1
|
Zhang Y, Wu J, Zheng Y, Xu Y, Yu Z, Ping Y. Voltage Gated Ion Channels and Sleep. J Membr Biol 2024; 257:269-280. [PMID: 39354150 DOI: 10.1007/s00232-024-00325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wu
- Faculty of Brain Sciences, University College London, London, UK
| | - Yuxian Zheng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangkun Xu
- Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Ziqi Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Griflyuk AV, Postnikova TY, Zaitsev AV. Animal Models of Febrile Seizures: Limitations and Recent Advances in the Field. Cells 2024; 13:1895. [PMID: 39594643 PMCID: PMC11592604 DOI: 10.3390/cells13221895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Febrile seizures (FSs) are defined as seizures occurring in children aged 6 months to 5 years with a background of elevated body temperature. It is one of the most common neurological disorders of childhood, emphasizing the importance of understanding the causes of FSs and their impact on the developing nervous system. However, there are significant limitations to the technologies currently available for studying the etiology and pathophysiology of seizures in humans. It is currently not possible to adequately capture the subtle molecular and structural rearrangements of the nervous system that can occur after seizures in humans. The use of animal models can be invaluable for these purposes. The most commonly used models in modern research are hyperthermic models in rats and mice aged 10-12 days. While these models can reproduce many of the characteristics of FSs, they have certain limitations. This review outlines the key considerations when working with models of FSs, provides an overview of current approaches to producing seizures in different model subjects, and presents a summary of key findings regarding morphological and functional changes in the brain and behavioral alterations that have been identified in studies using animal models of FSs.
Collapse
Affiliation(s)
| | | | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, 44, Toreza Prospekt, Saint Petersburg 194223, Russia; (A.V.G.); (T.Y.P.)
| |
Collapse
|
3
|
Landaverde S, Sleep M, Lacoste A, Tan S, Schuback R, Reiter LT, Iyengar A. Glial expression of Drosophila UBE3A causes spontaneous seizures that can be modulated by 5-HT signaling. Neurobiol Dis 2024; 200:106651. [PMID: 39197537 PMCID: PMC11668239 DOI: 10.1016/j.nbd.2024.106651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024] Open
Abstract
Misexpression of the E3 ubiquitin ligase gene UBE3A is thought to contribute to a range of neurological disorders. In the context of Dup15q syndrome, additional genomic copies of UBE3A give rise to the autism, muscle hypotonia and spontaneous seizures characteristics of the disorder. In a Drosophila model of Dup 15q syndrome, it was recently shown that glial-driven expression of the UBE3A ortholog dube3a led to a "bang-sensitive" phenotype, where mechanical shock triggers convulsions, suggesting glial dube3a expression contributes to hyperexcitability in flies. Here we directly compare the consequences of glial- and neuronal-driven dube3a expression on motor coordination and seizure susceptibility in Drosophila. To quantify seizure-related behavioral events, we developed and trained a hidden Markov model that identified these events based on automated video tracking of fly locomotion. Both glial and neuronal driven dube3a expression led to clear motor phenotypes. However, only glial-driven dube3a expression displayed spontaneous seizure-associated immobilization events, that were clearly observed at high-temperature (38 °C). Using a tethered fly preparation amenable to electrophysiological monitoring of seizure activity, we found glial-driven dube3a flies display aberrant spontaneous spike discharges which are bilaterally synchronized. Neither neuronal-dube3a overexpressing flies, nor control flies displayed these firing patterns. We previously performed a drug screen for FDA approved compounds that can suppress bang-sensitivity in glial-driven dube3a expressing flies and identified certain 5-HT modulators as strong seizure suppressors. Here we found glial-driven dube3a flies fed the serotonin reuptake inhibitor vortioxetine and the 5-HT2A antagonist ketanserin displayed reduced immobilization and spike bursting, consistent with the previous study. Together these findings highlight the potential for glial pathophysiology to drive Dup15q syndrome-related seizure activity.
Collapse
Affiliation(s)
- Saul Landaverde
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Megan Sleep
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Andrew Lacoste
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Selene Tan
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Reid Schuback
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America
| | - Lawrence T Reiter
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States of America; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States of America; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Atulya Iyengar
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America; Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States of America; Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL, United States of America.
| |
Collapse
|
4
|
Lansdon P, Kasuya J, Kitamoto T. Commensal bacteria exacerbate seizure-like phenotypes in Drosophila voltage-gated sodium channel mutants. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70000. [PMID: 39231190 PMCID: PMC11373613 DOI: 10.1111/gbb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Mutations in voltage-gated sodium (Nav) channels, which are essential for generating and propagating action potentials, can lead to serious neurological disorders, such as epilepsy. However, disease-causing Nav channel mutations do not always result in severe symptoms, suggesting that the disease conditions are significantly affected by other genetic factors and various environmental exposures, collectively known as the "exposome". Notably, recent research emphasizes the pivotal role of commensal bacteria in neural development and function. Although these bacteria typically benefit the nervous system under normal conditions, their impact during pathological states remains largely unknown. Here, we investigated the influence of commensal microbes on seizure-like phenotypes exhibited by paraShu-a gain-of-function mutant of the Drosophila Nav channel gene, paralytic. Remarkably, the elimination of endogenous bacteria considerably ameliorated neurological impairments in paraShu. Consistently, reintroducing bacteria, specifically from the Lactobacillus or Acetobacter genera, heightened the phenotypic severity in the bacteria-deprived mutants. These findings posit that particular native bacteria contribute to the severity of seizure-like phenotypes in paraShu. We further uncovered that treating paraShu with antibiotics boosted Nrf2 signaling in the gut, and that global Nrf2 activation mirrored the effects of removing bacteria from paraShu. This raises the possibility that the removal of commensal bacteria suppresses the seizure-like manifestations through augmented antioxidant responses. Since bacterial removal during development was critical for suppression of adult paraShu phenotypes, our research sets the stage for subsequent studies, aiming to elucidate the interplay between commensal bacteria and the developing nervous system in conditions predisposed to the hyperexcitable nervous system.
Collapse
Affiliation(s)
- Patrick Lansdon
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
| | - Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Hammen T, Treib S, Treib P, Stefan H, Hamer HM, Landwehr R, Lohmann L, Koch S, Treib J, Adler W. The Influence of Climatic Factors on the Provocation of Epileptic Seizures. J Clin Med 2024; 13:3404. [PMID: 38929934 PMCID: PMC11204309 DOI: 10.3390/jcm13123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Recent studies provide the first indications of the impact of climate factors on human health, especially with individuals already grappling with internal and neurological conditions being particularly vulnerable. In the face of escalating climate change, our research delves into the specific influence of a spectrum of climatic factors and seasonal variations on the hospital admissions of patients receiving treatment for epileptic seizures at our clinic in Kaiserslautern. Methods: Our study encompassed data from 9366 epilepsy patients who were admitted to hospital due to epileptic seizures. We considered seven climate parameters that Germany's National Meteorological Service made available. We employed the Kruskal-Wallis test to examine the correlation between the frequency of admittance to our hospital in the mentioned patient group and seasons. Furthermore, we used conditional Poisson regression and distributed lag linear models (DLMs) to scrutinize the coherence of the frequency of patient admittance and the investigated climate parameters. The mentioned parameters were also analyzed in a subgroup analysis regarding the gender and age of patients and the classification of seizures according to ILAE 2017. Results: Our results demonstrate that climatic factors, such as precipitation and air pressure, can increase the frequency of hospital admissions for seizures in patients with general-onset epilepsy. In contrast, patients with focal seizures are less prone to climatic changes. Consequently, admittance to the hospital for seizures is less affected by climatic factors in the latter patient group. Conclusions: The present study demonstrated that climatic factors are possible trigger factors for the provocation of seizures, particularly in patients with generalized seizures. This was determined indirectly by analyzing the frequency of seizure-related emergency admissions and their relation to prevailing climate factors. Our study is consistent with other studies showing that climate factors, such as cerebral infarcts or cerebral hemorrhages, influence patients' health.
Collapse
Affiliation(s)
- Thilo Hammen
- Clinic for Neurology, Friedrich-Alexander-University Hospital Erlangen, 91054 Erlangen, Germany; (H.S.); (H.M.H.)
- Clinic for Neurology, Westpfalz-Klinikum Kaiserslautern, 67655 Kaiserslautern, Germany; (R.L.); (J.T.)
| | - Sebastian Treib
- Clinic for Neurology, University Hospital Homburg, 66421 Homburg, Germany; (S.T.); (L.L.)
| | - Philipp Treib
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Hermann Stefan
- Clinic for Neurology, Friedrich-Alexander-University Hospital Erlangen, 91054 Erlangen, Germany; (H.S.); (H.M.H.)
| | - Hajo M. Hamer
- Clinic for Neurology, Friedrich-Alexander-University Hospital Erlangen, 91054 Erlangen, Germany; (H.S.); (H.M.H.)
| | - Ralf Landwehr
- Clinic for Neurology, Westpfalz-Klinikum Kaiserslautern, 67655 Kaiserslautern, Germany; (R.L.); (J.T.)
| | - Lynn Lohmann
- Clinic for Neurology, University Hospital Homburg, 66421 Homburg, Germany; (S.T.); (L.L.)
| | - Sebastian Koch
- Clinical Neurology, Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA;
| | - Johannes Treib
- Clinic for Neurology, Westpfalz-Klinikum Kaiserslautern, 67655 Kaiserslautern, Germany; (R.L.); (J.T.)
| | - Werner Adler
- Department of Biometry and Epidemiology, Friedrich-Alexander-University Erlangen, 91054 Erlangen, Germany;
| |
Collapse
|
6
|
Pan X, Tao AM, Lu S, Ma M, Hannan SB, Slaugh R, Drewes Williams S, O'Grady L, Kanca O, Person R, Carter MT, Platzer K, Schnabel F, Abou Jamra R, Roberts AE, Newburger JW, Revah-Politi A, Granadillo JL, Stegmann APA, Sinnema M, Accogli A, Salpietro V, Capra V, Ghaloul-Gonzalez L, Brueckner M, Simon MEH, Sweetser DA, Glinton KE, Kirk SE, Wangler MF, Yamamoto S, Chung WK, Bellen HJ. De novo variants in FRYL are associated with developmental delay, intellectual disability, and dysmorphic features. Am J Hum Genet 2024; 111:742-760. [PMID: 38479391 PMCID: PMC11023917 DOI: 10.1016/j.ajhg.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/07/2024] Open
Abstract
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alice M Tao
- Vagelos School of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shabab B Hannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Sarah Drewes Williams
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren O'Grady
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; MGH Institute of Health Professions, Charlestown, MA, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Franziska Schnabel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Medicine, Division of Genetics, Boston Children's Hospital, Boston, MA, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Anya Revah-Politi
- Institute for Genomic Medicine and Precision Genomics Laboratory, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Center, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London, UK
| | - Valeria Capra
- Unit of Medical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lina Ghaloul-Gonzalez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Marleen E H Simon
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David A Sweetser
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Susan E Kirk
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wendy K Chung
- Departments of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Sleep M, Landaverde S, Lacoste A, Tan S, Schuback R, Reiter LT, Iyengar A. Glial expression of Drosophila UBE3A causes spontaneous seizures modulated by 5-HT signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579543. [PMID: 38370819 PMCID: PMC10871353 DOI: 10.1101/2024.02.08.579543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Misexpression of the E3 ubiquitin ligase UBE3A is thought to contribute to a range of neurological disorders. In the context of Dup15q syndrome, excess genomic copies of UBE3A is thought to contribute to the autism, muscle tone and spontaneous seizures characteristic of the disorder. In a Drosophila model of Dup 15q syndrome, it was recently shown glial-driven expression of the UBE3A ortholog dube3a led to a "bang-sensitive" phenotype, where mechanical shock triggers convulsions, suggesting glial dube3a expression contributes to hyperexcitability in flies. Here we directly compare the consequences of glial- and neuronal-driven dube3a expression on motor coordination and neuronal excitability in Drosophila. We utilized IowaFLI tracker and developed a hidden Markov Model to classify seizure-related immobilization. Both glial and neuronal driven dube3a expression led to clear motor phenotypes. However, only glial-driven dube3a expression displayed spontaneous immobilization events, that were exacerbated at high-temperature (38 °C). Using a tethered fly preparation we monitored flight muscle activity, we found glial-driven dube3a flies display spontaneous spike discharges which were bilaterally synchronized indicative of seizure activity. Neither control flies, nor neuronal- dube3a overexpressing flies display such firing patterns. Prior drug screen indicated bang-sensitivity in glial-driven dube3a expressing flies could be suppressed by certain 5-HT modulators. Consistent with this report, we found glial-driven dube3a flies fed the serotonin reuptake inhibitor vortioxetine and the 5HT 2A antagonist ketanserin displayed reduced immobilization and spike bursting. Together these findings highlight the potential for glial pathophysiology to drive Dup15q syndrome-related seizure activity.
Collapse
|
8
|
Smith J, Richerson G, Kouchi H, Duprat F, Mantegazza M, Bezin L, Rheims S. Are we there yet? A critical evaluation of sudden and unexpected death in epilepsy models. Epilepsia 2024; 65:9-25. [PMID: 37914406 DOI: 10.1111/epi.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Although animal models have helped to elaborate meaningful hypotheses about the pathophysiology of sudden and unexpected death in epilepsy (SUDEP), specific prevention strategies are still lacking, potentially reflecting the limitations of these models and the intrinsic difficulties of investigating SUDEP. The interpretation of preclinical data and their translation to diagnostic and therapeutic developments in patients thus require a high level of confidence in their relevance to model the human situation. Preclinical models of SUDEP are heterogeneous and include rodent and nonrodent species. A critical aspect is whether the animals have isolated seizures exclusively induced by a specific trigger, such as models where seizures are elicited by electrical stimulation, pharmacological intervention, or DBA mouse strains, or whether they suffer from epilepsy with spontaneous seizures, with or without spontaneous SUDEP, either of nongenetic epilepsy etiology or from genetically based developmental and epileptic encephalopathies. All these models have advantages and potential disadvantages, but it is important to be aware of these limitations to interpret data appropriately in a translational perspective. The majority of models with spontaneous seizures are of a genetic basis, whereas SUDEP cases with a genetic basis represent only a small proportion of the total number. In almost all models, cardiorespiratory arrest occurs during the course of the seizure, contrary to that in patients observed at the time of death, potentially raising the issue of whether we are studying models of SUDEP or models of periseizure death. However, some of these limitations are impossible to avoid and can in part be dependent on specific features of SUDEP, which may be difficult to model. Several preclinical tools are available to address certain gaps in SUDEP pathophysiology, which can be used to further validate current preclinical models.
Collapse
Affiliation(s)
- Jonathon Smith
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - George Richerson
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Hayet Kouchi
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Fabrice Duprat
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| | - Laurent Bezin
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
| | - Sylvain Rheims
- Lyon Neuroscience Research Center (CRNL, INSERM U1028/CNRS UMR 5292, Lyon 1 University), Lyon, France
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France
| |
Collapse
|
9
|
Li L, Yuan L, Zheng W, Yang Y, Deng X, Song Z, Deng H. An SCN1A gene missense variant in a Chinese Tujia ethnic family with genetic epilepsy with febrile seizures plus. Front Neurol 2023; 14:1229569. [PMID: 37576022 PMCID: PMC10412811 DOI: 10.3389/fneur.2023.1229569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023] Open
Abstract
Genetic epilepsy with febrile seizures plus (GEFSP) is a familial epileptic syndrome that is genetically heterogeneous and inherited in an autosomal dominant form in most cases. To date, at least seven genes have been reported to associate with GEFSP. This study aimed to identify the disease-causing variant in a Chinese Tujia ethnic family with GEFSP by using whole exome sequencing, Sanger sequencing, and in silico prediction. A heterozygous missense variant c.5725A>G (p.T1909A) was identified in the sodium voltage-gated channel alpha subunit 1 gene (SCN1A) coding region. The variant co-segregated with the GEFSP phenotype in this family, and it was predicted as disease-causing by multiple in silico programs, which was proposed as the genetic cause of GEFSP, further genetically diagnosed as GEFSP2. These findings expand the genetic and phenotypic spectrum of GEFSP and should contribute to genetic diagnoses, personalized therapies, and prognoses.
Collapse
Affiliation(s)
- Ling Li
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiong Deng
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| |
Collapse
|
10
|
Silva-Cardoso GK, N'Gouemo P. Seizure-suppressor genes: can they help spearhead the discovery of novel therapeutic targets for epilepsy? Expert Opin Ther Targets 2023; 27:657-664. [PMID: 37589085 PMCID: PMC10528013 DOI: 10.1080/14728222.2023.2248375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Epilepsies are disorders of neuronal excitability characterized by spontaneously recurrent focal and generalized seizures, some of which result from genetic mutations. Despite the availability of antiseizure medications, pharmaco-resistant epilepsy is seen in about 23% of epileptic patients worldwide. Therefore, there is an urgent need to develop novel therapeutic strategies for epilepsies. Several epilepsy-associated genes have been found in humans. Seizure susceptibility can also be induced in Drosophila mutants, some showing features resembling human epilepsies. Interestingly, several second-site mutation gene products have been found to suppress seizure susceptibility in the seizure genetic model Drosophila. Thus, these so-called 'seizure-suppressor' gene variants may lead to developing a novel class of antiseizure medications. AREA COVERED This review evaluates the potential therapeutic of seizure-suppressor gene variants. EXPERT OPINION Studies on epilepsy-associated genes have allowed analyses of mutations linked to human epilepsy by reproducing these mutations in Drosophila using reverse genetics to generate potential antiseizure therapeutics. As a result, about fifteen seizure-suppressor gene mutants have been identified. Furthermore, some of these epilepsy gene mutations affect ligand-and voltage-gated ion channels. Therefore, a better understanding of the antiseizure activity of seizure-suppressor genes is essential in advancing gene therapy and precision medicine for epilepsy.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
11
|
Kasuya J, Johnson W, Chen HL, Kitamoto T. Dietary Supplementation with Milk Lipids Leads to Suppression of Developmental and Behavioral Phenotypes of Hyperexcitable Drosophila Mutants. Neuroscience 2023; 520:1-17. [PMID: 37004908 PMCID: PMC10200772 DOI: 10.1016/j.neuroscience.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Dietary modifications often have a profound impact on the penetrance and expressivity of neurological phenotypes that are caused by genetic defects. Our previous studies in Drosophila melanogaster revealed that seizure-like phenotypes of gain-of-function voltage-gated sodium (Nav) channel mutants (paraShu, parabss1, and paraGEFS+), as well as other seizure-prone "bang-sensitive" mutants (eas and sda), were drastically suppressed by supplementation of a standard diet with milk whey. In the current study we sought to determine which components of milk whey are responsible for the diet-dependent suppression of their hyperexcitable phenotypes. Our systematic analysis reveals that supplementing the diet with a modest amount of milk lipids (0.26% w/v) mimics the effects of milk whey. We further found that a minor milk lipid component, α-linolenic acid, contributed to the diet-dependent suppression of adult paraShu phenotypes. Given that lipid supplementation during the larval stages effectively suppressed adult paraShu phenotypes, dietary lipids likely modify neural development to compensate for the defects caused by the mutations. Consistent with this notion, lipid feeding fully rescued abnormal dendrite development of class IV sensory neurons in paraShu larvae. Overall, our findings demonstrate that milk lipids are sufficient to ameliorate hyperexcitable phenotypes in Drosophila mutants, providing a foundation for future investigation of the molecular and cellular mechanisms by which dietary lipids modify genetically induced abnormalities in neural development, physiology, and behavior.
Collapse
Affiliation(s)
- Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 1-376 BSB, 51 Newton Road, Iowa City, IA 52242, United States.
| | - Wayne Johnson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, United States; Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States.
| | - Hung-Lin Chen
- Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States.
| |
Collapse
|
12
|
Accogli A, Lu S, Musante I, Scudieri P, Rosenfeld JA, Severino M, Baldassari S, Iacomino M, Riva A, Balagura G, Piccolo G, Minetti C, Roberto D, Xia F, Razak R, Lawrence E, Hussein M, Chang EYH, Holick M, Calì E, Aliberto E, De-Sarro R, Gambardella A, Network UD, Group SYNS, Emrick L, McCaffery PJA, Clagett-Dame M, Marcogliese PC, Bellen HJ, Lalani SR, Zara F, Striano P, Salpietro V. Loss of Neuron Navigator 2 Impairs Brain and Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2023; 22:206-222. [PMID: 35218524 PMCID: PMC9985553 DOI: 10.1007/s12311-022-01379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Cerebellar hypoplasia and dysplasia encompass a group of clinically and genetically heterogeneous disorders frequently associated with neurodevelopmental impairment. The Neuron Navigator 2 (NAV2) gene (MIM: 607,026) encodes a member of the Neuron Navigator protein family, widely expressed within the central nervous system (CNS), and particularly abundant in the developing cerebellum. Evidence across different species supports a pivotal function of NAV2 in cytoskeletal dynamics and neurite outgrowth. Specifically, deficiency of Nav2 in mice leads to cerebellar hypoplasia with abnormal foliation due to impaired axonal outgrowth. However, little is known about the involvement of the NAV2 gene in human disease phenotypes. In this study, we identified a female affected with neurodevelopmental impairment and a complex brain and cardiac malformations in which clinical exome sequencing led to the identification of NAV2 biallelic truncating variants. Through protein expression analysis and cell migration assay in patient-derived fibroblasts, we provide evidence linking NAV2 deficiency to cellular migration deficits. In model organisms, the overall CNS histopathology of the Nav2 hypomorphic mouse revealed developmental anomalies including cerebellar hypoplasia and dysplasia, corpus callosum hypo-dysgenesis, and agenesis of the olfactory bulbs. Lastly, we show that the NAV2 ortholog in Drosophila, sickie (sick) is widely expressed in the fly brain, and sick mutants are mostly lethal with surviving escapers showing neurobehavioral phenotypes. In summary, our results unveil a novel human neurodevelopmental disorder due to genetic loss of NAV2, highlighting a critical conserved role of the NAV2 gene in brain and cerebellar development across species.
Collapse
Affiliation(s)
- Andrea Accogli
- Division of Medical Genetics, Department of Specialized Medicine, McGill University, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ilaria Musante
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Ganna Balagura
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Denis Roberto
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | | | - Emily Lawrence
- Department of Cardiology, Texas Childrens Hospital, Houston, USA
| | - Mohamed Hussein
- Department of Ophthalmology, Texas Childrens Hospital, Houston, USA
| | | | - Michelle Holick
- Texas Childrens Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Elisa Calì
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | | | - Rosalba De-Sarro
- Department of Clinical and Experimental Medicine, Policlinic "G. Martino", University of Messina, 98100, Messina, Italy
| | - Antonio Gambardella
- Department of Medical and Surgical Sciences, Universita' Degli Studi "Magna Graecia" Viale Europa, 88100, CATANZARO, Italy
| | | | | | - Lisa Emrick
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Texas Childrens Hospital, Houston, TX, USA
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Peter J A McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Margaret Clagett-Dame
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI, 53706, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, 53706, USA
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Childrens Hospital, Houston, TX, 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Childrens Hospital, Houston, TX, USA
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy.
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
13
|
Fischer FP, Karge RA, Weber YG, Koch H, Wolking S, Voigt A. Drosophila melanogaster as a versatile model organism to study genetic epilepsies: An overview. Front Mol Neurosci 2023; 16:1116000. [PMID: 36873106 PMCID: PMC9978166 DOI: 10.3389/fnmol.2023.1116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Epilepsy is one of the most prevalent neurological disorders, affecting more than 45 million people worldwide. Recent advances in genetic techniques, such as next-generation sequencing, have driven genetic discovery and increased our understanding of the molecular and cellular mechanisms behind many epilepsy syndromes. These insights prompt the development of personalized therapies tailored to the genetic characteristics of an individual patient. However, the surging number of novel genetic variants renders the interpretation of pathogenetic consequences and of potential therapeutic implications ever more challenging. Model organisms can help explore these aspects in vivo. In the last decades, rodent models have significantly contributed to our understanding of genetic epilepsies but their establishment is laborious, expensive, and time-consuming. Additional model organisms to investigate disease variants on a large scale would be desirable. The fruit fly Drosophila melanogaster has been used as a model organism in epilepsy research since the discovery of "bang-sensitive" mutants more than half a century ago. These flies respond to mechanical stimulation, such as a brief vortex, with stereotypic seizures and paralysis. Furthermore, the identification of seizure-suppressor mutations allows to pinpoint novel therapeutic targets. Gene editing techniques, such as CRISPR/Cas9, are a convenient way to generate flies carrying disease-associated variants. These flies can be screened for phenotypic and behavioral abnormalities, shifting of seizure thresholds, and response to anti-seizure medications and other substances. Moreover, modification of neuronal activity and seizure induction can be achieved using optogenetic tools. In combination with calcium and fluorescent imaging, functional alterations caused by mutations in epilepsy genes can be traced. Here, we review Drosophila as a versatile model organism to study genetic epilepsies, especially as 81% of human epilepsy genes have an orthologous gene in Drosophila. Furthermore, we discuss newly established analysis techniques that might be used to further unravel the pathophysiological aspects of genetic epilepsies.
Collapse
Affiliation(s)
- Florian P. Fischer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Robin A. Karge
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Yvonne G. Weber
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Stefan Wolking
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Liu CQ, Qu XC, He MF, Liang DH, Xie SM, Zhang XX, Lin YM, Zhang WJ, Wu KC, Qiao JD. Efficient strategies based on behavioral and electrophysiological methods for epilepsy-related gene screening in the Drosophila model. Front Mol Neurosci 2023; 16:1121877. [PMID: 37152436 PMCID: PMC10157486 DOI: 10.3389/fnmol.2023.1121877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction With the advent of trio-based whole-exome sequencing, the identification of epilepsy candidate genes has become easier, resulting in a large number of potential genes that need to be validated in a whole-organism context. However, conducting animal experiments systematically and efficiently remains a challenge due to their laborious and time-consuming nature. This study aims to develop optimized strategies for validating epilepsy candidate genes using the Drosophila model. Methods This study incorporate behavior, morphology, and electrophysiology for genetic manipulation and phenotypic examination. We utilized the Gal4/UAS system in combination with RNAi techniques to generate loss-of-function models. We performed a range of behavioral tests, including two previously unreported seizure phenotypes, to evaluate the seizure behavior of mutant and wild-type flies. We used Gal4/UAS-mGFP flies to observe the morphological alterations in the brain under a confocal microscope. We also implemented patch-clamp recordings, including a novel electrophysiological method for studying synapse function and improved methods for recording action potential currents and spontaneous EPSCs on targeted neurons. Results We applied different techniques or methods mentioned above to investigate four epilepsy-associated genes, namely Tango14, Klp3A, Cac, and Sbf, based on their genotype-phenotype correlation. Our findings showcase the feasibility and efficiency of our screening system for confirming epilepsy candidate genes in the Drosophila model. Discussion This efficient screening system holds the potential to significantly accelerate and optimize the process of identifying epilepsy candidate genes, particularly in conjunction with trio-based whole-exome sequencing.
Collapse
Affiliation(s)
- Chu-Qiao Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Chong Qu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Feng He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - De-Hai Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ming Xie
- The First Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Xi-Xing Zhang
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Yong-Miao Lin
- The Second Clinical Medicine School of Guangzhou Medical University, Guangzhou, China
| | - Wen-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ka-Chun Wu
- School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jing-Da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing-Da Qiao, ; orcid.org/0000-0002-4693-8390
| |
Collapse
|
15
|
Makridis KL, Friedo AL, Kellinghaus C, Losch FP, Schmitz B, Boßelmann C, Kaindl AM. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia 2022; 63:e164-e171. [PMID: 36176237 DOI: 10.1111/epi.17427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
Dravet syndrome (DS) is a rare, drug-resistant, severe developmental and epileptic encephalopathy caused by pathogenic variants in the α subunit of the voltage-gated sodium channel gene SCN1A. Hyperexcitability in DS results from loss of function in inhibitory interneurons. Thus sodium channel blockers are usually contraindicated in patients with DS as they may lead to disease aggravation. Cenobamate (CNB) is a novel antiseizure medication (ASM) with promising rates of seizure freedom in patients with focal-onset, drug-resistant epilepsy. CNB blocks persistent sodium currents by promoting the inactive states of sodium channels. In a multi-center study, we analyzed retrospectively the effect of an add-on therapy of CNB in adult patients with DS. We report four adult patients with DS in whom the use of CNB resulted in a significant seizure reduction of more than 80%, with a follow-up of up to 542 days. CNB was the first drug in these patients that resulted in a long-lasting and significant seizure reduction. No severe adverse events occurred. We highlight CNB as an ASM that may lead to a clinically meaningful reduction of seizure frequency in adult patients with DS. It is unclear, however, if all patients with DS benefit, requiring further investigation and functional experiments.
Collapse
Affiliation(s)
- Konstantin L Makridis
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna-Lena Friedo
- Epilepsy Center Berlin-Brandenburg, Epilepsieklinik Tabor, Bernau, Germany
| | | | | | - Bettina Schmitz
- Department of Neurology, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Christian Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Low-Cost Platform for Multianimal Chronic Local Field Potential Video Monitoring with Graphical User Interface (GUI) for Seizure Detection and Behavioral Scoring. eNeuro 2022; 9:ENEURO.0283-22.2022. [PMID: 36192155 PMCID: PMC9581574 DOI: 10.1523/eneuro.0283-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022] Open
Abstract
Experiments employing chronic monitoring of neurophysiological signals and video are commonly used in studies of epilepsy to characterize behavioral correlates of seizures. Our objective was to design a low-cost platform that enables chronic monitoring of several animals simultaneously, synchronizes bilateral local field potential (LFP) and video streams in real time, and parses recorded data into manageable file sizes. We present a hardware solution leveraging Intan and Open Ephys acquisition systems and a software solution implemented in Bonsai. The platform was tested in 48-h continuous recordings simultaneously from multiple mice (male and female) with chronic epilepsy. To enable seizure detection and scoring, we developed a graphical user interface (GUI) that reads the data produced by our workflow and allows a user with no coding expertise to analyze events. Our Bonsai workflow was designed to maximize flexibility for a wide variety of experimental applications, and our use of the Open Ephys acquisition board would allow for scaling recordings up to 128 channels per animal.
Collapse
|
17
|
Lu S, Ma M, Mao X, Bacino CA, Jankovic J, Sutton VR, Bartley JA, Wang X, Rosenfeld JA, Beleza-Meireles A, Chauhan J, Pan X, Li M, Liu P, Prescott K, Amin S, Davies G, Wangler MF, Dai Y, Bellen HJ. De novo variants in FRMD5 are associated with developmental delay, intellectual disability, ataxia, and abnormalities of eye movement. Am J Hum Genet 2022; 109:1932-1943. [PMID: 36206744 PMCID: PMC9606480 DOI: 10.1016/j.ajhg.2022.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023] Open
Abstract
Proteins containing the FERM (four-point-one, ezrin, radixin, and moesin) domain link the plasma membrane with cytoskeletal structures at specific cellular locations and have been implicated in the localization of cell-membrane-associated proteins and/or phosphoinositides. FERM domain-containing protein 5 (FRMD5) localizes at cell adherens junctions and stabilizes cell-cell contacts. To date, variants in FRMD5 have not been associated with a Mendelian disease in OMIM. Here, we describe eight probands with rare heterozygous missense variants in FRMD5 who present with developmental delay, intellectual disability, ataxia, seizures, and abnormalities of eye movement. The variants are de novo in all for whom parental testing was available (six out of eight probands), and human genetic datasets suggest that FRMD5 is intolerant to loss of function (LoF). We found that the fly ortholog of FRMD5, CG5022 (dFrmd), is expressed in the larval and adult central nervous systems where it is present in neurons but not in glia. dFrmd LoF mutant flies are viable but are extremely sensitive to heat shock, which induces severe seizures. The mutants also exhibit defective responses to light. The human FRMD5 reference (Ref) cDNA rescues the fly dFrmd LoF phenotypes. In contrast, all the FRMD5 variants tested in this study (c.340T>C, c.1051A>G, c.1053C>G, c.1054T>C, c.1045A>C, and c.1637A>G) behave as partial LoF variants. In addition, our results indicate that two variants that were tested have dominant-negative effects. In summary, the evidence supports that the observed variants in FRMD5 cause neurological symptoms in humans.
Collapse
Affiliation(s)
- Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - James A Bartley
- Loma Linda University Children's Hospital, Loma Linda, CA 92354, USA
| | - Xueying Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Ana Beleza-Meireles
- Clinical Genetics Department, St Michael's Hospital, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | - Jaynee Chauhan
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Megan Li
- Invitae, San Francisco, CA 94103, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Houston, TX 77021, USA
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Sam Amin
- Paediatric Neurology Department, Bristol Royal Pediatric Hospital, University Hospitals Bristol and Weston, Bristol BS1 3NU, UK
| | | | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Yuwei Dai
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China; Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Concise Review: Stem Cell Models of SCN1A-Related Encephalopathies—Current Perspective and Future Therapies. Cells 2022; 11:cells11193119. [PMID: 36231081 PMCID: PMC9561991 DOI: 10.3390/cells11193119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient’s unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.
Collapse
|
19
|
Chancey JH, Howard MA. Synaptic Integration in CA1 Pyramidal Neurons Is Intact despite Deficits in GABAergic Transmission in the Scn1a Haploinsufficiency Mouse Model of Dravet Syndrome. eNeuro 2022; 9:ENEURO.0080-22.2022. [PMID: 35523580 PMCID: PMC9116933 DOI: 10.1523/eneuro.0080-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 04/27/2022] [Indexed: 01/13/2023] Open
Abstract
Mutations of SCN1A, which encodes the voltage-gated sodium channel Nav1.1, can cause epilepsy disorders such as Dravet syndrome (DS) that are comorbid with wide-ranging neurologic dysfunction. Many studies suggest that Nav1.1 haploinsufficiency causes forebrain GABAergic interneuron hypoexcitability, while pyramidal neuron physiology is mostly unaltered, and that this serves as a primary cell physiology phenotype linking mutation to disease. We hypothesized that deficits in inhibition would alter synaptic integration during activation of the hippocampal microcircuit, thus disrupting cellular information processing and leading to seizures and cognitive deficits. We tested this hypothesis using ex vivo whole-cell recordings from CA1 pyramidal neurons in a heterozygous Scn1a knock-out mouse model and wild-type (WT) littermates, measuring responses to single and patterned synaptic stimulation and spontaneous synaptic activity. Overall, our experiments reveal a surprising normalcy of excitatory and inhibitory synaptic temporal integration in the hippocampus of Scn1a haploinsufficient mice. While miniature IPSCs and feedforward inhibition and were decreased, we did not identify a pattern or frequency of input that caused a failure of synaptic inhibition. We further show that reduced GABA release probability and subsequent reduced short-term depression may act to overcome deficits in inhibition normalizing input/output functions in the Scn1a haploinsufficient hippocampus. These experiments show that CA1 pyramidal neuron synaptic processing is surprisingly robust, even during decreased interneuron function, and more complex circuit activity is likely required to reveal altered function in the hippocampal microcircuit.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Department of Neurology, Dell Medical School, Austin 78712, TX
- Department of Neuroscience and Center for Learning and Memory, University of Texas at Austin, Austin 78712, TX
| | - MacKenzie Allen Howard
- Department of Neurology, Dell Medical School, Austin 78712, TX
- Department of Neuroscience and Center for Learning and Memory, University of Texas at Austin, Austin 78712, TX
| |
Collapse
|
20
|
Lu S, Hernan R, Marcogliese PC, Huang Y, Gertler TS, Akcaboy M, Liu S, Chung HL, Pan X, Sun X, Oguz MM, Oztoprak U, de Baaij JH, Ivanisevic J, McGinnis E, Guillen Sacoto MJ, Chung WK, Bellen HJ. Loss-of-function variants in TIAM1 are associated with developmental delay, intellectual disability, and seizures. Am J Hum Genet 2022; 109:571-586. [PMID: 35240055 DOI: 10.1016/j.ajhg.2022.01.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
TIAM Rac1-associated GEF 1 (TIAM1) regulates RAC1 signaling pathways that affect the control of neuronal morphogenesis and neurite outgrowth by modulating the actin cytoskeletal network. To date, TIAM1 has not been associated with a Mendelian disorder. Here, we describe five individuals with bi-allelic TIAM1 missense variants who have developmental delay, intellectual disability, speech delay, and seizures. Bioinformatic analyses demonstrate that these variants are rare and likely pathogenic. We found that the Drosophila ortholog of TIAM1, still life (sif), is expressed in larval and adult central nervous system (CNS) and is mainly expressed in a subset of neurons, but not in glia. Loss of sif reduces the survival rate, and the surviving adults exhibit climbing defects, are prone to severe seizures, and have a short lifespan. The TIAM1 reference (Ref) cDNA partially rescues the sif loss-of-function (LoF) phenotypes. We also assessed the function associated with three TIAM1 variants carried by two of the probands and compared them to the TIAM1 Ref cDNA function in vivo. TIAM1 p.Arg23Cys has reduced rescue ability when compared to TIAM1 Ref, suggesting that it is a partial LoF variant. In ectopic expression studies, both wild-type sif and TIAM1 Ref are toxic, whereas the three variants (p.Leu862Phe, p.Arg23Cys, and p.Gly328Val) show reduced toxicity, suggesting that they are partial LoF variants. In summary, we provide evidence that sif is important for appropriate neural function and that TIAM1 variants observed in the probands are disruptive, thus implicating loss of TIAM1 in neurological phenotypes in humans.
Collapse
|
21
|
Slo2/K Na Channels in Drosophila Protect against Spontaneous and Induced Seizure-like Behavior Associated with an Increased Persistent Na + Current. J Neurosci 2021; 41:9047-9063. [PMID: 34544836 DOI: 10.1523/jneurosci.0290-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Na+ sensitivity is a unique feature of Na+-activated K+ (KNa) channels, making them naturally suited to counter a sudden influx in Na+ ions. As such, it has long been suggested that KNa channels may serve a protective function against excessive excitation associated with neuronal injury and disease. This hypothesis, however, has remained largely untested. Here, we examine KNa channels encoded by the Drosophila Slo2 (dSlo2) gene in males and females. We show that dSlo2/KNa channels are selectively expressed in cholinergic neurons in the adult brain, as well as in glutamatergic motor neurons, where dampening excitation may function to inhibit global hyperactivity and seizure-like behavior. Indeed, we show that effects of feeding Drosophila a cholinergic agonist are exacerbated by the loss of dSlo2/KNa channels. Similar to mammalian Slo2/KNa channels, we show that dSlo2/KNa channels encode a TTX-sensitive K+ conductance, indicating that dSlo2/KNa channels can be activated by Na+ carried by voltage-dependent Na+ channels. We then tested the role of dSlo2/KNa channels in established genetic seizure models in which the voltage-dependent persistent Na+ current (INap) is elevated. We show that the absence of dSlo2/KNa channels increased susceptibility to mechanically induced seizure-like behavior. Similar results were observed in WT flies treated with veratridine, an enhancer of INap Finally, we show that loss of dSlo2/KNa channels in both genetic and pharmacologically primed seizure models resulted in the appearance of spontaneous seizures. Together, our results support a model in which dSlo2/KNa channels, activated by neuronal overexcitation, contribute to a protective threshold to suppress the induction of seizure-like activity.SIGNIFICANCE STATEMENT Slo2/KNa channels are unique in that they constitute a repolarizing K+ pore that is activated by the depolarizing Na+ ion, making them naturally suited to function as a protective "brake" against overexcitation and Na+ overload. Here, we test this hypothesis in vivo by examining how a null mutation of the Drosophila Slo2 (dSlo2)/KNa gene affects seizure-like behavior in genetic and pharmacological models of epilepsy. We show that indeed the loss of dSlo2/KNa channels results in increased incidence and severity of induced seizure behavior, as well as the appearance of spontaneous seizure activity. Our results advance our understanding of neuronal excitability and protective mechanisms that preserve normal physiology and the suppression of seizure susceptibility.
Collapse
|
22
|
Seizure Phenotype and Underlying Cellular Defects in Drosophila Knock-In Models of DS (R1648C) and GEFS+ (R1648H) SCN1A Epilepsy. eNeuro 2021; 8:ENEURO.0002-21.2021. [PMID: 34475263 PMCID: PMC8454921 DOI: 10.1523/eneuro.0002-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/21/2022] Open
Abstract
Mutations in the voltage-gated sodium channel gene SCN1A are associated with human epilepsy disorders, but how most of these mutations alter channel properties and result in seizures is unknown. This study focuses on two different mutations occurring at one position within SCN1A. R1648C (R-C) is associated with the severe disorder Dravet syndrome, and R1648H (R-H), with the milder disorder GEFS+. To explore how these different mutations contribute to distinct seizure disorders, Drosophila lines with the R-C or R-H mutation, or R1648R (R-R) control substitution in the fly sodium channel gene para were generated by CRISPR-Cas9 gene editing. The R-C and R-H mutations are homozygous lethal. Animals heterozygous for R-C or R-H mutations displayed reduced life spans and spontaneous and temperature-induced seizures not observed in R-R controls. Electrophysiological recordings from adult GABAergic neurons in R-C and R-H mutants revealed the appearance of sustained neuronal depolarizations and altered firing frequency that were exacerbated at elevated temperature. The only significant change observed in underlying sodium currents in both R-C and R-H mutants was a hyperpolarized deactivation threshold at room and elevated temperature compared with R-R controls. Since this change is constitutive, it is likely to interact with heat-induced changes in other cellular properties to result in the heat-induced increase in sustained depolarizations and seizure activity. Further, the similarity of the behavioral and cellular phenotypes in the R-C and R-H fly lines, suggests that disease symptoms of different severity associated with these mutations in humans could be due in large part to differences in genetic background.
Collapse
|
23
|
Abstract
Hypersynchronous neural activity is a characteristic feature of seizures. Although many Drosophila mutants of epilepsy-related genes display clear behavioral spasms and motor unit hyperexcitability, field potential measurements of aberrant hypersynchronous activity across brain regions during seizures have yet to be described. Here, we report a straightforward method to observe local field potentials (LFPs) from the Drosophila brain to monitor ensemble neural activity during seizures in behaving tethered flies. High frequency stimulation across the brain reliably triggers a stereotypic sequence of electroconvulsive seizure (ECS) spike discharges readily detectable in the dorsal longitudinal muscle (DLM) and coupled with behavioral spasms. During seizure episodes, the LFP signal displayed characteristic large-amplitude oscillations with a stereotypic temporal correlation to DLM flight muscle spiking. ECS-related LFP events were clearly distinct from rest- and flight-associated LFP patterns. We further characterized the LFP activity during different types of seizures originating from genetic and pharmacological manipulations. In the 'bang-sensitive' sodium channel mutant bangsenseless (bss), the LFP pattern was prolonged, and the temporal correlation between LFP oscillations and DLM discharges was altered. Following administration of the pro-convulsant GABAA blocker picrotoxin, we uncovered a qualitatively different LFP activity pattern, which consisted of a slow (1-Hz), repetitive, waveform, closely coupled with DLM bursting and behavioral spasms. Our approach to record brain LFPs presents an initial framework for electrophysiological analysis of the complex brain-wide activity patterns in the large collection of Drosophila excitability mutants.
Collapse
Affiliation(s)
- Atulya Iyengar
- Department of Biology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Chun-Fang Wu
- Department of Biology, and Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
24
|
Characterization of Seizure Induction Methods in Drosophila. eNeuro 2021; 8:ENEURO.0079-21.2021. [PMID: 34330816 PMCID: PMC8387149 DOI: 10.1523/eneuro.0079-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is one of the most common neurologic disorders. Around one third of patients do not respond to current medications. This lack of treatment indicates a need for better understanding of the underlying mechanisms and, importantly, the identification of novel targets for drug manipulation. The fruit fly Drosophila melanogaster has a fast reproduction time, powerful genetics, and facilitates large sample sizes, making it a strong model of seizure mechanisms. To better understand behavioral and physiological phenotypes across major fly seizure genotypes we systematically measured seizure severity and secondary behavioral phenotypes at both the larval and adult stage. Comparison of several seizure-induction methods; specifically electrical, mechanical and heat induction, show that larval electroshock is the most effective at inducing seizures across a wide range of seizure-prone mutants tested. Locomotion in adults and larvae was found to be non-predictive of seizure susceptibility. Recording activity in identified larval motor neurons revealed variations in action potential (AP) patterns, across different genotypes, but these patterns did not correlate with seizure susceptibility. To conclude, while there is wide variation in mechanical induction, heat induction, and secondary phenotypes, electroshock is the most consistent method of seizure induction across known major seizure genotypes in Drosophila.
Collapse
|
25
|
Interneuron Dysfunction in a New Mouse Model of SCN1A GEFS. eNeuro 2021; 8:ENEURO.0394-20.2021. [PMID: 33658306 PMCID: PMC8174035 DOI: 10.1523/eneuro.0394-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
Advances in genome sequencing have identified over 1300 mutations in the SCN1A sodium channel gene that result in genetic epilepsies. However, it still remains unclear how most individual mutations within SCN1A result in seizures. A previous study has shown that the K1270T (KT) mutation, linked to genetic epilepsy with febrile seizure plus (GEFS+) in humans, causes heat-induced seizure activity associated with a temperature-dependent decrease in GABAergic neuron excitability in a Drosophila knock-in model. To examine the behavioral and cellular effects of this mutation in mammals, we introduced the equivalent KT mutation into the mouse (Mus musculus) Scn1a (Scn1aKT) gene using CRISPR/Cas9 and generated mutant lines in two widely used genetic backgrounds: C57BL/6NJ and 129X1/SvJ. In both backgrounds, mice homozygous for the KT mutation had spontaneous seizures and died by postnatal day (P)23. There was no difference in mortality of heterozygous KT mice compared with wild-type littermates up to six months old. Heterozygous mutants exhibited heat-induced seizures at ∼42°C, a temperature that did not induce seizures in wild-type littermates. In acute hippocampal slices at permissive temperatures, current-clamp recordings revealed a significantly depolarized shift in action potential threshold and reduced action potential amplitude in parvalbumin (PV)-expressing inhibitory CA1 interneurons in Scn1aKT/+ mice. There was no change in the firing properties of excitatory CA1 pyramidal neurons. These results suggest that a constitutive decrease in inhibitory interneuron excitability contributes to the seizure phenotype in the mouse model.
Collapse
|
26
|
Gulcebi MI, Bartolini E, Lee O, Lisgaras CP, Onat F, Mifsud J, Striano P, Vezzani A, Hildebrand MS, Jimenez-Jimenez D, Junck L, Lewis-Smith D, Scheffer IE, Thijs RD, Zuberi SM, Blenkinsop S, Fowler HJ, Foley A, Sisodiya SM, Berkovic S, Cavalleri G, Correa DJ, Martins Custodio H, Galovic M, Guerrini R, Henshall D, Howard O, Hughes K, Katsarou A, Koeleman BP, Krause R, Lowenstein D, Mandelenaki D, Marini C, O'Brien TJ, Pace A, De Palma L, Perucca P, Pitkänen A, Quinn F, Selmer KK, Steward CA, Swanborough N, Thijs R, Tittensor P, Trivisano M, Weckhuysen S, Zara F. Climate change and epilepsy: Insights from clinical and basic science studies. Epilepsy Behav 2021; 116:107791. [PMID: 33578223 PMCID: PMC9386889 DOI: 10.1016/j.yebeh.2021.107791] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Climate change is with us. As professionals who place value on evidence-based practice, climate change is something we cannot ignore. The current pandemic of the novel coronavirus, SARS-CoV-2, has demonstrated how global crises can arise suddenly and have a significant impact on public health. Global warming, a chronic process punctuated by acute episodes of extreme weather events, is an insidious global health crisis needing at least as much attention. Many neurological diseases are complex chronic conditions influenced at many levels by changes in the environment. This review aimed to collate and evaluate reports from clinical and basic science about the relationship between climate change and epilepsy. The keywords climate change, seasonal variation, temperature, humidity, thermoregulation, biorhythm, gene, circadian rhythm, heat, and weather were used to search the published evidence. A number of climatic variables are associated with increased seizure frequency in people with epilepsy. Climate change-induced increase in seizure precipitants such as fevers, stress, and sleep deprivation (e.g. as a result of more frequent extreme weather events) or vector-borne infections may trigger or exacerbate seizures, lead to deterioration of seizure control, and affect neurological, cerebrovascular, or cardiovascular comorbidities and risk of sudden unexpected death in epilepsy. Risks are likely to be modified by many factors, ranging from individual genetic variation and temperature-dependent channel function, to housing quality and global supply chains. According to the results of the limited number of experimental studies with animal models of seizures or epilepsy, different seizure types appear to have distinct susceptibility to seasonal influences. Increased body temperature, whether in the context of fever or not, has a critical role in seizure threshold and seizure-related brain damage. Links between climate change and epilepsy are likely to be multifactorial, complex, and often indirect, which makes predictions difficult. We need more data on possible climate-driven altered risks for seizures, epilepsy, and epileptogenesis, to identify underlying mechanisms at systems, cellular, and molecular levels for better understanding of the impact of climate change on epilepsy. Further focussed data would help us to develop evidence for mitigation methods to do more to protect people with epilepsy from the effects of climate change.
Collapse
Affiliation(s)
- Medine I. Gulcebi
- Department of Medical Pharmacology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy.
| | - Omay Lee
- Department of Neurology and Clinical Neurophysiology, St. George's University Hospitals NHS Foundation Trust, London, UK.
| | - Christos Panagiotis Lisgaras
- New York University Langone Health, 100 First Ave., New York, NY 10016, USA; The Nathan S. Kline Institute for Psychiatric Research, Center for Dementia Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | - Filiz Onat
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey,Department of Medical Pharmacology, Acibadem University School of Medicine, Istanbul, Turkey
| | - Janet Mifsud
- Department of Clinical Pharmacology and Therapeutics, University of Malta, Msida MSD2040, Malta.
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, IRCCS “Giannina Gaslini” Institute, Genova, Italy
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy.
| | - Michael S. Hildebrand
- Department of Medicine (Austin Health), University of Melbourne, and Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Diego Jimenez-Jimenez
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK and Chalfont Centre for Epilepsy, Bucks, UK.
| | - Larry Junck
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Ingrid E. Scheffer
- University of Melbourne, Austin Health and Royal Children’s Hospital, Florey Institute and Murdoch Children’s Research Institute, Melbourne, Australia
| | - Roland D. Thijs
- Department of Neurology, Leiden University Medical Centre (LUMC), PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Sameer M. Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children & Institute of Health & Wellbeing, University of Glasgow, Fraser of Allander Neurosciences Unit, Royal Hospital for Children, UK
| | | | - Hayley J. Fowler
- Centre for Earth Systems Engineering Research, School of Engineering, Newcastle University, UK
| | - Aideen Foley
- Department of Geography, Birkbeck College University of London, London, UK.
| | - Epilepsy Climate Change ConsortiumBalestriniSimonaaaBerkovicSamuelabCavalleriGianpieroacCorreaDaniel JoséadMartins CustodioHelenaaeGalovicMarianafGuerriniRenzoagHenshallDavidahHowardOlgaaiHughesKelvinajKatsarouAnnaakKoelemanBobby P.C.alKrauseRolandamLowensteinDanielanMandelenakiDespoinaaoMariniCarlaapO’BrienTerence J.aqPaceAdrianarDe PalmaLucaasPeruccaPieroatPitkänenAslaauQuinnFinolaavSelmerKaja KristineawStewardCharles A.axSwanboroughNicolaayThijsRolandazTittensorPhilbaTrivisanoMarinabbWeckhuysenSarahbcZaraFedericobdDepartment of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK and Chalfont Centre for Epilepsy, Bucks, UKEpilepsy Research Centre, Department of Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, AustraliaDepartment of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin 2, Ireland; The FutureNeuro Research Centre, Dublin 2, IrelandSaul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, 1410 Pelham Parkway South, K-312, Bronx, NY 10461, USADepartment of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Chalfont Centre for Epilepsy, Bucks, UKUniversity Hospital Zurich, SwitzerlandDepartment of Child Neurology and Psychiatry, University of Pisa and IRCCS Fondazione Stella Maris, 56018 Calambrone, Pisa, ItalyFutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, 123 St Stephen’s Green, Dublin D02 YN77, IrelandUCB Pharma Ltd, Slough, UKDravet Syndrome UK, UKLaboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USAUniversity Medical Center, Utrecht, The NetherlandsLuxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, LuxembourgDepartment of Neurology, University of California, San Francisco, CA, USADepartment of Pediatric Neurology, Queen Fabiola Children’s University Hospital, Brussels, Brussels Capital Region, BelgiumNeuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, ItalyMelbourne Brain Centre, Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, VIC, Australia; Departments of Neuroscience and Neurology, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, AustraliaGozo General Hospital, MaltaNeurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, ItalyDepartment of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Melbourne, VIC, AustraliaA.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, FinlandILAE-IBE Congress Secretariat, Dublin, IrelandNational Centre for Rare Epilepsy-related Disorders, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, University of Oslo, Oslo, NorwayCongenica Ltd, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK; Wellcome Sanger InstituteWellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UKEpilepsy Society, Bucks, UKStichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands; Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London, UKRoyal Wolverhampton NHS Trust, Wolverhampton, UKRare and Complex Epilepsy Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, ItalyNeurogenetics Group, Center for Molecular Neurology, VIB, University of Antwerp, Antwerp 2610, BelgiumUnit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Italy
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK and Chalfont Centre for Epilepsy, Bucks, UK,Corresponding author at: Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dare SS, Merlo E, Rodriguez Curt J, Ekanem PE, Hu N, Berni J. Drosophila para bss Flies as a Screening Model for Traditional Medicine: Anticonvulsant Effects of Annona senegalensis. Front Neurol 2021; 11:606919. [PMID: 33519685 PMCID: PMC7838503 DOI: 10.3389/fneur.2020.606919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023] Open
Abstract
Epilepsy is among the most common serious neurological disorders and affects around 50 million people worldwide, 80% of which live in developing countries. Despite the introduction of several new Anti-Epileptic Drugs (AEDs) in the last two decades, one third of treated patients have seizures refractory to pharmacotherapy. This highlights the need to develop new treatments with drugs targeting alternative seizure-induction mechanisms. Traditional medicine (TM) is used for the treatment of epilepsy in many developing countries and could constitute an affordable and accessible alternative to AEDs, but a lack of pre-clinical and clinical testing has so far prevented its wider acceptance worldwide. In this study we used Drosophila melanogaster paralyticbangsensitive(parabss) mutants as a model for epileptic seizure screening and tested, for the first time, the anti-seizure effect of a non-commercial AED. We evaluated the effect of the African custard-apple, Annona senegalensis, which is commonly used as a TM for the treatment of epilepsy in rural Africa, and compared it with the classical AED phenytoin. Our results showed that a stem bark extract from A. senegalensis was significantly more effective than a leaf extract and similar to phenytoin in the prevention and control of seizure-like behavior. These results support that Drosophila constitutes a robust animal model for the screening of TM with potential value for the treatment of intractable epilepsy.
Collapse
Affiliation(s)
- Samuel S Dare
- School of Medicine, Kabale University, Kabale, Uganda.,Department of Anatomy, Kampala International University, Kampala, Uganda
| | - Emiliano Merlo
- Facultad de Medicina, Instituto de Fisiología y Biofísica (IFIBIO)-Houssay, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,School of Psychology, University of Sussex, Brighton, United Kingdom
| | - Jesus Rodriguez Curt
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Peter E Ekanem
- Anatomy Unit, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Nan Hu
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Jimena Berni
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.,Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
28
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
29
|
Takai A, Yamaguchi M, Yoshida H, Chiyonobu T. Investigating Developmental and Epileptic Encephalopathy Using Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21176442. [PMID: 32899411 PMCID: PMC7503973 DOI: 10.3390/ijms21176442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are the spectrum of severe epilepsies characterized by early-onset, refractory seizures occurring in the context of developmental regression or plateauing. Early infantile epileptic encephalopathy (EIEE) is one of the earliest forms of DEE, manifesting as frequent epileptic spasms and characteristic electroencephalogram findings in early infancy. In recent years, next-generation sequencing approaches have identified a number of monogenic determinants underlying DEE. In the case of EIEE, 85 genes have been registered in Online Mendelian Inheritance in Man as causative genes. Model organisms are indispensable tools for understanding the in vivo roles of the newly identified causative genes. In this review, we first present an overview of epilepsy and its genetic etiology, especially focusing on EIEE and then briefly summarize epilepsy research using animal and patient-derived induced pluripotent stem cell (iPSC) models. The Drosophila model, which is characterized by easy gene manipulation, a short generation time, low cost and fewer ethical restrictions when designing experiments, is optimal for understanding the genetics of DEE. We therefore highlight studies with Drosophila models for EIEE and discuss the future development of their practical use.
Collapse
Affiliation(s)
- Akari Takai
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto 619-0237, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan; (M.Y.); (H.Y.)
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
- Correspondence:
| |
Collapse
|
30
|
Reduced Function of the Glutathione S-Transferase S1 Suppresses Behavioral Hyperexcitability in Drosophila Expressing Mutant Voltage-Gated Sodium Channels. G3-GENES GENOMES GENETICS 2020; 10:1327-1340. [PMID: 32054635 PMCID: PMC7144092 DOI: 10.1534/g3.119.401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Voltage-gated sodium (Nav) channels play a central role in the generation and propagation of action potentials in excitable cells such as neurons and muscles. To determine how the phenotypes of Nav-channel mutants are affected by other genes, we performed a forward genetic screen for dominant modifiers of the seizure-prone, gain-of-function Drosophila melanogaster Nav-channel mutant, paraShu. Our analyses using chromosome deficiencies, gene-specific RNA interference, and single-gene mutants revealed that a null allele of glutathione S-transferase S1 (GstS1) dominantly suppresses paraShu phenotypes. Reduced GstS1 function also suppressed phenotypes of other seizure-prone Nav-channel mutants, paraGEFS+ and parabss. Notably, paraShu mutants expressed 50% less GstS1 than wild-type flies, further supporting the notion that paraShu and GstS1 interact functionally. Introduction of a loss-of-function GstS1 mutation into a paraShu background led to up- and down-regulation of various genes, with those encoding cytochrome P450 (CYP) enzymes most significantly over-represented in this group. Because GstS1 is a fly ortholog of mammalian hematopoietic prostaglandin D synthase, and in mammals CYPs are involved in the oxygenation of polyunsaturated fatty acids including prostaglandins, our results raise the intriguing possibility that bioactive lipids play a role in GstS1-mediated suppression of paraShu phenotypes.
Collapse
|
31
|
Kruth KA, Grisolano TM, Ahern CA, Williams AJ. SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: a role for pluripotent stem cells? Mol Autism 2020; 11:23. [PMID: 32264956 PMCID: PMC7140374 DOI: 10.1186/s13229-020-00330-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Efforts to identify the causes of autism spectrum disorders have highlighted the importance of both genetics and environment, but the lack of human models for many of these disorders limits researchers' attempts to understand the mechanisms of disease and to develop new treatments. Induced pluripotent stem cells offer the opportunity to study specific genetic and environmental risk factors, but the heterogeneity of donor genetics may obscure important findings. Diseases associated with unusually high rates of autism, such as SCN2A syndromes, provide an opportunity to study specific mutations with high effect sizes in a human genetic context and may reveal biological insights applicable to more common forms of autism. Loss-of-function mutations in the SCN2A gene, which encodes the voltage-gated sodium channel NaV1.2, are associated with autism rates up to 50%. Here, we review the findings from experimental models of SCN2A syndromes, including mouse and human cell studies, highlighting the potential role for patient-derived induced pluripotent stem cell technology to identify the molecular and cellular substrates of autism.
Collapse
Affiliation(s)
- Karina A Kruth
- Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2326 PBDB, Iowa City, IA, 52242, USA
| | - Tierney M Grisolano
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2312 PBDB, Iowa City, IA, 52242, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2312 PBDB, Iowa City, IA, 52242, USA
| | - Aislinn J Williams
- Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2326 PBDB, Iowa City, IA, 52242, USA.
| |
Collapse
|
32
|
Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 2020; 34:55-68. [PMID: 31955616 PMCID: PMC7717672 DOI: 10.1080/01677063.2019.1710144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Organisms respond to various environmental stressors by modulating physiology and behavior to maintain homeostasis. Steroids and catecholamines are involved in the highly conserved signaling pathways crucial for mounting molecular and cellular events that ensure immediate or long-term survival under stress conditions. The insect dopamine/ecdysteroid receptor (DopEcR) is a dual G-protein coupled receptor for the catecholamine dopamine and the steroid hormone ecdysone. DopEcR acts in a ligand-dependent manner, mediating dopaminergic signaling and unconventional "nongenomic" ecdysteroid actions through various intracellular signaling pathways. This unique feature of DopEcR raises the interesting possibility that DopEcR may serve as an integrative hub for complex molecular cascades activated under stress conditions. Here, we review previously published studies of Drosophila DopEcR in the context of stress response and also present newly discovered DopEcR loss-of-function phenotypes under different stress conditions. These findings provide corroborating evidence that DopEcR plays vital roles in responses to various stressors, including heat, starvation, alcohol, courtship rejection, and repeated neuronal stimulation in Drosophila. We further discuss what is known about DopEcR in other insects and DopEcR orthologs in mammals, implicating their roles in stress responses. Overall, this review highlights the importance of dual GPCRs for catecholamines and steroids in modulating physiology and behavior under stress conditions. Further multidisciplinary studies of Drosophila DopEcR will contribute to our basic understanding of the functional roles and underlying mechanisms of this class of GPCRs.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Arianna Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - James A Mrkvicka
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
33
|
Rosch R, Burrows DRW, Jones LB, Peters CH, Ruben P, Samarut É. Functional Genomics of Epilepsy and Associated Neurodevelopmental Disorders Using Simple Animal Models: From Genes, Molecules to Brain Networks. Front Cell Neurosci 2019; 13:556. [PMID: 31920556 PMCID: PMC6923670 DOI: 10.3389/fncel.2019.00556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023] Open
Abstract
The genetic diagnosis of patients with seizure disorders has been improved significantly by the development of affordable next-generation sequencing technologies. Indeed, in the last 20 years, dozens of causative genes and thousands of associated variants have been described and, for many patients, are now considered responsible for their disease. However, the functional consequences of these mutations are often not studied in vivo, despite such studies being central to understanding pathogenic mechanisms and identifying novel therapeutic avenues. One main roadblock to functionally characterizing pathogenic mutations is generating and characterizing in vivo mammalian models carrying clinically relevant variants in specific genes identified in patients. Although the emergence of new mutagenesis techniques facilitates the production of rodent mutants, the fact that early development occurs internally hampers the investigation of gene function during neurodevelopment. In this context, functional genomics studies using simple animal models such as flies or fish are advantageous since they open a dynamic window of investigation throughout embryonic development. In this review, we will summarize how the use of simple animal models can fill the gap between genetic diagnosis and functional and phenotypic correlates of gene function in vivo. In particular, we will discuss how these simple animals offer the possibility to study gene function at multiple scales, from molecular function (i.e., ion channel activity), to cellular circuit and brain network dynamics. As a result, simple model systems offer alternative avenues of investigation to model aspects of the disease phenotype not currently possible in rodents, which can help to unravel the pathogenic substratum in vivo.
Collapse
Affiliation(s)
- Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Paediatric Neurology, Great Ormond Street Hospital, NHS Foundation Trust, London, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Dominic R. W. Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Laura B. Jones
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Éric Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Modelis Inc., Montreal, QC, Canada
| |
Collapse
|
34
|
Xie Y, Ng NN, Safrina OS, Ramos CM, Ess KC, Schwartz PH, Smith MA, O'Dowd DK. Comparisons of dual isogenic human iPSC pairs identify functional alterations directly caused by an epilepsy associated SCN1A mutation. Neurobiol Dis 2019; 134:104627. [PMID: 31786370 DOI: 10.1016/j.nbd.2019.104627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Over 1250 mutations in SCN1A, the Nav1.1 voltage-gated sodium channel gene, are associated with seizure disorders including GEFS+. To evaluate how a specific mutation, independent of genetic background, causes seizure activity we generated two pairs of isogenic human iPSC lines by CRISPR/Cas9 gene editing. One pair is a control line from an unaffected sibling, and the mutated control carrying the GEFS+ K1270T SCN1A mutation. The second pair is a GEFS+ patient line with the K1270T mutation, and the corrected patient line. By comparing the electrophysiological properties in inhibitory and excitatory iPSC-derived neurons from these pairs, we found the K1270T mutation causes cell type-specific alterations in sodium current density and evoked firing, resulting in hyperactive neural networks. We also identified differences associated with genetic background and interaction between the mutation and genetic background. Comparisons within and between dual pairs of isogenic iPSC-derived neuronal cultures provide a novel platform for evaluating cellular mechanisms underlying a disease phenotype and for developing patient-specific anti-seizure therapies.
Collapse
Affiliation(s)
- Yunyao Xie
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Nathan N Ng
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Olga S Safrina
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Carmen M Ramos
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Philip H Schwartz
- Children's Hospital of Orange County Research Institute, Orange, CA, United States of America
| | - Martin A Smith
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, United States of America
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States of America.
| |
Collapse
|
35
|
Lambrechts RA, Polet SS, Hernandez-Pichardo A, van Ninhuys L, Gorter JA, Grzeschik NA, de Koning-Tijssen MAJ, de Koning TJ, Sibon OCM. North Sea Progressive Myoclonus Epilepsy is Exacerbated by Heat, A Phenotype Primarily Associated with Affected Glia. Neuroscience 2019; 423:1-11. [PMID: 31682953 DOI: 10.1016/j.neuroscience.2019.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
Progressive myoclonic epilepsies (PMEs) comprise a group of rare disorders of different genetic aetiologies, leading to childhood-onset myoclonus, myoclonic seizures and subsequent neurological decline. One of the genetic causes for PME, a mutation in the gene coding for Golgi SNAP receptor 2 (GOSR2), gives rise to a PME-subtype prevalent in Northern Europe and hence referred to as North Sea Progressive Myoclonic Epilepsy (NS-PME). Treatment for NS-PME, as for all PME subtypes, is symptomatic; the pathophysiology of NS-PME is currently unknown, precluding targeted therapy. Here, we investigated the pathophysiology of NS-PME. By means of chart review in combination with interviews with patients (n = 14), we found heat to be an exacerbating factor for a majority of NS-PME patients (86%). To substantiate these findings, we designed a NS-PME Drosophila melanogaster model. Downregulation of the Drosophila GOSR2-orthologue Membrin leads to heat-induced seizure-like behaviour. Specific downregulation of GOSR2/Membrin in glia but not in neuronal cells resulted in a similar phenotype, which was progressive as the flies aged and was partially responsive to treatment with sodium barbital. Our data suggest a role for GOSR2 in glia in the pathophysiology of NS-PME.
Collapse
Affiliation(s)
- Roald A Lambrechts
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sjoukje S Polet
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alejandra Hernandez-Pichardo
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lisa van Ninhuys
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jenke A Gorter
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicola A Grzeschik
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marina A J de Koning-Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tom J de Koning
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Medical Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ody C M Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
36
|
Kasuya J, Iyengar A, Chen HL, Lansdon P, Wu CF, Kitamoto T. Milk-whey diet substantially suppresses seizure-like phenotypes of paraShu, a Drosophila voltage-gated sodium channel mutant. J Neurogenet 2019; 33:164-178. [PMID: 31096839 DOI: 10.1080/01677063.2019.1597082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Drosophila mutant paraShu harbors a dominant, gain-of-function allele of the voltage-gated sodium channel gene, paralytic (para). The mutant flies display severe seizure-like phenotypes, including neuronal hyperexcitability, spontaneous spasms, ether-induced leg shaking, and heat-induced convulsions. We unexpectedly found that two distinct food recipes used routinely in the Drosophila research community result in a striking difference in severity of the paraShu phenotypes. Namely, when paraShu mutants were raised on the diet originally formulated by Edward Lewis in 1960, they showed severe neurological defects as previously reported. In contrast, when they were raised on the diet developed by Frankel and Brousseau in 1968, these phenotypes were substantially suppressed. Comparison of the effects of these two well-established food recipes revealed that the diet-dependent phenotypic suppression is accounted for by milk whey, which is present only in the latter. Inclusion of milk whey in the diet during larval stages was critical for suppression of the adult paraShu phenotypes, suggesting that this dietary modification affects development of the nervous system. We also found that milk whey has selective effects on other neurological mutants. Among the behavioral phenotypes of different para mutant alleles, those of paraGEFS+ and parabss were suppressed by milk whey, while those of paraDS and parats1 were not significantly affected. Overall, our study demonstrates that different diets routinely used in Drosophila labs could have considerably different effects on neurological phenotypes of Drosophila mutants. This finding provides a solid foundation for further investigation into how dietary modifications affect development and function of the nervous system and, ultimately, how they influence behavior.
Collapse
Affiliation(s)
- Junko Kasuya
- a Department of Anesthesia, Carver College of Medicine , University of Iowa , Iowa city , IA , USA
| | - Atulya Iyengar
- b Department of Biology, College of Liberal Arts and Sciences , University of Iowa , Iowa city , IA , USA.,c Interdisciplinary Graduate Program in Neuroscience , University of Iowa , Iowa city , IA , USA
| | - Hung-Lin Chen
- d Department of Medical Research , Tung's Taichung MetroHarbor Hospital , Taichung , Taiwan 43503 , ROC
| | - Patrick Lansdon
- e Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa city , IA , USA
| | - Chun-Fang Wu
- b Department of Biology, College of Liberal Arts and Sciences , University of Iowa , Iowa city , IA , USA.,c Interdisciplinary Graduate Program in Neuroscience , University of Iowa , Iowa city , IA , USA.,e Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa city , IA , USA
| | - Toshihiro Kitamoto
- a Department of Anesthesia, Carver College of Medicine , University of Iowa , Iowa city , IA , USA.,c Interdisciplinary Graduate Program in Neuroscience , University of Iowa , Iowa city , IA , USA.,e Interdisciplinary Graduate Program in Genetics , University of Iowa , Iowa city , IA , USA
| |
Collapse
|
37
|
Transcriptional Regulation of the Glutamate/GABA/Glutamine Cycle in Adult Glia Controls Motor Activity and Seizures in Drosophila. J Neurosci 2019; 39:5269-5283. [PMID: 31064860 PMCID: PMC6607755 DOI: 10.1523/jneurosci.1833-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/23/2023] Open
Abstract
The fruitfly Drosophila melanogaster has been extensively used as a genetic model for the maintenance of nervous system's functions. Glial cells are of utmost importance in regulating the neuronal functions in the adult organism and in the progression of neurological pathologies. Through a microRNA-based screen in adult Drosophila glia, we uncovered the essential role of a major glia developmental determinant, repo, in the adult fly. Here, we report that Repo expression is continuously required in adult glia to transcriptionally regulate the highly conserved function of neurotransmitter recycling in both males and females. Transient loss of Repo dramatically shortens fly lifespan, triggers motor deficits, and increases the sensibility to seizures, partly due to the impairment of the glutamate/GABA/glutamine cycle. Our findings highlight the pivotal role of transcriptional regulation of genes involved in the glutamate/GABA/glutamine cycle in glia to control neurotransmitter levels in neurons and their behavioral output. The mechanism identified here in Drosophila exemplifies how adult functions can be modulated at the transcriptional level and suggest an active synchronized regulation of genes involved in the same pathway. The process of neurotransmitter recycling is of essential importance in human epileptic and psychiatric disorders and our findings may thus have important consequences for the understanding of the role that transcriptional regulation of neurotransmitter recycling in astrocytes has in human disease. SIGNIFICANCE STATEMENT Glial cells are an essential support to neurons in adult life and have been involved in a number of neurological disorders. What controls the maintenance and modulation of glial functions in adult life is not fully characterized. Through a miR overexpression screen in adult glia in Drosophila, we identify an essential role in adult glia of repo, which directs glial differentiation during embryonic development. Repo levels modulate, via transcriptional regulation, the ability of glial cells to support neurons in the glutamate/GABA/glutamine cycle. This leads to significant abnormalities in motor behavior as assessed through a novel automated paradigm. Our work points to the importance of transcriptional regulation in adult glia for neurotransmitter recycling, a key process in several human neurological disorders.
Collapse
|
38
|
Abstract
In the current review, we discuss the process of modeling pediatric epileptic encephalopathies with a focus on in vitro iPSC-based technologies. We highlight the potential benefits as well as the challenges of these approaches and propose appropriate standards for the field.
Collapse
|
39
|
Johan Arief MF, Choo BKM, Yap JL, Kumari Y, Shaikh MF. A Systematic Review on Non-mammalian Models in Epilepsy Research. Front Pharmacol 2018; 9:655. [PMID: 29997502 PMCID: PMC6030834 DOI: 10.3389/fphar.2018.00655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/31/2018] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by seizures which result in distinctive neurobiological and behavioral impairments. Not much is known about the causes of epilepsy, making it difficult to devise an effective cure for epilepsy. Moreover, clinical studies involving epileptogenesis and ictogenesis cannot be conducted in humans due to ethical reasons. As a result, animal models play a crucial role in the replication of epileptic seizures. In recent years, non-mammalian models have been given a primary focus in epilepsy research due to their advantages. This systematic review aims to summarize the importance of non-mammalian models in epilepsy research, such as in the screening of anti-convulsive compounds. The reason for this review is to integrate currently available information on the use and importance of non-mammalian models in epilepsy testing to aid in the planning of future studies as well as to provide an overview of the current state of this field. A PRISMA model was utilized and PubMed, Springer, ScienceDirect and SCOPUS were searched for articles published between January 2007 and November 2017. Fifty-one articles were finalized based on the inclusion/exclusion criteria and were discussed in this review. The results of this review demonstrated the current use of non-mammalian models in epilepsy research and reaffirmed their potential to supplement the typical rodent models of epilepsy in future research into both epileptogenesis and the treatment of epilepsy. This review also revealed a preference for zebrafish and fruit flies in lieu of other non-mammalian models, which is a shortcoming that should be corrected in future studies due to the great potential of these underutilized animal models.
Collapse
Affiliation(s)
- Muhammad Faiz Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.,School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
40
|
Roemmich AJ, Schutte SS, O'Dowd DK. Ex vivo Whole-cell Recordings in Adult Drosophila Brain. Bio Protoc 2018; 8:e2467. [PMID: 30148187 DOI: 10.21769/bioprotoc.2467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cost-effective and efficient, the fruit fly (Drosophila melanogaster) has been used to make many key discoveries in the field of neuroscience and to model a number of neurological disorders. Great strides in understanding have been made using sophisticated molecular genetic tools and behavioral assays. Functional analysis of neural activity was initially limited to the neuromuscular junction (NMJ) and in the central nervous system (CNS) of embryos and larvae. Elucidating the cellular mechanisms underlying neurological processes and disorders in the mature nervous system have been more challenging due to difficulty in recording from neurons in adult brains. To this aim we developed an ex vivo preparation in which a whole brain is isolated from the head capsule of an adult fly and placed in a recording chamber. With this preparation, whole cell recording of identified neurons in the adult brain can be combined with genetic, pharmacological and environmental manipulations to explore cellular mechanisms of neuronal function and dysfunction. It also serves as an important platform for evaluating the mechanism of action of new therapies identified through behavioral assays for treating neurological diseases. Here we present our protocol for ex vivo preparations and whole-cell recordings in the adult Drosophila brain.
Collapse
Affiliation(s)
- Alexa J Roemmich
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | - Soleil S Schutte
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA
| | - Diane K O'Dowd
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| |
Collapse
|
41
|
Dean D, Weinstein H, Amin S, Karno B, McAvoy E, Hoy R, Recknagel A, Jarvis C, Deitcher D. Extending julius seizure, a bang-sensitive gene, as a model for studying epileptogenesis: Cold shock, and a new insertional mutation. Fly (Austin) 2017; 12:55-61. [PMID: 29125376 DOI: 10.1080/19336934.2017.1402993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The bang-sensitive (BS) mutants of Drosophila are an important model for studying epilepsy. We recently identified a novel BS locus, julius seizure (jus), encoding a protein containing two transmembrane domains and an extracellular cysteine-rich loop. We also determined that jussda iso7.8, a previously identified BS mutation, is an allele of jus by recombination, deficiency mapping, complementation testing, and genetic rescue. RNAi knockdown revealed that jus expression is important in cholinergic neurons and that the critical stage of jus expression is the mid-pupa. Finally, we found that a functional, GFP-tagged genomic construct of jus is expressed mostly in axons of the neck connectives and of the thoracic abdominal ganglia. In this Extra View article, we show that a MiMiC GFP-tagged Jus is localized to the same nervous system regions as the GFP-tagged genomic construct, but its expression is mostly confined to cell bodies and it causes bang-sensitivity. The MiMiC GFP-tag lies in the extracellular loop while the genomic construct is tagged at the C-terminus. This suggests that the alternate position of the GFP tag may disrupt Jus protein function by altering its subcellular localization and/or stability. We also show that a small subset of jus-expressing neurons are responsible for the BS phenotype. Finally, extending the utility of the BS seizure model, we show that jus mutants exhibit cold-sensitive paralysis and are partially sensitive to strobe-induced seizures.
Collapse
Affiliation(s)
- Derek Dean
- a Department of Biology , Williams College , Williamstown , MA USA
| | - Hannah Weinstein
- a Department of Biology , Williams College , Williamstown , MA USA
| | - Seema Amin
- a Department of Biology , Williams College , Williamstown , MA USA
| | - Breelyn Karno
- a Department of Biology , Williams College , Williamstown , MA USA
| | - Emma McAvoy
- a Department of Biology , Williams College , Williamstown , MA USA
| | - Ronald Hoy
- b Department of Neurobiology and Behavior , Cornell University , Ithaca , NY USA
| | - Andrew Recknagel
- b Department of Neurobiology and Behavior , Cornell University , Ithaca , NY USA
| | - Casey Jarvis
- b Department of Neurobiology and Behavior , Cornell University , Ithaca , NY USA
| | - David Deitcher
- b Department of Neurobiology and Behavior , Cornell University , Ithaca , NY USA
| |
Collapse
|
42
|
Xiao X, Chen C, Yu TM, Ou J, Rui M, Zhai Y, He Y, Xue L, Ho MS. Molecular Chaperone Calnexin Regulates the Function of Drosophila Sodium Channel Paralytic. Front Mol Neurosci 2017; 10:57. [PMID: 28326013 PMCID: PMC5339336 DOI: 10.3389/fnmol.2017.00057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal activity mediated by voltage-gated channels provides the basis for higher-order behavioral tasks that orchestrate life. Chaperone-mediated regulation, one of the major means to control protein quality and function, is an essential route for controlling channel activity. Here we present evidence that Drosophila ER chaperone Calnexin colocalizes and interacts with the α subunit of sodium channel Paralytic. Co-immunoprecipitation analysis indicates that Calnexin interacts with Paralytic protein variants that contain glycosylation sites Asn313, 325, 343, 1463, and 1482. Downregulation of Calnexin expression results in a decrease in Paralytic protein levels, whereas overexpression of the Calnexin C-terminal calcium-binding domain triggers an increase reversely. Genetic analysis using adult climbing, seizure-induced paralysis, and neuromuscular junction indicates that lack of Calnexin expression enhances Paralytic-mediated locomotor deficits, suppresses Paralytic-mediated ghost bouton formation, and regulates minature excitatory junction potentials (mEJP) frequency and latency time. Taken together, our findings demonstrate a need for chaperone-mediated regulation on channel activity during locomotor control, providing the molecular basis for channlopathies such as epilepsy.
Collapse
Affiliation(s)
- Xi Xiao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Changyan Chen
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Institute of Intervention Vessel, Shanghai 10th People's Hospital, Tongji University Shanghai, China
| | - Tian-Ming Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Jiayao Ou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Menglong Rui
- Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University Nanjing, China
| | - Yuanfen Zhai
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Yijing He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| | - Lei Xue
- Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Institute of Intervention Vessel, Shanghai 10th People's Hospital, Tongji University Shanghai, China
| | - Margaret S Ho
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of MedicineShanghai, China; Department of Anatomy and Neurobiology, Tongji University School of MedicineShanghai, China
| |
Collapse
|
43
|
Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components. Genetics 2016; 205:707-723. [PMID: 27974499 DOI: 10.1534/genetics.116.190850] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/13/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies.
Collapse
|
44
|
Fogle KJ, Hertzler JI, Shon JH, Palladino MJ. The ATP-sensitive K channel is seizure protective and required for effective dietary therapy in a model of mitochondrial encephalomyopathy. J Neurogenet 2016; 30:247-258. [PMID: 27868454 DOI: 10.1080/01677063.2016.1252765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Effective therapies are lacking for mitochondrial encephalomyopathies (MEs). MEs are devastating diseases that predominantly affect the energy-demanding tissues of the nervous system and muscle, causing symptoms such as seizures, cardiomyopathy, and neuro- and muscular degeneration. Even common anti-epileptic drugs which are frequently successful in ameliorating seizures in other diseases tend to have a lower success rate in ME, highlighting the need for novel drug targets, especially those that may couple metabolic sensitivity to neuronal excitability. Furthermore, alternative epilepsy therapies such as dietary modification are gaining in clinical popularity but have not been thoroughly studied in ME. Using the Drosophila ATP61 model of ME, we have studied dietary therapy throughout disease progression and found that it is highly effective against the seizures of ME, especially a high fat/ketogenic diet, and that the benefits are dependent upon a functional KATP channel complex. Further experiments with KATP show that it is seizure-protective in this model, and that pharmacological promotion of its open state also ameliorates seizures. These studies represent important steps forward in the development of novel therapies for a class of diseases that is notoriously difficult to treat, and lay the foundation for mechanistic studies of currently existing therapies in the context of metabolic disease.
Collapse
Affiliation(s)
- Keri J Fogle
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - J Ian Hertzler
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Joy H Shon
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael J Palladino
- a Department of Pharmacology & Chemical Biology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
45
|
Lithium-Responsive Seizure-Like Hyperexcitability Is Caused by a Mutation in the Drosophila Voltage-Gated Sodium Channel Gene paralytic. eNeuro 2016; 3:eN-NWR-0221-16. [PMID: 27844061 PMCID: PMC5103163 DOI: 10.1523/eneuro.0221-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference-mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior.
Collapse
|
46
|
Seizure Suppression by High Temperature via cAMP Modulation in Drosophila. G3-GENES GENOMES GENETICS 2016; 6:3381-3387. [PMID: 27558668 PMCID: PMC5068957 DOI: 10.1534/g3.116.034629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bang-sensitive (BS) Drosophila mutants display characteristic seizure-like activity (SLA) and paralysis after mechanical shock . After high-frequency electrical stimulation (HFS) of the brain, they generate robust seizures at very low threshold voltage. Here we report an important phenomenon, which effectively suppresses SLA in BS mutants. High temperature causes seizure suppression in all BS mutants (parabss1, eas, sda) examined in this study. This effect is fully reversible and flies show complete recovery from BS paralysis once the temperature effect is nullified. High temperature induces an increase in seizure threshold after a brief pulse of heat shock (HS). By genetic screening, we identified the involvement of cAMP in the suppression of seizures by high temperature. We propose that HS induces adenylyl cyclase which in turn increases cAMP concentration which eventually suppresses seizures in mutant flies. In summary, we describe an unusual phenomenon, where high temperature can suppress SLA in flies by modulating cAMP concentration.
Collapse
|
47
|
Peters C, Rosch RE, Hughes E, Ruben PC. Temperature-dependent changes in neuronal dynamics in a patient with an SCN1A mutation and hyperthermia induced seizures. Sci Rep 2016; 6:31879. [PMID: 27582020 PMCID: PMC5007485 DOI: 10.1038/srep31879] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/28/2016] [Indexed: 01/01/2023] Open
Abstract
Dravet syndrome is the prototype of SCN1A-mutation associated epilepsies. It is characterised by prolonged seizures, typically provoked by fever. We describe the evaluation of an SCN1A mutation in a child with early-onset temperature-sensitive seizures. The patient carries a heterozygous missense variant (c3818C > T; pAla1273Val) in the NaV1.1 brain sodium channel. We compared the functional effects of the variant vs. wild type NaV1.1 using patch clamp recordings from channels expressed in Chinese Hamster Ovary Cells at different temperatures (32, 37, and 40 °C). The variant channels produced a temperature-dependent destabilization of activation and fast inactivation. Implementing these empirical abnormalities in a computational model predicts a higher threshold for depolarization block in the variant, particularly at 40 °C, suggesting a failure to autoregulate at high-input states. These results reveal direct effects of abnormalities in NaV1.1 biophysical properties on neuronal dynamics. They illustrate the value of combining cellular measurements with computational models to integrate different observational scales (gene/channel to patient).
Collapse
Affiliation(s)
- C Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - R E Rosch
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK.,Centre for Developmental Cognitive Neuroscience, Institute of Child Health, University College, London, UK
| | - E Hughes
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - P C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
48
|
Ehaideb SN, Wignall EA, Kasuya J, Evans WH, Iyengar A, Koerselman HL, Lilienthal AJ, Bassuk AG, Kitamoto T, Manak JR. Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans. Ann Clin Transl Neurol 2016; 3:695-707. [PMID: 27648459 PMCID: PMC5018582 DOI: 10.1002/acn3.334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Genetically tractable fruit flies have been used for decades to study seizure disorders. However, there is a paucity of data specifically correlating fly and human seizure phenotypes. We have previously shown that mutation of orthologous PRICKLE genes from flies to humans produce seizures. This study aimed to determine whether the prickle-mediated seizure phenotypes in flies closely parallel the epilepsy syndrome found in PRICKLE patients. METHODS Virtually all fly seizure studies have relied upon characterizing seizures that are evoked. We have developed two novel approaches to more precisely characterize seizure-related phenotypes in their native state in prickle mutant flies. First, we used high-resolution videography to document spontaneous, unprovoked seizure events. Second, we developed a locomotion coordination assay to assess whether the prickle mutant flies were ataxic. Third, we treated the mutant flies with levetiracetam to determine whether the behavioral phenotypes could be suppressed by a common antiepileptic drug. RESULTS We find that the prickle mutant flies exhibit myoclonic-like spontaneous seizure events and are severely ataxic. Both these phenotypes are found in human patients with PRICKLE mutations, and can be suppressed by levetiracetam, providing evidence that the phenotypes are due to neurological dysfunction. These results document for the first time spontaneous, unprovoked seizure events at high resolution in a fly human seizure disorder model, capturing seizures in their native state. INTERPRETATION Collectively, these data underscore the striking similarities between the fly and human PRICKLE-mediated epilepsy syndromes, and provide a genetically tractable model for dissecting the underlying causes of the human syndromic phenotypes.
Collapse
Affiliation(s)
- Salleh N Ehaideb
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; King Abdullah International Medical Research Cente rKing Abdulaziz Medical City Riyadh Saudi Arabia; Department of Biology University of Iowa Iowa City Iowa
| | | | - Junko Kasuya
- Department of Anesthesia University of Iowa Iowa City Iowa
| | | | - Atulya Iyengar
- Department of Biology University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa
| | | | | | | | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; Department of Anesthesia University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa
| | - J Robert Manak
- Interdisciplinary Graduate Program in Genetics University of Iowa Iowa City Iowa; Department of Biology University of Iowa Iowa City Iowa; Interdisciplinary Graduate Program in Neuroscience University of Iowa Iowa City Iowa; Department of Pediatrics University of Iowa Iowa City Iowa
| |
Collapse
|
49
|
Abstract
Voltage-gated sodium channels (VGSCs) are fundamentally important for the generation and coordinated transmission of action potentials throughout the nervous system. It is, therefore, unsurprising that they have been shown to play a central role in the genesis and alleviation of epilepsy. Genetic studies on patients with epilepsy have identified more than 700 mutations among the genes that encode for VGSCs attesting to their role in pathogenesis. Further, many common antiepileptic drugs act on VGSCs to suppress seizure activity. Here, we present an account of the role of VGSCs in epilepsy, both through their pathogenic dysfunction and as targets for pharmacotherapy.
Collapse
|
50
|
Abstract
Epilepsy is a complex disorder, which involves much more than seizures, encompassing a range of associated comorbid health conditions that can have significant health and quality-of-life implications. Of these comorbidities, cognitive impairment is one of the most common and distressing aspects of epilepsy. Clinical studies have demonstrated that refractory seizures, resistant to antiepileptic drugs, and occurring early in life have significant adverse effects on cognitive function. Much of what has been learned about the neurobiological underpinnings of cognitive impairment following early-life seizures has come from animal models. Although early-life seizures in rodents do not result in cell loss, seizures cause in changes in neurogenesis and synaptogenesis and alteration of excitatory or inhibitory balance, network connectivity and temporal coding. These morphological and physiological changes are accompanied by parallel impairment in cognitive skills. This increased understanding of the pathophysiological basis of seizure-induced cognitive deficits should allow investigators to develop novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT.
| |
Collapse
|