1
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2024; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Amedzrovi Agbesi RJ, El Merhie A, Spencer NJ, Hibberd T, Chevalier NR. Tetrodotoxin-resistant mechanosensitivity and L-type calcium channel-mediated spontaneous calcium activity in enteric neurons. Exp Physiol 2024; 109:1545-1556. [PMID: 38979869 PMCID: PMC11363105 DOI: 10.1113/ep091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.
Collapse
Affiliation(s)
| | - Amira El Merhie
- Laboratoire Matière et Systèmes Complexes UMR 7057Université Paris Cité/CNRSParisFrance
| | - Nick J. Spencer
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Tim Hibberd
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes UMR 7057Université Paris Cité/CNRSParisFrance
| |
Collapse
|
3
|
Dershowitz LB, Bueno Garcia H, Perley AS, Coleman TP, Kaltschmidt JA. Spontaneous enteric nervous system activity generates contractile patterns prior to maturation of gastrointestinal motility. Neurogastroenterol Motil 2024:e14890. [PMID: 39118231 DOI: 10.1111/nmo.14890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/09/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Spontaneous neuronal network activity is essential to the functional maturation of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Although enteric neurons are known exhibit electrophysiological properties early in embryonic development, no connection has been drawn between this neuronal activity and the development of gastrointestinal (GI) motility patterns. METHODS We use ex vivo GI motility assays with newly developed unbiased computational analyses to identify GI motility patterns across mouse embryonic development. KEY RESULTS We find a previously unknown pattern of neurogenic contractions termed "clustered ripples" that arises spontaneously at embryonic day 16.5, an age earlier than any identified mature GI motility patterns. We further show that these contractions are driven by nicotinic cholinergic signaling. CONCLUSIONS & INFERENCES Clustered ripples are neurogenic contractile activity that arise from spontaneous ENS activity and precede all known forms of neurogenic GI motility. This earliest motility pattern requires nicotinic cholinergic signaling, which may inform pharmacology for enhancing GI motility in preterm infants.
Collapse
Affiliation(s)
- Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| | | | - Andrew S Perley
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Todd P Coleman
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
4
|
Pai C, Sengupta R, Heuckeroth RO. Sequencing Reveals miRNAs Enriched in the Developing Mouse Enteric Nervous System. Noncoding RNA 2023; 10:1. [PMID: 38250801 PMCID: PMC10801555 DOI: 10.3390/ncrna10010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
The enteric nervous system (ENS) is an essential network of neurons and glia in the bowel wall. Defects in ENS development can result in Hirschsprung disease (HSCR), a life-threatening condition characterized by severe constipation, abdominal distention, bilious vomiting, and failure to thrive. A growing body of literature connects HSCR to alterations in miRNA expression, but there are limited data on the normal miRNA landscape in the developing ENS. We sequenced small RNAs (smRNA-seq) and messenger RNAs (mRNA-seq) from ENS precursor cells of mid-gestation Ednrb-EGFP mice and compared them to aggregated RNA from all other cells in the developing bowel. Our smRNA-seq results identified 73 miRNAs that were significantly enriched and highly expressed in the developing ENS, with miR-9, miR-27b, miR-124, miR-137, and miR-488 as our top 5 miRNAs that are conserved in humans. However, contrary to prior reports, our follow-up analyses of miR-137 showed that loss of Mir137 in Nestin-cre, Wnt1-cre, Sox10-cre, or Baf53b-cre lineage cells had no effect on mouse survival or ENS development. Our data provide important context for future studies of miRNAs in HSCR and other ENS diseases and highlight open questions about facility-specific factors in development.
Collapse
Affiliation(s)
- Christopher Pai
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA;
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rajarshi Sengupta
- American Association for Cancer Research, Philadelphia, PA 19106, USA;
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA;
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Wu Z, Wang Q, Yang F, Wang J, Zhao Y, Perrino BA, Chen J. Functional and Transcriptomic Characterization of Postnatal Maturation of ENS and SIP Syncytium in Mice Colon. Biomolecules 2023; 13:1688. [PMID: 38136560 PMCID: PMC10741935 DOI: 10.3390/biom13121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023] Open
Abstract
The interplay of the enteric nervous system (ENS) and SIP syncytium (smooth muscle cells-interstitial cells of Cajal-PDGFRα+ cells) plays an important role in the regulation of gastrointestinal (GI) motility. This study aimed to investigate the dynamic regulatory mechanisms of the ENS-SIP system on colon motility during postnatal development. Colonic samples of postnatal 1-week-old (PW1), 3-week-old (PW3), and 5-week-old (PW5) mice were characterized by RNA sequencing, qPCR, Western blotting, isometric force recordings (IFR), and colonic motor complex (CMC) force measurements. Our study showed that the transcriptional expression of Pdgfrα, c-Kit, P2ry1, Nos1, and Slc18a3, and the protein expression of nNOS, c-Kit, and ANO1 significantly increased with age from PW1 to PW5. In PW1 and PW3 mice, colonic migrating movement was not fully developed. In PW5 mice, rhythmic CMCs were recorded, similar to the CMC pattern described previously in adult mice. The inhibition of nNOS revealed excitatory and non-propulsive responses which are normally suppressed due to ongoing nitrergic inhibition. During postnatal development, molecular data demonstrated the establishment and expansion of ICC and PDGFRα+ cells, along with nitrergic and cholinergic nerves and purinergic receptors. Our findings are important for understanding the role of the SIP syncytium in generating and establishing CMCs in postnatal, developing murine colons.
Collapse
Affiliation(s)
- Zhihao Wu
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Qianqian Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Fan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxuan Wang
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Yuying Zhao
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| | - Brian A. Perrino
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Jie Chen
- Department of General Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong School of Medicine, Shanghai 200127, China
| |
Collapse
|
6
|
Dershowitz LB, Garcia HB, Perley AS, Coleman TP, Kaltschmidt JA. Spontaneous enteric nervous system activity precedes maturation of gastrointestinal motility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551847. [PMID: 37577464 PMCID: PMC10418201 DOI: 10.1101/2023.08.03.551847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Spontaneous neuronal network activity is essential in development of central and peripheral circuits, yet whether this is a feature of enteric nervous system development has yet to be established. Using ex vivo gastrointestinal (GI) motility assays with unbiased computational analyses, we identify a previously unknown pattern of spontaneous neurogenic GI motility. We further show that this motility is driven by cholinergic signaling, which may inform GI pharmacology for preterm patients.
Collapse
Affiliation(s)
- Lori B. Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
| | | | - Andrew S. Perley
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Todd P. Coleman
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Julia A. Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305 USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305 USA
| |
Collapse
|
7
|
Wang J, Daniszewski M, Hao MM, Hernández D, Pébay A, Gleeson PA, Fourriere L. Organelle mapping in dendrites of human iPSC-derived neurons reveals dynamic functional dendritic Golgi structures. Cell Rep 2023; 42:112709. [PMID: 37393622 DOI: 10.1016/j.celrep.2023.112709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Secretory pathways within dendrites of neurons have been proposed for local transport of newly synthesized proteins. However, little is known about the dynamics of the local secretory system and whether the organelles are transient or stable structures. Here, we quantify the spatial and dynamic behavior of dendritic Golgi and endosomes during differentiation of human neurons generated from induced pluripotent stem cells (iPSCs). In early neuronal development, before and during migration, the entire Golgi apparatus transiently translocates from the soma into dendrites. In mature neurons, dynamic Golgi elements, containing cis and trans cisternae, are transported from the soma along dendrites, in an actin-dependent process. Dendritic Golgi outposts are dynamic and display bidirectional movement. Similar structures were observed in cerebral organoids. Using the retention using selective hooks (RUSH) system, Golgi resident proteins are transported efficiently into Golgi outposts from the endoplasmic reticulum. This study reveals dynamic, functional Golgi structures in dendrites and a spatial map for investigating dendrite trafficking in human neurons.
Collapse
Affiliation(s)
- Jingqi Wang
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maciej Daniszewski
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marlene M Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Damián Hernández
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Lou Fourriere
- The Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
8
|
Viola MF, Chavero-Pieres M, Modave E, Delfini M, Stakenborg N, Estévez MC, Fabre N, Appeltans I, Martens T, Vandereyken K, Theobald H, Van Herck J, Petry P, Verheijden S, De Schepper S, Sifrim A, Liu Z, Ginhoux F, Azhar M, Schlitzer A, Matteoli G, Kierdorf K, Prinz M, Berghe PV, Voet T, Boeckxstaens G. Dedicated macrophages organize and maintain the enteric nervous system. Nature 2023:10.1038/s41586-023-06200-7. [PMID: 37316669 DOI: 10.1038/s41586-023-06200-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
Correct development and maturation of the enteric nervous system (ENS) is critical for survival1. At birth, the ENS is immature and requires considerable refinement to exert its functions in adulthood2. Here we demonstrate that resident macrophages of the muscularis externa (MMϕ) refine the ENS early in life by pruning synapses and phagocytosing enteric neurons. Depletion of MMϕ before weaning disrupts this process and results in abnormal intestinal transit. After weaning, MMϕ continue to interact closely with the ENS and acquire a neurosupportive phenotype. The latter is instructed by transforming growth factor-β produced by the ENS; depletion of the ENS and disruption of transforming growth factor-β signalling result in a decrease in neuron-associated MMϕ associated with loss of enteric neurons and altered intestinal transit. These findings introduce a new reciprocal cell-cell communication responsible for maintenance of the ENS and indicate that the ENS, similarly to the brain, is shaped and maintained by a dedicated population of resident macrophages that adapts its phenotype and transcriptome to the timely needs of the ENS niche.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marta Chavero-Pieres
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Elodie Modave
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marcello Delfini
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Maria Cuende Estévez
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Naomi Fabre
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Iris Appeltans
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Tobie Martens
- Laboratory for Enteric NeuroScience, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Hannah Theobald
- Quantitative Systems Biology, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Jens Van Herck
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Philippe Petry
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simon Verheijden
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sebastiaan De Schepper
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Alejandro Sifrim
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
- Laboratory of Multi-Omic Integrative Bioinformatics, Department of Genetics, KU Leuven, Leuven, Belgium
- Leuven AI Institute, KU Leuven, Leuven, Belgium
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Singapore Immunology Network, Agency for Science, Technology & Research, Singapore, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Andreas Schlitzer
- Quantitative Systems Biology, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Gianluca Matteoli
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuro-Immune Interaction, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
- KU Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
9
|
Caillaud M, Le Dréan ME, De-Guilhem-de-Lataillade A, Le Berre-Scoul C, Montnach J, Nedellec S, Loussouarn G, Paillé V, Neunlist M, Boudin H. A functional network of highly pure enteric neurons in a dish. Front Neurosci 2023; 16:1062253. [PMID: 36685225 PMCID: PMC9853279 DOI: 10.3389/fnins.2022.1062253] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023] Open
Abstract
The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.
Collapse
Affiliation(s)
- Martial Caillaud
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France,*Correspondence: Martial Caillaud,
| | - Morgane E. Le Dréan
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | | | - Catherine Le Berre-Scoul
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jérôme Montnach
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Steven Nedellec
- Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Gildas Loussouarn
- Nantes Université, CNRS, INSERM, L’institut du Thorax, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, INSERM, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
10
|
Kuehs S, Teege L, Hellberg AK, Stanke C, Haag N, Kurth I, Blum R, Nau C, Leipold E. Isolation and transfection of myenteric neurons from mice for patch-clamp applications. Front Mol Neurosci 2022; 15:1076187. [PMID: 36618826 PMCID: PMC9810798 DOI: 10.3389/fnmol.2022.1076187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The enteric nervous system (ENS) is a complex neuronal network organized in ganglionated plexuses that extend along the entire length of the gastrointestinal tract. Largely independent of the central nervous system, the ENS coordinates motility and peristalsis of the digestive tract, regulates secretion and absorption, and is involved in immunological processes. Electrophysiological methods such as the patch-clamp technique are particularly suitable to study the function of neurons as well as the biophysical parameters of the underlying ion channels under both physiological and pathophysiological conditions. However, application of the patch-clamp method to ENS neurons remained difficult because they are embedded in substantial tissue layers that limit access to and targeted manipulation of these cells. Here, we present a robust step-by-step protocol that involves isolation of ENS neurons from adult mice, culturing of the cells, their transfection with plasmid DNA, and subsequent electrophysiological characterization of individual neurons in current-clamp and voltage-clamp recordings. With this protocol, ENS neurons can be prepared, transfected, and electrophysiologically characterized within 72 h. Using isolated ENS neurons, we demonstrate the feasibility of the approach by functional overexpression of recombinant voltage-gated NaV1.9 mutant channels associated with hereditary sensory and autonomic neuropathy type 7 (HSAN-7), a disorder characterized by congenital analgesia and severe constipation that can require parenteral nutrition. Although our focus is on the electrophysiological evaluation of isolated ENS neurons, the presented methodology is also useful to analyze molecules other than sodium channels or to apply alternative downstream assays including calcium imaging, proteomic and nucleic acid approaches, or immunochemistry.
Collapse
Affiliation(s)
- Samuel Kuehs
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Laura Teege
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Ann-Katrin Hellberg
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Christina Stanke
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany,Institute of Physiology, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Rhine-Westphalia Technical University of Aachen, Aachen, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Carla Nau
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Enrico Leipold
- Department of Anesthesiology and Intensive Care, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany,*Correspondence: Enrico Leipold,
| |
Collapse
|
11
|
Interaction of the Microbiota and the Enteric Nervous System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:157-163. [PMID: 36587155 DOI: 10.1007/978-3-031-05843-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gastrointestinal tract contains the enteric nervous system within its walls and a large community of microbial symbionts (microbiota) in its lumen. In recent years, studies have shown that these two systems that lie adjacent to each other interact. This review will summarize new data using mouse models demonstrating the concurrent development of the enteric nervous system and microbiota during key pre- and postnatal stages. It will also discuss the possible roles that microbiota play on influencing enteric nervous system development and implications of antibiotic exposure during developmental windows.
Collapse
|
12
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
13
|
McCann CJ, Alves MM, Brosens E, Natarajan D, Perin S, Chapman C, Hofstra RM, Burns AJ, Thapar N. Neuronal Development and Onset of Electrical Activity in the Human Enteric Nervous System. Gastroenterology 2019; 156:1483-1495.e6. [PMID: 30610864 DOI: 10.1053/j.gastro.2018.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/07/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS) is the largest branch of the peripheral nervous system, comprising complex networks of neurons and glia, which are present throughout the gastrointestinal tract. Although development of a fully functional ENS is required for gastrointestinal motility, little is known about the ontogeny of ENS function in humans. We studied the development of neuronal subtypes and the emergence of evoked electrical activity in the developing human ENS. METHODS Human fetal gut samples (obtained via the MRC-Wellcome Trust Human Developmental Biology Resource-UK) were characterized by immunohistochemistry, calcium imaging, RNA sequencing, and quantitative real-time polymerase chain reaction analyses. RESULTS Human fetal colon samples have dense neuronal networks at the level of the myenteric plexus by embryonic week (EW) 12, with expression of excitatory neurotransmitter and synaptic markers. By contrast, markers of inhibitory neurotransmitters were not observed until EW14. Electrical train stimulation of internodal strands did not evoke activity in the ENS of EW12 or EW14 tissues. However, compound calcium activation was observed at EW16, which was blocked by the addition of 1 μmol/L tetrodotoxin. Expression analyses showed that this activity was coincident with increases in expression of genes encoding proteins involved in neurotransmission and action potential generation. CONCLUSIONS In analyses of human fetal intestinal samples, we followed development of neuronal diversity, electrical excitability, and network formation in the ENS. These processes are required to establish the functional enteric circuitry. Further studies could increase our understanding of the pathogenesis of a range of congenital enteric neuropathies.
Collapse
Affiliation(s)
- Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Silvia Perin
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Chey Chapman
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robert M Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Prince Abdullah Ben Khalid Celiac Research Chair, College of Medicine, King Saud University, Riyadh, KSA; Department of Gastroenterology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
14
|
Li Z, Hao MM, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. eLife 2019; 8:42914. [PMID: 30747710 PMCID: PMC6391068 DOI: 10.7554/elife.42914] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.
Collapse
Affiliation(s)
- Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Boesmans W, Hao MM, Fung C, Li Z, Van den Haute C, Tack J, Pachnis V, Vanden Berghe P. Structurally defined signaling in neuro-glia units in the enteric nervous system. Glia 2019; 67:1167-1178. [PMID: 30730592 PMCID: PMC6593736 DOI: 10.1002/glia.23596] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/21/2022]
Abstract
Coordination of gastrointestinal function relies on joint efforts of enteric neurons and glia, whose crosstalk is vital for the integration of their activity. To investigate the signaling mechanisms and to delineate the spatial aspects of enteric neuron-to-glia communication within enteric ganglia we developed a method to stimulate single enteric neurons while monitoring the activity of neighboring enteric glial cells. We combined cytosolic calcium uncaging of individual enteric neurons with calcium imaging of enteric glial cells expressing a genetically encoded calcium indicator and demonstrate that enteric neurons signal to enteric glial cells through pannexins using paracrine purinergic pathways. Sparse labeling of enteric neurons and high-resolution analysis of the structural relation between neuronal cell bodies, varicose release sites and enteric glia uncovered that this form of neuron-to-glia communication is contained between the cell body of an enteric neuron and its surrounding enteric glial cells. Our results reveal the spatial and functional foundation of neuro-glia units as an operational cellular assembly in the enteric nervous system.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Marlene M Hao
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Zhiling Li
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium.,Leuven Viral Vector Core, University of Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Vassilis Pachnis
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Muscularis macrophage development in the absence of an enteric nervous system. Proc Natl Acad Sci U S A 2018; 115:4696-4701. [PMID: 29666241 DOI: 10.1073/pnas.1802490115] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nervous system of the bowel regulates the inflammatory phenotype of tissue resident muscularis macrophages (MM), and in adult mice, enteric neurons are the main local source of colony stimulating factor 1 (CSF1), a protein required for MM survival. Surprisingly, we find that during development MM colonize the bowel before enteric neurons. This calls into question the requirement for neuron-derived CSF1 for MM colonization of the bowel. To determine if intestinal innervation is required for MM development, we analyzed MM of neonatal Ret-/- (Ret KO) mice that have no enteric nervous system in small bowel or colon. We found normal numbers of well-patterned MM in Ret KO bowel. Similarly, the abundance and distribution of MM in aganglionic human colon obtained from Hirschsprung disease patients was normal. We also identify endothelial cells and interstitial cells of Cajal as the main sources of CSF1 in the developing bowel. Additionally, MM from neonatal Ret KOs do not differ from controls in baseline activation status or cytokine-production in response to lipopolysaccharide. Unexpectedly, these data demonstrate that the enteric nervous system is dispensable for MM colonization and patterning in the bowel, and suggest that modulatory interactions between MM and the bowel nervous system are established postnatally.
Collapse
|
17
|
Hibberd TJ, Travis L, Wiklendt L, Costa M, Brookes SJH, Hu H, Keating DJ, Spencer NJ. Synaptic activation of putative sensory neurons by hexamethonium-sensitive nerve pathways in mouse colon. Am J Physiol Gastrointest Liver Physiol 2018; 314:G53-G64. [PMID: 28935683 DOI: 10.1152/ajpgi.00234.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal tract contains its own independent population of sensory neurons within the gut wall. These sensory neurons have been referred to as intrinsic primary afferent neurons (IPANs) and can be identified by immunoreactivity to calcitonin gene-related peptide (CGRP) in mice. A common feature of IPANs is a paucity of fast synaptic inputs observed during sharp microelectrode recordings. Whether this is observed using different recording techniques is of particular interest for understanding the physiology of these neurons and neural circuit modeling. Here, we imaged spontaneous and evoked activation of myenteric neurons in isolated whole preparations of mouse colon and correlated recordings with CGRP and nitric oxide synthase (NOS) immunoreactivity, post hoc. Calcium indicator fluo 4 was used for this purpose. Calcium responses were recorded in nerve cell bodies located 5-10 mm oral to transmural electrical nerve stimuli. A total of 618 recorded neurons were classified for CGRP or NOS immunoreactivity. Aboral electrical stimulation evoked short-latency calcium transients in the majority of myenteric neurons, including ~90% of CGRP-immunoreactive Dogiel type II neurons. Activation of Dogiel type II neurons had a time course consistent with fast synaptic transmission and was always abolished by hexamethonium (300 μM) and by low-calcium Krebs solution. The nicotinic receptor agonist 1,1-dimethyl-4-phenylpiperazinium iodide (during synaptic blockade) directly activated Dogiel type II neurons. The present study suggests that murine colonic Dogiel type II neurons receive prominent fast excitatory synaptic inputs from hexamethonium-sensitive neural pathways. NEW & NOTEWORTHY Myenteric neurons in isolated mouse colon were recorded using calcium imaging and then neurochemically defined. Short-latency calcium transients were detected in >90% of calcitonin gene-related peptide-immunoreactive neurons to electrical stimulation of hexamethonium-sensitive pathways. Putative sensory Dogiel type II calcitonin gene-related peptide-immunoreactive myenteric neurons may receive widespread fast synaptic inputs in mouse colon.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lee Travis
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Lukasz Wiklendt
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Marcello Costa
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University , Saint Louis, Missouri
| | - Damien J Keating
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University , Adelaide South Australia
| |
Collapse
|
18
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Hao MM, Bergner AJ, Hirst CS, Stamp LA, Casagranda F, Bornstein JC, Boesmans W, Vanden Berghe P, Young HM. Spontaneous calcium waves in the developing enteric nervous system. Dev Biol 2017; 428:74-87. [PMID: 28528728 DOI: 10.1016/j.ydbio.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) is an extensive network of neurons in the gut wall that arises from neural crest-derived cells. Like other populations of neural crest cells, it is known that enteric neural crest-derived cells (ENCCs) influence the behaviour of each other and therefore must communicate. However, little is known about how ENCCs communicate with each other. In this study, we used Ca2+ imaging to examine communication between ENCCs in the embryonic gut, using mice where ENCCs express a genetically-encoded calcium indicator. Spontaneous propagating calcium waves were observed between neighbouring ENCCs, through both neuronal and non-neuronal ENCCs. Pharmacological experiments showed wave propagation was not mediated by gap junctions, but by purinergic signalling via P2 receptors. The expression of several P2X and P2Y receptors was confirmed using RT-PCR. Furthermore, inhibition of P2 receptors altered the morphology of the ENCC network, without affecting neuronal differentiation or ENCC proliferation. It is well established that purines participate in synaptic transmission in the mature ENS. Our results describe, for the first time, purinergic signalling between ENCCs during pre-natal development, which plays roles in the propagation of Ca2+ waves between ENCCs and in ENCC network formation. One previous study has shown that calcium signalling plays a role in sympathetic ganglia formation; our results suggest that calcium waves are likely to be important for enteric ganglia development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Australia; Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium.
| | - Annette J Bergner
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Caroline S Hirst
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | - Franca Casagranda
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| | | | - Werend Boesmans
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Belgium
| | | | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Australia
| |
Collapse
|
20
|
Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, Vanden Berghe P. VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Front Cell Neurosci 2017; 11:118. [PMID: 28487635 PMCID: PMC5403822 DOI: 10.3389/fncel.2017.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The enteric nervous system (ENS) situated within the gastrointestinal tract comprises an intricate network of neurons and glia which together regulate intestinal function. The exact neuro-glial circuitry and the signaling molecules involved are yet to be fully elucidated. Vasoactive intestinal peptide (VIP) is one of the main neurotransmitters in the gut, and is important for regulating intestinal secretion and motility. However, the role of VIP and its VPAC receptors within the enteric circuitry is not well understood. We investigated this in the submucosal plexus of mouse jejunum using calcium (Ca2+)-imaging. Local VIP application induced Ca2+-transients primarily in neurons and these were inhibited by VPAC1- and VPAC2-antagonists (PG 99-269 and PG 99-465 respectively). These VIP-evoked neural Ca2+-transients were also inhibited by tetrodotoxin (TTX), indicating that they were secondary to action potential generation. Surprisingly, VIP induced Ca2+-transients in glia in the presence of the VPAC2 antagonist. Further, selective VPAC1 receptor activation with the agonist ([K15, R16, L27]VIP(1-7)/GRF(8-27)) predominantly evoked glial responses. However, VPAC1-immunoreactivity did not colocalize with the glial marker glial fibrillary acidic protein (GFAP). Rather, VPAC1 expression was found on cholinergic submucosal neurons and nerve fibers. This suggests that glial responses observed were secondary to neuronal activation. Trains of electrical stimuli were applied to fiber tracts to induce endogenous VIP release. Delayed glial responses were evoked when the VPAC2 antagonist was present. These findings support the presence of an intrinsic VIP/VPAC-initiated neuron-to-glia signaling pathway. VPAC1 agonist-evoked glial responses were inhibited by purinergic antagonists (PPADS and MRS2179), thus demonstrating the involvement of P2Y1 receptors. Collectively, we showed that neurally-released VIP can activate neurons expressing VPAC1 and/or VPAC2 receptors to modulate purine-release onto glia. Selective VPAC1 activation evokes a glial response, whereas VPAC2 receptors may act to inhibit this response. Thus, we identified a component of an enteric neuron-glia circuit that is fine-tuned by endogenous VIP acting through VPAC1- and VPAC2-mediated pathways.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, The University of MelbourneParkville, VIC, Australia.,Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Jaime P P Foong
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| |
Collapse
|
21
|
Padilla K, Gonzalez-Mendoza D, Berumen LC, Escobar JE, Miledi R, García-Alcocer G. Differential gene expression patterns and colocalization of ATP-gated P2X6/P2X4 ion channels during rat small intestine ontogeny. Gene Expr Patterns 2016; 21:81-8. [PMID: 27545450 DOI: 10.1016/j.gep.2016.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 11/29/2022]
Abstract
Gene coding for ATP-gated receptor ion channels (P2X1-7) has been associated with the developmental process in various tissues; among these ion channel subtypes, P2X6 acts as a physiological regulator of P2X4 receptor functions when the two receptors form heteroreceptors. The P2X4 receptor is involved in pain sensation, the inflammatory process, and body homeostasis by means of Mg(2+) absorption through the intestine. The small intestine is responsible for the absorption and digestion of nutrients; throughout its development, several gene expressions are induced that are related to nutrients received, metabolism, and other intestine functions. Previous work has shown a differential P2X4 and P2X6 protein distribution in the small intestine of newborn and adult rats; however, it is not well-known at what age the change in the relationship between the gene and protein expression occurs and whether or not these receptors are colocalized. In this work, we evaluate P2X4 and P2X6 gene expression patterns by qPCR from embryonic (E18, P0, P7, P17, P30) to adult age in rat gut, as well as P2X6/P2X4 colocalization using qRT-PCR and confocal immunofluorescence in proximal and distal small intestine sections. The results showed that P2X6 and P2X4 gene expression levels of both receptors decreased at the embryonic-perinatal transition, whereas from ages P17 to P30 (suckling-weaning transition) both receptors increased their gene expression levels. Furthermore, P2X4 and P2X6 proteins were expressed in a different way during rat small intestine development, showing a higher colocalization coefficient at age P30 in both intestine regions. Those results suggest that purinergic receptors may play a role in intestinal maturation, which is associated with age and intestinal region.
Collapse
Affiliation(s)
- Karla Padilla
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - David Gonzalez-Mendoza
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Laura C Berumen
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Jesica E Escobar
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Ricardo Miledi
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico.
| | - Guadulupe García-Alcocer
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| |
Collapse
|
22
|
M Hao M. Development of Neural Activity in the Enteric Nervous System: Similarities and Differences to Other Parts of the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:43-51. [PMID: 27379633 DOI: 10.1007/978-3-319-27592-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
All the neurons and glia of the enteric nervous system (ENS) arise from neural crest-derived cells that migrate into the gastrointestinal (GI) tract during development (Yntema and Hammond 1954; Le Douarin and Teillet 1973). Most of the ENS originates from vagal neural crest cells (NCCs), which arise from the caudal hindbrain region of the neural tube, adjacent to somites 1-7. In the developing mouse, vagal NCCs migrate into the developing oesophagus and stomach at embryonic day (E)9.5, enter the small intestine at E10.5, and colonise the developing GI tract in a rostral-to-caudal wave, reaching the anal end of the colon at E14.5 (Serbedzija et al. 1991; Kapur et al. 1992; Anderson et al. 2006). Recent evidence indicates that there is also trans-mesenteric migration of vagal NCCs, where some NCCs leave the small intestine and migrate directly across the mesentery into the colon (Nishiyama et al. 2012). Sacral NCCs also contribute to a small population of neurons and glia in the colon (Burns and Le Douarin 1998; Wang et al. 2011).
Collapse
Affiliation(s)
- Marlene M Hao
- Laboratory for Enteric Neuroscience, TARGID, University of Leuven, Herestraat 49, O&N1, Box 701, Leuven, 3000, Belgium.
| |
Collapse
|
23
|
Simultaneous optical and electrical in vivo analysis of the enteric nervous system. Nat Commun 2016; 7:11800. [PMID: 27270085 PMCID: PMC4899629 DOI: 10.1038/ncomms11800] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/28/2016] [Indexed: 01/16/2023] Open
Abstract
The enteric nervous system (ENS) is a major division of the nervous system and vital to the gastrointestinal (GI) tract and its communication with the rest of the body. Unlike the brain and spinal cord, relatively little is known about the ENS in part because of the inability to directly monitor its activity in live animals. Here, we integrate a transparent graphene sensor with a customized abdominal window for simultaneous optical and electrical recording of the ENS in vivo. The implanted device captures ENS responses to neurotransmitters, drugs and optogenetic manipulation in real time. The enteric nervous system (ENS) plays a key role in regulating gut motility and homeostasis yet it remains a challenging system to record from. Here, the authors develop a novel abdominal window permitting simultaneous optical and electrical recording of mouse ENS system activity over prolonged time periods.
Collapse
|
24
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
25
|
Burns AJ, Goldstein AM, Newgreen DF, Stamp L, Schäfer KH, Metzger M, Hotta R, Young HM, Andrews PW, Thapar N, Belkind-Gerson J, Bondurand N, Bornstein JC, Chan WY, Cheah K, Gershon MD, Heuckeroth RO, Hofstra RMW, Just L, Kapur RP, King SK, McCann CJ, Nagy N, Ngan E, Obermayr F, Pachnis V, Pasricha PJ, Sham MH, Tam P, Vanden Berghe P. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol 2016; 417:229-51. [PMID: 27059883 DOI: 10.1016/j.ydbio.2016.04.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/29/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022]
Abstract
Over the last 20 years, there has been increasing focus on the development of novel stem cell based therapies for the treatment of disorders and diseases affecting the enteric nervous system (ENS) of the gastrointestinal tract (so-called enteric neuropathies). Here, the idea is that ENS progenitor/stem cells could be transplanted into the gut wall to replace the damaged or absent neurons and glia of the ENS. This White Paper sets out experts' views on the commonly used methods and approaches to identify, isolate, purify, expand and optimize ENS stem cells, transplant them into the bowel, and assess transplant success, including restoration of gut function. We also highlight obstacles that must be overcome in order to progress from successful preclinical studies in animal models to ENS stem cell therapies in the clinic.
Collapse
Affiliation(s)
- Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Donald F Newgreen
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Victoria, Australia
| | - Lincon Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karl-Herbert Schäfer
- University of Applied Sciences, Kaiserlautern, Germany; Clinic of Pediatric Surgery, University Hospital Mannheim, University Heidelberg, Germany
| | - Marco Metzger
- Fraunhofer-Institute Interfacial Engineering and Biotechnology IGB Translational Centre - Würzburg branch and University Hospital Würzburg - Tissue Engineering and Regenerative Medicine (TERM), Würzburg, Germany
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter W Andrews
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jaime Belkind-Gerson
- Division of Gastroenterology, Hepatology and Nutrition, Massachusetts General Hospital for Children, Harvard Medical School, Boston, USA
| | - Nadege Bondurand
- INSERM U955, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France; Université Paris-Est, UPEC, F-94000 Créteil, France
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Kathryn Cheah
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, New York 10032, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Robert M W Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Germany
| | - Raj P Kapur
- Department of Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sebastian K King
- Department of Paediatric and Neonatal Surgery, The Royal Children's Hospital, Melbourne, Australia
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elly Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Florian Obermayr
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital Tübingen, D-72076 Tübingen, Germany
| | | | | | - Mai Har Sham
- Department of Biochemistry, The University of Hong Kong, Hong Kong
| | - Paul Tam
- Department of Surgery, The University of Hong Kong, Hong Kong
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TARGID, University of Leuven, Belgium
| |
Collapse
|
26
|
In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety. PLoS One 2016; 11:e0147989. [PMID: 26824433 PMCID: PMC4732685 DOI: 10.1371/journal.pone.0147989] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 01/20/2023] Open
Abstract
Objectives Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety. Design Neurospheres generated from yellow fluorescent protein (YFP) expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B). Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression. Results YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16±0.01;43 cells, n = 6) in YFP+ transplanted ENCCs (abolished with TTX). Long-term follow-up (24 months) showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites). In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone. Conclusions Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies.
Collapse
|
27
|
Young HM, Stamp LA, McKeown SJ. ENS Development Research Since 1983: Great Strides but Many Remaining Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 891:53-62. [PMID: 27379634 DOI: 10.1007/978-3-319-27592-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first enteric nervous system (ENS) conference, organized by Marcello Costa and John Furness, was held in Adelaide, Australia in 1983. In this article, we review what was known about the development of the ENS in 1983 and then summarize some of the major advances in the field since 1983.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
28
|
Wahba G, Schock SC, Claridge E, Bettolli M, Grynspan D, Humphreys P, Staines WA. MeCP2 in the enteric nervous system. Neurogastroenterol Motil 2015; 27:1156-61. [PMID: 26031318 DOI: 10.1111/nmo.12605] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/29/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Rett syndrome (RTT) is an intellectual deficit and movement disorder that develops during early childhood in girls. Affected children are normal until 6-18 months of age, after which symptoms begin to appear. Most cases of RTT are due to mutations in the MeCP2 gene leading to disruption of neuronal communication in the central nervous system. In addition, RTT patients show peripheral ailments such as gastrointestinal (GI), respiratory, and cardiac dysfunction. The etiology of intestinal dysfunction in RTT is not well-understood. Reports on the presence of MeCP2 in the peripheral nervous system are scant. As such we examined the levels of MeCP2 in human and murine GI tissue and assessed MeCP2 expression at various developmental stages. METHODS Immunohistochemistry for MeCP2, HuC/D, juvenile beta tubulin, and GFAP was performed on human and murine intestine. Western blots of these same tissues were probed with MeCP2, vAChT, nNOS, and beta-actin antibodies. KEY RESULTS MeCP2 is expressed throughout the GI tract. MeCP2 is expressed specifically in the enteric nervous system of the GI tract. MeCP2 is expressed in the GI tract throughout development with appearance beginning at or before E11.5 in the murine intestine. CONCLUSIONS & INFERENCES The proof of MeCP2 expression in enteric neurons suggests that the GI dysmotility in Rett may arise from enteric network dysfunction secondary to MeCP2 mutation.
Collapse
Affiliation(s)
- G Wahba
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S C Schock
- Research Institute, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - E Claridge
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - M Bettolli
- Departments of Surgery, Pathology and Paediatrics (Neurology), Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - D Grynspan
- Departments of Surgery, Pathology and Paediatrics (Neurology), Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - P Humphreys
- Departments of Surgery, Pathology and Paediatrics (Neurology), Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - W A Staines
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
29
|
Abstract
Acetylcholine-activating pentameric nicotinic receptors (nAChRs) are an essential mode of neurotransmission in the enteric nervous system (ENS). In this study, we examined the functional development of specific nAChR subtypes in myenteric neurons using Wnt1-Cre;R26R-GCaMP3 mice, where all enteric neurons and glia express the genetically encoded calcium indicator, GCaMP3. Transcripts encoding α3, α4, α7, β2, and β4 nAChR subunits were already expressed at low levels in the E11.5 gut and by E14.5 and, thereafter, α3 and β4 transcripts were the most abundant. The effect of specific nAChR subtype antagonists on evoked calcium activity in enteric neurons was investigated at different ages. Blockade of the α3β4 receptors reduced electrically and chemically evoked calcium responses at E12.5, E14.5, and P0. In addition to the α3β4 antagonist, antagonists to α3β2 and α4β2 also significantly reduced responses by P10-11 and in adult preparations. Therefore, there is an increase in the diversity of functional nAChRs during postnatal development. However, an α7 nAChR antagonist had no effect at any age. Furthermore, at E12.5 we found evidence for unconventional receptors that were responsive to the nAChR agonists 1-dimethyl-4-phenylpiperazinium and nicotine, but were insensitive to the general nicotinic blocker, hexamethonium. Migration, differentiation, and neuritogenesis assays did not reveal a role for nAChRs in these processes during embryonic development. In conclusion, there are significant changes in the contribution of different nAChR subunits to synaptic transmission during ENS development, even after birth. This is the first study to investigate the development of cholinergic transmission in the ENS.
Collapse
|
30
|
Boesmans W, Hao MM, Vanden Berghe P. Optical Tools to Investigate Cellular Activity in the Intestinal Wall. J Neurogastroenterol Motil 2015; 21:337-51. [PMID: 26130630 PMCID: PMC4496899 DOI: 10.5056/jnm15096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022] Open
Abstract
Live imaging has become an essential tool to investigate the coordinated activity and output of cellular networks. Within the last decade, 2 Nobel prizes have been awarded to recognize innovations in the field of imaging: one for the discovery, use, and optimization of the green fluorescent protein (2008) and the second for the development of super-resolved fluorescence microscopy (2014). New advances in both optogenetics and microscopy now enable researchers to record and manipulate activity from specific populations of cells with better contrast and resolution, at higher speeds, and deeper into live tissues. In this review, we will discuss some of the recent developments in microscope technology and in the synthesis of fluorescent probes, both synthetic and genetically encoded. We focus on how live imaging of cellular physiology has progressed our understanding of the control of gastrointestinal motility, and we discuss the hurdles to overcome in order to apply the novel tools in the field of neurogastroenterology and motility.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Marlene M Hao
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Hirst CS, Foong JPP, Stamp LA, Fegan E, Dent S, Cooper EC, Lomax AE, Anderson CR, Bornstein JC, Young HM, McKeown SJ. Ion channel expression in the developing enteric nervous system. PLoS One 2015; 10:e0123436. [PMID: 25798587 PMCID: PMC4370736 DOI: 10.1371/journal.pone.0123436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022] Open
Abstract
The enteric nervous system arises from neural crest-derived cells (ENCCs) that migrate caudally along the embryonic gut. The expression of ion channels by ENCCs in embryonic mice was investigated using a PCR-based array, RT-PCR and immunohistochemistry. Many ion channels, including chloride, calcium, potassium and sodium channels were already expressed by ENCCs at E11.5. There was an increase in the expression of numerous ion channel genes between E11.5 and E14.5, which coincides with ENCC migration and the first extension of neurites by enteric neurons. Previous studies have shown that a variety of ion channels regulates neurite extension and migration of many cell types. Pharmacological inhibition of a range of chloride or calcium channels had no effect on ENCC migration in cultured explants or neuritogenesis in vitro. The non-selective potassium channel inhibitors, TEA and 4-AP, retarded ENCC migration and neuritogenesis, but only at concentrations that also resulted in cell death. In summary, a large range of ion channels is expressed while ENCCs are colonizing the gut, but we found no evidence that ENCC migration or neuritogenesis requires chloride, calcium or potassium channel activity. Many of the ion channels are likely to be involved in the development of electrical excitability of enteric neurons.
Collapse
Affiliation(s)
- Caroline S. Hirst
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Jaime P. P. Foong
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Lincon A. Stamp
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Emily Fegan
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Stephan Dent
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Edward C. Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan E. Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Colin R. Anderson
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Joel C. Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Heather M. Young
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Sonja J. McKeown
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest 2015; 125:899-907. [PMID: 25664848 DOI: 10.1172/jci76307] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric nervous system (ENS) is sometimes called the "second brain" because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.
Collapse
|
33
|
Isolation, expansion and transplantation of postnatal murine progenitor cells of the enteric nervous system. PLoS One 2014; 9:e97792. [PMID: 24871092 PMCID: PMC4037209 DOI: 10.1371/journal.pone.0097792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/24/2014] [Indexed: 01/17/2023] Open
Abstract
Neural stem or progenitor cells have been proposed to restore gastrointestinal function in patients suffering from congenital or acquired defects of the enteric nervous system. Various, mainly embryonic cell sources have been identified for this purpose. However, immunological and ethical issues make a postnatal cell based therapy desirable. We therefore evaluated and quantified the potential of progenitor cells of the postnatal murine enteric nervous system to give rise to neurons and glial cells in vitro. Electrophysiological analysis and BrdU uptake studies provided direct evidence that generated neurons derive from expanded cells in vitro. Transplantation of isolated and expanded postnatal progenitor cells into the distal colon of adult mice demonstrated cell survival for 12 weeks (end of study). Implanted cells migrated within the gut wall and differentiated into neurons and glial cells, both of which were shown to derive from proliferated cells by BrdU uptake. This study indicates that progenitor cells isolated from the postnatal enteric nervous system might have the potential to serve as a source for a cell based therapy for neurogastrointestinal motility disorders. However, further studies are necessary to provide evidence that the generated cells are capable to positively influence the motility of the diseased gastrointestinal tract.
Collapse
|
34
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
35
|
Lake JI, Heuckeroth RO. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 2013; 305:G1-24. [PMID: 23639815 PMCID: PMC3725693 DOI: 10.1152/ajpgi.00452.2012] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric nervous system (ENS) provides the intrinsic innervation of the bowel and is the most neurochemically diverse branch of the peripheral nervous system, consisting of two layers of ganglia and fibers encircling the gastrointestinal tract. The ENS is vital for life and is capable of autonomous regulation of motility and secretion. Developmental studies in model organisms and genetic studies of the most common congenital disease of the ENS, Hirschsprung disease, have provided a detailed understanding of ENS development. The ENS originates in the neural crest, mostly from the vagal levels of the neuraxis, which invades, proliferates, and migrates within the intestinal wall until the entire bowel is colonized with enteric neural crest-derived cells (ENCDCs). After initial migration, the ENS develops further by responding to guidance factors and morphogens that pattern the bowel concentrically, differentiating into glia and neuronal subtypes and wiring together to form a functional nervous system. Molecules controlling this process, including glial cell line-derived neurotrophic factor and its receptor RET, endothelin (ET)-3 and its receptor endothelin receptor type B, and transcription factors such as SOX10 and PHOX2B, are required for ENS development in humans. Important areas of active investigation include mechanisms that guide ENCDC migration, the role and signals downstream of endothelin receptor type B, and control of differentiation, neurochemical coding, and axonal targeting. Recent work also focuses on disease treatment by exploring the natural role of ENS stem cells and investigating potential therapeutic uses. Disease prevention may also be possible by modifying the fetal microenvironment to reduce the penetrance of Hirschsprung disease-causing mutations.
Collapse
Affiliation(s)
- Jonathan I. Lake
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; and ,2Department of Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
36
|
Harrison C, Shepherd IT. Choices choices: regulation of precursor differentiation during enteric nervous system development. Neurogastroenterol Motil 2013; 25:554-62. [PMID: 23634805 PMCID: PMC4062358 DOI: 10.1111/nmo.12142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/30/2013] [Indexed: 02/08/2023]
Abstract
Background The enteric nervous system (ENS) is the largest subdivision of the peripheral nervous system and forms a complex circuit of neurons and glia that controls the function of the gastrointestinal (GI) tract. Within this circuit, there are multiple subtypes of neurons and glia. Appropriate differentiation of these various cell subtypes is vital for normal ENS and GI function. Studies of the pediatric disorder Hirschprung's Disease (HSCR) have provided a number of important insights into the mechanisms and molecules involved in ENS development; however, there are numerous other GI disorders that potentially may result from defects in development/differentiation of only a subset of ENS neurons or glia. Purpose Our understanding of the mechanisms and molecules involved in enteric nervous system differentiation is far from complete. Critically, it remains unclear at what point the fates of enteric neural crest cells (ENCCs) become committed to a specific subtype cell fate and how these cell fate choices are made. We will review our current understanding of ENS differentiation and highlight key questions that need to be addressed to gain a more complete understanding of this biological process.
Collapse
Affiliation(s)
- Colin Harrison
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA
| | - Iain T. Shepherd
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA
| |
Collapse
|
37
|
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10:43-57. [PMID: 23229326 DOI: 10.1038/nrgastro.2012.234] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest-derived cells that migrate into and along the gut, leading to the formation of a complex network of neurons and glial cells that regulates motility, secretion and blood flow. This Review summarizes the progress made in the past 5 years in our understanding of ENS development, including the migratory pathways of neural crest-derived cells as they colonize the gut. The importance of interactions between neural crest-derived cells, between signalling pathways and between developmental processes (such as proliferation and migration) in ensuring the correct development of the ENS is also presented. The signalling pathways involved in ENS development that were determined using animal models are also described, as is the evidence for the involvement of the genes encoding these molecules in Hirschsprung disease-the best characterized paediatric enteric neuropathy. Finally, the aetiology and treatment of Hirschsprung disease in the clinic and the potential involvement of defects in ENS development in other paediatric motility disorders are outlined.
Collapse
Affiliation(s)
- Florian Obermayr
- Department of Pediatric Surgery, University Children's Hospital, University of Tübingen, Hoppe-Seyler Straße 3, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
38
|
Hao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JPP. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol 2012; 382:365-74. [PMID: 23261929 DOI: 10.1016/j.ydbio.2012.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 12/10/2012] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) is a vital part of the autonomic nervous system that regulates many gastrointestinal functions, including motility and secretion. All neurons and glia of the ENS arise from neural crest-derived cells that migrate into the gastrointestinal tract during embryonic development. It has been known for many years that a subpopulation of the enteric neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development. Recent studies have demonstrated that some enteric neurons exhibit electrical activity from as early as E11.5 in the mouse, with further maturation of activity during embryonic and postnatal development. This article discusses the maturation of electrophysiological and morphological properties of enteric neurons, the formation of synapses and synaptic activity, and the influence of neural activity on ENS development.
Collapse
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Neuroscience, the University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Neural activity is integral to the development of the enteric nervous system (ENS). A subpopulation of neural crest-derived cells expresses pan-neuronal markers at early stages of ENS development (at E10.5 in the mouse). However, the electrical activity of these cells has not been previously characterized, and it is not known whether all cells expressing neuronal markers are capable of firing action potentials (APs). In this study, we examined the activity of "neuron"-like cells (expressing pan-neuronal markers or with neuronal morphology) in the gut of E11.5 and E12.5 mice using whole-cell patch-clamp electrophysiology and compared them to the activity of neonatal and adult enteric neurons. Around 30-40% of neuron-like cells at E11.5 and E12.5 fired APs, some of which were very similar to those of adult enteric neurons. All APs were sensitive to tetrodotoxin (TTX), indicating that they were driven by voltage-gated Na+ currents. Expression of mRNA encoding several voltage-gated Na+ channels by the E11.5 gut was detected using RT-PCR. The density of voltage-gated Na+ currents increased from E11.5 to neonates. Immature active responses, mediated in part by TTX- and lidocaine-insensitive channels, were observed in most cells at E11.5 and E12.5, but not in P0/P1 or adult neurons. However, some cells expressing neuronal markers at E11.5 or E12.5 did not exhibit an active response to depolarization. Spontaneous depolarizations resembling excitatory postsynaptic potentials were observed at E12.5. The ENS is one of the earliest parts of the developing nervous system to exhibit mature forms of electrical activity.
Collapse
|
40
|
Gershon MD. The play is still being written on opening day: postnatal maturation of enteric neurons may provide an opening for early life mischief. J Physiol 2012; 590:2185-6. [PMID: 22589207 DOI: 10.1113/jphysiol.2012.232769] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University P&S, New York, NY, USA.
| |
Collapse
|
41
|
Foong JPP, Nguyen TV, Furness JB, Bornstein JC, Young HM. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol 2012; 590:2375-90. [PMID: 22371477 DOI: 10.1113/jphysiol.2011.225938] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organized motility patterns in the gut depend on circuitry within the enteric nervous system (ENS), but little is known about the development of electrophysiological properties and synapses within the ENS. We examined the electrophysiology and morphology of myenteric neurons in the mouse duodenum at three developmental stages: postnatal day (P)0, P10–11, and adult. Like adults, two main classes of neurons could be identified at P0 and P10–11 based on morphology: neurons with multiple long processes that projected circumferentially (Dogiel type II morphology) and neurons with a single long process. However, postnatal Dogiel type II neurons differed in several electrophysiological properties from adult Dogiel type II neurons. P0 and P10–11 Dogiel type II neurons exhibited very prominent Ca(2+)-mediated after depolarizing potentials (ADPs) following action potentials compared to adult neurons. Adult Dogiel type II neurons are characterized by the presence of a prolonged after hyperpolarizing potential (AHP), but AHPs were very rarely observed at P0. The projection lengths of the long processes of Dogiel type II neurons were mature by P10–11. Uniaxonal neurons in adults typically have fast excitatory postsynaptic potentials (fEPSPs, ‘S-type' electrophysiology) mainly mediated by nicotinic receptors. Nicotinic-fEPSPs were also recorded from neurons with a single long process at P0 and P10–11. However, these neurons underwent major developmental changes in morphology, from predominantly filamentous neurites at birth to lamellar dendrites in mature mice. Unlike Dogiel type II neurons, the projection lengths of neurons with a single long process matured after P10–11. Slow EPSPs were rarely observed in P0/P10–11 neurons. This work shows that, although functional synapses are present and two classes of neurons can be distinguished electrophysiologically and morphologically at P0, major changes in electrophysiological properties and morphology occur during the postnatal development of the ENS.
Collapse
Affiliation(s)
- Jaime Pei Pei Foong
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|