting brain activity in healthy and diseased populations is characterizing the common spatio-temporal response to a shared experience. Multivoxel pattern analysis allows us to investigate information encoding through these patterns; however, we have yet to explore local, stimulus-driven, patterns of cortical activity during naturalistic stimulation. We sought to examine these patterns with minimum interpolation—excluding functional alignment—to characterize the most basic degree of shared response between subjects. We used an unbiased analytic approach, combined with rich, naturalistic, and nonsemantic stimulation to estimate shared spatial patterns in functional magnetic resonance imaging responses across a large group. We found that meso-scale spatial patterns were shared nonuniformly across the visual cortex and represent information distinct from the shared temporal response. Shared spatial patterns were stimulus-driven, modulated by pattern size, and more sensitive to the contrast of 3D versus 2D stimulus differences than the temporal signals. Although the grand functional structure of the brain is understood to be common, these results suggest that even at a meso-scale, we share common spatial structures with anatomical alignment alone. The strength of this similarity varies across the cortex, suggesting some spatial structures are innately organized, whereas others are shaped by factors such as learning and plasticity.
Collapse
Affiliation(s)
- Angela Zhang
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal H3G 1A4, Canada
| | - Reza Farivar
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal H3G 1A4, Canada
| |
Collapse
|
50
|
Kassuba T, Pinsk MA, Kastner S. Distinct auditory and visual tool regions with multisensory response properties in human parietal cortex. Prog Neurobiol 2020; 195:101889. [PMID: 32707071 DOI: 10.1016/j.pneurobio.2020.101889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/12/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Left parietal cortex has been associated with the human-specific ability of sophisticated tool use. Yet, it is unclear how tool information is represented across senses. Here, we compared auditory and visual tool-specific activations within healthy human subjects to probe the relation of tool-specific networks, uni- and multisensory response properties, and functional and structural connectivity using functional and diffusion-weighted MRI. In each subject, we identified an auditory tool network with regions in left anterior inferior parietal cortex (aud-aIPL), bilateral posterior lateral sulcus, and left inferior precentral sulcus, and a visual tool network with regions in left aIPL (vis-aIPL) and bilateral inferior temporal gyrus. Aud-aIPL was largely separate and anterior/inferior from vis-aIPL, with varying degrees of overlap across subjects. Both regions displayed a strong preference for tools versus other stimuli presented within the same modality. Despite their modality preference, aud-aIPL and vis-aIPL and a region in left inferior precentral sulcus displayed multisensory response properties, as revealed in multivariate analyses. Thus, two largely separate tool networks are engaged by the visual and auditory modalities with nodes in parietal and prefrontal cortex potentially integrating information across senses. The diversification of tool processing in human parietal cortex underpins its critical role in complex object processing.
Collapse
Affiliation(s)
- Tanja Kassuba
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|