1
|
Jager SE, Goodwin G, Chisholm KI, Denk F. In vivo calcium imaging shows that satellite glial cells have increased activity in painful states. Brain Commun 2024; 6:fcae013. [PMID: 38638153 PMCID: PMC11024818 DOI: 10.1093/braincomms/fcae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 04/20/2024] Open
Abstract
Satellite glial cells are important for proper neuronal function of primary sensory neurons for which they provide homeostatic support. Most research on satellite glial cell function has been performed with in vitro studies, but recent advances in calcium imaging and transgenic mouse models have enabled this first in vivo study of single-cell satellite glial cell function in mouse models of inflammation and neuropathic pain. We found that in naïve conditions, satellite glial cells do not respond in a time-locked fashion to neuronal firing. In painful inflammatory and neuropathic states, we detected time-locked signals in a subset of satellite glial cells, but only with suprathreshold stimulation of the sciatic nerve. Surprisingly, therefore, we conclude that most calcium signals in satellite glial cells seem to develop at arbitrary intervals not directly linked to neuronal activity patterns. More in line with expectations, our experiments also revealed that the number of active satellite glial cells was increased under conditions of inflammation or nerve injury. This could reflect the increased requirement for homeostatic support across dorsal root ganglion neuron populations, which are more active during such painful states.
Collapse
Affiliation(s)
- Sara E Jager
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - George Goodwin
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Kim I Chisholm
- Pain Centre Versus Arthritis, School of Life Sciences, University of Nottingham, Nottingham NG5 1PB, UK
| | - Franziska Denk
- Wolfson Centre for Age-related Diseases, King’s College London, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
2
|
Feng R, Muraleedharan Saraswathy V, Mokalled MH, Cavalli V. Self-renewing macrophages in dorsal root ganglia contribute to promote nerve regeneration. Proc Natl Acad Sci U S A 2023; 120:e2215906120. [PMID: 36763532 PMCID: PMC9963351 DOI: 10.1073/pnas.2215906120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/07/2023] [Indexed: 02/11/2023] Open
Abstract
Sensory neurons located in dorsal root ganglia (DRG) convey sensory information from peripheral tissue to the brain. After peripheral nerve injury, sensory neurons switch to a regenerative state to enable axon regeneration and functional recovery. This process is not cell autonomous and requires glial and immune cells. Macrophages in the DRG (DRGMacs) accumulate in response to nerve injury, but their origin and function remain unclear. Here, we mapped the fate and response of DRGMacs to nerve injury using macrophage depletion, fate-mapping, and single-cell transcriptomics. We identified three subtypes of DRGMacs after nerve injury in addition to a small population of circulating bone-marrow-derived precursors. Self-renewing macrophages, which proliferate from local resident macrophages, represent the largest population of DRGMacs. The other two subtypes include microglia-like cells and macrophage-like satellite glial cells (SGCs) (Imoonglia). We show that self-renewing DRGMacs contribute to promote axon regeneration. Using single-cell transcriptomics data and CellChat to simulate intercellular communication, we reveal that macrophages express the neuroprotective and glioprotective ligand prosaposin and communicate with SGCs via the prosaposin receptor GPR37L1. These data highlight that DRGMacs have the capacity to self-renew, similarly to microglia in the Central nervous system (CNS) and contribute to promote axon regeneration. These data also reveal the heterogeneity of DRGMacs and their potential neuro- and glioprotective roles, which may inform future therapeutic approaches to treat nerve injury.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
| | - Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Mayssa H. Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO63110
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO63110
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
3
|
Mapps AA, Boehm E, Beier C, Keenan WT, Langel J, Liu M, Thomsen MB, Hattar S, Zhao H, Tampakakis E, Kuruvilla R. Satellite glia modulate sympathetic neuron survival, activity, and autonomic function. eLife 2022; 11:74295. [PMID: 35997251 PMCID: PMC9433091 DOI: 10.7554/elife.74295] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Satellite glia are the major glial cells in sympathetic ganglia, enveloping neuronal cell bodies. Despite this intimate association, the extent to which sympathetic functions are influenced by satellite glia in vivo remains unclear. Here, we show that satellite glia are critical for metabolism, survival, and activity of sympathetic neurons and modulate autonomic behaviors in mice. Adult ablation of satellite glia results in impaired mTOR signaling, soma atrophy, reduced noradrenergic enzymes, and loss of sympathetic neurons. However, persisting neurons have elevated activity, and satellite glia-ablated mice show increased pupil dilation and heart rate, indicative of enhanced sympathetic tone. Satellite glia-specific deletion of Kir4.1, an inward-rectifying potassium channel, largely recapitulates the cellular defects observed in glia-ablated mice, suggesting that satellite glia act in part via K+-dependent mechanisms. These findings highlight neuron–satellite glia as functional units in regulating sympathetic output, with implications for disorders linked to sympathetic hyper-activity such as cardiovascular disease and hypertension.
Collapse
Affiliation(s)
- Aurelia A Mapps
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Erica Boehm
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Corinne Beier
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - William T Keenan
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Jennifer Langel
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Michael Liu
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Michael B Thomsen
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Samer Hattar
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, Bethesda, United States
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | | | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
4
|
Bottom RT, Kozanian OO, Rohac DJ, Erickson MA, Huffman KJ. Transgenerational Effects of Prenatal Ethanol Exposure in Prepubescent Mice. Front Cell Dev Biol 2022; 10:812429. [PMID: 35386207 PMCID: PMC8978834 DOI: 10.3389/fcell.2022.812429] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Fetal alcohol spectrum disorders (FASD) represent a leading cause of non-genetic neuropathologies. Recent preclinical evidence from suggests that prenatal ethanol exposure (PrEE), like other environmental exposures, may have a significant, transgenerational impact on the offspring of directly exposed animals, including altered neocortical development at birth and behavior in peri-pubescent mice. How these adverse behavioral outcomes are manifested within the brain at the time of behavioral disruption remains unknown. Methods: A transgenerational mouse model of FASD was used to generate up to a third filial generation of offspring to study. Using a multi-modal battery of behavioral assays, we assessed motor coordination/function, sensorimotor processing, risk-taking behavior, and depressive-like behavior in postnatal day (P) 20 pre-pubescent mice. Additionally, sensory neocortical area connectivity using dye tracing, neocortical gene expression using in situ RNA hybridization, and spine density of spiny stellate cells in the somatosensory cortex using Golgi-Cox staining were examined in mice at P20. Results: We found that PrEE induces behavioral abnormalities including abnormal sensorimotor processing, increased risk-taking behavior, and increased depressive-like behaviors that extend to the F3 generation in 20-day old mice. Assessment of both somatosensory and visual cortical connectivity, as well as cortical RZRβ expression in pre-pubescent mice yielded no significant differences among any experimental generations. In contrast, only directly-exposed F1 mice displayed altered cortical expression of Id2 and decreased spine density among layer IV spiny stellate cells in somatosensory cortex at this pre-pubescent, post weaning age. Conclusion: Our results suggest that robust, clinically-relevant behavioral abnormalities are passed transgenerationally to the offspring of mice directly exposed to prenatal ethanol. Additionally, in contrast to our previous findings in the newborn PrEE mouse, a lack of transgenerational findings within the brain at this later age illuminates the critical need for future studies to attempt to discover the link between neurological function and the described behavioral changes. Overall, our study suggests that multi-generational effects of PrEE may have a substantial impact on human behavior as well as health and well-being and that these effects likely extend beyond early childhood.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Olga O Kozanian
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - David J Rohac
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Michael A Erickson
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, CA, United States.,Department of Psychology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
5
|
Avraham O, Feng R, Ewan EE, Rustenhoven J, Zhao G, Cavalli V. Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. eLife 2021; 10:e68457. [PMID: 34586065 PMCID: PMC8480984 DOI: 10.7554/elife.68457] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. Regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the DRG microenvironment influences the different regenerative capacities after injury to peripheral or central axons remains largely unknown. To answer this question, we performed a single-cell transcriptional profiling of mouse DRG in response to peripheral (sciatic nerve crush) and central axon injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to the three types of injuries. All injuries increased the proportion of a cell type that shares features of both immune cells and glial cells. A distinct subset of satellite glial cells (SGC) appeared specifically in response to peripheral nerve injury. Activation of the PPARα signaling pathway in SGC, which promotes axon regeneration after peripheral nerve injury, failed to occur after central axon injuries. Treatment with the FDA-approved PPARα agonist fenofibrate increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single-cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries or disease.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Rui Feng
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Eric Edward Ewan
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
| | - Justin Rustenhoven
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- Center for Brain Immunology and Glia (BIG), Washington University School of MedicineSt LouisUnited States
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of MedicineSaint LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
- Hope Center for Neurological Disorders, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
6
|
Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun 2020; 11:4891. [PMID: 32994417 PMCID: PMC7524726 DOI: 10.1038/s41467-020-18642-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023] Open
Abstract
Peripheral sensory neurons regenerate their axon after nerve injury to enable functional recovery. Intrinsic mechanisms operating in sensory neurons are known to regulate nerve repair, but whether satellite glial cells (SGC), which completely envelop the neuronal soma, contribute to nerve regeneration remains unexplored. Using a single cell RNAseq approach, we reveal that SGC are distinct from Schwann cells and share similarities with astrocytes. Nerve injury elicits changes in the expression of genes related to fatty acid synthesis and peroxisome proliferator-activated receptor (PPARα) signaling. Conditional deletion of fatty acid synthase (Fasn) in SGC impairs axon regeneration. The PPARα agonist fenofibrate rescues the impaired axon regeneration in mice lacking Fasn in SGC. These results indicate that PPARα activity downstream of FASN in SGC contributes to promote axon regeneration in adult peripheral nerves and highlight that the sensory neuron and its surrounding glial coat form a functional unit that orchestrates nerve repair. The contribution of satellite glia to peripheral nerve regeneration is unclear. Here, the authors show that satellite glia are transcriptionally distinct from Schwann cells, share similarities with astrocytes, and, upon injury, they contribute to axon regeneration via Fasn-PPARα signalling pathway.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sara Jones
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Clay F Semenkovich
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA.,Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Nakagawa N, Hosoya T. Slow Dynamics in Microcolumnar Gap Junction Network of Developing Neocortical Pyramidal Neurons. Neuroscience 2019; 406:554-562. [PMID: 30794844 DOI: 10.1016/j.neuroscience.2019.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/24/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Gap junctions mediate electrical coupling between neurons and modulate their firing activity. In mouse neocortical layer 5, the major types of pyramidal neurons organize into cell type-specific microcolumns that exhibit modular neuronal activity. During cortical development, microcolumn neurons are electrically coupled in a cell type-specific manner at the stage of synaptogenesis, forming a dense network of gap junctions. However, modulation of neuronal activity by the gap junction network has not been examined. Here, we show that the electrical coupling induces amplification and slow synchronization of action potentials. This slow synchronization is mediated by electrical transmission that is an order of magnitude slower than that of gap junction-coupled neurons of other types. Theoretical and structural analyses suggested that apical dendrites are a major site of electrical coupling, providing slow electrical transmission. These results suggest that the gap junction network organizes neuronal activity of developing cortical circuit modules with unique slow dynamics.
Collapse
Affiliation(s)
- Nao Nakagawa
- RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
8
|
Koizumi K, Inoue M, Chowdhury S, Bito H, Yamanaka A, Ishizuka T, Yawo H. Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. J Physiol Sci 2019; 69:65-77. [PMID: 29761270 PMCID: PMC10716991 DOI: 10.1007/s12576-018-0618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
Abstract
To investigate how the functional architecture is organized in layer 5 (L5) of the somatosensory cortex of a mouse in vivo, the input-output relationship was investigated using an all-optical approach. The neural activity in L5 was optically recorded using a Ca2+ sensor, R-CaMP2, through a microprism inserted in the cortex under two-photon microscopy, while the L5 was regionally excited using optogenetics. The excitability was spread around the blue-light irradiated region, but the horizontal propagation was limited to within a certain distance (λ < 130 μm from the center of the illumination spot). When two regions were photostimulated with a short interval, the excitability of each cluster was reduced. Therefore, a column-like architecture had functionally emerged with reciprocal inhibition through a minimal number of synaptic relays. This could generate a synchronous output from a region of L5 with simultaneous enhancement of the signal-to-noise ratio by silencing of the neighboring regions.
Collapse
Affiliation(s)
- Kyo Koizumi
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Masatoshi Inoue
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Srikanta Chowdhury
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Akihiro Yamanaka
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Center for Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
9
|
HOSOYA T. The basic repeating modules of the cerebral cortical circuit. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:303-311. [PMID: 31406055 PMCID: PMC6766449 DOI: 10.2183/pjab.95.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/08/2019] [Indexed: 06/10/2023]
Abstract
The fundamental organization of the cerebral cortical circuit is still poorly understood. In particular, it is unclear whether the diverse cell types form modular units that are repeated across the cortex. We discovered that the major cell types in cortical layer 5 form a lattice structure. Distinct types of excitatory and inhibitory neurons form cell type-specific radial clusters termed microcolumns. Microcolumns are present in diverse cortical areas, such as the visual, motor, and language areas, and are organized into periodic hexagonal lattice structures. Individual microcolumns have modular synaptic circuits and exhibit modular neuronal activity, suggesting that each of them functions as an information processing unit. Microcolumn development is suggested to be independent of cell lineage but coordinated by gap junctions. Thus, neurons in cortical layer 5 organize into a brainwide lattice structure of functional microcolumns, suggesting that parallel processing by massively repeated microcolumns underlie diverse cortical functions, such as sensory perception, motor control, and language processing.
Collapse
Affiliation(s)
- Toshihiko HOSOYA
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Ricoh Biomedical Research Department, Kawasaki, Kanagawa, Japan
| |
Collapse
|
10
|
Yoneda T, Sakai S, Maruoka H, Hosoya T. Large-scale Three-dimensional Imaging of Cellular Organization in the Mouse Neocortex. J Vis Exp 2018. [PMID: 30247471 DOI: 10.3791/58027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The mammalian neocortex is composed of many types of excitatory and inhibitory neurons, each with specific electrophysiological and biochemical properties, synaptic connections, and in vivo functions, but their basic functional and anatomical organization from cellular to network scale is poorly understood. Here we describe a method for the three-dimensional imaging of fluorescently-labeled neurons across large areas of the brain for the investigation of the cortical cellular organization. Specific types of neurons are labeled by the injection of fluorescent retrograde neuronal tracers or expression of fluorescent proteins in transgenic mice. Block brain samples, e.g., a hemisphere, are prepared after fixation, made transparent with tissue clearing methods, and subjected to fluorescent immunolabeling of the specific cell types. Large areas are scanned using confocal or two-photon microscopes equipped with large working distance objectives and motorized stages. This method can resolve the periodic organization of the cell type-specific microcolumn functional modules in the mouse neocortex. The procedure can be useful for the study of three-dimensional cellular architecture in the diverse brain areas and other complex tissues.
Collapse
Affiliation(s)
| | - Seiichiro Sakai
- RIKEN Brain Science Institute; Tokyo Metropolitan Institute of Medical Science
| | | | | |
Collapse
|
11
|
Chevée M, Brown SP. The development of local circuits in the neocortex: recent lessons from the mouse visual cortex. Curr Opin Neurobiol 2018; 53:103-109. [PMID: 30053693 DOI: 10.1016/j.conb.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022]
Abstract
Precise synaptic connections among neurons in the neocortex generate the circuits that underlie a broad repertoire of cortical functions including perception, learning and memory, and complex problem solving. The specific patterns and properties of these synaptic connections are fundamental to the computations cortical neurons perform. How such specificity arises in cortical circuits has remained elusive. Here, we first consider the cell-type, subcellular and synaptic specificity required for generating mature patterns of cortical connectivity and responses. Next, we focus on recent progress in understanding how the synaptic connections among excitatory cortical projection neurons are established during development using the primary visual cortex of the mouse as a model.
Collapse
Affiliation(s)
- Maxime Chevée
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Maruoka H, Nakagawa N, Tsuruno S, Sakai S, Yoneda T, Hosoya T. Lattice system of functionally distinct cell types in the neocortex. Science 2017; 358:610-615. [DOI: 10.1126/science.aam6125] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 09/25/2017] [Indexed: 01/06/2023]
|
13
|
Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex. Nat Commun 2016; 7:13210. [PMID: 27767032 PMCID: PMC5078743 DOI: 10.1038/ncomms13210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 09/12/2016] [Indexed: 11/21/2022] Open
Abstract
A minicolumn is the smallest anatomical module in the cortical architecture, but it is still in debate whether it serves as functional units for cortical processing. In the rodent primary visual cortex (V1), neurons with different preferred orientations are mixed horizontally in a salt and pepper manner, but vertical functional organization was not examined. In this study, we found that neurons with similar orientation preference are weakly but significantly clustered vertically in a short length and horizontally in the scale of a minicolumn. Interestingly, the vertical clustering is found only in a part of minicolumns, and others are composed of neurons with a variety of orientation preferences. Thus, the mouse V1 is a mixture of vertical clusters of neurons with various degrees of orientation similarity, which may be the compromise between the brain size and keeping the vertical clusters of similarly tuned neurons at least in a subset of clusters. Primary visual cortical neurons display mostly a salt and pepper arrangement of orientation preferences along the horizontal cortical axis. Here the authors show that a significant subset of minicolumns, one-cell wide arrays of cells arranged along the vertical axis, show similar orientation tuning preferences.
Collapse
|
14
|
Oe Y, Baba O, Ashida H, Nakamura KC, Hirase H. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns. Glia 2016; 64:1532-45. [PMID: 27353480 PMCID: PMC5094520 DOI: 10.1002/glia.23020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545.
Collapse
Affiliation(s)
- Yuki Oe
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Otto Baba
- Oral and Maxillofacial Anatomy, Graduate School of Oral Sciences, Tokushima University, Tokushima, Japan
| | - Hitoshi Ashida
- Laboratory of Biochemistry Frontiers, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Kouichi C Nakamura
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hajime Hirase
- Laboratory for Neuron-Glia Circuitry, RIKEN Brain Science Institute, Wako, Saitama, Japan.,Saitama University Brain Science Institute, Saitama, Japan
| |
Collapse
|
15
|
Abstract
In contrast to the previously held notion that mice have a weak visual system, it is now generally accepted that mice can perceive rather complicated figures in various contexts such as in cognitive experiments and in social settings. Here, we show that mice could even be capable of perceiving a visual illusion--subjective contours. This illusion requires the visual system to compensate for a lack of visual information in compressed 2D images on the retina. In this experiment, we trained mice to respond appropriately to a rectangle-shaped rewarded figure of specific orientation in a two-choice visual discrimination task with a touchscreen monitor. In Transfer Test 1, mice could discriminate illusory rectangle-shaped figures significantly as compared with a figure, which did not induce illusory figures. In Transfer Test 2, the choice rate of targets decreased with imperfect illusory figures, which produced weak perception of rotated or deficient inducers. Moreover, in Transfer Test 3, mice could not discriminate the low-resolution illusory figure, which also induced weak perception. These results demonstrated the possibility that mice might be useful for investigating fundamental properties of the neural visual system.
Collapse
Affiliation(s)
- Fumi Okuyama-Uchimura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Shoji Komai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
16
|
Toma K, Hanashima C. Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Front Neurosci 2015; 9:274. [PMID: 26321900 PMCID: PMC4531338 DOI: 10.3389/fnins.2015.00274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
Information processing in the cerebral cortex requires the activation of diverse neurons across layers and columns, which are established through the coordinated production of distinct neuronal subtypes and their placement along the three-dimensional axis. Over recent years, our knowledge of the regulatory mechanisms of the specification and integration of neuronal subtypes in the cerebral cortex has progressed rapidly. In this review, we address how the unique cytoarchitecture of the neocortex is established from a limited number of progenitors featuring neuronal identity transitions during development. We further illuminate the molecular mechanisms of the subtype-specific integration of these neurons into the cerebral cortex along the radial and tangential axis, and we discuss these key features to exemplify how neocortical circuit formation accomplishes economical connectivity while maintaining plasticity and evolvability to adapt to environmental changes.
Collapse
Affiliation(s)
- Kenichi Toma
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology Kobe, Japan ; Department of Biology, Graduate School of Science, Kobe University Kobe, Japan
| |
Collapse
|
17
|
Makino K, Funayama K, Ikegaya Y. Spatial clusters of constitutively active neurons in mouse visual cortex. Anat Sci Int 2015; 91:188-95. [DOI: 10.1007/s12565-015-0284-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/16/2015] [Indexed: 01/22/2023]
|
18
|
Morimoto-Suzki N, Hirabayashi Y, Tyssowski K, Shinga J, Vidal M, Koseki H, Gotoh Y. The polycomb component Ring1B regulates the timed termination of subcerebral projection neuron production during mouse neocortical development. Development 2014; 141:4343-53. [PMID: 25344075 DOI: 10.1242/dev.112276] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the developing neocortex, neural precursor cells (NPCs) sequentially generate various neuronal subtypes in a defined order. Although the precise timing of the NPC fate switches is essential for determining the number of neurons of each subtype and for precisely generating the cortical layer structure, the molecular mechanisms underlying these switches are largely unknown. Here, we show that epigenetic regulation through Ring1B, an essential component of polycomb group (PcG) complex proteins, plays a key role in terminating NPC-mediated production of subcerebral projection neurons (SCPNs). The level of histone H3 residue K27 trimethylation at and Ring1B binding to the promoter of Fezf2, a fate determinant of SCPNs, increased in NPCs as Fezf2 expression decreased. Moreover, deletion of Ring1B in NPCs, but not in postmitotic neurons, prolonged the expression of Fezf2 and the generation of SCPNs that were positive for CTIP2. These results indicate that Ring1B mediates the timed termination of Fezf2 expression and thereby regulates the number of SCPNs.
Collapse
Affiliation(s)
- Nao Morimoto-Suzki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Kelsey Tyssowski
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Jun Shinga
- RIKEN Center for Allergy and Immunology, Kanagawa, Japan
| | - Miguel Vidal
- RIKEN Center for Allergy and Immunology, Kanagawa, Japan Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Localising and classifying neurons from high density MEA recordings. J Neurosci Methods 2014; 233:115-28. [DOI: 10.1016/j.jneumeth.2014.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/18/2022]
|
20
|
Kumamoto T, Hanashima C. Neuronal subtype specification in establishing mammalian neocortical circuits. Neurosci Res 2014; 86:37-49. [PMID: 25019611 DOI: 10.1016/j.neures.2014.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/28/2022]
Abstract
The functional integrity of the neocortical circuit relies on the precise production of diverse neuron populations and their assembly during development. In recent years, extensive progress has been made in the understanding of the mechanisms that control differentiation of each neuronal type within the neocortex. In this review, we address how the elaborate neocortical cytoarchitecture is established from a simple neuroepithelium based on recent studies examining the spatiotemporal mechanisms of neuronal subtype specification. We further discuss the critical events that underlie the conversion of the stem amniotes cerebrum to a mammalian-type neocortex, and extend these key findings in the light of mammalian evolution to understand how the neocortex in humans evolved from common ancestral mammals.
Collapse
Affiliation(s)
- Takuma Kumamoto
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
21
|
Abstract
The sensory cortex contains a wide array of neuronal types, which are connected together into complex but partially stereotyped circuits. Sensory stimuli trigger cascades of electrical activity through these circuits, causing specific features of sensory scenes to be encoded in the firing patterns of cortical populations. Recent research is beginning to reveal how the connectivity of individual neurons relates to the sensory features they encode, how differences in the connectivity patterns of different cortical cell classes enable them to encode information using different strategies, and how feedback connections from higher-order cortex allow sensory information to be integrated with behavioural context.
Collapse
|
22
|
Gao P, Sultan KT, Zhang XJ, Shi SH. Lineage-dependent circuit assembly in the neocortex. Development 2013; 140:2645-55. [PMID: 23757410 DOI: 10.1242/dev.087668] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neocortex plays a key role in higher-order brain functions, such as perception, language and decision-making. Since the groundbreaking work of Ramón y Cajal over a century ago, defining the neural circuits underlying brain functions has been a field of intense study. Here, we review recent findings on the formation of neocortical circuits, which have taken advantage of improvements to mouse genetics and circuit-mapping tools. These findings are beginning to reveal how individual components of circuits are generated and assembled during development, and how early developmental processes, such as neurogenesis and neuronal migration, guide precise circuit assembly.
Collapse
Affiliation(s)
- Peng Gao
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|