1
|
Xing Z, Tu BP. Mechanisms and rationales of SAM homeostasis. Trends Biochem Sci 2025:S0968-0004(24)00281-0. [PMID: 39818457 DOI: 10.1016/j.tibs.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 01/18/2025]
Abstract
S-Adenosylmethionine (SAM) is the primary methyl donor for numerous cellular methylation reactions. Its central role in methylation and involvement with many pathways link its availability to the regulation of cellular processes, the dysregulation of which can contribute to disease states, such as cancer or neurodegeneration. Emerging evidence indicates that intracellular SAM levels are maintained within an optimal range by a variety of homeostatic mechanisms. This suggests that the need to maintain SAM homeostasis represents a significant evolutionary pressure across all kingdoms of life. Here, we review how SAM controls cellular functions at the molecular level and discuss strategies to maintain SAM homeostasis. We propose that SAM exerts a broad and underappreciated influence in cellular regulation that remains to be fully elucidated.
Collapse
Affiliation(s)
- Zheng Xing
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA
| | - Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA.
| |
Collapse
|
2
|
Bentham AR, Wang W, Trusch F, Varden FA, Birch PRJ, Banfield MJ. The WY Domain of an RxLr Effector Drives Interactions with a Host Target Phosphatase to Mimic Host Regulatory Proteins and Promote Phytophthora infestans Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:239-249. [PMID: 37921637 DOI: 10.1094/mpmi-08-23-0118-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Plant pathogens manipulate the cellular environment of the host to facilitate infection and colonization that often lead to plant diseases. To accomplish this, many specialized pathogens secrete virulence proteins called effectors into the host cell, which subvert processes such as immune signaling, gene transcription, and host metabolism. Phytophthora infestans, the causative agent of potato late blight, employs an expanded repertoire of RxLR effectors with WY domains to manipulate the host through direct interaction with protein targets. However, our understanding of the molecular mechanisms underlying the interactions between WY effectors and their host targets remains limited. In this study, we performed a structural and biophysical characterization of the P. infestans WY effector Pi04314 in complex with the potato Protein Phosphatase 1-c (PP1c). We elucidate how Pi04314 uses a WY domain and a specialized C-terminal loop carrying a KVxF motif that interact with conserved surfaces on PP1c, known to be used by host regulatory proteins for guiding function. Through biophysical and in planta analyses, we demonstrate that Pi04314 WY or KVxF mutants lose their ability to bind PP1c. The loss of PP1c binding correlates with changes in PP1c nucleolar localization and a decrease in lesion size in plant infection assays. This study provides insights into the manipulation of plant hosts by pathogens, revealing how effectors exploit key regulatory interfaces in host proteins to modify their function and facilitate disease. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Wei Wang
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie DD2 5DA, Dundee, U.K
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Invergowrie DD2 5DA, Dundee, U.K
| | - Franziska Trusch
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie DD2 5DA, Dundee, U.K
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Invergowrie DD2 5DA, Dundee, U.K
| | - Freya A Varden
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| | - Paul R J Birch
- Department of Cell and Molecular Sciences, James Hutton Institute, Invergowrie DD2 5DA, Dundee, U.K
- Division of Plant Sciences, College of Life Science, University of Dundee (at JHI), Invergowrie DD2 5DA, Dundee, U.K
| | - Mark J Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, U.K
| |
Collapse
|
3
|
Nadel G, Yao Z, Hacohen-Lev-Ran A, Wainstein E, Maik-Rachline G, Ziv T, Naor Z, Admon A, Seger R. Phosphorylation of PP2Ac by PKC is a key regulatory step in the PP2A-switch-dependent AKT dephosphorylation that leads to apoptosis. Cell Commun Signal 2024; 22:154. [PMID: 38419089 PMCID: PMC10900696 DOI: 10.1186/s12964-024-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Although GqPCR activation often leads to cell survival by activating the PI3K/AKT pathway, it was previously shown that in several cell types AKT activity is reduced and leads to JNK activation and apoptosis. The mechanism of AKT inactivation in these cells involves an IGBP1-coupled PP2Ac switch that induces the dephosphorylation and inactivation of both PI3K and AKT. However, the machinery involved in the initiation of PP2A switch is not known. METHODS We used phospho-mass spectrometry to identify the phosphorylation site of PP2Ac, and raised specific antibodies to follow the regulation of this phosphorylation. Other phosphorylations were monitored by commercial antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein-protein interactions. Apoptosis was detected by a TUNEL assay as well as PARP1 cleavage using SDS-PAGE and Western blotting. RESULTS We identified Ser24 as a phosphorylation site in PP2Ac. The phosphorylation is mediated mainly by classical PKCs (PKCα and PKCβ) but not by novel PKCs (PKCδ and PKCε). By replacing the phosphorylated residue with either unphosphorylatable or phosphomimetic residues (S24A and S24E), we found that this phosphorylation event is necessary and sufficient to mediate the PP2A switch, which ultimately induces AKT inactivation, and a robust JNK-dependent apoptosis. CONCLUSION Our results show that the PP2A switch is induced by PKC-mediated phosphorylation of Ser24-PP2Ac and that this phosphorylation leads to apoptosis upon GqPCR induction of various cells. We propose that this mechanism may provide an unexpected way to treat some cancer types or problems in the endocrine machinery.
Collapse
Affiliation(s)
- Guy Nadel
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Zhong Yao
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Avital Hacohen-Lev-Ran
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Wainstein
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Galia Maik-Rachline
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Ziv
- Smoler Proteomic Center, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
LCMT1 indicates poor prognosis and is essential for cell proliferation in hepatocellular carcinoma. Transl Oncol 2022; 27:101572. [PMID: 36401967 PMCID: PMC9673118 DOI: 10.1016/j.tranon.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most malignant type of cancers. Leuci carboxyl methyltransferase 1 (LCMT1) is a protein methyltransferase that plays an improtant regulatory role in both normal and cancer cells. The aim of this study is to evaluate the expression pattern and clinical significance of LCMT1 in HCC. METHODS The expression pattern and clinical relevance of LCMT1 were determined using the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) program, and our datasets. Gain-of-function and loss-of-function studies were employed to investigate the cellular functions of LCMT1 in vitro and in vivo. Quantitative real-time polymerase chain reaction (RT-PCR) analysis, western blotting, enzymatic assay, and high-performance liquid chromatography were applied to reveal the underlying molecular functions of LCMT1. RESULTS LCMT1 was upregulated in human HCC tissues, which correlated with a "poor" prognosis. The siRNA-mediated knockdown of LCMT1 inhibited glycolysis, promoted mitochondrial dysfunction, and increased intracellular pyruvate levels by upregulating the expression of alani-neglyoxylate and serine-pyruvate aminotransferase (AGXT). The overexpression of LCMT1 showed the opposite results. Silencing LCMT1 inhibited the proliferation of HCC cells in vitro and reduced the growth of tumor xenografts in mice. Mechanistically, the effect of LCMT1 on the proliferation of HCC cells was partially dependent on PP2A. CONCLUSIONS Our data revealed a novel role of LCMT1 in the proliferation of HCC cells. In addition, we provided novel insights into the effects of glycolysis-related pathways on the LCMT1regulated progression of HCC, suggesting LCMT1 as a novel therapeutic target for HCC therapy.
Collapse
|
5
|
Schuhmacher D, Sontag JM, Sontag E. A Novel Role of PP2A Methylation in the Regulation of Tight Junction Assembly and Integrity. Front Cell Dev Biol 2022; 10:911279. [PMID: 35912112 PMCID: PMC9326217 DOI: 10.3389/fcell.2022.911279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Tight junctions (TJs) are multiprotein complexes essential for cell polarity and the barrier function of epithelia. The major signaling molecule, protein serine/threonine phosphatase 2A (PP2A), interacts with the TJ and modulates the phosphorylation state of TJ proteins. An important PP2A regulatory mechanism involves leucine carboxyl methyltransferase-1 (LCMT1)-dependent methylation and protein phosphatase methylesterase-1 (PME1)-mediated demethylation of its catalytic subunit on Leu309. Here, using MDCK cells, we show that overexpression of LCMT1, which enhances cellular PP2A methylation, inhibits TJ formation, induces TJ ruffling, and decreases TJ barrier function. Conversely, overexpression of PME1 accelerates TJ assembly and enhances TJ barrier function. PME1-dependent PP2A demethylation increases during early Ca2+-dependent junctional assembly. Inhibition of endogenous PME1 delays the initial Ca2+-mediated redistribution of TJ proteins to cell-cell contacts and affects TJ morphology and barrier function. Manipulating one-carbon metabolism modulates TJ assembly, at least in part by affecting PP2A methylation state. The integrity of PP2A methylation is critical for proper targeting of PP2A to the TJ. It is necessary for PP2A complex formation with the TJ proteins, occludin and ZO-1, and proteins of the PAR complex, Par3 and atypical protein kinase C ζ (aPKCζ), which play a key role in development of cell polarity. Expression of a methylation incompetent PP2A mutant induces defects in TJ assembly and barrier function. aPKCζ-mediated Par3 phosphorylation is also required for targeting of the PP2A ABαC holoenzyme to the TJ. Our findings provide the first evidence for a role of LCMT1, PME1 and PP2A methylation/demethylation processes in modulating TJ assembly and functional integrity. They also position PP2A at the interface of one-carbon metabolism and the regulation of key TJ and polarity proteins that become deregulated in many human diseases.
Collapse
|
6
|
Mahamane Salissou MT, Razak MYA, Wang X, Magaji RA. The role of protein phosphatase 2A tau axis in traumatic brain injury therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Traumatic brain injury (TBI) is a debilitating disorder due to trauma caused by an external mechanical force eventually leading to disruption in the normal function of the brain, with possible outcomes including permanent or temporary dysfunction of cognitive, physical, and psychosocial abilities. There have been several studies focusing on the search and innovation of neuroprotective agents that could have therapeutic relevance in TBI management. Due to its complexity, TBI is divided into two major components. The first initial event is known as the primary injury; it is a result of the mechanical insult itself and is known to be irreversible and resistant to a vast variety of therapeutics. The secondary event or secondary brain injury is viewed as a cellular injury that does not manifest immediately after the trauma but evolved after a delay period of hours or several days. This category of injury is known to respond favorably to different pharmacological treatment approaches.
Main body
Due to the complexity in the pathophysiology of the secondary injury, the therapeutic strategy needs to be in a multi-facets model and to have the ability to simultaneously regulate different cellular changes. Several studies have investigated in deep the possible approaches relying on natural compounds as an alternative therapeutic strategy for the management of TBI. In addition, many natural compounds have the potential to target numerous different components of the secondary injury including neuroinflammation, apoptosis, PP2A, tau, and Aβ among others. Here, we review past and current strategies in the therapeutic management of TBI, focusing on the PP2A-tau axis both in animal and human subjects. This review uncovers, in addition, a variety of compounds used in TBI therapy.
Conclusion
Despite beneficial therapeutic effects observed in animals for many compounds, studies are still needed to be conducted on human subjects to validate their therapeutic virtues. Furthermore, potential therapeutic virtues observed among studies might likely be dependent on the TBI animal model used and the type of induced injury. In addition, specificity and side effects are challenges in TBI therapy specifically which site of PP2A dysfunction to be targeted.
Collapse
|
7
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|
8
|
Wu Q, Zhou D, Wu R, Shi R, Shen X, Jin N, Gu J, Gu JH, Liu F, Chu D. Excess folic acid supplementation before and during pregnancy and lactation activates β-catenin in the brain of male mouse offspring. Brain Res Bull 2021; 178:133-143. [PMID: 34808323 DOI: 10.1016/j.brainresbull.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Folic acid (FA) supplementation in early pregnancy is recommended to protect against birth defects. But excess FA has exhibited neurodevelopmental toxicity. We previously reported that the mice treated with 2.5-fold the dietary requirement of FA one week before mating and throughout pregnancy and lactation displayed abnormal behaviors in the offspring. Here we found the levels of non-phosphorylated β-catenin (active) were increased in the brains of weaning and adult FA-exposed offspring. Meanwhile, demethylation of protein phosphatase 2 A catalytic subunit (PP2Ac), which suppresses its enzyme activity in regulatory subunit dependent manner, was significantly inhibited. Among the upstream regulators of β-catenin, PI3K/Akt/GSK-3β but not Wnt signaling was stimulated in FA-exposed brains only at weaning. In mouse neuroblastoma N2a cells, knockdown of PP2Ac or leucine carboxyl methyltransferase-1 (LCMT-1), or overexpression of PP2Ac methylation-deficient mutant decreased β-catenin dephosphorylation. These results suggest that excess FA may activate β-catenin via suppressing PP2Ac demethylation, providing a novel mechanism for the influence of FA on neurodevelopment.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Dingwei Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Ruozhen Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Ruirui Shi
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, 226018 Nantong, China
| | - Xin Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China
| | - Jianlan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, 226001 Nantong, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong University, 226018 Nantong, China.
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, United States.
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, 226001 Nantong, China.
| |
Collapse
|
9
|
Pan Y, Zhang Y, Liu N, Lu W, Yang J, Li Y, Liu Z, Wei Y, Lou Y, Kong J. Vitamin D Attenuates Alzheimer-like Pathology Induced by Okadaic Acid. ACS Chem Neurosci 2021; 12:1343-1350. [PMID: 33818056 DOI: 10.1021/acschemneuro.0c00812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Many elderly individuals suffer from Alzheimer's disease (AD), which causes a growing concern. We investigated the mechanism underlying the effects of vitamin D (VD) as a prophylactic treatment. A mouse model of okadaic-acid-induced AD-like pathology was used in vivo and in vitro. Morris water maze and field trials were used to assess cognitive function. The expression levels of VDR, MTHFR, LCMT-1, PP2A, p-TAU (Thr396), and T-TAU and the methylation level of PP2A were measured by Western blotting, and a reversal of the increase in the levels of these proteins in an AD cell model was observed. We used MTHFR-knockdown SH-SY5Y cells to further test the effects of VD, treated these cells with cycloheximide and MG132, and used RT-PCR to explore the mechanism underlying MTHFR targeting. We found that the effects of VD on AD were impaired by MTHFR knockdown through a pretranscriptional mechanism. In addition, VD attenuated AD-induced cognitive impairment and significantly suppressed the expression of TAU. Our findings indicated that VD treatment alleviated TAU accumulation and rescued methylated PP2A by increasing the expression of LCMT-1 and MTHFR.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yalin Zhang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ning Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wanyi Lu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jingxin Yang
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ye Li
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Zuwang Liu
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yinghong Wei
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yan Lou
- Department of Computer Science, China Medical University, Shenyang 110013, China
| | - Juan Kong
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
10
|
Zhang L, Sun H, Chen Y, Wei M, Lee J, Li F, Ling D. Functional nanoassemblies for the diagnosis and therapy of Alzheimer's diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1696. [PMID: 33463089 DOI: 10.1002/wnan.1696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that affects populations around the world. Many therapeutics have been investigated for AD diagnosis and/or therapy, but the efficacy is largely limited by the poor bioavailability of drugs and by the presence of the blood-brain barrier. Recently, the development of nanomedicines enables efficient drug delivery to the brain, but the complex pathological mechanism of AD prevents them from successful treatment. As a type of advanced nanomedicine, multifunctional nanoassemblies self-assembled from nanoscale imaging or therapeutic agents can simultaneously target multiple pathological factors, showing great potential in the diagnosis and therapy of AD. To help readers better understand this emerging field, in this review, we first introduce the pathological mechanisms and the potential drug candidates of AD, as well as the design strategies of nanoassemblies for improving AD targeting efficiency. Moreover, the progress of dynamic nanoassemblies that can diagnose and/or treat AD in response to the endogenous or exogenous stimuli will be described. Finally, we conclude with our perspectives on the future development in this field. The objective of this review is to outline the latest progress of using nanoassemblies to overcome the complex pathological environment of AD for improved diagnosis and therapy, in hopes of accelerating the future development of intelligent AD nanomedicines. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Diagnostic Tools > in vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Heng Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Duquette A, Pernègre C, Veilleux Carpentier A, Leclerc N. Similarities and Differences in the Pattern of Tau Hyperphosphorylation in Physiological and Pathological Conditions: Impacts on the Elaboration of Therapies to Prevent Tau Pathology. Front Neurol 2021; 11:607680. [PMID: 33488502 PMCID: PMC7817657 DOI: 10.3389/fneur.2020.607680] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Tau protein, a neuronal microtubule-associated protein, becomes hyperphosphorylated in several neurodegenerative diseases called tauopathies. Hyperphosphorylation of tau is correlated to its redistribution from the axon to the somato-dendritic compartment at early stages of tauopathies. Interestingly, tau hyperphosphorylation begins in different regions of the brain in each tauopathy. In some regions, both neurons and glial cells develop tau hyperphosphorylation. Tau hyperphosphorylation is also observed in physiological conditions such as hibernation and brain development. In the first section of present article, we will review the spatiotemporal and cellular distribution of hyperphosphorylated tau in the most frequent tauopathies. In the second section, we will compare the pattern of tau hyperphosphorylation in physiological and pathological conditions and discuss the sites that could play a pivotal role in the conversion of non-toxic to toxic forms of hyperphosphorylated tau. Furthermore, we will discuss the role of hyperphosphorylated tau in physiological and pathological conditions and the fact that tau hyperphosphorylation is reversible in physiological conditions but not in a pathological ones. In the third section, we will speculate how the differences and similarities between hyperphosphorylated tau in physiological and pathological conditions could impact the elaboration of therapies to prevent tau pathology. In the fourth section, the different therapeutic approaches using tau as a direct or indirect therapeutic target will be presented.
Collapse
Affiliation(s)
- Antoine Duquette
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Camille Pernègre
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Ariane Veilleux Carpentier
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Nicole Leclerc
- Research Center of the University of Montreal Hospital (CRCHUM), Montréal, QC, Canada.,Département de Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Taleski G, Schuhmacher D, Su H, Sontag JM, Sontag E. Disturbances in PP2A methylation and one-carbon metabolism compromise Fyn distribution, neuritogenesis, and APP regulation. J Biol Chem 2021; 296:100237. [PMID: 33380425 PMCID: PMC7948947 DOI: 10.1074/jbc.ra120.016069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 01/12/2023] Open
Abstract
The nonreceptor protein tyrosine kinase Fyn and protein Ser/Thr phosphatase 2A (PP2A) are major multifunctional signaling molecules. Deregulation of Fyn and altered PP2A methylation are implicated in cancer and Alzheimer's disease (AD). Here, we tested the hypothesis that the methylation state of PP2A catalytic subunit, which influences PP2A subunit composition and substrate specificity, can affect Fyn regulation and function. Using Neuro-2a (N2a) neuroblastoma cell models, we first show that methylated PP2A holoenzymes containing the Bα subunit coimmunoprecipitate and copurify with Fyn in membrane rafts. PP2A methylation status regulates Fyn distribution and Fyn-dependent neuritogenesis, likely in part by affecting actin dynamics. A methylation-incompetent PP2A mutant fails to interact with Fyn. It perturbs the normal partitioning of Fyn and amyloid precursor protein (APP) in membrane microdomains, which governs Fyn function and APP processing. This correlates with enhanced amyloidogenic cleavage of APP, a hallmark of AD pathogenesis. Conversely, enhanced PP2A methylation promotes the nonamyloidogenic cleavage of APP in a Fyn-dependent manner. Disturbances in one-carbon metabolic pathways that control cellular methylation are associated with AD and cancer. Notably, they induce a parallel loss of membrane-associated methylated PP2A and Fyn enzymes in N2a cells and acute mouse brain slices. One-carbon metabolism also modulates Fyn-dependent process outgrowth in N2a cells. Thus, our findings identify a novel methylation-dependent PP2A/Fyn signaling module. They highlight the underestimated importance of cross talks between essential metabolic pathways and signaling scaffolds that are involved in normal cell homeostasis and currently being targeted for cancer and AD treatment.
Collapse
Affiliation(s)
- Goce Taleski
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diana Schuhmacher
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Henry Su
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
13
|
Saito S, Koya Y, Kajiyama H, Yamashita M, Kikkawa F, Nawa A. Folate-appended cyclodextrin carrier targets ovarian cancer cells expressing the proton-coupled folate transporter. Cancer Sci 2020; 111:1794-1804. [PMID: 32154964 PMCID: PMC7226238 DOI: 10.1111/cas.14379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Folate receptor alpha (FRα) is overexpressed in >80% of epithelial ovarian cancer (EOC). Accordingly, folate is attracting attention as a targeting ligand for EOC. For EOC patients, paclitaxel (PTX) is generally used as a first‐line chemotherapeutic agent in combination with platinum‐based drugs. Cyclodextrin (CyD) is a potential new formulation vehicle for PTX that could replace Cremophor‐EL, a traditional formulation vehicle that causes significant side effects, including neutropenia. Several years ago, folate‐appended β‐CyD (Fol‐c1‐β‐CyD) was developed as an FRα‐targeting drug carrier, but its efficacy as a treatment for EOC remains to be determined. In this study, we assessed the antitumor activity of PTX in Fol‐c1‐β‐CyD (PTX/Fol‐c1‐β‐CyD) in EOC‐derived cell lines. We found that PTX/Fol‐c1‐β‐CyD killed not only FRα‐expressing cells but also FRα‐negative cells. In the FRα‐negative A2780 cells, knockdown of proton‐coupled folate transporter (PCFT) significantly decreased the cytotoxicity of PTX/Fol‐c1‐β‐CyD, whereas knockdown of FRα did not. By contrast, knockdown of either FRα or proton‐coupled folate transporter (PCFT) decreased the cytotoxicity of PTX/Fol‐c1‐β‐CyD in FRα‐expressing SK‐OV‐3 cells. Furthermore, the cytotoxicity of PTX/Fol‐c1‐β‐CyD in A2780 cells was increased at acidic pH, and this increase was suppressed by PCFT inhibitor. In mice intraperitoneally inoculated with FRα‐expressing or PCFT‐expressing EOC cells, intraperitoneal administration of PTX/Fol‐c1‐β‐CyD significantly suppressed the growth of both types of EOC cells relative to PTX alone, without inducing a significant change in the neutrophil/white blood cell ratio. Our data suggest that Fol‐c1‐β‐CyD targets not only FRα but also PCFT, and can efficiently deliver anticancer drugs to EOC cells in the peritoneal cavity.
Collapse
Affiliation(s)
- Shinichi Saito
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| | - Yoshihiro Koya
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| |
Collapse
|
14
|
Tondo M, Wasek B, Escola-Gil JC, de Gonzalo-Calvo D, Harmon C, Arning E, Bottiglieri T. Altered Brain Metabolome Is Associated with Memory Impairment in the rTg4510 Mouse Model of Tauopathy. Metabolites 2020; 10:metabo10020069. [PMID: 32075035 PMCID: PMC7074477 DOI: 10.3390/metabo10020069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is characterized, amongst other features, by the pathologic accumulation of abnormally phosphorylated tau filaments in neurons that lead to neurofibrillary tangles. However, the molecular mechanisms by which the abnormal processing of tau leads to neurodegeneration and cognitive impairment remain unknown. Metabolomic techniques can comprehensively assess disturbances in metabolic pathways that reflect changes downstream from genomic, transcriptomic and proteomic systems. In the present study, we undertook a targeted metabolomic approach to determine a total of 187 prenominated metabolites in brain cortex tissue from wild type and rTg4510 animals (a mice model of tauopathy), in order to establish the association of metabolic pathways with cognitive impairment. This targeted metabolomic approach revealed significant differences in metabolite concentrations of transgenic mice. Brain glutamine, serotonin and sphingomyelin C18:0 were found to be predictors of memory impairment. These findings provide informative data for future research on AD, since some of them agree with pathological alterations observed in diseased humans.
Collapse
Affiliation(s)
- Mireia Tondo
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
- Servei de Bioquímica, Laboratori Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
| | - Joan Carles Escola-Gil
- Research Institute, Hospital de la Santa Creu i Sant Pau and CIBERDEM, Institute of Health Carlos III, 08041 Barcelona, Spain;
| | - David de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB)—Spanish National Research Council (CSIC), Biomedical Research Institute Sant Pau (IIB Sant Pau) and CIBERCV, Institute of Health Carlos III, 08036 Barcelona, Spain;
| | - Clinton Harmon
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75226, USA; (M.T.); (B.W.); (C.H.); (E.A.)
- Correspondence:
| |
Collapse
|
15
|
Mroczko B, Groblewska M, Litman-Zawadzka A. The Role of Protein Misfolding and Tau Oligomers (TauOs) in Alzheimer's Disease (AD). Int J Mol Sci 2019; 20:E4661. [PMID: 31547024 PMCID: PMC6802364 DOI: 10.3390/ijms20194661] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/25/2022] Open
Abstract
Although the causative role of the accumulation of amyloid β 1-42 (Aβ42) deposits in the pathogenesis of Alzheimer's disease (AD) has been under debate for many years, it is supposed that the toxicity soluble oligomers of Tau protein (TauOs) might be also the pathogenic factor acting on the initial stages of this disease. Therefore, we performed a thorough search for literature pertaining to our investigation via the MEDLINE/PubMed database. It was shown that soluble TauOs, especially granular forms, may be the most toxic form of this protein. Hyperphosphorylated TauOs can reduce the number of synapses by missorting into axonal compartments of neurons other than axon. Furthermore, soluble TauOs may be also responsible for seeding Tau pathology within AD brains, with probable link to AβOs toxicity. Additionally, the concentrations of TauOs in the cerebrospinal fluid (CSF) and plasma of AD patients were higher than in non-demented controls, and revealed a negative correlation with mini-mental state examination (MMSE) scores. It was postulated that adding the measurements of TauOs to the panel of CSF biomarkers could improve the diagnosis of AD.
Collapse
Affiliation(s)
- Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital of Białystok, 15-269 Białystok, Poland.
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland.
| |
Collapse
|
16
|
Guo J, Ni S, Li Q, Wang JZ, Yang Y. Folate/Vitamin B Alleviates Hyperhomocysteinemia-Induced Alzheimer-Like Pathologies in Rat Retina. Neurosci Bull 2019; 35:325-335. [PMID: 30264378 PMCID: PMC6426902 DOI: 10.1007/s12264-018-0293-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/18/2018] [Indexed: 01/25/2023] Open
Abstract
Hyperhomocysteinemia (Hhcy) is an independent risk factor for Alzheimer's disease (AD). Visual dysfunction is commonly found and is positively correlated with the severity of cognitive defects in AD patients. Our previous study demonstrated that Hhcy induces memory deficits with AD-like tau and amyloid-β (Aβ) pathologies in the hippocampus, and supplementation with folate and vitamin B12 (FB) prevents the Hhcy-induced AD-like pathologies in the hippocampus. Here, we investigated whether Hhcy also induces AD-like pathologies in the retina and the effects of FB. An Hhcy rat model was produced by vena caudalis injection of homocysteine for 14 days, and the effects of FB were assessed by simultaneous supplementation with FB in drinking water. We found that Hhcy induced vessel damage with Aβ and tau pathologies in the retina, while simultaneous supplementation with FB remarkably attenuated the Hhcy-induced tau hyperphosphorylation at multiple AD-related sites and Aβ accumulation in the retina. The mechanisms involved downregulation of amyloid precursor protein (APP), presenilin-1, beta-site APP-cleaving enzyme 1, and protein phosphatase-2A. Our data suggest that the retina may serve as a window for evaluating the effects of FB on hyperhomocysteinemia-induced Alzheimer-like pathologies.
Collapse
Affiliation(s)
- Jing Guo
- Department of Pathophysiology, School of Basic Medicine and Collaborative Innovation Center for Brain Science, Key Laboratory for Neurological Disorders of the Ministry of Education of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shaozhou Ni
- Emergency Department, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qihang Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical College, Wenzhou, 325000, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and Collaborative Innovation Center for Brain Science, Key Laboratory for Neurological Disorders of the Ministry of Education of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and Collaborative Innovation Center for Brain Science, Key Laboratory for Neurological Disorders of the Ministry of Education of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Zhang Y, Zhang J, Wang E, Qian W, Fan Y, Feng Y, Yin H, Li Y, Wang Y, Yuan T. Microcystin-Leucine-Arginine Induces Tau Pathology Through Bα Degradation via Protein Phosphatase 2A Demethylation and Associated Glycogen Synthase Kinase-3β Phosphorylation. Toxicol Sci 2019; 162:475-487. [PMID: 29228318 DOI: 10.1093/toxsci/kfx271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microcystin-leucine-arginine (MC-LR) has been implicated as a potential environmental factor in Alzheimer's disease because of its potent inhibition of protein phosphatase 2A (PP2A) activity, but experimental evidence to support its detailed neurotoxic effects and their underlying mechanisms has been lacking. The present study investigated the role of PP2A catalytic subunit (PP2Ac) demethylation and its link with glycogen synthase kinase-3β (GSK)-3β in tau hyperphosphorylation induced by MC-LR. The results showed that MC-LR treatment significantly increased demethylation of PP2Ac, with a concomitant increase in GSK-3β phosphorylation at Ser9 resulting in elevated tau hyperphosphorylation at PP2A-favorable sites in SH-SY5Y cells and rat hippocampus. Coimmunoprecipitation experiments showed that MC-LR treatment dissociated PP2Ac from Bα, making it incompetent in binding tau, thus causing tau hyperphosphorylation. Moreover, we found that inhibition of PP2A resulted in an increase in phosphorylation of GSK-3β at Ser9 and a decrease in GSK-3β activity, which further promoted demethylation of PP2Ac induced by MC-LR. These findings suggest a scenario in which MC-LR-mediated demethylation of PP2Ac is associated with GSK-3β phosphorylation at Ser9 and contributes to dissociation of Bα from PP2Ac, which would result in Bα degradation and disruption of PP2A/Bα-tau interactions, thus promoting tau hyperphosphorylation and paired helical filaments-tau accumulation and, consequently, axonal degeneration and cell death.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Jiahui Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Enhao Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, School of Medicine.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jangsu 226001, China
| | - Yan Fan
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Ying Feng
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Haimeng Yin
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Yang Li
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Yuning Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Tianli Yuan
- Department of Biochemistry and Molecular Biology, School of Medicine
| |
Collapse
|
18
|
Yang C, Li X, Gao W, Wang Q, Zhang L, Li Y, Li L, Zhang L. Cornel Iridoid Glycoside Inhibits Tau Hyperphosphorylation via Regulating Cross-Talk Between GSK-3β and PP2A Signaling. Front Pharmacol 2018; 9:682. [PMID: 29997510 PMCID: PMC6028923 DOI: 10.3389/fphar.2018.00682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Neurofibrillary pathology contributes to neuronal dysfunction and correlates with the clinical progression of Alzheimer's disease (AD). Tau phosphorylation is mainly regulated by a balance of glycogen synthase kinase-3β (GSK-3β) and protein phosphatase 2A (PP2A) activities. Cornel iridoid glycoside (CIG) is a main component extracted from Cornus officinalis. The purpose of this study was to investigate the effects of CIG on GSK-3β and PP2A, thus to explore the mechanisms of CIG to inhibit tau hyperphosphorylation. The rat model of tau hyperphosphorylation was established by intraventricular injection of wortmannin and GF-109203X (GFX) to activate GSK-3β. The results showed that intragastrical administration of CIG inhibited tau hyperphosphorylation in the brain of rats induced by wortmannin/GFX. The results in vivo and in vitro exhibited that CIG inhibited tau hyperphosphorylation and GSK-3β over-activation. In the mechanism of action, CIG's attenuating GSK-3β activity was found to be dependent on PI3K/AKT signaling pathway. PP2A catalytic C subunit (PP2Ac) siRNA abrogated the effect of CIG on PI3K/AKT/GSK-3β. Additionally and crucially, we also found that CIG inhibited the demethylation of PP2Ac at Leu309 in vivo and in vitro. It enhanced PP2A activity, decreased tau hyperphosphorylation, and protected cell morphology in okadaic acid (OA)-induced cell model in vitro. PP2Ac siRNA abated the inhibitory effect of CIG on tau hyperphosphorylation. Moreover, CIG inhibited protein phosphatase methylesterase-1 (PME-1) and demethylation of PP2Ac, enhanced PP2A activity, and decreased tau hyperphosphorylation in PME-1-transfectd cells. Taken together, CIG inhibited GSK-3β activity via promoting P13K/AKT and PP2A signaling pathways. In addition, CIG also elevated PP2A activity via inhibiting PME-1-induced PP2Ac demethylation to inhibit GSK-3β activity, thus regulated the cross-talk between GSK-3β and PP2A signaling and consequently inhibited tau hyperphosphorylation. These results suggest that CIG may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Cuicui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xuelian Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Gao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Tang S, Qin F, Wang X, Liang Z, Cai H, Mo L, Huang Y, Liang B, Wei X, Ao Q, Xu Y, Liu Y, Xiao D, Guo S, Lu C, Li X. H 2 O 2 induces PP2A demethylation to downregulate mTORC1 signaling in HEK293 cells. Cell Biol Int 2018; 42:1182-1191. [PMID: 29752834 DOI: 10.1002/cbin.10987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/05/2018] [Indexed: 12/14/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a Ser/Thr protein kinase that functions as an ATP and amino acid sensor to govern cell growth and proliferation by mediating mitogen- and nutrient-dependent signal transduction. Protein phosphatase 2A (PP2A), a ubiquitously expressed serine/threonine phosphatase, negatively regulates mTOR signaling. Methylation of PP2A is catalyzed by leucine carboxyl methyltransferase-1 (LCMT1) and reversed by protein phosphatase methylesterase 1 (PME-1), which regulates PP2A activity and substrate specificity. However, whether PP2A methylation is related to mTOR signaling is still unknown. In this study, we examined the effect of PP2A methylation on mTOR signaling in HEK293 cells under oxidative stress. Our results show that oxidative stress induces PP2A demethylation and inhibits the mTORC1 signaling pathway. Next, we examined two strategies to block PP2A demethylation under oxidative stress. One strategy was to prevent PP2A demethylation using a PME-1 inhibitor; the other strategy was to activate PP2A methylation via overexpression of LCMT1. The results show that both the PME-1 inhibitor and LCMT1 overexpression prevent the mTORC1 signaling suppression induced by oxidative stress. Additionally, LCMT1 overexpression rescued cell viability and the mitochondrial membrane potential decrease in response to oxidative stress. These results demonstrate that H2 O2 induces PP2A demethylation to downregulate mTORC1 signaling. These findings provide a novel mechanism for the regulation of PP2A demethylation and mTORC1 signaling under oxidative stress.
Collapse
Affiliation(s)
- Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Fu Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinhang Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ziwei Liang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiqing Cai
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Laiming Mo
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Huang
- School of Medicine, University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Boyin Liang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xuejing Wei
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingqing Ao
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yilu Xu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuyang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, 410005, China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Songchao Guo
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Cailing Lu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyi Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
20
|
Hoffman A, Taleski G, Qian H, Wasek B, Arning E, Bottiglieri T, Sontag JM, Sontag E. Methylenetetrahydrofolate Reductase Deficiency Deregulates Regional Brain Amyloid-β Protein Precursor Expression and Phosphorylation Levels. J Alzheimers Dis 2018; 64:223-237. [DOI: 10.3233/jad-180032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Helena Qian
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
21
|
Tian H, Lu Y, Liu J, Liu W, Lu L, Duan C, Gao G, Yang H. Leucine Carboxyl Methyltransferase Downregulation and Protein Phosphatase Methylesterase Upregulation Contribute Toward the Inhibition of Protein Phosphatase 2A by α-Synuclein. Front Aging Neurosci 2018; 10:173. [PMID: 29950985 PMCID: PMC6008559 DOI: 10.3389/fnagi.2018.00173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by intracellular neurofibrillary tangles of phosphorylated α-synuclein (α-syn). Protein phosphatase 2A (PP2A) is responsible for α-syn dephosphorylation. Previous work has demonstrated that α-syn can regulate PP2A activity. However, the mechanisms underlying α-syn regulation of PP2A activity are not well understood. In this study, we found that α-syn overexpression induced increased α-syn phosphorylation at serine 129 (Ser129), and PP2A inhibition, in vitro and in vivo. α-syn overexpression resulted in PP2A demethylation. This demethylation was mediated via downregulated leucine carboxyl methyltransferase (LCMT-1) expression, and upregulated protein phosphatase methylesterase (PME-1) expression. Furthermore, LCMT-1 overexpression, or PME-1 inhibition, reversed α-syn-induced increases in α-syn phosphorylation and apoptosis. In addition to post-translational modifications of the catalytic subunit, regulatory subunits are involved in the regulation of PP2A activity. We found that the levels of regulatory subunits which belong to the PPP2R2 subfamily, not the PPP2R5 subfamily, were downregulated in the examined brain regions of transgenic mice. Our work identifies a novel mechanism to explain how α-syn regulates PP2A activity, and provides the optimization of PP2A methylation as a new target for PD treatment.
Collapse
Affiliation(s)
- Hao Tian
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Yongquan Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Jia Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Weijin Liu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Lingling Lu
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Chunli Duan
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Ge Gao
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| | - Hui Yang
- Department of Neurobiology Capital Medical University, Center of Parkinson's Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Center of Neural Regeneration and Repair, Beijing, China
| |
Collapse
|
22
|
Gao YL, Wang N, Sun FR, Cao XP, Zhang W, Yu JT. Tau in neurodegenerative disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:175. [PMID: 29951497 DOI: 10.21037/atm.2018.04.23] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tau, a microtubule-associated protein, is the main component of the intracellular filamentous inclusions that are involved in neurodegenerative diseases known as tauopathies, including Alzheimer disease (AD), frontotemporal dementia with parkinsonism-17 (FTDP-17), Pick disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Hyperphosphorylated, aggregated tau proteins form the core of neurofibrillary tangles (NFTs), which are shown to be one of the pathological hallmarks of AD. The discovery of mutations in the microtubule-associated protein tau (MAPT) gene in patients with FTDP-17 also contributes to a better understanding of the dysfunctional tau as a cause of diseases. Although recent substantial progress has been made in the tau pathology of tauopathies, the mechanisms underlying tau-induced neurodegeneration remain unclear. Here, we present an overview of the biochemical properties of tau protein and the pathogenesis underlying tau-induced neurodegenerative diseases. Meanwhile, we will discuss the tau-related biomarkers and ongoing tau-targeted strategies for therapeutic modulation.
Collapse
Affiliation(s)
- Yong-Lei Gao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Nan Wang
- Endoscopy Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China.,Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
| |
Collapse
|
23
|
Gao J, Cahill CM, Huang X, Roffman JL, Lamon-Fava S, Fava M, Mischoulon D, Rogers JT. S-Adenosyl Methionine and Transmethylation Pathways in Neuropsychiatric Diseases Throughout Life. Neurotherapeutics 2018; 15:156-175. [PMID: 29340929 PMCID: PMC5794704 DOI: 10.1007/s13311-017-0593-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
S-Adenosyl methionine (SAMe), as a major methyl donor, exerts its influence on central nervous system function through cellular transmethylation pathways, including the methylation of DNA, histones, protein phosphatase 2A, and several catecholamine moieties. Based on available evidence, this review focuses on the lifelong range of severe neuropsychiatric and neurodegenerative diseases and their associated neuropathologies, which have been linked to the deficiency/load of SAMe production or/and the disturbance in transmethylation pathways. Also included in this review are the present-day applications of SAMe in the treatment in these diseases in each age group.
Collapse
Affiliation(s)
- Jin Gao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Clinical Psychology, Qilu Hospital of Shandong University, Qingdao, Shandong Province, China
| | - Catherine M Cahill
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Taleski G, Sontag E. Protein phosphatase 2A and tau: an orchestrated 'Pas de Deux'. FEBS Lett 2017; 592:1079-1095. [PMID: 29121398 DOI: 10.1002/1873-3468.12907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The neuronal microtubule-associated protein tau serves a critical role in regulating axonal microtubule dynamics to support neuronal and synaptic functions. Furthermore, it contributes to glutamatergic regulation and synaptic plasticity. Emerging evidence also suggests that tau serves as a signaling scaffold. Tau function and subcellular localization are tightly regulated, in part, by the orchestrated interplay between phosphorylation and dephosphorylation events. Significantly, protein phosphatase type 2A (PP2A), encompassing the regulatory PPP2R2A (or Bα) subunit, is a major brain heterotrimeric enzyme and the primary tau Ser/Thr phosphatase in vivo. Herein, we closely examine how the intimate and compartmentalized interactions between PP2A and tau regulate tau phosphorylation and function, and play an essential role in neuronal homeostasis. We also review evidence supporting a strong link between deregulation of tau-PP2A functional interactions and the molecular underpinnings of various neurodegenerative diseases collectively called tauopathies. Lastly, we discuss the opportunities and associated challenges in more specifically targeting PP2A-tau interactions for drug development for tauopathies.
Collapse
Affiliation(s)
- Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
25
|
Sharma A, Gerbarg P, Bottiglieri T, Massoumi L, Carpenter LL, Lavretsky H, Muskin PR, Brown RP, Mischoulon D. S-Adenosylmethionine (SAMe) for Neuropsychiatric Disorders: A Clinician-Oriented Review of Research. J Clin Psychiatry 2017; 78:e656-e667. [PMID: 28682528 PMCID: PMC5501081 DOI: 10.4088/jcp.16r11113] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE A systematic review on S-adenosylmethionine (SAMe) for treatment of neuropsychiatric conditions and comorbid medical conditions. DATA SOURCES Searches were conducted in PubMed, EMBASE, PsycINFO, Cochrane Library, CINAHL, and Google Scholar databases between July 15, 2015, and September 28, 2016, by combining search terms for SAMe (s-adenosyl methionine or s-adenosyl-l-methionine) with terms for relevant disease states (major depressive disorder, MDD, depression, perinatal depression, human immunodeficiency virus, HIV, Parkinson's, Alzheimer's, dementia, anxiety, schizophrenia, psychotic, 22q11.2, substance abuse, fibromyalgia, osteoarthritis, hepatitis, or cirrhosis). Additional studies were identified from prior literature. Ongoing clinical trials were identified through clinical trial registries. STUDY SELECTION Of the 174 records retrieved, 21 were excluded, as they were not original investigations. An additional 21 records were excluded for falling outside the scope of this review. Of the 132 studies included in this review, 115 were clinical trials and 17 were preclinical studies. DATA EXTRACTION A wide range of studies was included in this review to capture information that would be of interest to psychiatrists in clinical practice. RESULTS This review of SAMe in the treatment of major depressive disorder found promising but limited evidence of efficacy and safety to support its use as a monotherapy and as an augmentation for other antidepressants. Additionally, preliminary evidence suggests that SAMe may ameliorate symptoms in certain neurocognitive, substance use, and psychotic disorders and comorbid medical conditions. CONCLUSIONS S-adenosylmethionine holds promise as a treatment for multiple neuropsychiatric conditions, but the body of evidence has limitations. The encouraging findings support further study of SAMe in both psychiatric and comorbid medical illnesses.
Collapse
Affiliation(s)
- Anup Sharma
- Department of Psychiatry, University of Pennsylvania School of Medicine, 10th Floor Gates Bldg, 3400 Spruce St, Philadelphia, PA 19104.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia Gerbarg
- Department of Psychiatry, New York Medical College, Vahalla, New York, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, Texas, USA
| | - Lila Massoumi
- Department of Psychiatry, Michigan State University, East Lansing, Michigan, USA
| | - Linda L Carpenter
- Butler Hospital, Brown Department of Psychiatry and Human Behavior, Providence, Rhode Island, USA
| | - Helen Lavretsky
- Department of Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, California, USA
| | | | | | - David Mischoulon
- Depression Clinical and Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Zheng M, Zou C, Li M, Huang G, Gao Y, Liu H. Folic Acid Reduces Tau Phosphorylation by Regulating PP2A Methylation in Streptozotocin-Induced Diabetic Mice. Int J Mol Sci 2017; 18:ijms18040861. [PMID: 28422052 PMCID: PMC5412442 DOI: 10.3390/ijms18040861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/23/2022] Open
Abstract
High incidence rate of Alzheimer’s disease (AD) is observed in patients with type 2 diabetes. Aggregated β-amyloid (Aβ) and hyperphosphorylated tau are the hallmarks of AD. Hyperphosphorylated tau has been detected in diabetic animals as well as in diabetic patients. Folates mediate the transfer of one carbon unit, required in various biochemical reactions. The effect of folate on tau phosphorylation in diabetic models still remains unknown. In this study, we investigated the effect and mechanism of folic acid on hyperphosphorylation of tau in streptozotocin (STZ)-induced diabetic mice. Diabetic mice induced by STZ, at the age of 10 weeks, were administered with three levels of folic acid: folic acid-deficient diet, diet with normal folic acid content, and 120 μg/kg folic acid diet for 8 weeks. Levels of serum folate and blood glucose were monitored. Tau phosphorylation, protein phosphatase 2A (PP2A) methylation, and Glycogen synthase kinase 3β (GSK-3β) phosphorylation were detected using Western blot. The S-adenosyl methionine:S-adenosyl homocysteine ratio (SAM:SAH) in brain tissues was also determined. DNA methyltransferase (DNMT) mRNA expression levels were detected using real-time PCR. Folic acid reduced tau hyperphosphorylation at Ser396 in the brain of diabetes mellitus (DM) mice. In addition, PP2A methylation and DNMT1 mRNA expression were significantly increased in DM mice post folic acid treatment. GSK-3β phosphorylation was not regulated by folic acid administration. Folic acid can reduce tau phosphorylation by regulating PP2A methylation in diabetic mice. These results support that folic acid can serve as a multitarget neuronal therapeutic agent for treating diabetes-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Miaoyan Zheng
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Chen Zou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
- Department of Nutrition, Tianjin Stomatological Hospital, Tianjin 300041, China.
| | - Mengyue Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Yuxia Gao
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin 300052, China.
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
27
|
Hoffman A, Taleski G, Sontag E. The protein serine/threonine phosphatases PP2A, PP1 and calcineurin: A triple threat in the regulation of the neuronal cytoskeleton. Mol Cell Neurosci 2017; 84:119-131. [PMID: 28126489 DOI: 10.1016/j.mcn.2017.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/08/2023] Open
Abstract
The microtubule, F-actin and neurofilament networks play a critical role in neuronal cell morphogenesis, polarity and synaptic plasticity. Significantly, the assembly/disassembly and stability of these cytoskeletal networks is crucially modulated by protein phosphorylation and dephosphorylation events. Herein, we aim to more closely examine the role played by three major neuronal Ser/Thr protein phosphatases, PP2A, PP1 and calcineurin, in the homeostasis of the neuronal cytoskeleton. There is strong evidence that these enzymes interact with and dephosphorylate a variety of cytoskeletal proteins, resulting in major regulation of neuronal cytoskeletal dynamics. Conversely, we also discuss how multi-protein cytoskeletal scaffolds can also influence the regulation of these phosphatases, with important implications for neuronal signalling and homeostasis. Not surprisingly, deregulation of these cytoskeletal scaffolds and phosphatase dysfunction are associated with many neurological diseases.
Collapse
Affiliation(s)
- Alexander Hoffman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
28
|
Troesch B, Weber P, Mohajeri MH. Potential Links between Impaired One-Carbon Metabolism Due to Polymorphisms, Inadequate B-Vitamin Status, and the Development of Alzheimer's Disease. Nutrients 2016; 8:E803. [PMID: 27973419 PMCID: PMC5188458 DOI: 10.3390/nu8120803] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia and no preventive or effective treatment has been established to date. The etiology of AD is poorly understood, but genetic and environmental factors seem to play a role in its onset and progression. In particular, factors affecting the one-carbon metabolism (OCM) are thought to be important and elevated homocysteine (Hcy) levels, indicating impaired OCM, have been associated with AD. We aimed at evaluating the role of polymorphisms of key OCM enzymes in the etiology of AD, particularly when intakes of relevant B-vitamins are inadequate. Our review indicates that a range of compensatory mechanisms exist to maintain a metabolic balance. However, these become overwhelmed if the activity of more than one enzyme is reduced due to genetic factors or insufficient folate, riboflavin, vitamin B6 and/or vitamin B12 levels. Consequences include increased Hcy levels and reduced capacity to synthetize, methylate and repair DNA, and/or modulated neurotransmission. This seems to favor the development of hallmarks of AD particularly when combined with increased oxidative stress e.g., in apolipoprotein E (ApoE) ε4 carriers. However, as these effects can be compensated at least partially by adequate intakes of B-vitamins, achieving optimal B-vitamin status for the general population should be a public health priority.
Collapse
Affiliation(s)
- Barbara Troesch
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - Peter Weber
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., Wurmisweg 576, Kaiseraugst 4303, Switzerland.
| |
Collapse
|
29
|
Knockdown of microRNA-195 contributes to protein phosphatase-2A inactivation in rats with chronic brain hypoperfusion. Neurobiol Aging 2016; 45:76-87. [DOI: 10.1016/j.neurobiolaging.2016.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 12/26/2022]
|
30
|
Liu SJ, Zheng P, Wright DK, Dezsi G, Braine E, Nguyen T, Corcoran NM, Johnston LA, Hovens CM, Mayo JN, Hudson M, Shultz SR, Jones NC, O'Brien TJ. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain 2016; 139:1919-38. [PMID: 27289302 DOI: 10.1093/brain/aww116] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 04/11/2016] [Indexed: 11/14/2022] Open
Abstract
There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in neurodegenerative diseases commonly associated with epilepsy, such as Alzheimer's disease and traumatic brain injury. Here we used the protein phosphatase 2A activator sodium selenate to investigate the role of protein phosphatase 2A in three different rat models of epileptogenesis: amygdala kindling, post-kainic acid status epilepticus, and post-traumatic epilepsy. Protein phosphatase 2A activity was decreased, and tau phosphorylation increased, in epileptogenic brain regions in all three models. Continuous sodium selenate treatment mitigated epileptogenesis and prevented the biochemical abnormalities, effects which persisted after drug withdrawal. Our studies indicate that limbic epileptogenesis is associated with downregulation of protein phosphatase 2A and the hyperphosphorylation of tau, and that targeting this mechanism with sodium selenate is a potential anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Shi-Jie Liu
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Ping Zheng
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - David K Wright
- 2 The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia 3 Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Gabi Dezsi
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Emma Braine
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Thanh Nguyen
- 4 Department of Surgery, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Niall M Corcoran
- 4 Department of Surgery, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Leigh A Johnston
- 2 The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia 5 Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Christopher M Hovens
- 4 Department of Surgery, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jamie N Mayo
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Matthew Hudson
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Nigel C Jones
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Terence J O'Brien
- 1 Department of Medicine, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia 6 Department of Neurology, Melbourne Brain Centre, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
PP2A methylation controls sensitivity and resistance to β-amyloid-induced cognitive and electrophysiological impairments. Proc Natl Acad Sci U S A 2016; 113:3347-52. [PMID: 26951658 DOI: 10.1073/pnas.1521018113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of the β-amyloid peptide (Aβ) are thought to contribute to cognitive and behavioral impairments observed in Alzheimer's disease (AD). Protein phosphatase 2A (PP2A) participates in multiple molecular pathways implicated in AD, and its expression and activity are reduced in postmortem brains of AD patients. PP2A is regulated by protein methylation, and impaired PP2A methylation is thought to contribute to increased AD risk in hyperhomocysteinemic individuals. To examine further the link between PP2A and AD, we generated transgenic mice that overexpress the PP2A methylesterase, protein phosphatase methylesterase-1 (PME-1), or the PP2A methyltransferase, leucine carboxyl methyltransferase-1 (LCMT-1), and examined the sensitivity of these animals to behavioral and electrophysiological impairments caused by exogenous Aβ exposure. We found that PME-1 overexpression enhanced these impairments, whereas LCMT-1 overexpression protected against Aβ-induced impairments. Neither transgene affected Aβ production or the electrophysiological response to low concentrations of Aβ, suggesting that these manipulations selectively affect the pathological response to elevated Aβ levels. Together these data identify a molecular mechanism linking PP2A to the development of AD-related cognitive impairments that might be therapeutically exploited to target selectively the pathological effects caused by elevated Aβ levels in AD patients.
Collapse
|
32
|
Sangodkar J, Farrington C, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 2016; 283:1004-24. [PMID: 26507691 PMCID: PMC4803620 DOI: 10.1111/febs.13573] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/29/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of many cellular processes. A confirmed tumor suppressor protein, PP2A is genetically altered or functionally inactivated in many cancers highlighting a need for its therapeutic reactivation. In this review we discuss recent literature on PP2A: the elucidation of its structure and the functions of its subunits, and the identification of molecular lesions and post-translational modifications leading to its dysregulation in cancer. A final section will discuss the proteins and small molecules that modulate PP2A and how these might be used to target dysregulated forms of PP2A to treat cancers and other diseases.
Collapse
Affiliation(s)
- Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Caroline Farrington
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kimberly McClinch
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David B. Kastrinsky
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goutham Narla
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Shultz SR, Wright DK, Zheng P, Stuchbery R, Liu SJ, Sashindranath M, Medcalf RL, Johnston LA, Hovens CM, Jones NC, O'Brien TJ. Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain 2015; 138:1297-313. [PMID: 25771151 DOI: 10.1093/brain/awv053] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/10/2015] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury is a common and serious neurodegenerative condition that lacks a pharmaceutical intervention to improve long-term outcome. Hyperphosphorylated tau is implicated in some of the consequences of traumatic brain injury and is a potential pharmacological target. Protein phosphatase 2A is a heterotrimeric protein that regulates key signalling pathways, and protein phosphatase 2A heterotrimers consisting of the PR55 B-subunit represent the major tau phosphatase in the brain. Here we investigated whether traumatic brain injury in rats and humans would induce changes in protein phosphatase 2A and phosphorylated tau, and whether treatment with sodium selenate-a potent PR55 activator-would reduce phosphorylated tau and improve traumatic brain injury outcomes in rats. Ninety young adult male Long-Evans rats were administered either a fluid percussion injury or sham-injury. A proportion of rats were killed at 2, 24, and 72 h post-injury to assess acute changes in protein phosphatase 2A and tau. Other rats were given either sodium selenate or saline-vehicle treatment that was continuously administered via subcutaneous osmotic pump for 12 weeks. Serial magnetic resonance imaging was acquired prior to, and at 1, 4, and 12 weeks post-injury to assess evolving structural brain damage and axonal injury. Behavioural impairments were assessed at 12 weeks post-injury. The results showed that traumatic brain injury in rats acutely reduced PR55 expression and protein phosphatase 2A activity, and increased the expression of phosphorylated tau and the ratio of phosphorylated tau to total tau. Similar findings were seen in post-mortem brain samples from acute human traumatic brain injury patients, although many did not reach statistical significance. Continuous sodium selenate treatment for 12 weeks after sham or fluid percussion injury in rats increased protein phosphatase 2A activity and PR55 expression, and reduced the ratio of phosphorylated tau to total tau, attenuated brain damage, and improved behavioural outcomes in rats given a fluid percussion injury. Notably, total tau levels were decreased in rats 12 weeks after fluid percussion injury, and several other factors, including the use of anaesthetic, the length of recovery time, and that some brain injury and behavioural dysfunction still occurred in rats treated with sodium selenate must be considered in the interpretation of this study. However, taken together these data suggest protein phosphatase 2A and hyperphosphorylated tau may be involved in the neurodegenerative cascade of traumatic brain injury, and support the potential use of sodium selenate as a novel traumatic brain injury therapy.
Collapse
Affiliation(s)
- Sandy R Shultz
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - David K Wright
- 2 Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ping Zheng
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Ryan Stuchbery
- 3 Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Shi-Jie Liu
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Maithili Sashindranath
- 4 Australian Centre for Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Robert L Medcalf
- 4 Australian Centre for Blood Disease, Monash University, Melbourne, Victoria, 3004, Australia
| | - Leigh A Johnston
- 5 Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christopher M Hovens
- 3 Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Nigel C Jones
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Terence J O'Brien
- 1 Melbourne Brain Centre, Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3050, Australia
| |
Collapse
|
34
|
Sontag JM, Wasek B, Taleski G, Smith J, Arning E, Sontag E, Bottiglieri T. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice. Front Aging Neurosci 2014; 6:214. [PMID: 25202269 PMCID: PMC4141544 DOI: 10.3389/fnagi.2014.00214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/04/2014] [Indexed: 11/13/2022] Open
Abstract
Common functional polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, a key enzyme in folate and homocysteine metabolism, influence risk for a variety of complex disorders, including developmental, vascular, and neurological diseases. MTHFR deficiency is associated with elevation of homocysteine levels and alterations in the methylation cycle. Here, using young and aged Mthfr knockout mouse models, we show that mild MTHFR deficiency can lead to brain-region specific impairment of the methylation of Ser/Thr protein phosphatase 2A (PP2A). Relative to wild-type controls, decreased expression levels of PP2A and leucine carboxyl methyltransferase (LCMT1) were primarily observed in the hippocampus and cerebellum, and to a lesser extent in the cortex of young null Mthfr (-/-) and aged heterozygous Mthfr (+/-) mice. A marked down regulation of LCMT1 correlated with the loss of PP2A/Bα holoenzymes. Dietary folate deficiency significantly decreased LCMT1, methylated PP2A and PP2A/Bα levels in all brain regions examined from aged Mthfr (+/+) mice, and further exacerbated the regional effects of MTHFR deficiency in aged Mthfr (+/-) mice. In turn, the down regulation of PP2A/Bα was associated with enhanced phosphorylation of Tau, a neuropathological hallmark of Alzheimer's disease (AD). Our findings identify hypomethylation of PP2A enzymes, which are major CNS phosphatases, as a novel mechanism by which MTHFR deficiency and Mthfr gene-diet interactions could lead to disruption of neuronal homeostasis, and increase the risk for a variety of neuropsychiatric disorders, including age-related diseases like sporadic AD.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute Callaghan, NSW, Australia
| | - Brandi Wasek
- Institute of Metabolic Disease and Baylor Research Institute, Baylor University Medical Center Dallas, TX, USA
| | - Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute Callaghan, NSW, Australia
| | - Josephine Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute Callaghan, NSW, Australia
| | - Erland Arning
- Institute of Metabolic Disease and Baylor Research Institute, Baylor University Medical Center Dallas, TX, USA
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle and Hunter Medical Research Institute Callaghan, NSW, Australia
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease and Baylor Research Institute, Baylor University Medical Center Dallas, TX, USA
| |
Collapse
|
35
|
Wandzioch E, Pusey M, Werda A, Bail S, Bhaskar A, Nestor M, Yang JJ, Rice LM. PME-1 Modulates Protein Phosphatase 2A Activity to Promote the Malignant Phenotype of Endometrial Cancer Cells. Cancer Res 2014; 74:4295-305. [DOI: 10.1158/0008-5472.can-13-3130] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Yu UY, Yoo BC, Ahn JH. Regulatory B Subunits of Protein Phosphatase 2A Are Involved in Site-specific Regulation of Tau Protein Phosphorylation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:155-61. [PMID: 24757378 PMCID: PMC3994303 DOI: 10.4196/kjpp.2014.18.2.155] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 11/15/2022]
Abstract
Overexpression of amyloid precursor protein with the Swedish mutation causes abnormal hyperphosphorylation of the microtubule-associated protein tau. Hyperphosphorylated isoforms of tau are major components of neurofibrillary tangles, which are histopathological hallmarks of Alzheimer's disease. Protein phosphatase 2A (PP2A), a major tau protein phosphatase, consists of a structural A subunit, catalytic C subunit, and a variety of regulatory B subunits. The B subunits have been reported to modulate function of the PP2A holoenzyme by regulating substrate binding, enzyme activity, and subcellular localization. In the current study, we characterized regulatory B subunit-specific regulation of tau protein phosphorylation. We showed that the PP2A B subunit PPP2R2A mediated dephosphorylation of tau protein at Ser-199, Ser-202/Thr-205, Thr-231, Ser-262, and Ser-422. Down-regulation of PPP2R5D expression decreased tau phosphorylation at Ser-202/Thr-205, Thr-231, and Ser-422, which indicates activation of the tau kinase glycogen synthase kinase 3 beta (GSK3β) by PP2A with PPP2R5D subunit. The level of activating phosphorylation of the GSK3β kinase Akt at Thr-308 and Ser-473 were both increased by PPP2R5D knockdown. We also characterized B subunit-specific phosphorylation sites in tau using mass spectrometric analysis. Liquid chromatography-mass spectrometry revealed that the phosphorylation status of the tau protein may be affected by PP2A, depending on the specific B subunits. These studies further our understanding of the function of various B subunits in mediating site-specific regulation of tau protein phosphorylation.
Collapse
Affiliation(s)
- Un Young Yu
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang 410-768, Korea
| | - Jung-Hyuck Ahn
- Department of Biochemistry, Ewha Womans University College of Medicine, Seoul 158-710, Korea
| |
Collapse
|
37
|
Sontag JM, Sontag E. Protein phosphatase 2A dysfunction in Alzheimer's disease. Front Mol Neurosci 2014; 7:16. [PMID: 24653673 PMCID: PMC3949405 DOI: 10.3389/fnmol.2014.00016] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/22/2014] [Indexed: 01/26/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a large family of enzymes that account for the majority of brain Ser/Thr phosphatase activity. While PP2A enzymes collectively modulate most cellular processes, sophisticated regulatory mechanisms are ultimately responsible for ensuring isoform-specific substrate specificity. Of particular interest to the Alzheimer’s disease (AD) field, alterations in PP2A regulators and PP2A catalytic activity, subunit expression, methylation and/or phosphorylation, have been reported in AD-affected brain regions. “PP2A” dysfunction has been linked to tau hyperphosphorylation, amyloidogenesis and synaptic deficits that are pathological hallmarks of this neurodegenerative disorder. Deregulation of PP2A enzymes also affects the activity of many Ser/Thr protein kinases implicated in AD. This review will more specifically discuss the role of the PP2A/Bα holoenzyme and PP2A methylation in AD pathogenesis. The PP2A/Bα isoform binds to tau and is the primary tau phosphatase. Its deregulation correlates with increased tau phosphorylation in vivo and in AD. Disruption of PP2A/Bα-tau protein interactions likely contribute to tau deregulation in AD. Significantly, alterations in one-carbon metabolism that impair PP2A methylation are associated with increased risk for sporadic AD, and enhanced AD-like pathology in animal models. Experimental studies have linked deregulation of PP2A methylation with down-regulation of PP2A/Bα, enhanced phosphorylation of tau and amyloid precursor protein, tau mislocalization, microtubule destabilization and neuritic defects. While it remains unclear what are the primary events that underlie “PP2A” dysfunction in AD, deregulation of PP2A enzymes definitely affects key players in the pathogenic process. As such, there is growing interest in developing PP2A-centric therapies for AD, but this may be a daunting task without a better understanding of the regulation and function of specific PP2A enzymes.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| | - Estelle Sontag
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle Callaghan, NSW, Australia
| |
Collapse
|
38
|
The Beta-amyloid protein of Alzheimer's disease: communication breakdown by modifying the neuronal cytoskeleton. Int J Alzheimers Dis 2013; 2013:910502. [PMID: 24416616 PMCID: PMC3876695 DOI: 10.1155/2013/910502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/07/2013] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent severe neurological disorders afflicting our aged population. Cognitive decline, a major symptom exhibited by AD patients, is associated with neuritic dystrophy, a degenerative growth state of neurites. The molecular mechanisms governing neuritic dystrophy remain unclear. Mounting evidence indicates that the AD-causative agent, β-amyloid protein (Aβ), induces neuritic dystrophy. Indeed, neuritic dystrophy is commonly found decorating Aβ-rich amyloid plaques (APs) in the AD brain. Furthermore, disruption and degeneration of the neuronal microtubule system in neurons forming dystrophic neurites may occur as a consequence of Aβ-mediated downstream signaling. This review defines potential molecular pathways, which may be modulated subsequent to Aβ-dependent interactions with the neuronal membrane as a consequence of increasing amyloid burden in the brain.
Collapse
|
39
|
Sontag JM, Nunbhakdi-Craig V, Sontag E. Leucine carboxyl methyltransferase 1 (LCMT1)-dependent methylation regulates the association of protein phosphatase 2A and Tau protein with plasma membrane microdomains in neuroblastoma cells. J Biol Chem 2013; 288:27396-27405. [PMID: 23943618 DOI: 10.1074/jbc.m113.490102] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Down-regulation of protein phosphatase 2A (PP2A) methylation occurs in Alzheimer disease (AD). However, the regulation of PP2A methylation remains poorly understood. We have reported that altered leucine carboxyl methyltransferase (LCMT1)-dependent PP2A methylation is associated with down-regulation of PP2A holoenzymes containing the Bα subunit (PP2A/Bα) and subsequent accumulation of phosphorylated Tau in N2a cells, in vivo and in AD. Here, we show that pools of LCMT1, methylated PP2A, and PP2A/Bα are co-enriched in cholesterol-rich plasma membrane microdomains/rafts purified from N2a cells. In contrast, demethylated PP2A is preferentially distributed in non-rafts wherein small amounts of the PP2A methylesterase PME-1 are exclusively present. A methylation-incompetent PP2A mutant is excluded from rafts. Enhanced methylation of PP2A promotes the association of PP2A and Tau with the plasma membrane. Altered PP2A methylation following expression of a catalytically inactive LCMT1 mutant, knockdown of LCMT1, or alterations in one-carbon metabolism all result in a loss of plasma membrane-associated PP2A and Tau in N2a cells. This correlates with accumulation of soluble phosphorylated Tau, a hallmark of AD and other tauopathies. Thus, our findings reveal a distinct compartmentalization of PP2A and PP2A regulatory enzymes in plasma membrane microdomains and identify a novel methylation-dependent mechanism involved in modulating the targeting of PP2A, and its substrate Tau, to the plasma membrane. We propose that alterations in the membrane localization of PP2A and Tau following down-regulation of LCMT1 may lead to PP2A and Tau dysfunction in AD.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
40
|
Abstract
The pathway leading from soluble and monomeric to hyperphosphorylated, insoluble and filamentous tau protein is at the centre of many human neurodegenerative diseases, collectively referred to as tauopathies. Dominantly inherited mutations in MAPT, the gene that encodes tau, cause forms of frontotemporal dementia and parkinsonism, proving that dysfunction of tau is sufficient to cause neurodegeneration and dementia. However, most cases of tauopathy are not inherited in a dominant manner. The first tau aggregates form in a few nerve cells in discrete brain areas. These become self propagating and spread to distant brain regions in a prion-like manner. The prevention of tau aggregation and propagation is the focus of attempts to develop mechanism-based treatments for tauopathies.
Collapse
Affiliation(s)
- Maria Grazia Spillantini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
41
|
Yoshiyama Y, Lee VMY, Trojanowski JQ. Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 2013; 84:784-95. [PMID: 23085937 PMCID: PMC3912572 DOI: 10.1136/jnnp-2012-303144] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on the amyloid hypothesis, controlling β-amyloid protein (Aβ) accumulation is supposed to suppress downstream pathological events, tau accumulation, neurodegeneration and cognitive decline. However, in recent clinical trials, Aβ removal or reducing Aβ production has shown limited efficacy. Moreover, while active immunisation with Aβ resulted in the clearance of Aβ, it did not prevent tau pathology or neurodegeneration. This prompts the concern that it might be too late to employ Aβ targeting therapies once tau mediated neurodegeneration has occurred. Therefore, it is timely and very important to develop tau directed therapies. The pathomechanisms of tau mediated neurodegeneration are unclear but hyperphosphorylation, oligomerisation, fibrillisation and propagation of tau pathology have been proposed as the likely pathological processes that induce loss of function or gain of toxic function of tau, causing neurodegeneration. Here we review the strategies for tau directed treatments based on recent progress in research on tau and our understanding of the pathomechanisms of tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Yasumasa Yoshiyama
- Department of Neurology, Chiba East National Hospital, 673 Nitona, Chuo Ward, Chiba, Chiba 260-8712, Japan.
| | | | | |
Collapse
|
42
|
Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M. "Prion-like" templated misfolding in tauopathies. Brain Pathol 2013; 23:342-9. [PMID: 23587140 PMCID: PMC8028860 DOI: 10.1111/bpa.12044] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/11/2013] [Indexed: 12/20/2022] Open
Abstract
The soluble microtubule-associated protein tau forms hyperphosphorylated, insoluble and filamentous inclusions in a number of neurodegenerative diseases referred to as "tauopathies." In Alzheimer's disease, tau pathology develops in a stereotypical manner, with the first lesions appearing in the locus coeruleus and entorhinal cortex, from where they appear to spread to the hippocampus and neocortex. Propagation of tau pathology is also a characteristic of argyrophilic grain disease, where the tau lesions spread throughout the limbic system. Significantly, isoform composition and morphology of tau filaments can differ between tauopathies, suggesting the existence of distinct tau strains. Extensive experimental findings indicate that prion-like mechanisms underly the pathogenesis of tauopathies.
Collapse
Affiliation(s)
- Florence Clavaguera
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | | | - Ben Falcon
- MRC Laboratory of Molecular BiologyCambridgeUK
| | - Stephan Frank
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | | | - Markus Tolnay
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| |
Collapse
|
43
|
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F. Tau protein phosphatases in Alzheimer's disease: the leading role of PP2A. Ageing Res Rev 2013; 12:39-49. [PMID: 22771380 DOI: 10.1016/j.arr.2012.06.008] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby that might contributes to tau aggregation. Thus, understanding the regulation modes of tau dephosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates and to elaborate protection strategies to cope with these lesions in AD. Among the possible and relatively specific interventions that reverse tau phosphorylation is the stimulation of certain tau phosphatases. Here, we reviewed tau protein phosphatases, their physiological roles and regulation, their involvement in tau phosphorylation and the relevance to AD. We also reviewed the most common compounds acting on each tau phosphatase including PP2A.
Collapse
Affiliation(s)
- Ludovic Martin
- Groupe de Neurobiologie Cellulaire, Homéostasie cellulaire et pathologies, Faculté de Médecine, Limoges, France.
| | | | | | | | | | | |
Collapse
|
44
|
Acute administration of L-DOPA induces changes in methylation metabolites, reduced protein phosphatase 2A methylation, and hyperphosphorylation of Tau protein in mouse brain. J Neurosci 2012; 32:9173-81. [PMID: 22764226 DOI: 10.1523/jneurosci.0125-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Folate deficiency and hypomethylation have been implicated in a number of age-related neurodegenerative disorders including dementia and Parkinson's disease (PD). Levodopa (L-dopa) therapy in PD patients has been shown to cause an increase in plasma total homocysteine as well as depleting cellular concentrations of the methyl donor, S-adenosylmethionine (SAM), and increasing the demethylated product S-adenosylhomocysteine (SAH). Modulation of the cellular SAM/SAH ratio can influence activity of methyltransferase enzymes, including leucine carboxyl methyltransferase that specifically methylates Ser/Thr protein phosphatase 2A (PP2A), a major Tau phosphatase. Here we show in human SH-SY5Y cells, in dopaminergic neurons, and in wild-type mice that l-dopa results in a reduced SAM/SAH ratio that is associated with hypomethylation of PP2A and increased phosphorylation of Tau (p-Tau) at the Alzheimer's disease-like PHF-1 phospho-epitope. The effect of L-dopa on PP2A and p-Tau was exacerbated in cells exposed to folate deficiency. In the folate-deficient mouse model, L-dopa resulted in a marked depletion of SAM and an increase in SAH in various brain regions with parallel downregulation of PP2A methylation and increased Tau phosphorylation. L-Dopa also enhanced demethylated PP2A amounts in the liver. These findings reveal a novel mechanism involving methylation-dependent pathways in L-dopa induces PP2A hypomethylation and increases Tau phosphorylation, which may be potentially detrimental to neuronal cells.
Collapse
|
45
|
Folate and Alzheimer: when time matters. J Neural Transm (Vienna) 2012; 120:211-24. [DOI: 10.1007/s00702-012-0822-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/06/2012] [Indexed: 12/14/2022]
|
46
|
Sents W, Ivanova E, Lambrecht C, Haesen D, Janssens V. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J 2012; 280:644-61. [PMID: 22443683 DOI: 10.1111/j.1742-4658.2012.08579.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protein phosphatase type 2A (PP2A) enzymes constitute a large family of Ser/Thr phosphatases with multiple functions in cellular signaling and physiology. The composition of heterotrimeric PP2A holoenzymes, resulting from the combinatorial assembly of a catalytic C subunit, a structural A subunit, and regulatory B-type subunit, provides the essential determinants for substrate specificity, subcellular targeting, and fine-tuning of phosphatase activity, largely explaining why PP2A is functionally involved in so many diverse physiological processes, sometimes in seemingly opposing ways. In this review, we highlight how PP2A holoenzyme biogenesis and enzymatic activity are controlled by a sophisticatedly coordinated network of five PP2A modulators, consisting of α4, phosphatase 2A phosphatase activator (PTPA), leucine carboxyl methyl transferase 1 (LCMT1), PP2A methyl esterase 1 (PME-1) and, potentially, target of rapamycin signaling pathway regulator-like 1 (TIPRL1), which serve to prevent promiscuous phosphatase activity until the holoenzyme is completely assembled. Likewise, these modulators may come into play when PP2A holoenzymes are disassembled following particular cellular stresses. Malfunctioning of these cellular control mechanisms contributes to human disease. The potential therapeutic benefits or pitfalls of interfering with these regulatory mechanisms will be briefly discussed.
Collapse
Affiliation(s)
- Ward Sents
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
47
|
Sontag JM, Nunbhakdi-Craig V, White CL, Halpain S, Sontag E. The protein phosphatase PP2A/Bα binds to the microtubule-associated proteins Tau and MAP2 at a motif also recognized by the kinase Fyn: implications for tauopathies. J Biol Chem 2012; 287:14984-93. [PMID: 22403409 DOI: 10.1074/jbc.m111.338681] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The predominant brain microtubule-associated proteins MAP2 and tau play a critical role in microtubule cytoskeletal organization and function. We have previously reported that PP2A/Bα, a major protein phosphatase 2A (PP2A) holoenzyme, binds to and dephosphorylates tau, and regulates microtubule stability. Here, we provide evidence that MAP2 co-purifies with and is dephosphorylated by endogenous PP2A/Bα in bovine gray matter. It co-localizes with PP2A/Bα in immature and mature human neuronal cell bodies. PP2A co-immunoprecipitates with and directly interacts with MAP2. Using in vitro binding assays, we show that PP2A/Bα binds to MAP2c isoforms through a region encompassing the microtubule-binding domain and upstream proline-rich region. Tau and MAP2 compete for binding to and dephosphorylation by PP2A/Bα. Remarkably, the protein-tyrosine kinase Fyn, which binds to the proline-rich RTPPKSP motif conserved in both MAP2 and tau, inhibits the interaction of PP2A/Bα with either tau or MAP2c. The corresponding synthetic RTPPKSP peptide, but not the phosphorylated RpTPPKSP version, competes with Tau and MAP2c for binding to PP2A/Bα. Significantly, down-regulation of PP2A/Bα and deregulation of Fyn-Tau protein interactions have been linked to enhanced tau phosphorylation in Alzheimer disease. Together, our results suggest that PP2A/Bα is part of segregated MAP2 and tau signaling scaffolds that can coordinate the action of key kinases and phosphatases involved in modulating neuronal plasticity. Deregulation of these compartmentalized multifunctional protein complexes is likely to contribute to tau deregulation, microtubule disruption, and altered signaling in tauopathies.
Collapse
Affiliation(s)
- Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | |
Collapse
|
48
|
Nykänen NP, Kysenius K, Sakha P, Tammela P, Huttunen HJ. γ-Aminobutyric acid type A (GABAA) receptor activation modulates tau phosphorylation. J Biol Chem 2012; 287:6743-52. [PMID: 22235112 DOI: 10.1074/jbc.m111.309385] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abnormal phosphorylation and aggregation of the microtubule-associated protein Tau are hallmarks of various neurodegenerative diseases, such as Alzheimer disease. Molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. We have developed a novel live cell reporter system based on protein-fragment complementation assay to study dynamic changes in Tau phosphorylation status. In this assay, fusion proteins of Tau and Pin1 (peptidyl-prolyl cis-trans-isomerase 1) carrying complementary fragments of a luciferase protein serve as a sensor of altered protein-protein interaction between Tau and Pin1, a critical regulator of Tau dephosphorylation at several disease-associated proline-directed phosphorylation sites. Using this system, we identified several structurally distinct GABA(A) receptor modulators as novel regulators of Tau phosphorylation in a chemical library screen. GABA(A) receptor activation promoted specific phosphorylation of Tau at the AT8 epitope (Ser-199/Ser-202/Thr-205) in cultures of mature cortical neurons. Increased Tau phosphorylation by GABA(A) receptor activity was associated with reduced Tau binding to protein phosphatase 2A and was dependent on Cdk5 but not GSK3β kinase activity.
Collapse
Affiliation(s)
- Niko-Petteri Nykänen
- Neuroscience Center, Faculty of Pharmacy, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | |
Collapse
|
49
|
Fuso A, Scarpa S. One-carbon metabolism and Alzheimer's disease: is it all a methylation matter? Neurobiol Aging 2011; 32:1192-5. [DOI: 10.1016/j.neurobiolaging.2011.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022]
|
50
|
Obeid R, Schlundt J, Umanskaya N, Herrmann W, Herrmann M. Folate is related to phosphorylated neurofilament-H and P-tau (Ser396) in rat brain. J Neurochem 2011; 117:1047-54. [PMID: 21517845 DOI: 10.1111/j.1471-4159.2011.07280.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein phosphatase PP2A dephosphorylates phosphorylated tau (P-tau) and neurofilaments (pNFs). PP2A is S-adenosylmethionine (SAM)-dependent and might thus link methylation with neurodegeneration. Low SAM and increased S-adenosylhomocysteine (SAH) can enhance the risk of dementia. We studied the effect of hyperhomocysteinemia on P-tau (Ser396), pNF-H (heavy chain), and PP2A-activity and level (the C subunit) in rat brain. Wistar rats (total n=55) were fed either on a standard, a homocystine 1.7% or a methionine 2.4%-rich diet for 5 months. P-tau was tested in 21 frontal cortex tissue slices using immuno-fluorescence. Concentrations of pNF-H and the activity and level of PP2A were measured in brain extracts. Concentrations of homocysteine, SAM and SAH strongly increased in plasma of rats on the modified diets. The diets caused lowering of plasma folate and vitamin B12 and a significant increase in P-tau (Ser396) in brain tissues but PP2A activity and level were unchanged. Plasma folate correlated to brain tissue PP2A activity (r=0.28), pNF-H (r=-0.30), and P-tau (Ser396) staining (r=-0.57) all p<0.05. Phosphorylation of brain functional proteins was related to folate. The effect of the diet on P-tau and pNF-H seemed not to be explained by a lower activity or protein level of PP2A. Folate might prove protective against multiple steps in the process of neurodegeneration.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine/Central Laboratory, University Hospital, Saarland University, Homburg, Germany.
| | | | | | | | | |
Collapse
|