1
|
Voerman S, Broersen R, Swagemakers SMA, De Zeeuw CI, van der Spek PJ. Plasticity mechanisms of genetically distinct Purkinje cells. Bioessays 2024; 46:e2400008. [PMID: 38697917 DOI: 10.1002/bies.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Collapse
Affiliation(s)
- Stijn Voerman
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Hassan M, Yasir M, Shahzadi S, Chun W, Kloczkowski A. Molecular Role of Protein Phosphatases in Alzheimer's and Other Neurodegenerative Diseases. Biomedicines 2024; 12:1097. [PMID: 38791058 PMCID: PMC11117500 DOI: 10.3390/biomedicines12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is distinguished by the gradual loss of cognitive function, which is associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases (PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1 and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major causing factor of AD through the deregulation of the tau protein. Here, we review recent advances on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A better understanding of this problem may lead to the development of phosphatase-targeted therapies for neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Wu B, Post L, Lin Z, Schonewille M. PP2B-Dependent Cerebellar Plasticity Sets the Amplitude of the Vestibulo-ocular Reflex during Juvenile Development. J Neurosci 2024; 44:e1211232024. [PMID: 38527808 PMCID: PMC11044099 DOI: 10.1523/jneurosci.1211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/27/2024] Open
Abstract
Throughout life, the cerebellum plays a central role in the coordination and optimization of movements, using cellular plasticity to adapt a range of behaviors. Whether these plasticity processes establish a fixed setpoint during development, or continuously adjust behaviors throughout life, is currently unclear. Here, by spatiotemporally manipulating the activity of protein phosphatase 2B (PP2B), an enzyme critical for cerebellar plasticity in male and female mice, we examined the consequences of disrupted plasticity on the performance and adaptation of the vestibulo-ocular reflex (VOR). We find that, in contrast to Purkinje cell (PC)-specific deletion starting early postnatally, acute pharmacological as well as adult-onset genetic deletion of PP2B affects all forms of VOR adaptation but not the level of VOR itself. Next, we show that PC-specific genetic deletion of PP2B in juvenile mice leads to a progressive loss of the protein PP2B and a concurrent change in the VOR, in addition to the loss of adaptive abilities. Finally, re-expressing PP2B in adult mice that lack PP2B expression from early development rescues VOR adaptation but does not affect the performance of the reflex. Together, our results indicate that chronic or acute, genetic, or pharmacological block of PP2B disrupts the adaptation of the VOR. In contrast, only the absence of plasticity during cerebellar development affects the setpoint of VOR, an effect that cannot be corrected after maturation of the cerebellum. These findings suggest that PP2B-dependent cerebellar plasticity is required during a specific period to achieve the correct setpoint of the VOR.
Collapse
Affiliation(s)
- Bin Wu
- Department of Neurology & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neuroscience, Erasmus MC, Rotterdam 3015CN, The Netherlands
| | - Laura Post
- Department of Neuroscience, Erasmus MC, Rotterdam 3015CN, The Netherlands
| | - Zhanmin Lin
- Department of Neuroscience, Erasmus MC, Rotterdam 3015CN, The Netherlands
| | | |
Collapse
|
4
|
Kakizawa S, Arasaki T, Yoshida A, Sato A, Takino Y, Ishigami A, Akaike T, Yanai S, Endo S. Essential role of ROS - 8-Nitro-cGMP signaling in long-term memory of motor learning and cerebellar synaptic plasticity. Redox Biol 2024; 70:103053. [PMID: 38340634 PMCID: PMC10869263 DOI: 10.1016/j.redox.2024.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Although reactive oxygen species (ROS) are known to have harmful effects in organisms, recent studies have demonstrated expression of ROS synthases at various parts of the organisms and the controlled ROS generation, suggesting possible involvement of ROS signaling in physiological events of individuals. However, physiological roles of ROS in the CNS, including functional roles in higher brain functions or neuronal activity-dependent ROS production, remain to be elucidated. Here, we demonstrated involvement of ROS - 8-NO2-cGMP signaling in motor learning and synaptic plasticity in the cerebellum. In the presence of inhibitors of ROS signal or ROS synthases, cerebellar motor learning was impaired, and the stimulus inducing long-term depression (LTD), cellular basis for the motor learning, failed to induce LTD but induced long-term potentiation (LTP)-like change at cerebellar synapses. Furthermore, ROS was produced by LTD-inducing stimulus in enzyme-dependent manner, and excess administration of the antioxidant vitamin E impaired cerebellar motor learning, suggesting beneficial roles of endogenous ROS in the learning. As a downstream signal, involvement of 8-NO2-cGMP in motor learning and cerebellar LTD were also revealed. These findings indicate that ROS - 8-NO2-cGMP signal is activated by neuronal activity and is essential for cerebellum-dependent motor learning and synaptic plasticity, demonstrating involvement of the signal in physiological function of brain systems.
Collapse
Affiliation(s)
- Sho Kakizawa
- Department of Biological Chemistry, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| | - Tomoko Arasaki
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Ayano Yoshida
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Ayami Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Shuichi Yanai
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan
| | - Shogo Endo
- Aging Neuroscience Research Team, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
5
|
Abstract
The cerebellar cortex is an important system for relating neural circuits and learning. Its promise reflects the longstanding idea that it contains simple, repeated circuit modules with only a few cell types and a single plasticity mechanism that mediates learning according to classical Marr-Albus models. However, emerging data have revealed surprising diversity in neuron types, synaptic connections, and plasticity mechanisms, both locally and regionally within the cerebellar cortex. In light of these findings, it is not surprising that attempts to generate a holistic model of cerebellar learning across different behaviors have not been successful. While the cerebellum remains an ideal system for linking neuronal function with behavior, it is necessary to update the cerebellar circuit framework to achieve its great promise. In this review, we highlight recent advances in our understanding of cerebellar-cortical cell types, synaptic connections, signaling mechanisms, and forms of plasticity that enrich cerebellar processing.
Collapse
Affiliation(s)
- Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina, USA;
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Saviuk N, Chong Y, Wang P, Bermudez S, Zhao Z, Bhaskaran AA, Bowie D, Sonenberg N, Cooper E, Haghighi AP. Loss of 4E-BP converts cerebellar long-term depression to long-term potentiation. Cell Rep 2022; 39:110911. [PMID: 35675781 DOI: 10.1016/j.celrep.2022.110911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/31/2021] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic perturbances in translational regulation result in defects in cerebellar motor learning; however, little is known about the role of translational mechanisms in the regulation of cerebellar plasticity. We show that genetic removal of 4E-BP, a translational suppressor and target of mammalian target of rapamycin complex 1, results in a striking change in cerebellar synaptic plasticity. We find that cerebellar long-term depression (LTD) at parallel fiber-Purkinje cell synapses is converted to long-term potentiation in 4E-BP knockout mice. Biochemical and pharmacological experiments suggest that increased phosphatase activity largely accounts for the defects in LTD. Our results point to a model in which translational regulation through the action of 4E-BP plays a critical role in establishing the appropriate kinase/phosphatase balance required for normal synaptic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Natasha Saviuk
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Yumaine Chong
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada
| | - Peng Wang
- Biochemistry, McGill University, Montréal, QC, Canada
| | - Sara Bermudez
- Biochemistry, McGill University, Montréal, QC, Canada
| | - Zhe Zhao
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | - Arjun A Bhaskaran
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Derek Bowie
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | - Ellis Cooper
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada.
| | - A Pejmun Haghighi
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Physiology, McGill University, Montréal, QC, Canada; Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
7
|
Lautz JD, Tsegay KB, Zhu Z, Gniffke EP, Welsh JP, Smith SEP. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states. Cell Rep 2021; 37:110076. [PMID: 34852231 PMCID: PMC8722361 DOI: 10.1016/j.celrep.2021.110076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022] Open
Abstract
A core network of widely expressed proteins within the glutamatergic post-synapse mediates activity-dependent synaptic plasticity throughout the brain, but the specific proteomic composition of synapses differs between brain regions. Here, we address the question, how does proteomic composition affect activity-dependent protein-protein interaction networks (PINs) downstream of synaptic activity? Using quantitative multiplex co-immunoprecipitation, we compare the PIN response of in vivo or ex vivo neurons derived from different brain regions to activation by different agonists or different forms of eyeblink conditioning. We report that PINs discriminate between incoming stimuli using differential kinetics of overlapping and non-overlapping PIN parameters. Further, these "molecular logic rules" differ by brain region. We conclude that although the PIN of the glutamatergic post-synapse is expressed widely throughout the brain, its activity-dependent dynamics show remarkable stimulus-specific and brain-region-specific diversity. This diversity may help explain the challenges in developing molecule-specific drug therapies for neurological disorders.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kaleb B Tsegay
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Zhiyi Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
8
|
Nair JD, Braksator E, Yucel BP, Fletcher-Jones A, Seager R, Mellor JR, Bashir ZI, Wilkinson KA, Henley JM. Sustained postsynaptic kainate receptor activation downregulates AMPA receptor surface expression and induces hippocampal LTD. iScience 2021; 24:103029. [PMID: 34553130 PMCID: PMC8441151 DOI: 10.1016/j.isci.2021.103029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/21/2023] Open
Abstract
It is well established that long-term depression (LTD) can be initiated by either NMDA or mGluR activation. Here we report that sustained activation of GluK2 subunit-containing kainate receptors (KARs) leads to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) endocytosis and induces LTD of AMPARs (KAR-LTDAMPAR) in hippocampal neurons. The KAR-evoked loss of surface AMPARs is blocked by the ionotropic KAR inhibitor UBP 310 indicating that KAR-LTDAMPAR requires KAR channel activity. Interestingly, however, blockade of PKC or PKA also reduces GluA2 surface expression and occludes the effect of KAR activation. In acute hippocampal slices, kainate application caused a significant loss of GluA2-containing AMPARs from synapses and long-lasting depression of AMPAR excitatory postsynaptic currents in CA1. These data, together with our previously reported KAR-LTPAMPAR, demonstrate that KARs can bidirectionally regulate synaptic AMPARs and synaptic plasticity via different signaling pathways.
Collapse
Affiliation(s)
- Jithin D Nair
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Ellen Braksator
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Busra P Yucel
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandra Fletcher-Jones
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Richard Seager
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Zafar I Bashir
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kevin A Wilkinson
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Jeremy M Henley
- Centre for Synaptic Plasticity, School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.,Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
9
|
NMDARs in granule cells contribute to parallel fiber-Purkinje cell synaptic plasticity and motor learning. Proc Natl Acad Sci U S A 2021; 118:2102635118. [PMID: 34507990 PMCID: PMC8449340 DOI: 10.1073/pnas.2102635118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Long-term synaptic plasticity is believed to be the cellular substrate of learning and memory. Synaptic plasticity rules are defined by the specific complement of receptors at the synapse and the associated downstream signaling mechanisms. In young rodents, at the cerebellar synapse between granule cells (GC) and Purkinje cells (PC), bidirectional plasticity is shaped by the balance between transcellular nitric oxide (NO) driven by presynaptic N-methyl-D-aspartate receptor (NMDAR) activation and postsynaptic calcium dynamics. However, the role and the location of NMDAR activation in these pathways is still debated in mature animals. Here, we show in adult rodents that NMDARs are present and functional in presynaptic terminals where their activation triggers NO signaling. In addition, we find that selective genetic deletion of presynaptic, but not postsynaptic, NMDARs prevents synaptic plasticity at parallel fiber-PC (PF-PC) synapses. Consistent with this finding, the selective deletion of GC NMDARs affects adaptation of the vestibulo-ocular reflex. Thus, NMDARs presynaptic to PCs are required for bidirectional synaptic plasticity and cerebellar motor learning.
Collapse
|
10
|
Hwang Y, Kim HC, Shin EJ. Repeated exposure to microcystin-leucine-arginine potentiates excitotoxicity induced by a low dose of kainate. Toxicology 2021; 460:152887. [PMID: 34352349 DOI: 10.1016/j.tox.2021.152887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023]
Abstract
Microcystin-leucine-arginine (MLCR) is a cyanobacterial toxin, and has been demonstrated to cause neurotoxicity. In addition, MCLR has been identified as an inhibitor of protein phosphatase (PP)1 and PP2A, which are known to regulate the phosphorylation of various molecules related to synaptic excitability. Thus, in the present study, we examined whether MCLR exposure affects seizures induced by a low dose of kainic acid (KA; 0.05 μg, i.c.v.) administration. KA-induced seizure occurrence and seizure score significantly increased after repeated exposure to MCLR (2.5 or 5.0 μg/kg, i.p., once a day for 10 days), but not after acute MCLR exposure (2.5 or 5.0 μg/kg, i.p., 2 h and 30 min prior to KA administration), and hippocampal neuronal loss was consistently facilitated by repeated exposure to MCLR. In addition, repeated MCLR significantly elevated the membrane expression of kainate receptor GluK2 subunits, p-pan-protein kinase C (PKC), and p-extracellular signal-related kinase (ERK) at 1 h after KA. However, KA-induced membrane expression of Ca2+/calmodulin-dependent kinase II (CaMKII) was significantly reduced by repeated MCLR exposure. Consistent with the enhanced seizures and neurodegeneration, MCLR exposure significantly potentiated KA-induced oxidative stress and microglial activation, which was accompanied by increased expression of p-ERK and p-PKCδ in the hippocampus. The combined results suggest that repeated MCLR exposure potentiates KA-induced excitotoxicity in the hippocampus by increasing membrane GluK2 expression and enhancing oxidative stress and neuroinflammation through the modulation of p-CaMKII, p-PKC, and p-ERK.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
11
|
Zhou Q, Qin J, Liang Y, Zhang W, He S, Tissir F, Qu Y, Zhou L. Celsr3 is required for Purkinje cell maturation and regulates cerebellar postsynaptic plasticity. iScience 2021; 24:102812. [PMID: 34308297 PMCID: PMC8283331 DOI: 10.1016/j.isci.2021.102812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Atypical cadherin Celsr3 is critical for brain embryonic development, and its role in the postnatal cerebellum remains unknown. Using Celsr3-GFP mice, Celsr3 shows high expression in postnatal Purkinje cells (PCs). Mice with conditional knockout (cKO) of Celsr3 in postnatal PCs exhibit deficit in motor coordination and learning, atrophic PC dendrites, and decreased synapses. Whole-PC recording in cerebellar slices discloses a reduction frequency of mEPSC and defective postsynaptic plasticity (LTP and LTD) in Celsr3 cKO mutants. Wnt5a perfusion enhances LTP formation, which could be occluded by cAMP agonist and diminished by cAMP antagonist in control, but not in Celsr3 cKO or Fzd3 cKO cerebellar slices. Celsr3 cKO resulted in the failure of mGluR1 agonist-induced LTD and paired stimulation-induced PKCα overexpression in PC dendrites, and downregulation of mGluR1 expression compvared to controls. In conclusion, Celsr3 is required for PCs maturation and regulates postsynaptic LTP and LTD through Wnt5a/cAMP and mGluR1/PKCα signaling respectively. Celsr3 cKO in postnatal PCs impairs mouse motor coordination and learning Celsr3 inactivation affects the maturation of PC dendrites and synapses Celsr3 is required for the cerebellar LTP induction via the Wnt5a/cAMP signaling Celsr3 regulates the cerebellar LTD induction through the mGluR1/PKCα pathway
Collapse
Affiliation(s)
- Qinji Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Jingwen Qin
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Yaying Liang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Wei Zhang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Siyuan He
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, Brussels, Belgium.,College of Life and Health Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, P.R. China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, P.R. China.,The First Affiliated Hospital of Jian University, Guangzhou 510632, P. R. China.,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, P. R. China
| |
Collapse
|
12
|
Reyes-García SE, Escobar ML. Calcineurin Participation in Hebbian and Homeostatic Plasticity Associated With Extinction. Front Cell Neurosci 2021; 15:685838. [PMID: 34220454 PMCID: PMC8242195 DOI: 10.3389/fncel.2021.685838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
In nature, animals need to adapt to constant changes in their environment. Learning and memory are cognitive capabilities that allow this to happen. Extinction, the reduction of a certain behavior or learning previously established, refers to a very particular and interesting type of learning that has been the basis of a series of therapies to diminish non-adaptive behaviors. In recent years, the exploration of the cellular and molecular mechanisms underlying this type of learning has received increasing attention. Hebbian plasticity (the activity-dependent modification of the strength or efficacy of synaptic transmission), and homeostatic plasticity (the homeostatic regulation of plasticity) constitute processes intimately associated with memory formation and maintenance. Particularly, long-term depression (LTD) has been proposed as the underlying mechanism of extinction, while the protein phosphatase calcineurin (CaN) has been widely related to both the extinction process and LTD. In this review, we focus on the available evidence that sustains CaN modulation of LTD and its association with extinction. Beyond the classic view, we also examine the interconnection among extinction, Hebbian and homeostatic plasticity, as well as emergent evidence of the participation of kinases and long-term potentiation (LTP) on extinction learning, highlighting the importance of the balance between kinases and phosphatases in the expression of extinction. Finally, we also integrate data that shows the association between extinction and less-studied phenomena, such as synaptic silencing and engram formation that open new perspectives in the field.
Collapse
Affiliation(s)
- Salma E Reyes-García
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martha L Escobar
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
13
|
Serine/Threonine Phosphatases in LTP: Two B or Not to Be the Protein Synthesis Blocker-Induced Impairment of Early Phase. Int J Mol Sci 2021; 22:ijms22094857. [PMID: 34064311 PMCID: PMC8125358 DOI: 10.3390/ijms22094857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Dephosphorylation of target proteins at serine/threonine residues is one of the most crucial mechanisms regulating their activity and, consequently, the cellular functions. The role of phosphatases in synaptic plasticity, especially in long-term depression or depotentiation, has been reported. We studied serine/threonine phosphatase activity during the protein synthesis blocker (PSB)-induced impairment of long-term potentiation (LTP). Established protein phosphatase 2B (PP2B, calcineurin) inhibitor cyclosporin A prevented the LTP early phase (E-LTP) decline produced by pretreatment of hippocampal slices with cycloheximide or anisomycin. For the first time, we directly measured serine/threonine phosphatase activity during E-LTP, and its significant increase in PSB-treated slices was demonstrated. Nitric oxide (NO) donor SNAP also heightened phosphatase activity in the same manner as PSB, and simultaneous application of anisomycin + SNAP had no synergistic effect. Direct measurement of the NO production in hippocampal slices by the NO-specific fluorescent probe DAF-FM revealed that PSBs strongly stimulate the NO concentration in all studied brain areas: CA1, CA3, and dentate gyrus (DG). Cyclosporin A fully abolished the PSB-induced NO production in the hippocampus, suggesting a close relationship between nNOS and PP2B activity. Surprisingly, cyclosporin A alone impaired short-term plasticity in CA1 by decreasing paired-pulse facilitation, which suggests bi-directionality of the influences of PP2B in the hippocampus. In conclusion, we proposed a minimal model of signaling events that occur during LTP induction in normal conditions and the PSB-treated slices.
Collapse
|
14
|
Mitoma H, Kakei S, Yamaguchi K, Manto M. Physiology of Cerebellar Reserve: Redundancy and Plasticity of a Modular Machine. Int J Mol Sci 2021; 22:4777. [PMID: 33946358 PMCID: PMC8124536 DOI: 10.3390/ijms22094777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
The cerebellum is endowed with the capacity for compensation and restoration after pathological injury, a property known as cerebellar reserve. Such capacity is attributed to two unique morphological and physiological features of the cerebellum. First, mossy fibers that convey peripheral and central information run mediolaterally over a wide area of the cerebellum, resulting in the innervation of multiple microzones, commonly known as cerebellar functional units. Thus, a single microzone receives redundant information that can be used in pathological conditions. Secondly, the circuitry is characterized by a co-operative interplay among various forms of synaptic plasticity. Recent progress in understanding the mechanisms of redundant information and synaptic plasticity has allowed outlining therapeutic strategies potentiating these neural substrates to enhance the cerebellar reserve, taking advantage of the unique physiological properties of the cerebellum which appears as a modular and potentially reconfiguring brain structure.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Shinji Kakei
- Laboratory for Movement Disorders, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kazuhiko Yamaguchi
- Department of Ultrastructural Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Tokyo 187-8551, Japan;
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000 Charleroi, Belgium;
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
15
|
Maltsev AV, Balaban PM. PP1/PP2A phosphatase inhibition-induced metaplasticity in protein synthesis blocker-treated hippocampal slices: LTP and LTD, or There and Back again. Biochem Biophys Res Commun 2021; 558:64-70. [PMID: 33901925 DOI: 10.1016/j.bbrc.2021.04.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 01/06/2023]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are key forms of synaptic plasticity in the hippocampus. LTP and LTD are believed to underlie the processes occurring during learning and memory. Search of mechanisms responsible for switching from LTP to LTD and vice versa is an important fundamental task. Protein synthesis blockers (PSB) are widely used in models of memory impairment and LTP suppression. Here, we found that blockade of serine/threonine phosphatases 1 (PP1) and 2A (PP2A) with the specific blockers, calyculin A (CalyA) or okadaic acid (OA), and simultaneous blockade of the protein translation by anisomycin or cycloheximide leads to a switch from PSB-impaired LTP to LTD. PP1/PP2A-dependent LTD was extremely sensitive to the intensity of the test stimuli, whose increase restored the field excitatory postsynaptic potentials (fEPSP) to the values corresponding to control LTP in the non-treated slices. PP1/PP2A blockade affected the basal synaptic transmission, increasing the paired-pulse facilitation (PPF) ratio, and restored the PSB-impaired PPF 3 h after tetanus. Prolonged exposure to anisomycin led to the NO synthesis increase (measured using fluorescent dye) both in the dendrites and somata of CA1, CA3, dentate gyrus (DG) hippocampal layers. OA partially prevented the NO production in the CA1 dendrites, as well in the CA3 and DG somas. Direct measurements of changes in serine/threonine phosphatase (STPP) activity revealed importance of the PP1/PP2A-dependent component in the late LTP phase (L-LTP) in anisomycin-treated slices. Thus, serine/threonine phosphatases PP1/PP2A influence both basal synaptic transmission and stimulation-induced synaptic plasticity.
Collapse
Affiliation(s)
- Alexander V Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia.
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485, Butlerova 5A, Moscow, Russia
| |
Collapse
|
16
|
Bonnan A, Rowan MMJ, Baker CA, Bolton MM, Christie JM. Autonomous Purkinje cell activation instructs bidirectional motor learning through evoked dendritic calcium signaling. Nat Commun 2021; 12:2153. [PMID: 33846328 PMCID: PMC8042043 DOI: 10.1038/s41467-021-22405-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 03/01/2021] [Indexed: 01/19/2023] Open
Abstract
The signals in cerebellar Purkinje cells sufficient to instruct motor learning have not been systematically determined. Therefore, we applied optogenetics in mice to autonomously excite Purkinje cells and measured the effect of this activity on plasticity induction and adaptive behavior. Ex vivo, excitation of channelrhodopsin-2-expressing Purkinje cells elicits dendritic Ca2+ transients with high-intensity stimuli initiating dendritic spiking that additionally contributes to the Ca2+ response. Channelrhodopsin-2-evoked Ca2+ transients potentiate co-active parallel fiber synapses; depression occurs when Ca2+ responses were enhanced by dendritic spiking. In vivo, optogenetic Purkinje cell activation drives an adaptive decrease in vestibulo-ocular reflex gain when vestibular stimuli are paired with relatively small-magnitude Purkinje cell Ca2+ responses. In contrast, pairing with large-magnitude Ca2+ responses increases vestibulo-ocular reflex gain. Optogenetically induced plasticity and motor adaptation are dependent on endocannabinoid signaling, indicating engagement of this pathway downstream of Purkinje cell Ca2+ elevation. Our results establish a causal relationship among Purkinje cell Ca2+ signal size, opposite-polarity plasticity induction, and bidirectional motor learning.
Collapse
Affiliation(s)
- Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Matthew M J Rowan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | | | - M McLean Bolton
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
- University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
17
|
Szabó LE, Marcello GM, Süth M, Sótonyi P, Rácz B. Distribution of cortactin in cerebellar Purkinje cell spines. Sci Rep 2021; 11:1375. [PMID: 33446758 PMCID: PMC7809465 DOI: 10.1038/s41598-020-80469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023] Open
Abstract
Dendritic spines are the primary sites of excitatory transmission in the mammalian brain. Spines of cerebellar Purkinje Cells (PCs) are plastic, but they differ from forebrain spines in a number of important respects, and the mechanisms of spine plasticity differ between forebrain and cerebellum. Our previous studies indicate that in hippocampal spines cortactin-a protein that stabilizes actin branch points-resides in the spine core, avoiding the spine shell. To see whether the distribution of cortactin differs in PC spines, we examined its subcellular organization using quantitative preembedding immunoelectron microscopy. We found that cortactin was enriched in the spine shell, associated with the non-synaptic membrane, and was also situated within the postsynaptic density (PSD). This previously unrecognized distribution of cortactin within PC spines may underlie structural and functional differences in excitatory spine synapses between forebrain, and cerebellum.
Collapse
Affiliation(s)
- Lilla E. Szabó
- grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary
| | - G. Mark Marcello
- grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary
| | - Miklós Süth
- grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary
| | - Péter Sótonyi
- grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary
| | - Bence Rácz
- grid.483037.b0000 0001 2226 5083Department of Anatomy and Histology, University of Veterinary Medicine Budapest, István u. 2., 1078 Budapest, Hungary
| |
Collapse
|
18
|
Nagao S. Ocular Reflex Adaptation as an Experimental Model of Cerebellar Learning -- In Memory of Masao Ito -. Neuroscience 2020; 462:191-204. [PMID: 32710914 DOI: 10.1016/j.neuroscience.2020.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/26/2023]
Abstract
Masao Ito proposed a cerebellar learning hypothesis with Marr and Albus in the early 1970s. He suggested that cerebellar flocculus (FL) Purkinje cells (PCs), which directly inhibit the vestibular nuclear neurons driving extraocular muscle motor neurons, adaptively control the horizontal vestibulo-ocular reflex (HVOR) through the modification of mossy and parallel fiber-mediated vestibular responsiveness by visual climbing fiber (CF) inputs. Later, it was suggested that the same FL PCs adaptively control the horizontal optokinetic response (HOKR) in the same manner through the modification of optokinetic responsiveness in rodents and rabbits. In 1982, Ito and his colleagues discovered the plasticity of long-term depression (LTD) at parallel fiber (PF)-PC synapses after conjunctive stimulation of mossy or parallel fibers with CFs. Long-term potentiation (LTP) at PF-PC synapses by weak PF stimulation alone was found later. Many lines of experimental evidence have supported their hypothesis using various experimental methods and materials for the past 50 years by many research groups. Although several controversial findings were presented regarding their hypothesis, the reasons underlying many of them were clarified. Today, their hypothesis is considered as a fundamental mechanism of cerebellar learning. Furthermore, it was found that the memory of adaptation is transferred from the FL to vestibular nuclei for consolidation by repetition of adaptation through the plasticity of vestibular nuclear neurons. In this article, after overviewing their cerebellar learning hypothesis, I discuss possible roles of LTD and LTP in gain-up and gain-down HVOR/HOKR adaptations and refer to the expansion of their hypothesis to cognitive functions.
Collapse
Affiliation(s)
- Soichi Nagao
- Laboratory for Integrative Brain Function, Nozomi Hospital, Komuro 3170, Ina, Kitaadachi-gun, Saitama 362-0806, Japan; Laboratory for Memory Neuroscience, Tokyo Metropolotan Institute for Gerontology, Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
19
|
Ohtsuki G, Shishikura M, Ozaki A. Synergistic excitability plasticity in cerebellar functioning. FEBS J 2020; 287:4557-4593. [PMID: 32367676 DOI: 10.1111/febs.15355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
The cerebellum, a universal processor for sensory acquisition and internal models, and its association with synaptic and nonsynaptic plasticity have been envisioned as the biological correlates of learning, perception, and even thought. Indeed, the cerebellum is no longer considered merely as the locus of motor coordination and its learning. Here, we introduce the mechanisms underlying the induction of multiple types of plasticity in cerebellar circuit and give an overview focusing on the plasticity of nonsynaptic intrinsic excitability. The discovery of long-term potentiation of synaptic responsiveness in hippocampal neurons led investigations into changes of their intrinsic excitability. This activity-dependent potentiation of neuronal excitability is distinct from that of synaptic efficacy. Systematic examination of excitability plasticity has indicated that the modulation of various types of Ca2+ - and voltage-dependent K+ channels underlies the phenomenon, which is also triggered by immune activity. Intrinsic plasticity is expressed specifically on dendrites and modifies the integrative processing and filtering effect. In Purkinje cells, modulation of the discordance of synaptic current on soma and dendrite suggested a novel type of cellular learning mechanism. This property enables a plausible synergy between synaptic efficacy and intrinsic excitability, by amplifying electrical conductivity and influencing the polarity of bidirectional synaptic plasticity. Furthermore, the induction of intrinsic plasticity in the cerebellum correlates with motor performance and cognitive processes, through functional connections from the cerebellar nuclei to neocortex and associated regions: for example, thalamus and midbrain. Taken together, recent advances in neuroscience have begun to shed light on the complex functioning of nonsynaptic excitability and the synergy.
Collapse
Affiliation(s)
- Gen Ohtsuki
- The Hakubi Center for Advanced Research, Kyoto University, Japan.,Department of Biophysics, Kyoto University Graduate School of Science, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Mari Shishikura
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| | - Akitoshi Ozaki
- Department of Biophysics, Kyoto University Graduate School of Science, Japan
| |
Collapse
|
20
|
Pinto TM, Schilstra MJ, Roque AC, Steuber V. Binding of Filamentous Actin to CaMKII as Potential Regulation Mechanism of Bidirectional Synaptic Plasticity by β CaMKII in Cerebellar Purkinje Cells. Sci Rep 2020; 10:9019. [PMID: 32488204 PMCID: PMC7265541 DOI: 10.1038/s41598-020-65870-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/01/2020] [Indexed: 11/10/2022] Open
Abstract
Calcium-calmodulin dependent protein kinase II (CaMKII) regulates many forms of synaptic plasticity, but little is known about its functional role during plasticity induction in the cerebellum. Experiments have indicated that the β isoform of CaMKII controls the bidirectional inversion of plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses in cerebellar cortex. Because the cellular events that underlie these experimental findings are still poorly understood, we developed a simple computational model to investigate how β CaMKII regulates the direction of plasticity in cerebellar PCs. We present the first model of AMPA receptor phosphorylation that simulates the induction of long-term depression (LTD) and potentiation (LTP) at the PF-PC synapse. Our simulation results suggest that the balance of CaMKII-mediated phosphorylation and protein phosphatase 2B (PP2B)-mediated dephosphorylation of AMPA receptors can determine whether LTD or LTP occurs in cerebellar PCs. The model replicates experimental observations that indicate that β CaMKII controls the direction of plasticity at PF-PC synapses, and demonstrates that the binding of filamentous actin to CaMKII can enable the β isoform of the kinase to regulate bidirectional plasticity at these synapses.
Collapse
Affiliation(s)
- Thiago M Pinto
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis, RJ, 26530-060, Brazil.,Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Maria J Schilstra
- Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, Herts, AL10 9AB, UK
| | - Antonio C Roque
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Volker Steuber
- Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield, Herts, AL10 9AB, UK
| |
Collapse
|
21
|
Evans HT, Bodea LG, Götz J. Cell-specific non-canonical amino acid labelling identifies changes in the de novo proteome during memory formation. eLife 2020; 9:e52990. [PMID: 31904341 PMCID: PMC6944461 DOI: 10.7554/elife.52990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
The formation of spatial long-term memory (LTM) requires the de novo synthesis of distinct sets of proteins; however, a non-biased examination of the de novo proteome in this process is lacking. Here, we generated a novel mouse strain, which enables cell-type-specific labelling of newly synthesised proteins with non-canonical amino acids (NCAAs) by genetically restricting the expression of the mutant tRNA synthetase, NLL-MetRS, to hippocampal neurons. By combining this labelling technique with an accelerated version of the active place avoidance task and bio-orthogonal non-canonical amino acid tagging (BONCAT) followed by SWATH quantitative mass spectrometry, we identified 156 proteins that were altered in synthesis in hippocampal neurons during spatial memory formation. In addition to observing increased synthesis of known proteins important in memory-related processes, such as glutamate receptor recycling, we also identified altered synthesis of proteins associated with mRNA splicing as a potential mechanism involved in spatial LTM formation.
Collapse
Affiliation(s)
- Harrison Tudor Evans
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
22
|
Yang H, Yang C, Zhu Q, Wei M, Li Y, Cheng J, Liu F, Wu Y, Zhang J, Zhang C, Wu H. Rack1 Controls Parallel Fiber-Purkinje Cell Synaptogenesis and Synaptic Transmission. Front Cell Neurosci 2019; 13:539. [PMID: 31920545 PMCID: PMC6927999 DOI: 10.3389/fncel.2019.00539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
Purkinje cells (PCs) in the cerebellum receive two excitatory afferents including granule cells-derived parallel fiber (PF) and the climbing fiber. Scaffolding protein Rack1 is highly expressed in the cerebellar PCs. Here, we found delayed formation of specific cerebellar vermis lobule and impaired motor coordination in PC-specific Rack1 conditional knockout mice. Our studies further revealed that Rack1 is essential for PF–PC synapse formation. In addition, Rack1 plays a critical role in regulating synaptic plasticity and long-term depression (LTD) induction of PF–PC synapses without changing the expression of postsynaptic proteins. Together, we have discovered Rack1 as the crucial molecule that controls PF–PC synaptogenesis and synaptic plasticity. Our studies provide a novel molecular insight into the mechanisms underlying the neural development and neuroplasticity in the cerebellum.
Collapse
Affiliation(s)
- Haihong Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Chaojuan Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Zhu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Mengping Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Juanxian Cheng
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Department of Neuroimmunology and Antibody Engineering, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
23
|
Tarazona S, Bernabeu E, Carmona H, Gómez-Giménez B, García-Planells J, Leonards PEG, Jung S, Conesa A, Felipo V, Llansola M. A Multiomics Study To Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chem Neurosci 2019; 10:4264-4279. [PMID: 31464424 DOI: 10.1021/acschemneuro.9b00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to low levels of environmental contaminants, including pesticides, induces neurodevelopmental toxicity. Environmental and food contaminants can reach the brain of the fetus, affecting brain development and leading to neurological dysfunction. The pesticide endosulfan is a persistent pollutant, and significant levels still remain detectable in the environment although its use is banned in some countries. In rats, endosulfan exposure during brain development alters motor activity, coordination, learning, and memory, even several months after uptake, and does so in a sex-dependent way. However, the molecular mechanisms driving these effects have not been studied in detail. In this work, we performed a multiomics study in cerebellum from rats exposed to endosulfan during embryonic development. Pregnant rats were orally exposed to a low dose (0.5 mg/kg) of endosulfan, daily, from gestational day 7 to postnatal day 21. The progeny was evaluated for cognitive and motor functions at adulthood. Expression of messenger RNA and microRNA genes, as well as protein and metabolite levels, were measured on cerebellar samples from males and females. An integrative analysis was conducted to identify altered processes under endosulfan effect. Effects between males and females were compared. Pathways significantly altered by endosulfan exposure included the phosphatidylinositol signaling system, calcium signaling, the cGMP-PKG pathway, the inflammatory and immune system, protein processing in the endoplasmic reticulum, and GABA and taurine metabolism. Sex-dependent effects of endosulfan in the omics results that matched sex differences in cognitive and motor tests were found. These results shed light on the molecular basis of impaired neurodevelopment and contribute to the identification of new biomarkers of neurotoxicity.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Elena Bernabeu
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Héctor Carmona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Javier García-Planells
- IMEGEN, Instituto de Medicina Genómica, S.L. Parc Científic de la Universitat de València, 46980 Paterna, Spain
| | - Pim E. G. Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Stephan Jung
- Proteome Sciences R&D GmbH & Co. KG, 60438 Frankfurt, Germany
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32603, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32603, United States
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
24
|
Ämmälä AJ, Urrila AS, Lahtinen A, Santangeli O, Hakkarainen A, Kantojärvi K, Castaneda AE, Lundbom N, Marttunen M, Paunio T. Epigenetic dysregulation of genes related to synaptic long-term depression among adolescents with depressive disorder and sleep symptoms. Sleep Med 2019; 61:95-103. [DOI: 10.1016/j.sleep.2019.01.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
|
25
|
Enikolopov AG, Abbott LF, Sawtell NB. Internally Generated Predictions Enhance Neural and Behavioral Detection of Sensory Stimuli in an Electric Fish. Neuron 2019; 99:135-146.e3. [PMID: 30001507 DOI: 10.1016/j.neuron.2018.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/03/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
Studies of cerebellum-like circuits in fish have demonstrated that synaptic plasticity shapes the motor corollary discharge responses of granule cells into highly-specific predictions of self-generated sensory input. However, the functional significance of such predictions, known as negative images, has not been directly tested. Here we provide evidence for improvements in neural coding and behavioral detection of prey-like stimuli due to negative images. In addition, we find that manipulating synaptic plasticity leads to specific changes in circuit output that disrupt neural coding and detection of prey-like stimuli. These results link synaptic plasticity, neural coding, and behavior and also provide a circuit-level account of how combining external sensory input with internally generated predictions enhances sensory processing.
Collapse
Affiliation(s)
- Armen G Enikolopov
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - L F Abbott
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10027, USA
| | - Nathaniel B Sawtell
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
26
|
Gallimore AR, Kim T, Tanaka-Yamamoto K, De Schutter E. Switching On Depression and Potentiation in the Cerebellum. Cell Rep 2019; 22:722-733. [PMID: 29346769 DOI: 10.1016/j.celrep.2017.12.084] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 11/10/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Long-term depression (LTD) and long-term potentiation (LTP) in the cerebellum are important for motor learning. However, the signaling mechanisms controlling whether LTD or LTP is induced in response to synaptic stimulation remain obscure. Using a unified model of LTD and LTP at the cerebellar parallel fiber-Purkinje cell (PF-PC) synapse, we delineate the coordinated pre- and postsynaptic signaling that determines the direction of plasticity. We show that LTP is the default response to PF stimulation above a well-defined frequency threshold. However, if the calcium signal surpasses the threshold for CaMKII activation, then an ultrasensitive "on switch" activates an extracellular signal-regulated kinase (ERK)-based positive feedback loop that triggers LTD instead. This postsynaptic feedback loop is sustained by another, trans-synaptic, feedback loop that maintains nitric oxide production throughout LTD induction. When full depression is achieved, an automatic "off switch" inactivates the feedback loops, returning the network to its basal state and demarcating the end of the early phase of LTD.
Collapse
Affiliation(s)
- Andrew R Gallimore
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| | - Taegon Kim
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
27
|
Heysieattalab S, Lee KH, Liu Y, Wang Y, Foy MR, Bi X, Baudry M. Impaired cerebellar plasticity and eye-blink conditioning in calpain-1 knock-out mice. Neurobiol Learn Mem 2019; 170:106995. [PMID: 30735788 DOI: 10.1016/j.nlm.2019.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 02/02/2019] [Indexed: 11/28/2022]
Abstract
Calpain-1 and calpain-2 are involved in the regulation of several signaling pathways and neuronal functions in the brain. Our recent studies indicate that calpain-1 is required for hippocampal synaptic plasticity, including long-term depression (LTD) and long-term potentiation (LTP) in field CA1. However, little is known regarding the contributions of calpain-1 to cerebellar synaptic plasticity. Low frequency stimulation (LFS, 5 Hz, 5 min)-induced LTP at parallel fibers to Purkinje cell synapses was markedly impaired in cerebellar slices from calpain-1 knock-out (KO) mice. Application of a selective calpain-2 inhibitor enhanced LFS-induced LTP in both wild-type (WT) and calpain-1 KO mice. Three protocols were used to induce LTD at these synapses: LFS (1 Hz, 15 min), perfusion with high potassium and glutamate (K-Glu) or dihydroxyphenylglycine (DHPG), a mGluR1 agonist. All three forms of LTD were impaired in calpain-1 KO mice. DHPG application stimulated calpain-1 but not calpain-2 in cerebellar slices, and DHPG-induced LTD impairment was reversed by application of a protein phosphatase 2A (PP2A) inhibitor, okadaic acid. As in hippocampus, BDNF induced calpain-1 activation and PH domain and Leucine-rich repeat Protein Phosphatase 1/suprachiasmatic nucleus oscillatory protein (PHLPP1/SCOP) degradation followed by extracellular signal-regulated kinase (ERK) activation, as well as calpain-2 activation leading to degradation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in cerebellar slices. The role of calpain-1 in associative learning was evaluated in the delay eyeblink conditioning (EBC). Calpain-1 KO mice exhibited significant learning impairment in EBC during the first 2 days of acquisition training. However, after 5 days of training, the percentage of conditioned responses (CRs) between calpain-1 KO and WT mice was identical. Both calpain-1 KO and WT mice exhibited typical extinction patterns. Our results indicate that calpain-1 plays critical roles in multiple forms of synaptic plasticity and associative learning in both hippocampus and cerebellum.
Collapse
Affiliation(s)
- Soomaayeh Heysieattalab
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States; Division of Cognitive Neuroscience, University of Tabriz, Tabriz, Iran
| | - Ka-Hung Lee
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Michael R Foy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA 90045, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, United States
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, United States.
| |
Collapse
|
28
|
Andzelm MM, Vanness D, Greenberg ME, Linden DJ. A Late Phase of Long-Term Synaptic Depression in Cerebellar Purkinje Cells Requires Activation of MEF2. Cell Rep 2019; 26:1089-1097.e3. [PMID: 30699340 PMCID: PMC6433166 DOI: 10.1016/j.celrep.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 09/06/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022] Open
Abstract
The MEF2 family of transcription factors restricts excitatory synapse number in an activity-dependent fashion during development, yet MEF2 has not been implicated in long-term synaptic depression (LTD), which is thought to initiate synapse elimination. Mutations in MEF2 pathways are implicated in autism spectrum disorders, which include cerebellar dysfunction. Here, we test the hypothesis that cerebellar LTD requires postsynaptic activation of MEF2. Knockdown of MEF2D produces suppression of the transcription-dependent late phase of LTD in cultured Purkinje cells. The late phase of LTD is also completely blocked in Purkinje cells derived from MEF2A+MEF2D null mice and rescued with plasmids that drive expression of MEF2D but not phosphatase-resistant mutant MEF2D S444D. Wild-type Purkinje cells transfected with a constitutively active form of MEF2 show no alterations of synaptic strength. Thus, postsynaptic activation of MEF2 by S444 dephosphorylation is necessary, but not sufficient, for the late phase of cerebellar LTD.
Collapse
Affiliation(s)
- Milena M Andzelm
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Devorah Vanness
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David J Linden
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
29
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
30
|
Leslie SN, Nairn AC. cAMP regulation of protein phosphatases PP1 and PP2A in brain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:64-73. [PMID: 30401536 DOI: 10.1016/j.bbamcr.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3',5'-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.
Collapse
Affiliation(s)
- Shannon N Leslie
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States of America
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States of America
| |
Collapse
|
31
|
Huxtable AG, Peterson TJ, Ouellette JN, Watters JJ, Mitchell GS. Spinal protein phosphatase 1 constrains respiratory plasticity after sustained hypoxia. J Appl Physiol (1985) 2018; 125:1440-1446. [PMID: 30161006 DOI: 10.1152/japplphysiol.00641.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasticity is an important aspect of the neural control of breathing. One well-studied form of respiratory plasticity is phrenic long-term facilitation (pLTF) induced by acute intermittent but not sustained hypoxia. Okadaic acid-sensitive protein phosphatases (PPs) differentially regulate phrenic nerve activity with intermittent vs. sustained hypoxia, at least partially accounting for pLTF pattern sensitivity. However, okadaic acid inhibits multiple serine/threonine phosphatases, and the relevant phosphatase (PP1, PP2A, PP5) for pLTF pattern sensitivity has not been identified. Here, we demonstrate that sustained hypoxia (25 min, 9-10.5% O2) elicits phrenic motor facilitation in rats pretreated with bilateral intrapleural injections of small interfering RNAs (siRNAs; Accell-modified to preferentially transfect neurons, 3.33 μM, 3 days) targeting PP1 mRNA (48 ± 14% change from baseline, n = 6) but not PP2A (14 ± 9% baseline, n = 6) or nontargeting siRNAs (4 ± 10% baseline, n = 7). In time control rats (no hypoxia) treated with siRNAs ( n = 6), no facilitation was evident (-9 ± 9% baseline). siRNAs had no effect on the hypoxic phrenic response. Immunohistochemistry revealed PP1 and PP2A protein in identified phrenic motoneurons. Although PP1 and PP2A siRNAs significantly decreased PP1 and PP2A mRNA in PC12 cell cultures, we were not able to verify "knockdown" in vivo after siRNA treatment. On the other hand, PP1 and PP2A siRNAs significantly decreased PP1 and PP2A mRNA in PC12 cell cultures, verifying the intended siRNA effects. In conclusion, PP1 (not PP2A) is the relevant okadaic acid-sensitive phosphatase constraining phrenic motor facilitation after sustained hypoxia and likely contributing to pLTF pattern sensitivity. NEW & NOTEWORTHY This study demonstrates that the relevant okadaic acid-sensitive Ser/Thr protein phosphatase (PP) constraining facilitation after sustained hypoxia is PP1 and not PP2A. It suggests that PP1 may be critical in the pattern sensitivity of hypoxia-induced phrenic motor plasticity.
Collapse
Affiliation(s)
- Adrianne G Huxtable
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Department of Human Physiology, University of Oregon , Eugene, Oregon
| | - Timothy J Peterson
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Jonathan N Ouellette
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin
| | - Gordon S Mitchell
- Department of Comparative Biosciences, University of Wisconsin , Madison, Wisconsin.,Center for Respiratory Research and Rehabilitation, McKnight Brain Institute, Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
32
|
Zhang Y, Magnus G, Han VZ. Cell type-specific plasticity at parallel fiber synapses onto Purkinje cells in the posterior caudal lobe of the mormyrid fish cerebellum. J Neurophysiol 2018; 120:644-661. [PMID: 29668384 DOI: 10.1152/jn.00175.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated that there are two morphological subtypes of Purkinje cells (PCs)-fan-shaped Purkinje cells (fPCs) and multipolar Purkinje cells (mPCs)-in the posterior caudal lobe of the mormyrid fish cerebellum, but whether these cell types are also functionally distinct is unknown. Here, we have used electrophysiological and pharmacological tools in a slice preparation to demonstrate that pairing parallel fiber (PF) and climbing fiber (CF) inputs at a low frequency induces long-term depression (LTD) in fPCs but long-term potentiation (LTP) in mPCs. The induction of plasticity in both cell types required postsynaptic Ca2+ and type 1α metabotropic glutamate receptors. However, the LTD in fPCs was inducted via a calcium/calmodulin-dependent protein kinase II cascade, whereas LTP induction in mPCs required calcineurin. Moreover, the LTD in fPCs and LTP in mPCs were accompanied by changes to the corresponding paired-pulse ratios and their coefficients of variation, suggesting presynaptic modes of expression for the plasticity at PF terminals for both cell types. Hence, the synaptic plasticity at PF synapses onto PCs in the posterior caudal lobe of the mormyrid cerebellum is cell type specific, with both pre- and postsynaptic mechanisms contributing to its induction and expression. NEW & NOTEWORTHY Much has been learnt about the cerebellar long-term depression (LTD) in the cortex. More recent work has shown that long-term potentiation (LTP) is equally important for cerebellar motor learning. Here we report for the first time that plasticity in the mormyrid cerebellum is cell type specific, e.g., following the conventional pairing of parallel and climbing fiber inputs in an in vitro preparation leads to LTD in one Purkinje cell subtype and LTP in another.
Collapse
Affiliation(s)
- Yueping Zhang
- Department of Pediatrics and Neuroscience, Xijing Hospital , Xi'an , China.,Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| | - Gerhard Magnus
- Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| |
Collapse
|
33
|
Dark C, Homman-Ludiye J, Bryson-Richardson RJ. The role of ADHD associated genes in neurodevelopment. Dev Biol 2018; 438:69-83. [DOI: 10.1016/j.ydbio.2018.03.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/04/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
|
34
|
Jha SK, Jha NK, Kumar D, Sharma R, Shrivastava A, Ambasta RK, Kumar P. Stress-Induced Synaptic Dysfunction and Neurotransmitter Release in Alzheimer's Disease: Can Neurotransmitters and Neuromodulators be Potential Therapeutic Targets? J Alzheimers Dis 2018; 57:1017-1039. [PMID: 27662312 DOI: 10.3233/jad-160623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The communication between neurons at synaptic junctions is an intriguing process that monitors the transmission of various electro-chemical signals in the central nervous system. Albeit any aberration in the mechanisms associated with transmission of these signals leads to loss of synaptic contacts in both the neocortex and hippocampus thereby causing insidious cognitive decline and memory dysfunction. Compelling evidence suggests that soluble amyloid-β (Aβ) and hyperphosphorylated tau serve as toxins in the dysfunction of synaptic plasticity and aberrant neurotransmitter (NT) release at synapses consequently causing a cognitive decline in Alzheimer's disease (AD). Further, an imbalance between excitatory and inhibitory neurotransmission systems induced by impaired redox signaling and altered mitochondrial integrity is also amenable for such abnormalities. Defective NT release at the synaptic junction causes several detrimental effects associated with altered activity of synaptic proteins, transcription factors, Ca2+ homeostasis, and other molecules critical for neuronal plasticity. These detrimental effects further disrupt the normal homeostasis of neuronal cells and thereby causing synaptic loss. Moreover, the precise mechanistic role played by impaired NTs and neuromodulators (NMs) and altered redox signaling in synaptic dysfunction remains mysterious, and their possible interlink still needs to be investigated. Therefore, this review elucidates the intricate role played by both defective NTs/NMs and altered redox signaling in synaptopathy. Further, the involvement of numerous pharmacological approaches to compensate neurotransmission imbalance has also been discussed, which may be considered as a potential therapeutic approach in synaptopathy associated with AD.
Collapse
|
35
|
Titley HK, Brunel N, Hansel C. Toward a Neurocentric View of Learning. Neuron 2017; 95:19-32. [PMID: 28683265 PMCID: PMC5519140 DOI: 10.1016/j.neuron.2017.05.021] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/29/2023]
Abstract
Synaptic plasticity (e.g., long-term potentiation [LTP]) is considered the cellular correlate of learning. Recent optogenetic studies on memory engram formation assign a critical role in learning to suprathreshold activation of neurons and their integration into active engrams ("engram cells"). Here we review evidence that ensemble integration may result from LTP but also from cell-autonomous changes in membrane excitability. We propose that synaptic plasticity determines synaptic connectivity maps, whereas intrinsic plasticity-possibly separated in time-amplifies neuronal responsiveness and acutely drives engram integration. Our proposal marks a move away from an exclusively synaptocentric toward a non-exclusive, neurocentric view of learning.
Collapse
Affiliation(s)
- Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nicolas Brunel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA; Department of Statistics, University of Chicago, Chicago, IL 60637, USA
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse. Front Synaptic Neurosci 2016; 8:35. [PMID: 27857688 PMCID: PMC5093118 DOI: 10.3389/fnsyn.2016.00035] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/19/2016] [Indexed: 12/24/2022] Open
Abstract
The parallel fiber-Purkinje cell (PF-PC) synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fiber activity generates fast postsynaptic currents via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression (LTD) and long-term potentiation (LTP) have been widely described for the PF-PC synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The PF-PC synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the PF-PC synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, PF-PC synapse dysfunctions have been identified in several murine models of spino-cerebellar ataxia (SCA) types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27), while in others the mGlu1 pathway is affected (SCA1, 3, 5). Interestingly, the PF-PC synapse has been shown to be hyper-functional in a mutant mouse model of autism spectrum disorder, with a selective deletion of Pten in Purkinje cells. However, the full range of methodological approaches, that allowed the discovery of the physiological principles of PF-PC synapse function, has not yet been completely exploited to investigate the pathophysiological mechanisms of diseases involving the cerebellum. We, therefore, propose to extend the spectrum of experimental investigations to tackle this problem.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and Department of Neuroscience, University of TorinoTorino, Italy
| | | | | |
Collapse
|
37
|
Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal. Proc Natl Acad Sci U S A 2016; 113:13221-13226. [PMID: 27799554 DOI: 10.1073/pnas.1613897113] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At glutamatergic synapses, both long-term potentiation (LTP) and long-term depression (LTD) can be induced at the same synaptic activation frequency. Instructive signals determine whether LTP or LTD is induced, by modulating local calcium transients. Synapses maintain the ability to potentiate or depress over a wide frequency range, but it remains unknown how calcium-controlled plasticity operates when frequency variations alone cause differences in calcium amplitudes. We addressed this problem at cerebellar parallel fiber-Purkinje cell synapses, which can undergo LTD or LTP in response to 1-Hz and 100-Hz stimulation. We observed that high-frequency activation elicits larger spine calcium transients than low-frequency stimulation under all stimulus conditions, but, regardless of activation frequency, climbing fiber (CF) coactivation provides an instructive signal that further enhances calcium transients and promotes LTD. At both frequencies, buffering calcium prevents LTD induction and LTP results instead, identifying the enhanced calcium signal amplitude as the critical parameter contributed by the instructive CF signal. These observations show that it is not absolute calcium amplitudes that determine whether LTD or LTP is evoked but, instead, the LTD threshold slides, thus preserving the requirement for relatively larger calcium transients for LTD than for LTP induction at any given stimulus frequency. Cerebellar LTD depends on the activation of calcium/calmodulin-dependent kinase II (CaMKII). Using genetically modified (TT305/6VA and T305D) mice, we identified α-CaMKII inhibition upon autophosphorylation at Thr305/306 as a molecular event underlying the threshold shift. This mechanism enables frequency-independent plasticity control by the instructive CF signal based on relative, not absolute, calcium thresholds.
Collapse
|
38
|
Piochon C, Kano M, Hansel C. LTD-like molecular pathways in developmental synaptic pruning. Nat Neurosci 2016; 19:1299-310. [PMID: 27669991 PMCID: PMC5070480 DOI: 10.1038/nn.4389] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/27/2016] [Indexed: 02/06/2023]
Abstract
In long-term depression (LTD) at synapses in the adult brain, synaptic strength is reduced in an experience-dependent manner. LTD thus provides a cellular mechanism for information storage in some forms of learning. A similar activity-dependent reduction in synaptic strength also occurs in the developing brain and there provides an essential step in synaptic pruning and the postnatal development of neural circuits. Here we review evidence suggesting that LTD and synaptic pruning share components of their underlying molecular machinery and may thus represent two developmental stages of the same type of synaptic modulation that serve different, but related, functions in neural circuit plasticity. We also assess the relationship between LTD and synaptic pruning in the context of recent findings of LTD dysregulation in several mouse models of autism spectrum disorder (ASD) and discuss whether LTD deficits can indicate impaired pruning processes that are required for proper brain development.
Collapse
Affiliation(s)
- Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
- Department of Physiology, Northwestern University, Chicago, Illinois, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
39
|
Inhibition promotes long-term potentiation at cerebellar excitatory synapses. Sci Rep 2016; 6:33561. [PMID: 27641070 PMCID: PMC5027531 DOI: 10.1038/srep33561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022] Open
Abstract
The ability of the cerebellar cortex to learn from experience ensures the accuracy of movements and reflex adaptation, processes which require long-term plasticity at granule cell (GC) to Purkinje neuron (PN) excitatory synapses. PNs also receive GABAergic inhibitory inputs via GCs activation of interneurons; despite the involvement of inhibition in motor learning, its role in long-term plasticity is poorly characterized. Here we reveal a functional coupling between ionotropic GABAA receptors and low threshold CaV3 calcium channels in PNs that sustains calcium influx and promotes long-term potentiation (LTP) at GC to PN synapses. High frequency stimulation induces LTP at GC to PN synapses and CaV3-mediated calcium influx provided that inhibition is intact; LTP is mGluR1, intracellular calcium store and CaV3 dependent. LTP is impaired in CaV3.1 knockout mice but it is nevertheless recovered by strengthening inhibitory transmission onto PNs; promoting a stronger hyperpolarization via GABAA receptor activation leads to an enhanced availability of an alternative Purkinje-expressed CaV3 isoform compensating for the lack of CaV3.1 and restoring LTP. Accordingly, a stronger hyperpolarization also restores CaV3-mediated calcium influx in PNs from CaV3.1 knockout mice. We conclude that by favoring CaV3 channels availability inhibition promotes LTP at cerebellar excitatory synapses.
Collapse
|
40
|
Stochastic Induction of Long-Term Potentiation and Long-Term Depression. Sci Rep 2016; 6:30899. [PMID: 27485552 PMCID: PMC4971485 DOI: 10.1038/srep30899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/10/2016] [Indexed: 01/23/2023] Open
Abstract
Long-term depression (LTD) and long-term potentiation (LTP) of granule-Purkinje cell synapses are persistent synaptic alterations induced by high and low rises of the intracellular calcium ion concentration ([Ca2+]), respectively. The occurrence of LTD involves the activation of a positive feedback loop formed by protein kinase C, phospholipase A2, and the extracellular signal-regulated protein kinase pathway, and its expression comprises the reduction of the population of synaptic AMPA receptors. Recently, a stochastic computational model of these signalling processes demonstrated that, in single synapses, LTD is probabilistic and bistable. Here, we expanded this model to simulate LTP, which requires protein phosphatases and the increase in the population of synaptic AMPA receptors. Our results indicated that, in single synapses, while LTD is bistable, LTP is gradual. Ca2+ induced both processes stochastically. The magnitudes of the Ca2+ signals and the states of the signalling network regulated the likelihood of LTP and LTD and defined dynamic macroscopic Ca2+ thresholds for the synaptic modifications in populations of synapses according to an inverse Bienenstock, Cooper and Munro (BCM) rule or a sigmoidal function. In conclusion, our model presents a unifying mechanism that explains the macroscopic properties of LTP and LTD from their dynamics in single synapses.
Collapse
|
41
|
Li YL, Zhou J, Zhang H, Luo Y, Long LH, Hu ZL, Chen JG, Wang F, Wu PF. Hydrogen Sulfide Promotes Surface Insertion of Hippocampal AMPA Receptor GluR1 Subunit via Phosphorylating at Serine-831/Serine-845 Sites Through a Sulfhydration-Dependent Mechanism. CNS Neurosci Ther 2016; 22:789-98. [PMID: 27380893 DOI: 10.1111/cns.12585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/13/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
AIMS Hydrogen sulfide (H2 S) has been widely accepted as a gas neuromodulator to regulate synaptic function. Herein, we set out to determine the effect of H2 S on α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and its mechanism. METHODS BS(3) protein cross-linking, Western blot, patch clamp, and biotin-switch assay. RESULTS Bath application of H2 S donor NaHS (50 and 100 μM) rapidly promoted surface insertion of hippocampal AMPAR GluR1 subunit. This effect can be abolished by dithiothreitol (DTT) and mimicked by Na2 S4 , indicating that a sulfhydration-dependent mechanism may be involved. NaHS increased APMAR-mediated EPSC and led to an elevation of GluR2-lacking AMPAR content. Notably, NaHS did not increase the sulfhydration of AMPAR subunits, but it significantly increased the phosphorylation of GluR1 at serine-831 and serine-845 sites. Postsynaptic signal pathways that control GluR1 phosphorylation, such as protein kinase A (PKA), protein kinase C, and calcium/calmodulin-dependent protein kinases II (CaMKII), were sulfhydrated, activated by NaHS, and these effects can be occluded by DTT. H2 S increased S-sulfhydration of protein phosphatase type 2A (PP2A), which may be partially involved in the activation of signal pathways. CONCLUSION Our data suggest that H2 S promotes surface insertion of AMPARs via phosphorylation of GluR1, which depends on a sulfhydration-mediated mechanism.
Collapse
Affiliation(s)
- Yuan-Long Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Luo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li-Hong Long
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Hubei, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
42
|
Huang L, Wickramasekara SI, Akinyeke T, Stewart BS, Jiang Y, Raber J, Maier CS. Ion mobility-enhanced MS(E)-based label-free analysis reveals effects of low-dose radiation post contextual fear conditioning training on the mouse hippocampal proteome. J Proteomics 2016; 140:24-36. [PMID: 27020882 PMCID: PMC5029422 DOI: 10.1016/j.jprot.2016.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Recent advances in the field of biodosimetry have shown that the response of biological systems to ionizing radiation is complex and depends on the type and dose of radiation, the tissue(s) exposed, and the time lapsed after exposure. The biological effects of low dose radiation on learning and memory are not well understood. An ion mobility-enhanced data-independent acquisition (MS(E)) approach in conjunction with the ISOQuant software tool was utilized for label-free quantification of hippocampal proteins with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-rays, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. Global proteome analysis revealed deregulation of 73 proteins (out of 399 proteins). Deregulated proteins indicated adverse effects of irradiation on myelination and perturbation of energy metabolism pathways involving a shift from the TCA cycle to glutamate oxidation. Our findings also indicate that proteins associated with synaptic activity, including vesicle recycling and neurotransmission, were altered in the irradiated mice. The elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which would be consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. SIGNIFICANCE This study is significant because the biological consequences of low dose radiation on learning and memory are complex and not yet well understood. We conducted a IMS-enhanced MS(E)-based label-free quantitative proteomic analysis of hippocampal tissue with the goal of determining protein alteration associated with low-dose whole body ionizing radiation (X-ray, 1Gy) of 5.5-month-old male C57BL/6J mice post contextual fear conditioning training. The IMS-enhanced MS(E) approach in conjunction with ISOQuant software was robust and accurate with low median CV values of 0.99% for the technical replicates of samples from both the sham and irradiated group. The biological variance was as low as 1.61% for the sham group and 1.31% for the irradiated group. The applied data generation and processing workflow allowed the quantitative evaluation of 399 proteins. The current proteomic analysis indicates that myelination is sensitive to low dose radiation. The observed protein level changes imply modulation of energy metabolism pathways in the radiation exposed group, specifically changes in protein abundance levels suggest a shift from TCA cycle to glutamate oxidation to satisfy energy demands. Most significantly, our study reveals deregulation of proteins involved in processes that govern synaptic activity including enhanced synaptic vesicle cycling, and altered long-term potentiation (LTP) and depression (LTD). An elevated LTP and decreased LTD suggest improved synaptic transmission and enhanced efficiency of neurotransmitter release which is consistent with the observed comparable contextual fear memory performance of the mice following post-training whole body or sham-irradiation. Overall, our results underscore the importance of low dose radiation experiments for illuminating the sensitivity of biochemical pathways to radiation, and the modulation of potential repair and compensatory response mechanisms. This kind of studies and associated findings may ultimately lead to the design of strategies for ameliorating hippocampal and CNS injury following radiation exposure as part of medical therapies or as a consequence of occupational hazards.
Collapse
Affiliation(s)
- Lin Huang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Tunde Akinyeke
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Blair S Stewart
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
43
|
Si K, Kandel ER. The Role of Functional Prion-Like Proteins in the Persistence of Memory. Cold Spring Harb Perspect Biol 2016; 8:a021774. [PMID: 27037416 DOI: 10.1101/cshperspect.a021774] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prions are a self-templating amyloidogenic state of normal cellular proteins, such as prion protein (PrP). They have been identified as the pathogenic agents, contributing to a number of diseases of the nervous system. However, the discovery that the neuronal RNA-binding protein, cytoplasmic polyadenylation element-binding protein (CPEB), has a prion-like state that is involved in the stabilization of memory raised the possibility that prion-like proteins can serve normal physiological functions in the nervous system. Here, we review recent experimental evidence of prion-like properties of neuronal CPEB in various organisms and propose a model of how the prion-like state may stabilize memory.
Collapse
Affiliation(s)
- Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri 64113 Department of Physiology, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Eric R Kandel
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815-6789 Departments of Neuroscience and Psychiatry, College of Physicians and Surgeons of Columbia University, New York, New York 10027 Zuckerman Mind Brain Behavior Institute, New York State Psychiatric Institute, New York, New York 10032 Kavli Institute for Brain Sciences, New York, New York 10032
| |
Collapse
|
44
|
Abstract
Synaptic plasticity at the parallel fiber to Purkinje cell synapse has long been considered a cellular correlate for cerebellar motor learning. Functionally, long-term depression and long-term potentiation at these synapses seem to be the reverse of each other, with both pre- and post-synaptic expression occurring in both. However, different cerebellar motor learning paradigms have been shown to be asymmetric and not equally reversible. Here, we discuss the asymmetric reversibility shown in the vestibulo-ocular reflex and eyeblink conditioning and suggest that different cellular plasticity mechanisms might be recruited under different conditions leading to unequal reversibility.
Collapse
Affiliation(s)
- Heather K Titley
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA.
| | - Christian Hansel
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
45
|
Bouvier G, Higgins D, Spolidoro M, Carrel D, Mathieu B, Léna C, Dieudonné S, Barbour B, Brunel N, Casado M. Burst-Dependent Bidirectional Plasticity in the Cerebellum Is Driven by Presynaptic NMDA Receptors. Cell Rep 2016; 15:104-116. [PMID: 27052175 DOI: 10.1016/j.celrep.2016.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have shown that cerebellar function is related to the plasticity at the synapses between parallel fibers and Purkinje cells. How specific input patterns determine plasticity outcomes, as well as the biophysics underlying plasticity of these synapses, remain unclear. Here, we characterize the patterns of activity that lead to postsynaptically expressed LTP using both in vivo and in vitro experiments. Similar to the requirements of LTD, we find that high-frequency bursts are necessary to trigger LTP and that this burst-dependent plasticity depends on presynaptic NMDA receptors and nitric oxide (NO) signaling. We provide direct evidence for calcium entry through presynaptic NMDA receptors in a subpopulation of parallel fiber varicosities. Finally, we develop and experimentally verify a mechanistic plasticity model based on NO and calcium signaling. The model reproduces plasticity outcomes from data and predicts the effect of arbitrary patterns of synaptic inputs on Purkinje cells, thereby providing a unified description of plasticity.
Collapse
Affiliation(s)
- Guy Bouvier
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France
| | - David Higgins
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France; Departments of Statistics and Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Maria Spolidoro
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France
| | - Damien Carrel
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France
| | - Benjamin Mathieu
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France
| | - Clément Léna
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France
| | - Stéphane Dieudonné
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France
| | - Boris Barbour
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France
| | - Nicolas Brunel
- Departments of Statistics and Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Mariano Casado
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), Inserm U1024, CNRS UMR 8197, Paris 75005, France.
| |
Collapse
|
46
|
Functional and Physical Interaction of Diacylglycerol Kinase ζ with Protein Kinase Cα Is Required for Cerebellar Long-Term Depression. J Neurosci 2016; 35:15453-65. [PMID: 26586831 DOI: 10.1523/jneurosci.1991-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The balance between positive and negative regulators required for synaptic plasticity must be well organized at synapses. Protein kinase Cα (PKCα) is a major mediator that triggers long-term depression (LTD) at synapses between parallel fibers and Purkinje cells in the cerebellum. However, the precise mechanisms involved in PKCα regulation are not clearly understood. Here, we analyzed the role of diacylglycerol kinase ζ (DGKζ), a kinase that physically interacts with PKCα as well as postsynaptic density protein 95 (PSD-95) family proteins and functionally suppresses PKCα by metabolizing diacylglycerol (DAG), in the regulation of cerebellar LTD. In Purkinje cells of DGKζ-deficient mice, LTD was impaired and PKCα was less localized in dendrites and synapses. This impaired LTD was rescued by virus-driven expression of wild-type DGKζ, but not by a kinase-dead mutant DGKζ or a mutant lacking the ability to localize at synapses, indicating that both the kinase activity and synaptic anchoring functions of DGKζ are necessary for LTD. In addition, experiments using another DGKζ mutant and immunoprecipitation analysis revealed an inverse regulatory mechanism, in which PKCα phosphorylates, inactivates, and then is released from DGKζ, is required for LTD. These results indicate that DGKζ is localized to synapses, through its interaction with PSD-95 family proteins, to promote synaptic localization of PKCα, but maintains PKCα in a minimally activated state by suppressing local DAG until its activation and release from DGKζ during LTD. Such local and reciprocal regulation of positive and negative regulators may contribute to the fine-tuning of synaptic signaling. SIGNIFICANCE STATEMENT Many studies have identified signaling molecules that mediate long-term synaptic plasticity. In the basal state, the activities and concentrations of these signaling molecules must be maintained at low levels, yet be ready to be boosted, so that synapses can undergo synaptic plasticity only when they are stimulated. However, the mechanisms involved in creating such conditions are not well understood. Here, we show that diacylglycerol kinase ζ (DGKζ) creates optimal conditions for the induction of cerebellar long-term depression (LTD). DGKζ works by regulating localization and activity of protein kinase Cα (PKCα), an important mediator of LTD, so that PKCα effectively responds to the stimulation that triggers LTD.
Collapse
|
47
|
Smeets CJLM, Verbeek DS. Climbing fibers in spinocerebellar ataxia: A mechanism for the loss of motor control. Neurobiol Dis 2016; 88:96-106. [PMID: 26792399 DOI: 10.1016/j.nbd.2016.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/19/2015] [Accepted: 01/09/2016] [Indexed: 11/26/2022] Open
Abstract
The spinocerebellar ataxias (SCAs) form an ever-growing group of neurodegenerative disorders causing dysfunction of the cerebellum and loss of motor control in patients. Currently, 41 different genetic causes have been identified, with each mutation affecting a different gene. Interestingly, these diverse genetic causes all disrupt cerebellar function and produce similar symptoms in patients. In order to understand the disease better, and define possible therapeutic targets for multiple SCAs, the field has been searching for common ground among the SCAs. In this review, we discuss the physiology of climbing fibers and the possibility that climbing fiber dysfunction is a point of convergence for at least a subset of SCAs.
Collapse
Affiliation(s)
- C J L M Smeets
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D S Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
48
|
Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination. Proc Natl Acad Sci U S A 2015; 112:15474-9. [PMID: 26621723 DOI: 10.1073/pnas.1512915112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1.
Collapse
|
49
|
Stockwell J, Chen Z, Niazi M, Nosib S, Cayabyab FS. Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury. Neuropharmacology 2015; 102:254-65. [PMID: 26626486 DOI: 10.1016/j.neuropharm.2015.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/19/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
Adenosine signaling via A1 receptor (A1R) and A2A receptor (A2AR) has shown promise in revealing potential targets for neuroprotection in cerebral ischemia. We recently showed a novel mechanism by which A1R activation with N(6)-cyclopentyl adenosine (CPA) induced GluA1 and GluA2 AMPA receptor (AMPAR) endocytosis and adenosine-induced persistent synaptic depression (APSD) in rat hippocampus. This study further investigates the mechanism of A1R-mediated AMPAR internalization and hippocampal slice neuronal damage through activation of protein phosphatase 1 (PP1), 2A (PP2A), and 2B (PP2B) using electrophysiological, biochemical and imaging techniques. Following prolonged A1R activation, GluA2 internalization was selectively blocked by PP2A inhibitors (okadaic acid and fostriecin), whereas inhibitors of PP2A, PP1 (tautomycetin), and PP2B (FK506) all prevented GluA1 internalization. Additionally, GluA1 phosphorylation at Ser831 and Ser845 was reduced after prolonged A1R activation in hippocampal slices. PP2A inhibitors nullified A1R-mediated downregulation of pSer845-GluA1, while PP1 and PP2B inhibitors prevented pSer831-GluA1 downregulation. Each protein phosphatase inhibitor also blunted CPA-induced synaptic depression and APSD. We then tested whether A1R-mediated changes in AMPAR trafficking and APSD contribute to hypoxia-induced neuronal injury. Hypoxia (20 min) induced A1R-mediated internalization of both AMPAR subunits, and subsequent normoxic reperfusion (45 min) increased GluA1 but persistently reduced GluA2 surface expression. Neuronal damage after hypoxia-reperfusion injury was significantly blunted by pre-incubation with the above protein phosphatase inhibitors. Together, these data suggest that A1R-mediated protein phosphatase activation causes persistent synaptic depression by downregulating GluA2-containing AMPARs; this previously undefined role of A1R stimulation in hippocampal neuronal damage represents a novel therapeutic target in cerebral ischemic damage.
Collapse
Affiliation(s)
- Jocelyn Stockwell
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Zhicheng Chen
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Mina Niazi
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Siddarth Nosib
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
50
|
Ruiz-Perera L, Muniz M, Vierci G, Bornia N, Baroncelli L, Sale A, Rossi FM. Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex. Sci Rep 2015. [PMID: 26205348 PMCID: PMC4513348 DOI: 10.1038/srep12517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain.
Collapse
Affiliation(s)
- L Ruiz-Perera
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - M Muniz
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - G Vierci
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - N Bornia
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| | - L Baroncelli
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - A Sale
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - F M Rossi
- Laboratorio de Neurociencias "Neuroplasticity Unit", Facultad de Ciencias, UdelaR, Montevideo, Uruguay
| |
Collapse
|