1
|
Uneri A, McArdle CJ, Deng Z, Barth SH, Keene D, Craft S, Raab-Graham KF. DJ-1-mediated repression of the RNA-binding protein FMRP is predicted to impact known Alzheimer's disease-related protein networks. J Alzheimers Dis 2024; 102:763-777. [PMID: 39610285 DOI: 10.1177/13872877241291175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND RNA-binding proteins (RBPs) modulate the synaptic proteome and are instrumental in maintaining synaptic homeostasis. Moreover, aberrant expression of an RBP in a disease state would have deleterious downstream effects on synaptic function. While many underlying mechanisms of synaptic dysfunction in Alzheimer's disease (AD) have been proposed, the contribution of RBPs has been relatively unexplored. OBJECTIVE To investigate alterations in RBP-messenger RNA (mRNA) interactions in AD, and its overall impact on the disease-related proteome. METHODS We first utilized RNA-immunoprecipitation to investigate interactions between RBP, DJ-1 (Parkinson's Disease protein 7) and target mRNAs in controls and AD. Surface Sensing of Translation - Proximity Ligation Assay (SUnSET-PLA) and western blotting additionally quantified alterations in mRNA translation and protein expression of DJ-1 targets. Finally, we utilized an unbiased bioinformatic approach that connects AD-related pathways to two RBPs, DJ-1 and FMRP (Fragile X messenger ribonucleoprotein 1). RESULTS We find that oligomeric DJ-1 in AD donor synapses were less dynamic in their ability to bind and unbind mRNA compared to synapses from cognitively unimpaired, neuropathologically-verified controls. Furthermore, we find that DJ-1 associates with the mRNA coding for FMRP, Fmr1, leading to its reduced synaptic expression in AD. Through the construction of protein-protein interaction networks, aberrant expression of DJ-1 and FMRP are predicted to lead to the upregulation of key AD-related pathways, such as thyroid hormone stimulating pathway, autophagy, and ubiquitin mediated proteolysis. CONCLUSIONS DJ-1 and FMRP are novel targets that may restore established neurobiological mechanisms underlying AD.
Collapse
Affiliation(s)
- Ayse Uneri
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Colin J McArdle
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Zhiyong Deng
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Samuel H Barth
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Gerontology and Geriatric Medicine, Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| | - Kimberly F Raab-Graham
- Department of Translational Neuroscience, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Department of Gerontology and Geriatric Medicine, Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| |
Collapse
|
2
|
Wilkerson JR, Ifrim MF, Valdez-Sinon AN, Hahn P, Bowles JE, Molinaro G, Janusz-Kaminska A, Bassell GJ, Huber KM. FMRP phosphorylation and interactions with Cdh1 regulate association with dendritic RNA granules and MEF2-triggered synapse elimination. Neurobiol Dis 2023; 182:106136. [PMID: 37120096 PMCID: PMC10370323 DOI: 10.1016/j.nbd.2023.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Fragile X Messenger Ribonucleoprotein (FMRP) is necessary for experience-dependent, developmental synapse elimination and the loss of this process may underlie the excess dendritic spines and hyperconnectivity of cortical neurons in Fragile X Syndrome, a common inherited form of intellectual disability and autism. Little is known of the signaling pathways that regulate synapse elimination and if or how FMRP is regulated during this process. We have characterized a model of synapse elimination in CA1 neurons of organotypic hippocampal slice cultures that is induced by expression of the active transcription factor Myocyte Enhancer Factor 2 (MEF2) and relies on postsynaptic FMRP. MEF2-induced synapse elimination is deficient in Fmr1 KO CA1 neurons, and is rescued by acute (24 h), postsynaptic and cell autonomous reexpression of FMRP in CA1 neurons. FMRP is an RNA binding protein that suppresses mRNA translation. Derepression is induced by posttranslational mechanisms downstream of metabotropic glutamate receptor signaling. Dephosphorylation of FMRP at S499 triggers ubiquitination and degradation of FMRP which then relieves translation suppression and promotes synthesis of proteins encoded by target mRNAs. Whether this mechanism functions in synapse elimination is not known. Here we demonstrate that phosphorylation and dephosphorylation of FMRP at S499 are both necessary for synapse elimination as well as interaction of FMRP with its E3 ligase for FMRP, APC/Cdh1. Using a bimolecular ubiquitin-mediated fluorescence complementation (UbFC) assay, we demonstrate that MEF2 promotes ubiquitination of FMRP in CA1 neurons that relies on activity and interaction with APC/Cdh1. Our results suggest a model where MEF2 regulates posttranslational modifications of FMRP via APC/Cdh1 to regulate translation of proteins necessary for synapse elimination.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marius F Ifrim
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Patricia Hahn
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacob E Bowles
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gemma Molinaro
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Kimberly M Huber
- Department of Neuroscience, O'Donnell Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Louros SR, Seo SS, Maio B, Martinez-Gonzalez C, Gonzalez-Lozano MA, Muscas M, Verity NC, Wills JC, Li KW, Nolan MF, Osterweil EK. Excessive proteostasis contributes to pathology in fragile X syndrome. Neuron 2023; 111:508-525.e7. [PMID: 36495869 DOI: 10.1016/j.neuron.2022.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/06/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022]
Abstract
In fragile X syndrome (FX), the leading monogenic cause of autism, excessive neuronal protein synthesis is a core pathophysiology; however, an overall increase in protein expression is not observed. Here, we tested whether excessive protein synthesis drives a compensatory rise in protein degradation that is protective for FX mouse model (Fmr1-/y) neurons. Surprisingly, although we find a significant increase in protein degradation through ubiquitin proteasome system (UPS), this contributes to pathological changes. Normalizing proteasome activity with bortezomib corrects excessive hippocampal protein synthesis and hyperactivation of neurons in the inferior colliculus (IC) in response to auditory stimulation. Moreover, systemic administration of bortezomib significantly reduces the incidence and severity of audiogenic seizures (AGS) in the Fmr1-/y mouse, as does genetic reduction of proteasome, specifically in the IC. Together, these results identify excessive activation of the UPS pathway in Fmr1-/y neurons as a contributor to multiple phenotypes that can be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Susana R Louros
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Sang S Seo
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Beatriz Maio
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Cristina Martinez-Gonzalez
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Melania Muscas
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nick C Verity
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Jimi C Wills
- CRUK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
4
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
5
|
Su LD, Wang N, Han J, Shen Y. Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. Neuroscientist 2021; 28:453-468. [PMID: 34088252 PMCID: PMC9449437 DOI: 10.1177/10738584211021018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors
that are activated by glutamate in the central nervous system (CNS).
Basically, mGluRs contribute to fine-tuning of synaptic efficacy and
control the accuracy and sharpness of neurotransmission. Among eight
subtypes, mGluR1 and mGluR5 belong to group 1 (Gp1) family, and are
implicated in multiple CNS disorders, such as Alzheimer’s disease,
autism, Parkinson’s disease, and so on. In the present review, we
systematically discussed underlying mechanisms and prospective of Gp1
mGluRs in a group of neurological and psychiatric diseases, including
Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,
epilepsy, Huntington’s disease, intellectual disability, Down’s
syndrome, Rett syndrome, attention-deficit hyperactivity disorder,
addiction, anxiety, nociception, schizophrenia, and depression, in
order to provide more insights into the therapeutic potential of Gp1
mGluRs.
Collapse
Affiliation(s)
- Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
7
|
Stoppel DC, McCamphill PK, Senter RK, Heynen AJ, Bear MF. mGluR5 Negative Modulators for Fragile X: Treatment Resistance and Persistence. Front Psychiatry 2021; 12:718953. [PMID: 34658956 PMCID: PMC8511445 DOI: 10.3389/fpsyt.2021.718953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by silencing of the human FMR1 gene and is the leading monogenic cause of intellectual disability and autism. Abundant preclinical data indicated that negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGluR5) might be efficacious in treating FXS in humans. Initial attempts to translate these findings in clinical trials have failed, but these failures provide the opportunity for new discoveries that will improve future trials. The emergence of acquired treatment resistance ("tolerance") after chronic administration of mGluR5 NAMs is a potential factor in the lack of success. Here we confirm that FXS model mice display acquired treatment resistance after chronic treatment with the mGluR5 NAM CTEP in three assays commonly examined in the mouse model of FXS: (1) audiogenic seizure susceptibility, (2) sensory cortex hyperexcitability, and (3) hippocampal protein synthesis. Cross-tolerance experiments suggest that the mechanism of treatment resistance likely occurs at signaling nodes downstream of glycogen synthase kinase 3α (GSK3α), but upstream of protein synthesis. The rapid emergence of tolerance to CTEP begs the question of how previous studies showed an improvement in inhibitory avoidance (IA) cognitive performance after chronic treatment. We show here that this observation was likely explained by timely inhibition of mGluR5 during a critical period, as brief CTEP treatment in juvenile mice is sufficient to provide a persistent improvement of IA behavior measured many weeks later. These data will be important to consider when designing future fragile X clinical trials using compounds that target the mGluR5-to-protein synthesis signaling cascade.
Collapse
Affiliation(s)
- David C Stoppel
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patrick K McCamphill
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rebecca K Senter
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Arnold J Heynen
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mark F Bear
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
8
|
Prieto M, Folci A, Martin S. Post-translational modifications of the Fragile X Mental Retardation Protein in neuronal function and dysfunction. Mol Psychiatry 2020; 25:1688-1703. [PMID: 31822816 DOI: 10.1038/s41380-019-0629-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein essential to the regulation of local translation at synapses. In the mammalian brain, synapses are constantly formed and eliminated throughout development to achieve functional neuronal networks. At the molecular level, thousands of proteins cooperate to accomplish efficient neuronal communication. Therefore, synaptic protein levels and their functional interactions need to be tightly regulated. FMRP generally acts as a translational repressor of its mRNA targets. FMRP is the target of several post-translational modifications (PTMs) that dynamically regulate its function. Here we provide an overview of the PTMs controlling the FMRP function and discuss how their spatiotemporal interplay contributes to the physiological regulation of FMRP. Importantly, FMRP loss-of-function leads to Fragile X syndrome (FXS), a rare genetic developmental condition causing a range of neurological alterations including intellectual disability (ID), learning and memory impairments, autistic-like features and seizures. Here, we also explore the possibility that recently reported missense mutations in the FMR1 gene disrupt the PTM homoeostasis of FMRP, thus participating in the aetiology of FXS. This suggests that the pharmacological targeting of PTMs may be a promising strategy to develop innovative therapies for patients carrying such missense mutations.
Collapse
Affiliation(s)
- Marta Prieto
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France
| | | | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France.
| |
Collapse
|
9
|
Luque MA, Beltran-Matas P, Marin MC, Torres B, Herrero L. Excitability is increased in hippocampal CA1 pyramidal cells of Fmr1 knockout mice. PLoS One 2017; 12:e0185067. [PMID: 28931075 PMCID: PMC5607184 DOI: 10.1371/journal.pone.0185067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/06/2017] [Indexed: 02/03/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a failure of neuronal cells to express the gene encoding the fragile mental retardation protein (FMRP). Clinical features of the syndrome include intellectual disability, learning impairment, hyperactivity, seizures and anxiety. Fmr1 knockout (KO) mice do not express FMRP and, as a result, reproduce some FXS behavioral abnormalities. While intrinsic and synaptic properties of excitatory cells in various part of the brain have been studied in Fmr1 KO mice, a thorough analysis of action potential characteristics and input-output function of CA1 pyramidal cells in this model is lacking. With a view to determining the effects of the absence of FMRP on cell excitability, we studied rheobase, action potential duration, firing frequency-current intensity relationship and action potential after-hyperpolarization (AHP) in CA1 pyramidal cells of the hippocampus of wild type (WT) and Fmr1 KO male mice. Brain slices were prepared from 8- to 12-week-old mice and the electrophysiological properties of cells recorded. Cells from both groups had similar resting membrane potentials. In the absence of FMRP expression, cells had a significantly higher input resistance, while voltage threshold and depolarization voltage were similar in WT and Fmr1 KO cell groups. No changes were observed in rheobase. The action potential duration was longer in the Fmr1 KO cell group, and the action potential firing frequency evoked by current steps of the same intensity was higher. Moreover, the gain (slope) of the relationship between firing frequency and injected current was 1.25-fold higher in the Fmr1 KO cell group. Finally, AHP amplitude was significantly reduced in the Fmr1 KO cell group. According to these data, FMRP absence increases excitability in hippocampal CA1 pyramidal cells.
Collapse
Affiliation(s)
| | | | - M. Carmen Marin
- Department of Physiology. University of Seville, Seville, Spain
| | - Blas Torres
- Department of Physiology. University of Seville, Seville, Spain
| | - Luis Herrero
- Department of Physiology. University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
10
|
Kazim SF, Chuang SC, Zhao W, Wong RKS, Bianchi R, Iqbal K. Early-Onset Network Hyperexcitability in Presymptomatic Alzheimer's Disease Transgenic Mice Is Suppressed by Passive Immunization with Anti-Human APP/Aβ Antibody and by mGluR5 Blockade. Front Aging Neurosci 2017; 9:71. [PMID: 28392767 PMCID: PMC5364175 DOI: 10.3389/fnagi.2017.00071] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/08/2017] [Indexed: 11/26/2022] Open
Abstract
Cortical and hippocampal network hyperexcitability appears to be an early event in Alzheimer’s disease (AD) pathogenesis, and may contribute to memory impairment. It remains unclear if network hyperexcitability precedes memory impairment in mouse models of AD and what are the underlying cellular mechanisms. We thus evaluated seizure susceptibility and hippocampal network hyperexcitability at ~3 weeks of age [prior to amyloid beta (Aβ) plaque deposition, neurofibrillary pathology, and cognitive impairment] in a triple transgenic mouse model of familial AD (3xTg-AD mouse) that harbors mutated human Aβ precursor protein (APP), tau and presenilin 1 (PS1) genes. Audiogenic seizures were elicited in a higher proportion of 3xTg-AD mice compared with wild type (WT) controls. Seizure susceptibility in 3xTg-AD mice was attenuated either by passive immunization with anti-human APP/Aβ antibody (6E10) or by blockade of metabotropic glutamate receptor 5 (mGluR5) with the selective antagonist, 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). In in vitro hippocampal slices, suppression of synaptic inhibition with the GABAA receptor antagonist, bicuculline, induced prolonged epileptiform (>1.5 s in duration) ictal-like discharges in the CA3 neuronal network in the majority of the slices from 3xTg-AD mice. In contrast, only short epileptiform (<1.5 s in duration) interictal-like discharges were observed following bicuculline application in the CA3 region of WT slices. The ictal-like activity in CA3 region of the hippocampus was significantly reduced in the 6E10-immunized compared to the saline-treated 3xTg-AD mice. MPEP acutely suppressed the ictal-like discharges in 3xTg-AD slices. Remarkably, epileptiform discharge duration positively correlated with intraneuronal human (transgenic) APP/Aβ expression in the CA3 region of the hippocampus. Our data suggest that in a mouse model of familial AD, hypersynchronous network activity underlying seizure susceptibility precedes Aβ plaque pathology and memory impairment. This early-onset network hyperexcitability can be suppressed by passive immunization with an anti-human APP/Aβ antibody and by mGluR5 blockade in 3xTg-AD mice.
Collapse
Affiliation(s)
- Syed F Kazim
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical CenterBrooklyn, NY, USA; Department of Neurochemistry and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR)Staten Island, NY, USA; Graduate Program in Neural and Behavioral Science, SUNY Downstate Medical CenterBrooklyn, NY, USA
| | - Shih-Chieh Chuang
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Wangfa Zhao
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Robert K S Wong
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Riccardo Bianchi
- Robert F. Furchgott Center for Neural and Behavioral Science and Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Medical Center Brooklyn, NY, USA
| | - Khalid Iqbal
- Department of Neurochemistry and SUNY Downstate/NYSIBR Center for Developmental Neuroscience, New York State Institute for Basic Research (NYSIBR) Staten Island, NY, USA
| |
Collapse
|
11
|
Westmark CJ, Chuang SC, Hays SA, Filon MJ, Ray BC, Westmark PR, Gibson JR, Huber KM, Wong RKS. APP Causes Hyperexcitability in Fragile X Mice. Front Mol Neurosci 2016; 9:147. [PMID: 28018172 PMCID: PMC5156834 DOI: 10.3389/fnmol.2016.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice. Normalization of APP levels in Fmr1KO mice (Fmr1KO /APPHET mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO /APPHET slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1KO increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Shih-Chieh Chuang
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| | - Seth A. Hays
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mikolaj J. Filon
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Brian C. Ray
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Pamela R. Westmark
- Department of Medicine, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Robert K. S. Wong
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| |
Collapse
|
12
|
Abstract
Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes.
Collapse
|
13
|
A 3' untranslated region variant in FMR1 eliminates neuronal activity-dependent translation of FMRP by disrupting binding of the RNA-binding protein HuR. Proc Natl Acad Sci U S A 2015; 112:E6553-61. [PMID: 26554012 DOI: 10.1073/pnas.1514260112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fragile X syndrome is a common cause of intellectual disability and autism spectrum disorder. The gene underlying the disorder, fragile X mental retardation 1 (FMR1), is silenced in most cases by a CGG-repeat expansion mutation in the 5' untranslated region (UTR). Recently, we identified a variant located in the 3'UTR of FMR1 enriched among developmentally delayed males with normal repeat lengths. A patient-derived cell line revealed reduced levels of endogenous fragile X mental retardation protein (FMRP), and a reporter containing a patient 3'UTR caused a decrease in expression. A control reporter expressed in cultured mouse cortical neurons showed an expected increase following synaptic stimulation that was absent when expressing the patient reporter, suggesting an impaired response to neuronal activity. Mobility-shift assays using a control RNA detected an RNA-protein interaction that is lost with the patient RNA, and HuR was subsequently identified as an associated protein. Cross-linking immunoprecipitation experiments identified the locus as an in vivo target of HuR, supporting our in vitro findings. These data suggest that the disrupted interaction of HuR impairs activity-dependent translation of FMRP, which may hinder synaptic plasticity in a clinically significant fashion.
Collapse
|
14
|
Extracellular glutamate exposure facilitates group I mGluR-mediated epileptogenesis in the hippocampus. J Neurosci 2015; 35:308-15. [PMID: 25568123 DOI: 10.1523/jneurosci.1944-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimulation of group I mGluRs elicits several forms of translation-dependent neuronal plasticity including epileptogenesis. The translation process underlying plasticity induction is controlled by repressors including the fragile X mental retardation protein (FMRP). In the absence of FMRP-mediated repression, a condition that occurs in a mouse model (Fmr1(-/-)) of fragile X syndrome, group I mGluR-activated translation is exaggerated causing enhanced seizure propensity. We now show that glutamate exposure (10 μm for 30 min) reduced FMRP levels in wild-type mouse hippocampal slices. Downregulation of FMRP was dependent on group I mGluR activation and was blocked by a proteasome inhibitor (MG-132). Following glutamate exposure, synaptic stimulation induced prolonged epileptiform discharges with properties similar to those observed in Fmr1(-/-) preparations. In both cases, prolonged epileptiform discharges were blocked by group I mGluR antagonists (LY367385 + MPEP) and their induction was prevented by protein synthesis inhibitor (anisomycin). The results suggest that stimulation of group I mGluRs during glutamate exposure caused proteolysis of FMRP. Reduction of FMRP led to enhanced synaptic group I mGluR-mediated translation. Elevated translation facilitated the recruitment of group I mGluR-mediated prolonged epileptiform discharges.
Collapse
|
15
|
Coordination between Translation and Degradation Regulates Inducibility of mGluR-LTD. Cell Rep 2015; 10:1459-1466. [PMID: 25753412 PMCID: PMC4559485 DOI: 10.1016/j.celrep.2015.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 12/08/2014] [Accepted: 02/03/2015] [Indexed: 11/30/2022] Open
Abstract
Dendritic protein homeostasis is crucial for most forms of long-term synaptic plasticity, and its dysregulation is linked to a wide range of brain disorders. Current models of metabotropic glutamate receptor mediated long-term depression (mGluR-LTD) suggest that rapid, local synthesis of key proteins is necessary for the induction and expression of LTD. Here, we find that mGluR-LTD can be induced in the absence of translation if the proteasome is concurrently inhibited. We report that enhanced pro-teasomal degradation during the expression of mGluR-LTD depletes dendritic proteins and inhibits subsequent inductions of LTD. Moreover, proteasome inhibition can rescue mGluR-LTD in mice null for the RNA binding protein Sam68, which we show here lack mGluR-dependent translation and LTD. Our study provides mechanistic insights for how changes in dendritic protein abundance regulate mGluR-LTD induction. We propose that Sam68-mediated translation helps to counterbalance degradation, ensuring that protein levels briefly remain above a permissive threshold during LTD induction.
Collapse
|
16
|
Homer protein-metabotropic glutamate receptor binding regulates endocannabinoid signaling and affects hyperexcitability in a mouse model of fragile X syndrome. J Neurosci 2015; 35:3938-45. [PMID: 25740522 DOI: 10.1523/jneurosci.4499-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Fmr1 knock-out mouse model of fragile X syndrome (Fmr1(-/y)) has an epileptogenic phenotype that is triggered by group I metabotropic glutamate receptor (mGluR) activation. We found that a membrane-permeable peptide that disrupts mGluR5 interactions with long-form Homers enhanced mGluR-induced epileptiform burst firing in wild-type (WT) animals, replicating the early stages of hyperexcitability in Fmr1(-/y). The peptide enhanced mGluR-evoked endocannabinoid (eCB)-mediated suppression of inhibitory synapses, decreased it at excitatory synapses in WTs, but had no effect on eCB actions in Fmr1(-/y). At a low concentration, the mGluR agonist did not generate eCBs at excitatory synapses but nevertheless induced burst firing in both Fmr1(-/y) and peptide-treated WT slices. This burst firing was suppressed by a cannabinoid receptor antagonist. We suggest that integrity of Homer scaffolds is essential for normal mGluR-eCB functioning and that aberrant eCB signaling resulting from disturbances of this molecular structure contributes to the epileptic phenotype of Fmr1(-/y).
Collapse
|
17
|
Giorgi FS, Biagioni F, Lenzi P, Frati A, Fornai F. The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations. J Neural Transm (Vienna) 2014; 122:849-62. [DOI: 10.1007/s00702-014-1312-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 12/12/2022]
|
18
|
Bartley CM, O’Keefe RA, Bordey A. FMRP S499 is phosphorylated independent of mTORC1-S6K1 activity. PLoS One 2014; 9:e96956. [PMID: 24806451 PMCID: PMC4013076 DOI: 10.1371/journal.pone.0096956] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
Hyperactive mammalian target of rapamycin (mTOR) is associated with cognitive deficits in several neurological disorders including tuberous sclerosis complex (TSC). The phosphorylation of the mRNA-binding protein FMRP reportedly depends on mTOR complex 1 (mTORC1) activity via p70 S6 kinase 1 (S6K1). Because this phosphorylation is thought to regulate the translation of messages important for synaptic plasticity, we explored whether FMRP phosphorylation of the S6K1-dependent residue (S499) is altered in TSC and states of dysregulated TSC-mTORC1 signaling. Surprisingly, we found that FMRP S499 phosphorylation was unchanged in heterozygous and conditional Tsc1 knockout mice despite significantly elevated mTORC1-S6K1 activity. Neither up- nor down-regulation of the mTORC1-S6K1 axis in vivo or in vitro had any effect on phospho-FMRP S499 levels. In addition, FMRP S499 phosphorylation was unaltered in S6K1-knockout mice. Collectively, these data strongly suggest that FMRP S499 phosphorylation is independent of mTORC1-S6K1 activity and is not altered in TSC.
Collapse
Affiliation(s)
- Christopher M. Bartley
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rachel A. O’Keefe
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Angélique Bordey
- Departments of Neurosurgery, and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
19
|
Castrén ML, Castrén E. BDNF in fragile X syndrome. Neuropharmacology 2013; 76 Pt C:729-36. [PMID: 23727436 DOI: 10.1016/j.neuropharm.2013.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is a monogenic disorder that is caused by the absence of FMR1 protein (FMRP). FXS serves as an excellent model disorder for studies investigating disturbed molecular mechanisms and synapse function underlying cognitive impairment, autism, and behavioral disturbance. Abnormalities in dendritic spines and synaptic transmission in the brain of FXS individuals and mouse models for FXS indicate perturbations in the development, maintenance, and plasticity of neuronal network connectivity. However, numerous alterations are found during the early development in FXS, including abnormal differentiation of neural progenitors and impaired migration of newly born neurons. Several aspects of FMRP function are modulated by brain-derived neurotrophic factor (BDNF) signaling. Here, we review the evidence of the role for BDNF in the developing and adult FXS brain. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Maija L Castrén
- Institute of Biomedicine/Physiology, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland; Rinnekoti Foundation, Rinnekodintie 10, FIN-02980 Espoo, Finland.
| | | |
Collapse
|
20
|
Persistent receptor activity underlies group I mGluR-mediated cellular plasticity in CA3 neuron. J Neurosci 2013; 33:2526-40. [PMID: 23392681 DOI: 10.1523/jneurosci.3338-12.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Plastic changes in cortical activities induced by group I metabotropic glutamate receptor (mGluR) stimulation include epileptogenesis, expressed in vitro as the conversion of normal neuronal activity to persistent, prolonged synchronized (ictal) discharges. At present, the mechanism that maintains group I mGluR-induced plasticity is not known. We examined this issue using hippocampal slices from guinea pigs and mice. Agonist [(S)-3,5-dihydroxyphenylglycine (DHPG), 30-50 μm)] stimulation of group I mGluRs induces persistent prolonged synchronized (ictal-like) discharges in CA3 that are associated with three identified excitatory cellular responses-suppression of spike afterhyperpolarizations, activation of a voltage-dependent cationic current, and increase in neuronal input resistance. Persistent prolonged synchronized discharges and the underlying excitatory cellular responses maintained following induction were reversibly blocked by mGluR1 antagonists [(S)-+-α-amino-4-carboxy-2-methylbenzeneacetic acid (LY 367385), 50, 100 μm; CPCCOEt (hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester, 100 μm], and to a lesser extent by the mGluR5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride, 50 μm]. Activation of persistent cellular responses to DHPG were unaffected by tetrodotoxin (0.5-1 μm) or perfusion with low Ca(2+)(0.2 mm)-Mn(2+)(0.5 mm) media-conditions that suppress endogenous glutamate release. The pharmacological profile of the blocking action of the group I mGluR antagonist MCPG [(RS)-α-methyl-4-carboxyphenylglycine, 50-500 μm] on persistent cellular responses was different from that on cellular responses directly activated by DHPG. These data indicate that transient stimulation of group I mGluRs alters receptor properties, rendering them persistently active in the absence of applied agonist or endogenous glutamate activation. Persistent receptor activities, primarily involving mGluR1, maintain excitatory cellular responses and emergent prolonged synchronized discharges.
Collapse
|
21
|
Jeon SJ, Han SH, Yang SI, Choi JW, Kwon KJ, Park SH, Kim HY, Cheong JH, Ryu JH, Ko KH, Wells DG, Shin CY. Positive feedback regulation of Akt-FMRP pathway protects neurons from cell death. J Neurochem 2012; 123:226-38. [DOI: 10.1111/j.1471-4159.2012.07886.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. J Neurosci 2012; 32:2582-7. [PMID: 22357842 DOI: 10.1523/jneurosci.5057-11.2012] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fragile X syndrome is caused by the loss of fragile X mental retardation protein (FMRP), which represses and reversibly regulates the translation of a subset of mRNAs in dendrites. Protein synthesis can be rapidly stimulated by mGluR-induced and protein phosphatase 2a (PP2A)-mediated dephosphorylation of FMRP, which is coupled to the dissociation of FMRP and target mRNAs from miRNA-induced silencing complexes. Here, we report the rapid ubiquitination and ubiquitin proteasome system (UPS)-mediated degradation of FMRP in dendrites upon DHPG (3,5-dihydroxyphenylglycine) stimulation in cultured rat neurons. Using inhibitors to PP2A and FMRP phosphomutants, degradation of FMRP was observed to depend on its prior dephosphorylation. Translational induction of an FMRP target, postsynaptic density-95 mRNA, required both PP2A and UPS. Thus, control of FMRP levels at the synapse by dephosphorylation-induced and UPS-mediated degradation provides a mode to regulate protein synthesis.
Collapse
|
23
|
Bhakar AL, Dölen G, Bear MF. The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci 2012; 35:417-43. [PMID: 22483044 DOI: 10.1146/annurev-neuro-060909-153138] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X is the most common known inherited cause of intellectual disability and autism, and it typically results from transcriptional silencing of FMR1 and loss of the encoded protein, FMRP (fragile X mental retardation protein). FMRP is an mRNA-binding protein that functions at many synapses to inhibit local translation stimulated by metabotropic glutamate receptors (mGluRs) 1 and 5. Recent studies on the biology of FMRP and the signaling pathways downstream of mGluR1/5 have yielded deeper insight into how synaptic protein synthesis and plasticity are regulated by experience. This new knowledge has also suggested ways that altered signaling and synaptic function can be corrected in fragile X, and human clinical trials based on this information are under way.
Collapse
Affiliation(s)
- Asha L Bhakar
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
24
|
De Rubeis S, Bagni C. Regulation of molecular pathways in the Fragile X Syndrome: insights into Autism Spectrum Disorders. J Neurodev Disord 2011; 3:257-69. [PMID: 21842222 PMCID: PMC3167042 DOI: 10.1007/s11689-011-9087-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 07/07/2011] [Indexed: 11/01/2022] Open
Abstract
The Fragile X syndrome (FXS) is a leading cause of intellectual disability (ID) and autism. The disease is caused by mutations or loss of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein playing multiple functions in RNA metabolism. The expression of a large set of neuronal mRNAs is altered when FMRP is lost, thus causing defects in neuronal morphology and physiology. FMRP regulates mRNA stability, dendritic targeting, and protein synthesis. At synapses, FMRP represses protein synthesis by forming a complex with the Cytoplasmic FMRP Interacting Protein 1 (CYFIP1) and the cap-binding protein eIF4E. Here, we review the clinical, genetic, and molecular aspects of FXS with a special focus on the receptor signaling that regulates FMRP-dependent protein synthesis. We further discuss the FMRP-CYFIP1 complex and its potential relevance for ID and autism.
Collapse
Affiliation(s)
- Silvia De Rubeis
- Center for Human Genetics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|