1
|
Suzuki Y, Kiyosawa M, Ishii K. Measurement of Cerebral Glucose Metabolism in the Visual Cortex Predicts the Prognosis of Hemianopia. Neurorehabil Neural Repair 2024; 38:437-446. [PMID: 38659366 DOI: 10.1177/15459683241247536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Homonymous hemianopia caused by cerebrovascular disease may improve over time. This study investigated whether functional neuroimaging can predict the prognosis of hemianopia due to cerebral infarction. METHODS We studied 19 patients (10 men and 9 women) with homonymous hemianopia and compared them with 34 healthy subjects (20 men and 14 women). Cerebral glucose metabolism was measured by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET), 1 to 6 months after the onset. Bilateral regions of interest (ROIs) were selected from the posterior and, anterior striate cortices, extrastriate cortex, and thalamus. Furthermore, semi-quantitative data on cerebral glucose metabolism were obtained for ROIs and compared with the data obtained for homologous regions in the contralateral hemisphere by calculating the ipsilateral/contralateral (I/C) ratio. RESULTS The I/C ratio for the cerebral glucose metabolism in the posterior striate cortex was high (>0.750) in 8 patients, and the central visual field of these patients improved or showed macular sparing. The I/C ratio for cerebral glucose metabolism in the anterior striate cortex was high (>0.830) in 7 patients, and the peripheral visual field of these patients improved. However, no improvement was observed in 9 patients with a low I/C ratio for cerebral glucose metabolism in both the posterior and anterior striate cortices. CONCLUSION Measurement of cerebral glucose metabolism in the striate cortex is useful for estimating visual field prognosis. Furthermore, FDG-PET is useful in predicting the prognosis of hemianopia.
Collapse
Affiliation(s)
- Yukihisa Suzuki
- Department of Ophthalmology, Japan Community Health Care Organization, Mishima General Hospital, Mishima, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Graduate School, Tokyo, Japan
| | | | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
2
|
Atapour N, Worthy KH, Rosa MGP. Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: implications for residual vision and blindsight. Brain Struct Funct 2021; 226:2763-2775. [PMID: 33743077 DOI: 10.1007/s00429-021-02257-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
Following lesions of the primary visual cortex (V1), the lateral geniculate nucleus (LGN) undergoes substantial cell loss due to retrograde degeneration. However, visually responsive neurons remain in the degenerated sector of LGN, and these have been implicated in mediation of residual visual capacities that remain within the affected sectors of the visual field. Using immunohistochemistry, we compared the neurochemical characteristics of LGN neurons in V1-lesioned marmoset monkeys (Callithrix jacchus) with those of non-lesioned control animals. We found that GABAergic neurons form approximately 6.5% of the neuronal population in the normal LGN, where most of these cells express the calcium-binding protein parvalbumin. Following long-term V1 lesions in adult monkeys, we observed a marked increase (~ sevenfold) in the proportion of GABA-expressing neurons in the degenerated sector of the LGN, indicating that GABAergic cells are less affected by retrograde degeneration in comparison with magno- and parvocellular projection neurons. In addition, following early postnatal V1 lesions and survival into adulthood, we found widespread expression of GABA in putative projection neurons, even outside the degenerated sectors (lesion projection zones). Our findings show that changes in the ratio of GABAergic neurons in LGN need to be taken into account in the interpretation of the mechanisms of visual abilities that survive V1 lesions in primates.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia. .,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, Australia.
| | - Katrina H Worthy
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Marcello G P Rosa
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, VIC, Australia
| |
Collapse
|
3
|
The Roles of GABA in Ischemia-Reperfusion Injury in the Central Nervous System and Peripheral Organs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4028394. [PMID: 31814874 PMCID: PMC6878816 DOI: 10.1155/2019/4028394] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/27/2019] [Accepted: 10/18/2019] [Indexed: 12/30/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a common pathological process, which may lead to dysfunctions and failures of multiple organs. A flawless medical way of endogenous therapeutic target can illuminate accurate clinical applications. γ-Aminobutyric acid (GABA) has been known as a marker in I/R injury of the central nervous system (mainly in the brain) for a long time, and it may play a vital role in the occurrence of I/R injury. It has been observed that throughout cerebral I/R, levels, syntheses, releases, metabolisms, receptors, and transmissions of GABA undergo complex pathological variations. Scientists have investigated the GABAergic enhancers for attenuating cerebral I/R injury; however, discussions on existing problems and mechanisms of available drugs were seldom carried out so far. Therefore, this review would summarize the process of pathological variations in the GABA system under cerebral I/R injury and will cover corresponding probable issues and mechanisms in using GABA-related drugs to illuminate the concern about clinical illness for accurately preventing cerebral I/R injury. In addition, the study will summarize the increasing GABA signals that can prevent I/R injuries occurring in peripheral organs, and the roles of GABA were also discussed correspondingly.
Collapse
|
4
|
Aguilar-Arredondo A, Zepeda A. Memory retrieval-induced activation of adult-born neurons generated in response to damage to the dentate gyrus. Brain Struct Funct 2018; 223:2859-2877. [PMID: 29663136 DOI: 10.1007/s00429-018-1664-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.
Collapse
Affiliation(s)
- Andrea Aguilar-Arredondo
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Mexico, DF, Mexico
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Mexico, DF, Mexico.
| |
Collapse
|
5
|
Mori MA, Meyer E, Soares LM, Milani H, Guimarães FS, de Oliveira RMW. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:94-105. [PMID: 27889412 DOI: 10.1016/j.pnpbp.2016.11.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022]
Abstract
This study investigated the effects of cannabidiol (CBD), a non-psychotomimetic phytochemical present in Cannabis sativa, on the cognitive and emotional impairments induced by bilateral common carotid artery occlusion (BCCAO) in mice. Using a multi-tiered behavioral testing battery during 21days, we found that BCCAO mice exhibited long-lasting functional deficits reflected by increase in anxiety-like behavior (day 9), memory impairments (days 12-18) and despair-like behavior (day 21). Short-term CBD 10mg/kg treatment prevented the cognitive and emotional impairments, attenuated hippocampal neurodegeneration and white matter (WM) injury, and reduced glial response that were induced by BCCAO. In addition, ischemic mice treated with CBD exhibited an increase in the hippocampal brain derived neurotrophic factor (BDNF) protein levels. CBD also stimulated neurogenesis and promoted dendritic restructuring in the hippocampus of BCCAO animals. Collectively, the present results demonstrate that short-term CBD treatment results in global functional recovery in ischemic mice and impacts multiple and distinct targets involved in the pathophysiology of brain ischemic injury.
Collapse
Affiliation(s)
- Marco Aurélio Mori
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Ligia Mendes Soares
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, School of Medicine, USP, Av. Bandeirantes, 14015-000 Ribeirão Preto, São Paulo, Brazil
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
6
|
Yang J, Liu L, Li T, Li C. Array Focal Cortical Stimulation Enhances Motor Function Recovery and Brain Remodeling in a Rat Model of Ischemia. J Stroke Cerebrovasc Dis 2016; 26:658-665. [PMID: 27955948 DOI: 10.1016/j.jstrokecerebrovasdis.2016.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/18/2016] [Accepted: 11/13/2016] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Using a new microelectrode array implanted into the cranial window employing a new stimulation protocol, we investigated the effects of the implanted electrode arrays on both motor map plasticity and neural regeneration in a rodent model of stroke. MATERIALS AND METHODS Rats were pretrained on single-pellet retrieval task, then received focal ischemic infarction and microelectrode arrays implantation. Rats in the cortical stimulation (CS) group received daily electrical stimulation (1 hour each day) for 14 days whereas animals in the no stimulation (NS) group did not receive electrical stimulation and only underwent motor mapping. Behavior data and residual electrophysiological mapping on stimulation days 2, 5, 8, 11, and 14 were statistically compared. Neural reorganization in pathological with glial fibrillary acidic protein and microtubule-associated protein-2 was performed. RESULTS Rats in CS group showed greater increases in reaching accuracy and significantly decreased in motor threshold than rats in NS group. Immunohistochemical study has shown that array focal CS suppressed inflammatory response, and enhanced dendritic sprouting in the peri-infarction cortex. CONCLUSION The present findings support the viability of epidural CS with microelectrode arrays for enhancing motor function after stroke and monitoring the neural reorganization of residual electrophysiological mapping after motor cortex injury.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Tao Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Chengyan Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Soares LM, De Vry J, Steinbusch HW, Milani H, Prickaerts J, Weffort de Oliveira RM. Rolipram improves cognition, reduces anxiety- and despair-like behaviors and impacts hippocampal neuroplasticity after transient global cerebral ischemia. Neuroscience 2016; 326:69-83. [DOI: 10.1016/j.neuroscience.2016.03.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
|
8
|
Suzuki Y, Kiyosawa M, Oda K, Ishiwata K, Ishii K. Improvement of Glucose Metabolism in the Visual Cortex Accompanies Visual Field Recovery in a Patient with Hemianopia. TOHOKU J EXP MED 2016; 238:267-71. [DOI: 10.1620/tjem.238.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yukihisa Suzuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Graduate School
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
- Japan Community Health Care Organization, Mishima General Hospital
| | - Motohiro Kiyosawa
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Graduate School
- Kiyosawa Eye Clinic
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
- Faculty of Health Science, Hokkaido University of Science
| | - Kiich Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| |
Collapse
|
9
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
10
|
Xerri C, Zennou-Azogui Y. Early and moderate sensory stimulation exerts a protective effect on perilesion representations of somatosensory cortex after focal ischemic damage. PLoS One 2014; 9:e99767. [PMID: 24914807 PMCID: PMC4051766 DOI: 10.1371/journal.pone.0099767] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/19/2014] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that intensive training within an early critical time window after focal cortical ischemia increases the area of damaged tissue and is detrimental to behavioral recovery. We postulated that moderate stimulation initiated soon after the lesion could have protective effects on peri-infarct cortical somatotopic representations. Therefore, we have assessed the effects of mild cutaneous stimulation delivered in an attention-demanding behavioral context on the functional organization of the perilesion somatosensory cortex using high-density electrophysiological mapping. We compared the effects of 6-day training initiated on the 3rd day postlesion (early training; ET) to those of same-duration training started on the 8th day (delayed training; DT). Our findings confirm previous work showing that the absence of training aggravates representational loss in the perilesion zone. In addition, ET was found to be sufficient to limit expansion of the ischemic lesion and reduce tissue loss, and substantially maintain the neuronal responsiveness to tactile stimulation, thereby preserving somatotopic map arrangement in the peri-infarct cortical territories. By contrast, DT did not prevent tissue loss and only partially reinstated lost representations in a use-dependent manner within the spared peri-infarct cortical area. This study differentiates the effects of early versus delayed training on perilesion tissue and cortical map reorganization, and underscores the neuroprotective influence of mild rehabilitative stimulation on neuronal response properties in the peri-infarct cortex during an early critical period.
Collapse
Affiliation(s)
- Christian Xerri
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
- * E-mail:
| | - Yoh'i Zennou-Azogui
- Neurosciences Intégratives et Adaptatives, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7260, Fédération de Recherches Comportement-Cerveau-Cognition 3512, Marseille, France
| |
Collapse
|
11
|
Vaina LM, Soloviev S, Calabro FJ, Buonanno F, Passingham R, Cowey A. Reorganization of retinotopic maps after occipital lobe infarction. J Cogn Neurosci 2013; 26:1266-82. [PMID: 24345177 DOI: 10.1162/jocn_a_00538] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We studied patient JS, who had a right occipital infarct that encroached on visual areas V1, V2v, and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction (signal) were embedded in masking motion noise (noise dots). The impairment on this motion coherence task was especially marked when the display was presented to the upper left (affected) visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy participants. Training on the motion coherence task generalized to another motion task, the motion discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots (signal) within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex (hMT(+)) and in the kinetic occipital region as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8, and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d, and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere of the patient or in either hemispheres of the healthy control participants. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient (PF) who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned hemisphere of PF. However, PF was only scanned at 3 and 7 months, and the biggest shifts in patient JS were found between 8 and 11 months. Thus, it is important to carry out a prospective study with a trained and untrained group so as to determine whether the patterns of reorganization that we have observed can be further promoted by training.
Collapse
|
12
|
Avolio E, Facciolo RM, Alò R, Mele M, Carelli A, Canonaco A, Mosciaro L, Talani G, Biggio G, Sanna E, Mahata SK, Canonaco M. Expression variations of chromogranin A and α1,2,4 GABA(A)Rs in discrete limbic and brainstem areas rescue cardiovascular alterations. Neurosci Res 2013; 77:8-15. [PMID: 23916832 DOI: 10.1016/j.neures.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022]
Abstract
Recent interferences of hemodynamic functions via modified brain neuronal mechanisms have proven to be major causes of dementia and sleeping disorders. In this work, cerebral expression differences of the neuroactive vesicular chromogranin A (CgA) and distinct α GABA(A)R subunits were detected in the facultative hibernating hamster. In particular, damaged neuronal fields of hypotensive torpor (TORP) state were correlated to elevated CgA and GABA(A)R α1, α4 mRNA levels in the paraventricular hypothalamic nucleus (PVN), central amygdalar nucleus (CeA) plus solitary tractus nucleus (NTS). Conversely, few neurodegeneration signals of hypertensive arousal (AROU) state, accounted for mostly lower CgA levels in the same areas. This state also provided increased α2-containing sites in amygdala, hippocampal and NTS neurons together with elevated α4-containing receptors in the periventricular hypothalamic nucleus (Pe). Interestingly in our hibernating model, CgA appeared to preferentially feature inhibitory neurosignals as indicated by preliminary perfusion of amygdalar sites with its highly specific antihypertensive derived peptide (catestatin) promoting GABA-dependent sIPSCs. Overall, evident neuronal damages plus altered expression capacities of CgA and α1-, α2-, α4-GABA(A)Rs in CeA, Pe, PVN as well as NTS during both hibernating states corroborate for the first time key molecular switching events guaranteeing useful cardiovascular rescuing abilities of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ennio Avolio
- Comparative Neuroanatomy Laboratory, University of Calabria, Ponte P. Bucci 4B, 87030 Arcavacata di Rende, Cosenza, Italy; Health Center srl, via Alimena 6, 87100 Cosenza, Italy; VA San Diego Healthcare System/Department of Medicine, University of California-San Diego, La Jolla, CA 92093-0838, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zheng J, Liu L, Xue X, Li H, Wang S, Cao Y, Zhao J. Cortical electrical stimulation promotes neuronal plasticity in the peri-ischemic cortex and contralesional anterior horn of cervical spinal cord in a rat model of focal cerebral ischemia. Brain Res 2013; 1504:25-34. [DOI: 10.1016/j.brainres.2013.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/18/2012] [Accepted: 01/04/2013] [Indexed: 12/14/2022]
|
14
|
Functional recovery of the dentate gyrus after a focal lesion is accompanied by structural reorganization in the adult rat. Brain Struct Funct 2012; 218:437-53. [PMID: 22481229 DOI: 10.1007/s00429-012-0407-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/14/2012] [Indexed: 01/20/2023]
Abstract
The adult brain is highly plastic and tends to undergo substantial reorganization after injury to compensate for the lesion effects. It has been shown that such reorganization mainly relies on anatomical and biochemical modifications of the remaining cells which give rise to a network rewiring without reinstating the original morphology of the damaged region. However, few studies have analyzed the neurorepair potential of a neurogenic structure. Thus, the aim of this work was to analyze if the DG could restore its original morphology after a lesion and to establish if the structural reorganization is accompanied by behavioral and electrophysiological recovery. Using a subepileptogenic injection of kainic acid (KA), we induced a focal lesion in the DG and assessed in time (1) the loss and recovery of dependent and non dependent DG cognitive functions, (2) the anatomical reorganization of the DG using a stereological probe and immunohistochemical markers for different neuronal maturation stages and, (3) synaptic plasticity as assessed through the induction of in vivo long-term potentiation (LTP) in the mossy fiber pathway (CA3-DG). Our results show that a DG focal lesion with KA leads to a well delimited region of neuronal loss, disorganization of the structure, the loss of associated mnemonic functions and the impairment to elicit LTP. However, behavioral and synaptic plasticity expression occurs in a time dependent fashion and occurs along the morphological restoration of the DG. These results provide novel information on neural plasticity events associated to functional reorganization after damage.
Collapse
|
15
|
Geißler M, Dinse HR, Neuhoff S, Kreikemeier K, Meier C. Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex. PLoS One 2011; 6:e20194. [PMID: 21673795 PMCID: PMC3105979 DOI: 10.1371/journal.pone.0020194] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/20/2011] [Indexed: 01/20/2023] Open
Abstract
Intraperitoneal transplantation of human umbilical cord blood (hUCB) cells has been shown to reduce sensorimotor deficits after hypoxic ischemic brain injury in neonatal rats. However, the neuronal correlate of the functional recovery and how such a treatment enforces plastic remodelling at the level of neural processing remains elusive. Here we show by in-vivo recordings that hUCB cells have the capability of ameliorating the injury-related impairment of neural processing in primary somatosensory cortex. Intact cortical processing depends on a delicate balance of inhibitory and excitatory transmission, which is disturbed after injury. We found that the dimensions of cortical maps and receptive fields, which are significantly altered after injury, were largely restored. Additionally, the lesion induced hyperexcitability was no longer observed in hUCB treated animals as indicated by a paired-pulse behaviour resembling that observed in control animals. The beneficial effects on cortical processing were reflected in an almost complete recovery of sensorimotor behaviour. Our results demonstrate that hUCB cells reinstall the way central neurons process information by normalizing inhibitory and excitatory processes. We propose that the intermediate level of cortical processing will become relevant as a new stage to investigate efficacy and mechanisms of cell therapy in the treatment of brain injury.
Collapse
Affiliation(s)
- Maren Geißler
- Institut fur Neuroinformatik, Neural Plasticity Lab, Ruhr-University, Bochum, Germany
| | - Hubert R. Dinse
- Institut fur Neuroinformatik, Neural Plasticity Lab, Ruhr-University, Bochum, Germany
- * E-mail:
| | - Sandra Neuhoff
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University, Bochum, Germany
| | - Klaus Kreikemeier
- Institut fur Neuroinformatik, Neural Plasticity Lab, Ruhr-University, Bochum, Germany
| | - Carola Meier
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University, Bochum, Germany
| |
Collapse
|
16
|
Schmidt S, Bruehl C, Frahm C, Redecker C, Witte OW. Age dependence of excitatory-inhibitory balance following stroke. Neurobiol Aging 2011; 33:1356-63. [PMID: 21257232 DOI: 10.1016/j.neurobiolaging.2010.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/08/2010] [Accepted: 11/21/2010] [Indexed: 10/18/2022]
Abstract
The mechanisms which mediate cortical map plasticity and functional recovery following stroke remain a matter of debate. Readjustment of the excitatory-inhibitory balance may support cortical map plasticity in perilesional areas. Here we studied cortical net inhibition in the vicinity of photothrombotically-induced cortical lesions in young adult (3 months) and aged (24 months) male rats. Field potentials were recorded in cortical layer II/III following application of paired-pulse stimulation at layer VI/white matter in coronal brain slices. Additionally, we analyzed the regional distribution of 5 major gamma-aminobutyric acid A (GABA(A)) receptor subunits (α1, α2, α3, α5, and γ2) by immunohistochemistry. Paired-pulse inhibition in the perilesional parietal cortex was decreased in young rats but was increased in aged rats. As a consequence of the diminished intrinsic net inhibition in aged control animals, the excitatory-inhibitory balance was readjusted to an age-independent similar level in young and aged lesioned rats in a homeostatic-like fashion. These physiological changes in neuronal activity were accompanied by age-specific laminar alterations of the gamma-aminobutyric acid A (GABA(A)) receptor subunit composition, most prominently of the subunit α5. The present study suggests that the mechanisms underlying functional reorganization in aged animals may be distinctly different from those in young animals.
Collapse
Affiliation(s)
- Silvio Schmidt
- Department of Neurology, Friedrich Schiller University, Jena, Germany.
| | | | | | | | | |
Collapse
|
17
|
Giusi G, Crudo M, Di Vito A, Facciolo RM, Garofalo F, Chew SF, Ip YK, Canonaco M. Lungfish aestivating activities are locked in distinct encephalic γ-aminobutyric acid type A receptor α subunits. J Neurosci Res 2011; 89:418-28. [PMID: 21259328 DOI: 10.1002/jnr.22553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/06/2010] [Accepted: 10/20/2010] [Indexed: 01/12/2023]
Abstract
Ammonia in dipnoans plays a crucial role on neuronal homeostasis, especially for those brain areas that maintain torpor and awakening states in equilibrium. In the present study, specific α subunits of the major neuroreceptor inhibitory complex (GABA(A) R), which predominated during some phases of aestivation of the lungfish Protopterus annectens, turned out to be key adaptive factors of this species. From the isolation, for the first time, of the encoding sequence for GABA(A) R α₁, α₄ , and α₅ subunits in Protopterus annectens, qPCR and in situ hybridization levels of α₄ transcript in thalamic (P < 0.001) and mesencephalic (P < 0.01) areas proved to be significantly higher during long aestivating maintenance states. Very evident α₅ mRNA levels were detected in diencephalon during short inductive aestivating states, whereas an α₄ /α₁ turnover characterized the arousal state. Contextually, the recovery of physiological activities appeared to be tightly related to an evident up-regulation of α₁ transcripts in telencephalic and cerebellar sites. Surprisingly, TUNEL and amino cupric silver methods corroborated apoptotic and neurodegenerative cellular events, respectively, above all in telencephalon and cerebellum of lungfish exposed to long maintenance aestivating conditions. Overall, these results tend to underlie a novel GABAergic-related ON/OFF molecular switch operating during aestivation of the lungfish, which might have a bearing on sleeping disorders.
Collapse
Affiliation(s)
- Giuseppina Giusi
- Comparative Neuroanatomy Laboratory, University of Calabria, Arcavacata di Rende (CS), Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Alò R, Avolio E, Di Vito A, Carelli A, Facciolo RM, Canonaco M. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ) are linked to hibernating state in hamsters. BMC Neurosci 2010; 11:111. [PMID: 20815943 PMCID: PMC2944354 DOI: 10.1186/1471-2202-11-111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/06/2010] [Indexed: 12/01/2022] Open
Abstract
Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR) is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR) tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB) and hibernating (HIB) hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p < 0.01) prevalence of α1 ratio (over total α subunits considered in the present study) in the medial preoptic area (MPOA) and arcuate nucleus (Arc) of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe) and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%). Regarding the other two subunits (β and γ), elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional distribution pattern of distinct GABAAR subunit combinations may prove to be very useful for highlighting GABAergic mechanisms functioning at least during the different physiological states of hibernators and this may have interesting therapeutic bearings on neurological sleeping disorders.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory, Ecology Department, University of Calabria, Ponte Pietro Bucci, 87030 Arcavacata di Rende, Cosenza, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Karl J, Alaverdashvili M, Cross A, Whishaw I. Thinning, movement, and volume loss of residual cortical tissue occurs after stroke in the adult rat as identified by histological and magnetic resonance imaging analysis. Neuroscience 2010; 170:123-37. [DOI: 10.1016/j.neuroscience.2010.06.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 11/28/2022]
|
20
|
Monnerie H, Tang-Schomer MD, Iwata A, Smith DH, Kim HA, Le Roux PD. Dendritic alterations after dynamic axonal stretch injury in vitro. Exp Neurol 2010; 224:415-23. [PMID: 20478308 DOI: 10.1016/j.expneurol.2010.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Traumatic axonal injury (TAI) is the most common and important pathology of traumatic brain injury (TBI). However, little is known about potential indirect effects of TAI on dendrites. In this study, we used a well-established in vitro model of axonal stretch injury to investigate TAI-induced changes in dendrite morphology. Axons bridging two separated rat cortical neuron populations plated on a deformable substrate were used to create a zone of isolated stretch injury to axons. Following injury, we observed the formation of dendritic alterations or beading along the dendrite shaft. Dendritic beading formed within minutes after stretch then subsided over time. Pharmacological experiments revealed a sodium-dependent mechanism, while removing extracellular calcium exacerbated TAI's effect on dendrites. In addition, blocking ionotropic glutamate receptors with the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 prevented dendritic beading. These results demonstrate that axon mechanical injury directly affects dendrite morphology, highlighting an important bystander effect of TAI. The data also imply that TAI may alter dendrite structure and plasticity in vivo. An understanding of TAI's effect on dendrites is important since proper dendrite function is crucial for normal brain function and recovery after injury.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
21
|
Jablonka J, Burnat K, Witte O, Kossut M. Remapping of the somatosensory cortex after a photothrombotic stroke: dynamics of the compensatory reorganization. Neuroscience 2010; 165:90-100. [DOI: 10.1016/j.neuroscience.2009.09.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/25/2009] [Accepted: 09/26/2009] [Indexed: 10/20/2022]
|
22
|
Abstract
Brain plasticity describes the potential of the organ for adaptive changes involved in various phenomena in health and disease. A substantial amount of experimental evidence, received in animal and cell models, shows that a cascade of plastic changes at the molecular, cellular, and tissue levels, is initiated in different regions of the postischemic brain. Underlying mechanisms include neurochemical alterations, functional changes in excitatory and inhibitory synapses, axonal and dendritic sprouting, and reorganization of sensory and motor central maps. Multiple lines of evidence indicate numerous points in which the process of postischemic recovery may be influenced with the aim to restore the full capacity of the brain tissue injured by an ischemic episode.
Collapse
Affiliation(s)
- Galyna G Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kiev, Ukraine
| | | |
Collapse
|
23
|
Zhou Q, Zhang Q, Zhao X, Duan YY, Lu Y, Li C, Li T. Cortical electrical stimulation alone enhances functional recovery and dendritic structures after focal cerebral ischemia in rats. Brain Res 2009; 1311:148-57. [PMID: 19941838 DOI: 10.1016/j.brainres.2009.11.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 11/08/2009] [Accepted: 11/11/2009] [Indexed: 11/20/2022]
Abstract
Using a fully implanted cortical electrical stimulation (CES) device with low-frequency burst impulse train, we investigated the effects of CES alone on behavioral recovery and surface density of dendritic structure in a rat model of middle cerebral artery occlusion (MCAO). After MCAO in rats, magnetic resonance imaging (MRI) was used to confirm cortex infarction and to identify a location for implantation of stimulating electrode over the peri-infarct cortex. The device was implanted on the 6th day after MCAO with CES then lasting for 16 days. The stimulation program consisted of two sessions lasting half an hour in the morning (0.65 mA, 0.13 microC/phase) and in the afternoon (0.5 mA, 0.1 microC/phase). The stimulator delivered biphasic charge balanced pulses (pulse width=200 micros) with various frequencies of 50 Hz, 20 Hz and 5 Hz in repeated 10-s blocks. Rats in the CES group (n=12) spend a much shorter time to regain preoperative levels of body weight (BW) than those in the no stimulation (NS) group (n=9). In behavioral tests, the rats in the CES group showed greater functional recovery compared to the NS group. Moreover, the functional improvement coincided with an increase in surface density of dendritic processes immunoreactive to microtubule-associated protein 2 (MAP2) in peri-infarct cortex. These results suggest the feasibility of the fully implanted CES device and the efficacy of the new stimulation protocol alone to improve functional outcome and cortical neuronal structural plasticity following focal cerebral ischemia in rats.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Winship IR, Murphy TH. Remapping the somatosensory cortex after stroke: insight from imaging the synapse to network. Neuroscientist 2009; 15:507-24. [PMID: 19622841 DOI: 10.1177/1073858409333076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Together, thousands of neurons with similar function make up topographically oriented sensory cortex maps that represent contralateral body parts. Although this is an accepted model for the adult cortex, whether these same rules hold after stroke-induced damage is unclear. After stroke, sensory representations damaged by stroke remap onto nearby surviving neurons. Here, we review the process of sensory remapping after stroke at multiple levels ranging from the initial damage to synapses, to their rewiring and function in intact sensory circuits. We introduce a new approach using in vivo 2-photon calcium imaging to determine how the response properties of individual somatosensory cortex neurons are altered during remapping. One month after forelimb-area stroke, normally highly limb-selective neurons in surviving peri-infarct areas exhibit remarkable flexibility and begin to process sensory stimuli from multiple limbs as remapping proceeds. Two months after stroke, neurons within remapped regions develop a stronger response preference. Thus, remapping is initiated by surviving neurons adopting new roles in addition to their usual function. Later in recovery, these remapped forelimb-responsive neurons become more selective, but their new topographical representation may encroach on map territories of neurons that process sensory stimuli from other body parts. Neurons responding to multiple limbs may reflect a transitory phase in the progression from their involvement in one sensorimotor function to a new function that replaces processing lost due to stroke.
Collapse
Affiliation(s)
- Ian R Winship
- Department of Psychiatry (NRU), Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
25
|
Imaging rapid redistribution of sensory-evoked depolarization through existing cortical pathways after targeted stroke in mice. Proc Natl Acad Sci U S A 2009; 106:11759-64. [PMID: 19571005 DOI: 10.1073/pnas.0812695106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evidence suggests that recovery from stroke damage results from the production of new synaptic pathways within surviving brain regions over weeks. To address whether brain function might redistribute more rapidly through preexisting pathways, we examined patterns of sensory-evoked depolarization in mouse somatosensory cortex within hours after targeted stroke to a subset of the forelimb sensory map. Brain activity was mapped with voltage-sensitive dye imaging allowing millisecond time resolution over 9 mm(2) of brain. Before targeted stroke, we report rapid activation of the forelimb area within 10 ms of contralateral forelimb stimulation and more delayed activation of related areas of cortex such as the hindlimb sensory and motor cortices. After stroke to a subset of the forelimb somatosensory cortex map, function was lost in ischemic areas within the forelimb map center, but maintained in regions 200-500 microm blood flow deficits indicating the size of a perfused, but nonfunctional, penumbra. In many cases, stroke led to only partial loss of the forelimb map, indicating that a subset of a somatosensory domain can function on its own. Within the forelimb map spared by stroke, forelimb-stimulated responses became delayed in kinetics, and their center of activity shifted into adjacent hindlimb and posterior-lateral sensory areas. We conclude that the focus of forelimb-specific somatosensory cortex activity can be rapidly redistributed after ischemic damage. Given that redistribution occurs within an hour, the effect is likely to involve surviving accessory pathways and could potentially contribute to rapid behavioral compensation or direct future circuit rewiring.
Collapse
|
26
|
In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci 2009; 29:1719-34. [PMID: 19211879 DOI: 10.1523/jneurosci.4249-08.2009] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After brain damage such as stroke, topographically organized sensory and motor cortical representations remap onto adjacent surviving tissues. It is conceivable that cortical remapping is accomplished by changes in the temporal precision of sensory processing and regional connectivity in the cortex. To understand how the adult cortex remaps and processes sensory signals during stroke recovery, we performed in vivo imaging of sensory-evoked changes in membrane potential, as well as multiphoton imaging of dendrite structure and tract tracing. In control mice, forelimb stimulation evoked a brief depolarization in forelimb cortex that quickly propagated to, and dissipated within, adjacent motor/hindlimb areas (<100 ms). One week after forelimb cortex stroke, the cortex was virtually unresponsive to tactile forelimb stimulation. After 8 weeks recovery, forelimb-evoked depolarizations reemerged with a characteristic pattern in which responses began within surviving portions of forelimb cortex (<20 ms after stimulation) and then spread horizontally into neighboring peri-infarct motor/hindlimb areas in which depolarization persisted 300-400% longer than controls. These uncharacteristically prolonged responses were not limited to the remapped peri-infarct zone and included distant posteromedial retrosplenial cortex, millimeters from the stroke. Structurally, the remapped peri-infarct area selectively exhibited high levels of dendritic spine turnover, shared more connections with retrosplenial cortex and striatum, and lost inputs from lateral somatosensory cortical regions. Our findings demonstrate that sensory remapping during stroke recovery is accompanied by the development of prolonged sensory responses and new structural circuits in both the peri-infarct zone as well as more distant sites.
Collapse
|
27
|
QingGeLeTu, Suzuki Y, Kiyosawa M, Ishiwata K, Mochizuki M. Functional and Neuroreceptor Imaging of the Brain in Bicuculline-Induced Dystonic Rats. TOHOKU J EXP MED 2009; 217:313-20. [DOI: 10.1620/tjem.217.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- QingGeLeTu
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology
| | - Yukihisa Suzuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology
| | - Motohiro Kiyosawa
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology
| | - Kiichi Ishiwata
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology
| | - Manabu Mochizuki
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University
| |
Collapse
|
28
|
Arias C, Zepeda A, Hernández-Ortega K, Leal-Galicia P, Lojero C, Camacho-Arroyo I. Sex and estrous cycle-dependent differences in glial fibrillary acidic protein immunoreactivity in the adult rat hippocampus. Horm Behav 2009; 55:257-63. [PMID: 19056393 DOI: 10.1016/j.yhbeh.2008.10.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 11/21/2022]
Abstract
Sex differences in the morphology and function of the hippocampus have been reported in several species, but it is unknown whether a sexual dimorphism exists in glial fibrillary acidic protein (GFAP) expression in the rat hippocampus. We analyzed GFAP immunoreactivity in the hippocampus of intact adult male rats as well as in females during diestrus and proestrus phases of the estrous cycle. We found that in CA1, CA3, and dentate gyrus, GFAP immunoreactivity was higher in proestrus females as compared with males and diestrus females. In CA1, a similar GFAP immunoreactivity was found in males and in diestrus females, but in dentate gyrus, males presented the lowest GFAP content. Interestingly, differences in astrocyte morphology were also found. Rounded cells with numerous and short processes were mainly observed in the hippocampus during proestrus whereas cells with stellate shape with few and long processes were present in the hippocampus of males and diestrus females. The marked sex and estrous cycle-dependent differences in GFAP immunoreactivity density and in astrocyte number and morphology found in the rat hippocampus, suggest the involvement of sex steroid hormones in the sexually dimorphic functions of the hippocampus, and in the change in its activity during the estrous cycle.
Collapse
Affiliation(s)
- Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | |
Collapse
|
29
|
In vivo calcium imaging reveals functional rewiring of single somatosensory neurons after stroke. J Neurosci 2008; 28:6592-606. [PMID: 18579732 DOI: 10.1523/jneurosci.0622-08.2008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional mapping and microstimulation studies suggest that recovery after stroke damage can be attributed to surviving brain regions taking on the functional roles of lost tissues. Although this model is well supported by data, it is not clear how activity in single neurons is altered in relation to cortical functional maps. It is conceivable that individual surviving neurons could adopt new roles at the expense of their usual function. Alternatively, neurons that contribute to recovery may take on multiple functions and exhibit a wider repertoire of neuronal processing. In vivo two-photon calcium imaging was used in adult mice within reorganized forelimb and hindlimb somatosensory functional maps to determine how the response properties of individual neurons and glia were altered during recovery from ischemic damage over a period of 2-8 weeks. Single-cell calcium imaging revealed that the limb selectivity of individual neurons was altered during recovery from ischemia, such that neurons normally selective for a single contralateral limb processed information from multiple limbs. Altered limb selectivity was most prominent in border regions between stroke-altered forelimb and hindlimb macroscopic map representations, and peaked 1 month after the targeted insult. Two months after stroke, individual neurons near the center of reorganized functional areas became more selective for a preferred limb. These previously unreported forms of plasticity indicate that in adult animals, seemingly hardwired cortical neurons first adopt wider functional roles as they develop strategies to compensate for loss of specific sensory modalities after forms of brain damage such as stroke.
Collapse
|
30
|
Luo W, Wang Z, Li P, Zeng S, Luo Q. A modified mini-stroke model with region-directed reperfusion in rat cortex. J Cereb Blood Flow Metab 2008; 28:973-83. [PMID: 18073774 DOI: 10.1038/sj.jcbfm.9600591] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mini-ischemia localized into a specific brain area has promoted understanding of the mechanisms underlying brain recovery in stroke. However, the conventional mini-stroke model adopted permanent arterial ligations but lacked controllable reperfusion, which is crucial for the outcome of delayed functional recovery. In this study, we devised a new rat mini-stroke model in which the vascular ligations can be easily reversed to induce targeted reperfusion. Specifically, a flexible ring was incorporated into the conventional small arterial ligations to tighten the ligating loops and facilitate cutting the ligatures for sufficient reperfusion afterwards. The distribution of cerebral blood flow was explored directly through a cranial window using laser speckle contrast imaging. A distinct ischemic core, which well fits the profile of the ligated ring, was bordered by a penumbral zone and then together surrounded by nonischemic tissue immediately after the arterial ligations involving the ring. After cutting the ligatures, post-recanalization hyperperfusion occurred in the previous ischemic core and to a greater extent at 24 h after reperfusion. In contrast, recirculation of common carotid artery in the conventional mini-stroke model hardly altered hypoperfusion status within the ischemic core. Evidence from two kinds of control groups indicated that the ring might produce a compression effect on the underlying cortex and then contribute to the more highly localized infarct that was identified by triphenyltetrazolium chloride staining. Our data suggest that this model provides opportunities for investigating the neurovascular dynamics in acute stroke and rehabilitation, especially with emerging optical imaging techniques.
Collapse
Affiliation(s)
- Weihua Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | |
Collapse
|
31
|
Suzuki Y, Horie C, Kiyosawa M, Nariai T, Mochizuki M, Oda K, Kimura Y, Ishiwata K, Ishii K. Measurement of the 11C-flumazenil binding in the visual cortex predicts the prognosis of hemianopia. J Neurol Sci 2008; 268:102-7. [DOI: 10.1016/j.jns.2007.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/17/2007] [Accepted: 11/21/2007] [Indexed: 10/22/2022]
|
32
|
Diffusion tensor imaging of brain plasticity after occipital lobectomy. Pediatr Neurol 2008; 38:27-33. [PMID: 18054689 DOI: 10.1016/j.pediatrneurol.2007.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/02/2007] [Accepted: 08/13/2007] [Indexed: 11/22/2022]
Abstract
Reorganization involving residual visual pathways with unilateral damage to the primary visual cortex was previously described. Using diffusion tensor imaging, we measured water diffusion-related changes in the optic radiation contralateral to occipital lobe ablation in children with intractable epilepsy. We studied 10 children who had undergone a resection of the unilateral occipital cortex and 13 control subjects. Diffusion tensor imaging was acquired using a 1.5 Tesla magnetic resonance scanner. Fiber bundles representing optic radiation were tracked. Diffusion parameters included mean fractional anisotropy, apparent diffusion coefficient, and diffusion parallel and perpendicular to the fiber tract. In the surgical group, fractional anisotropy values of optic radiation contralateral to the side of resection exhibited a significant positive partial correlation (r = 0.752, P = 0.019) with duration of time between surgery and diffusion tensor imaging acquisition, after controlling for age. The apparent diffusion coefficient and parallel diffusivity were higher in the surgical versus the control group, but did not differ among patients. After unilateral resection of the occipital lobe, the contralateral optic radiation undergoes significant changes in anisotropy. Such structural white-matter changes may represent an adaptive response because of unilateral occipital ablation, and may account for plasticity changes observed in functional magnetic resonance imaging.
Collapse
|
33
|
Epsztein J, Ben-Ari Y, Represa A, Crépel V. Late-onset epileptogenesis and seizure genesis: lessons from models of cerebral ischemia. Neuroscientist 2007; 14:78-90. [PMID: 17914086 DOI: 10.1177/1073858407301681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Patients surviving ischemic stroke often express delayed epileptic syndromes. Late poststroke seizures occur after a latency period lasting from several months to years after the insult. These seizures might result from ischemia-induced neuronal death and associated morphological and physiological changes that are only partly elucidated. This review summarizes the long-term morphofunctional alterations observed in animal models of both focal and global ischemia that could explain late-onset seizures and epileptogenesis. In particular, this review emphasizes the change in GABAergic and glutamatergic signaling leading to hyperexcitability and seizure genesis.
Collapse
Affiliation(s)
- Jérôme Epsztein
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale Unité 29, and Université de La Méditerranée, Marseille Cedex, France
| | | | | | | |
Collapse
|
34
|
Abstract
This paper investigates whether and to what extent vision with awareness is still possible in the whole visual field after loss of the occipital lobe of one or both cerebral hemispheres or after hemispherectomy in childhood. The visual functions of four children who suffered from unilateral or bilateral loss of the occipital lobe or who had been hemispherectomized were examined. The results show that even after unilateral loss of the striate and prestriate cortex the extent of the visual field may still be in the normal range. The residual visual functions may be mediated by intact extrastriate areas such as V5 and LO of the damaged cerebral hemisphere. It is also shown that even after complete hemispherectomy in early life the visual field may have a normal extent and that conscious visual perception in the whole visual field may be preserved. In hemispherectomized children, the remaining cerebral hemisphere or neural structures in the midbrain, including the superior colliculi and the praetectum, may be able to mediate these visual functions.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, University of Munich, Heiglhofstr. 63, D-81377 München, Germany.
| |
Collapse
|
35
|
Briones TL, Suh E, Jozsa L, Woods J. Behaviorally induced synaptogenesis and dendritic growth in the hippocampal region following transient global cerebral ischemia are accompanied by improvement in spatial learning. Exp Neurol 2006; 198:530-8. [PMID: 16483572 DOI: 10.1016/j.expneurol.2005.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/17/2005] [Accepted: 12/23/2005] [Indexed: 11/22/2022]
Abstract
Reports have shown that damage to the adult brain can result in adaptive changes in regions adjacent or surrounding the site of the principal injury and that these changes may be modulated by rehabilitation training. In this study, we examined the influence of complex environment housing as a rehabilitation strategy on ischemia-induced synaptic and dendritic changes in the hippocampus. Thirty-six adult male Wistar rats were included in the study and assigned to either transient global cerebral ischemia or sham group. Following ischemic or sham surgery, rats were randomized to either complex environment housing (EC) or social condition (SC, paired housing) group during the rehabilitation period. Following 14 days of rehabilitation, rats were tested in the water maze. Our results showed that: (1) ischemic injury and EC housing were able to independently influence synaptogenesis and dendritic growth in the hippocampal area adjacent to the site of injury, and (2) EC housing-induced synaptic and dendritic changes were accompanied by enhanced functional recovery after transient global cerebral ischemia. These data suggest that behavioral experience during the rehabilitation period may be able to alter the neuronal circuitry in the surrounding region where primary neuronal damage was seen and that such modification may have contributed to functional improvement.
Collapse
Affiliation(s)
- Teresita L Briones
- Department of Medical-Surgical Nursing, University of Illinois at Chicago, 845 S. Damen Avenue, Rm 707, M/C 802, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
36
|
Shanina EV, Schallert T, Witte OW, Redecker C. Behavioral recovery from unilateral photothrombotic infarcts of the forelimb sensorimotor cortex in rats: Role of the contralateral cortex. Neuroscience 2006; 139:1495-506. [PMID: 16516395 DOI: 10.1016/j.neuroscience.2006.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 01/05/2006] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
During sensorimotor recovery following stroke ipsi- and contralesional alterations in brain function have been characterized in patients as well as animal models of focal ischemia, but the contribution of these bilateral processes to the functional improvement is only poorly understood. Here we examined the role of the homotopic contralateral cortex for sensorimotor recovery after focal ischemic infarcts at different time periods after the insult. One group of animals received a unilateral single photothrombotic infarct in the forelimb sensorimotor cortex, while four additional groups received a second lesion in the contralateral homotopic cortex either immediately or 2 days, 7 days, or 10 days after the first infarct. The time course of functional recovery of the impaired forelimbs was assessed using different sensorimotor scores: forelimb-activity during exploratory behavior and frequency of forelimb-sliding in the glass cylinder as well as forelimb misplacement during grid walking. Focal infarcts in the forelimb sensorimotor cortex area significantly impaired the function of the contralateral forelimb in these different behavioral tests. The subsequent damage of the contralateral homotopic forelimb sensorimotor cortex only affected the forelimb opposite to the new lesion but did not reinstate the original deficit. The time course of sensorimotor recovery after bilateral sequential cortical infarcts did not significantly differ from animals with unilateral single lesions. These data indicate that following small ischemic cortical infarcts in the forelimb sensorimotor cortex the contralateral cortex homotopic to the lesion plays only a minor role for functional recovery.
Collapse
Affiliation(s)
- E V Shanina
- Department of Neurology, Friedrich-Schiller-University, Jena, Germany
| | | | | | | |
Collapse
|
37
|
Briones TL, Woods J, Wadowska M, Rogozinska M. Amelioration of cognitive impairment and changes in microtubule-associated protein 2 after transient global cerebral ischemia are influenced by complex environment experience. Behav Brain Res 2005; 168:261-71. [PMID: 16356557 DOI: 10.1016/j.bbr.2005.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/13/2005] [Accepted: 11/14/2005] [Indexed: 11/17/2022]
Abstract
In this study we examined whether expression of microtubule-associated protein 2 (MAP2) after transient global cerebral ischemia can be influenced by behavioral experience and if the changes are associated with functional improvement. Rats received either ischemia or sham surgery then assigned to: complex environment housing (EC) or social housing (SC) as controls for 14 days followed by water maze testing. Upregulation of MAP2 was seen in all ischemic animals with a significant overall increase evident in the EC housed rats. Behaviorally, all animals learned to perform the water maze task over time but the ischemia SC rats had the worst performance overall while all the EC housed animals demonstrated the best performance in general. Regression analysis showed that increase MAP2 expression was able to explain some of the variance in the behavioral parameters in the water maze suggesting that this cytoskeletal protein probably played a role in mediating enhanced functional outcomes.
Collapse
Affiliation(s)
- Teresita L Briones
- Department of Medical-Surgical Nursing, University of Illinois, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
38
|
Illing RB, Kraus KS, Meidinger MA. Reconnecting neuronal networks in the auditory brainstem following unilateral deafening. Hear Res 2005; 206:185-99. [PMID: 16081008 DOI: 10.1016/j.heares.2005.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 01/10/2005] [Indexed: 11/27/2022]
Abstract
When we disturbed the auditory input of the adult rat by cochleotomy or noise trauma on one side, several substantial anatomical, cellular, and molecular changes took place in the auditory brainstem. We found that: (1) cochleotomy or severe noise trauma both lead to a considerable increase of immunoreactivity of the growth-associated protein GAP-43 in the ventral cochlear nucleus (VCN) of the affected side; (2) the expression of GAP-43 in VCN is restricted to presynaptic endings and short fiber segments; (3) axon collaterals of the cholinergic medial olivocochlear (MOC) neurons are the path along which GAP-43 reaches VCN; (4) partial cochlear lesions induce the emergence of GAP-43 positive presynaptic endings only in regions tonotopically corresponding to the extent of the lesion; (5) judging from the presence of immature fibers and growth cones in VCN on the deafened side, at least part of the GAP-43 positive presynaptic endings appear to be newly formed neuronal contacts following axonal sprouting while others may be modified pre-existing contacts; and (6) GAP-43 positive synapses are formed only on specific postsynaptic profiles, i.e., glutamatergic, glycinergic and calretinin containing cell bodies, but not GABAergic cell bodies. We conclude that unilateral deafening, be it partial or total, induces complex patterns of reconnecting neurons in the adult auditory brainstem, and we evaluate the possibility that the deafness-induced chain of events is optimized to remedy the loss of a bilaterally balanced activity in the auditory brainstem.
Collapse
Affiliation(s)
- Robert-Benjamin Illing
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, D-79106 Freiburg, Germany.
| | | | | |
Collapse
|
39
|
Wang C, Fridley J, Johnson KM. The role of NMDA receptor upregulation in phencyclidine-induced cortical apoptosis in organotypic culture. Biochem Pharmacol 2005; 69:1373-83. [PMID: 15826608 DOI: 10.1016/j.bcp.2005.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 02/14/2005] [Accepted: 02/24/2005] [Indexed: 11/23/2022]
Abstract
Phencyclidine (PCP) is an N-methyl-D-aspartate receptor (NMDAR) antagonist known to cause selective neurotoxicity in the cortex following subchronic administration. The purpose of this study was to test the hypothesis that upregulation of the NMDAR plays a role in PCP-induced apoptotic cell death. Corticostriatal slice cultures were used to determine the effects of NMDAR subunit antisense oligodeoxynucleotides (ODNs) on PCP-induced apoptosis and NMDAR upregulation. NR1, NR2A or NR2B antisense ODNs were incubated alone or with PCP for 48h. One day following washout, it was observed that PCP treatment caused an increase in NR1, NR2A and Bax polypeptides in the cortex, but had no effect on Bcl-xL. These increases were associated with an increase in cortical histone-associated DNA fragments. Co-incubation of PCP with either NR1 or NR2A antisense significantly reduced PCP-induced apoptosis, while neither NR2B antisense ODN nor NR1 sense ODN used as a control had an effect. This effect was exactly correlated with the ability of the antisense ODNs to prevent PCP-induced upregulation of NR subunit proteins and the pro-apoptotic protein, Bax. That is, western analysis showed that antisense ODNs directed against either NR1 or NR2A prevented PCP-induced increases in Bax in addition to preventing the upregulation of the respective receptor proteins. On the other hand, the NR2B antisense ODN had no effect on either NR2B protein or on Bax. These data suggest that NR1 and NR2A antisense ODNs offer neuroprotection from apoptosis, and that upregulation of the NR1 and NR2A subunits following PCP administration is at least partly responsible for the observed apoptotic DNA fragmentation.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555-1031, USA
| | | | | |
Collapse
|