1
|
Barsanele PS, de Assis LVM, da Silva JJ, Furtado EMDO, Fernandes P, Cipolla-Neto J, Poletini MO, Moraes MN. Glaucoma-inducing retinal ganglion cell degeneration alters diurnal rhythm of key molecular components of the central clock and locomotor activity in mice. FASEB J 2024; 38:e70109. [PMID: 39441606 DOI: 10.1096/fj.202401105r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Glaucoma is a chronic optic neuropathy characterized by the progressive degeneration of retinal ganglion cells (RGC). These cells play a crucial role in transmitting visual and non-visual information to brain regions, including the suprachiasmatic nucleus (SCN), responsible for synchronizing biological rhythms. To understand how glaucoma affects circadian rhythm synchronization, we investigated potential changes in the molecular clock machinery in the SCN. We found that the progressive increase in intraocular pressure (IOP) negatively correlated with spontaneous locomotor activity (SLA). Transcriptome analysis revealed significant alterations in the SCN of glaucomatous mice, including downregulation of genes associated with circadian rhythms. In fact, we showed a loss of diurnal oscillation in the expression of vasoactive intestinal peptide (Vip), its receptor (Vipr2), and period 1 (Per1) in the SCN of glaucomatous mice. These findings were supported by the 7-h phase shift in the peak expression of arginine vasopressin (Avp) in the SCN of mice with glaucoma. Despite maintaining a 24-h period under both light/dark (LD) and constant dark (DD) conditions, glaucomatous mice exhibited altered SLA rhythms, characterized by decreased amplitude. Taken altogether, our findings provide evidence of how glaucoma affects the regulation of the central circadian clock and its consequence on the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Pietra Souza Barsanele
- Laboratório de Cronobiologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
- Programa de Pós-graduação em Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Juliano Jefferson da Silva
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eliz Maria de Oliveira Furtado
- Laboratório de Cronobiologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
- Programa de Pós-graduação em Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Paola Fernandes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Cipolla-Neto
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maristela Oliveira Poletini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Nathália Moraes
- Laboratório de Cronobiologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
- Programa de Pós-graduação em Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
3
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
4
|
Lawal O, Ulloa Severino FP, Eroglu C. The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 2022; 70:1467-1483. [PMID: 35535566 PMCID: PMC9233050 DOI: 10.1002/glia.24191] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
Brain circuits undergo substantial structural changes during development, driven by the formation, stabilization, and elimination of synapses. Synaptic connections continue to undergo experience‐dependent structural rearrangements throughout life, which are postulated to underlie learning and memory. Astrocytes, a major glial cell type in the brain, are physically in contact with synaptic circuits through their structural ensheathment of synapses. Astrocytes strongly contribute to the remodeling of synaptic structures in healthy and diseased central nervous systems by regulating synaptic connectivity and behaviors. However, whether structural plasticity of astrocytes is involved in their critical functions at the synapse is unknown. This review will discuss the emerging evidence linking astrocytic structural plasticity to synaptic circuit remodeling and regulation of behaviors. Moreover, we will survey possible molecular and cellular mechanisms regulating the structural plasticity of astrocytes and their non‐cell‐autonomous effects on neuronal plasticity. Finally, we will discuss how astrocyte morphological changes in different physiological states and disease conditions contribute to neuronal circuit function and dysfunction.
Collapse
Affiliation(s)
- Oluwadamilola Lawal
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neuroscience and Psychology, Duke University, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA.,Howard Hughes Medical Institute, Duke University, Durham, North Carolina, USA.,Duke Institute for Brain Sciences, Durham, North Carolina, USA
| |
Collapse
|
5
|
Olorocisimo JP, Briones J, Sasagawa K, Haruta M, Takehara H, Tashiro H, Ishida-Kitagawa N, Bessho Y, Ohta J. Ultrasmall compact CMOS imaging system for bioluminescence reporter-based live gene expression analysis. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210223R. [PMID: 34734515 PMCID: PMC8564164 DOI: 10.1117/1.jbo.26.11.116002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Gene expression analysis is an important fundamental area of biomedical research. However, live gene expression imaging has proven challenging due to constraints in conventional optical devices and fluorescent reporters. AIM Our aim is to develop smaller, more cost-effective, and versatile imaging capabilities compared with conventional devices. Bioluminescence reporter-based gene expression analysis was targeted due to its advantages over fluorescence-based imaging. APPROACH We created a small compact imaging system using micro-CMOS image sensors (μCIS). The μCIS model had an improved pixel design and a patterned absorption filter array to detect the low light intensity of bioluminescence. RESULTS The device demonstrated lower dark current, lower temporal noise, and higher sensitivity compared with previous designs. The filter array enabled us to subtract dark current drift and attain a clearer light signal. These improvements allowed us to measure bioluminescence reporter-based gene expression in living mammalian cells. CONCLUSION Using our μCIS system for bioluminescence imaging in the future, the device can be implanted in vivo for simultaneous gene expression imaging, behavioral analysis, and optogenetic modulation.
Collapse
Affiliation(s)
- Joshua Philippe Olorocisimo
- Nara Institute of Science and Technology, Photonics Device Science Laboratory, Division of Materials Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
- Nara Institute of Science and Technology, Gene Regulation Research Laboratory, Division of Biological Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Jeric Briones
- Nara Institute of Science and Technology, Mathematical Informatics Laboratory, Division of Information Science, Takayama, Ikoma, Nara, Japan
- Advanced Telecommunications Research Institute International, Cognitive Mechanisms Laboratories, Kyoto, Japan
| | - Kiyotaka Sasagawa
- Nara Institute of Science and Technology, Photonics Device Science Laboratory, Division of Materials Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Makito Haruta
- Nara Institute of Science and Technology, Photonics Device Science Laboratory, Division of Materials Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Hironari Takehara
- Nara Institute of Science and Technology, Photonics Device Science Laboratory, Division of Materials Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Hiroyuki Tashiro
- Nara Institute of Science and Technology, Photonics Device Science Laboratory, Division of Materials Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
- Kyushu University, Department of Health Sciences, Faculty of Medical Sciences, Higashi, Fukuoka, Japan
| | - Norihiro Ishida-Kitagawa
- Nara Institute of Science and Technology, Gene Regulation Research Laboratory, Division of Biological Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Yasumasa Bessho
- Nara Institute of Science and Technology, Gene Regulation Research Laboratory, Division of Biological Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
| | - Jun Ohta
- Nara Institute of Science and Technology, Photonics Device Science Laboratory, Division of Materials Science, Graduate School of Science and Technology, Takayama, Ikoma, Nara, Japan
| |
Collapse
|
6
|
Batotsyrenova EG. Profile of the Plasma Catecholamines of Sexually Mature Rats Exposed to a Combination of Factors of Different Natures. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s207905702102003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Xiao Y, Zhao L, Li W, Wang X, Ma T, Yang L, Gao L, Li C, Zhang M, Yang D, Zhang J, Jiang H, Zhao H, Wang Y, Chao HW, Wang A, Jin Y, Chen H. Circadian clock gene BMAL1 controls testosterone production by regulating steroidogenesis-related gene transcription in goat Leydig cells. J Cell Physiol 2021; 236:6706-6725. [PMID: 33598947 DOI: 10.1002/jcp.30334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Testosterone is produced by Leydig cells (LCs) and undergoes diurnal changes in serum levels in rats, mice, and humans, but little is known in goats. The present study revealed that goat serum testosterone levels displayed diurnal rhythmic changes (peak time at ZT11.2). Immunohistochemical staining showed that BMAL1, a circadian clock protein, is highly expressed in goat LCs. ELISA revealed that both hCG (0-5 IU/ml) and 22R-OH-cholesterol (0-30 μM) addition stimulated testosterone synthesis in primary goat LCs in a dose-dependent manner. Treating goat LCs with hCG (5 IU/ml) significantly increased intracellular cAMP levels. Additionally, real-time quantitative polymerase chain reaction (PCR) analysis revealed that the circadian clock (BMAL1, PER1, PER2, DBP, and NR1D1) and steroidogenesis-related genes (SF1, NUR77, StAR, HSD3B2, CYP17A1, CYP11A1, and HSD17B3) showed rhythmic expression patterns in goat LCs following dexamethasone synchronization. Several Bmal1-Luc circadian oscillations were clearly observed in dexamethasone-treated goat LCs transfected with the pLV6-Bmal1-Luc plasmid. BMAL1 knockdown significantly downregulated mRNA levels of PER2, NR1D1, DBP, StAR, HSD3B2, SF1, NUR77, and GATA4, and dramatically decreased StAR and HSD3B2 protein levels and testosterone production. In contrast, BMAL1 overexpression significantly increased the mRNA and protein expression levels of StAR and HSD17B3 and enhanced testosterone production. Reporter assays revealed that goat BMAL1, or in combination with mouse CLOCK, activated goat HSD17B3 transcription in vitro. These data indicate that BMAL1 contributes to testosterone production by regulating transcription of steroidogenesis-related genes in goat LCs, providing a basis for further exploring the underlying mechanism by which the circadian clock regulates ruminant reproductive capability.
Collapse
Affiliation(s)
- Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weidong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Manhui Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Luo S, Ezrokhi M, Cominos N, Tsai TH, Stoelzel CR, Trubitsyna Y, Cincotta AH. Experimental dopaminergic neuron lesion at the area of the biological clock pacemaker, suprachiasmatic nuclei (SCN) induces metabolic syndrome in rats. Diabetol Metab Syndr 2021; 13:11. [PMID: 33485386 PMCID: PMC7825247 DOI: 10.1186/s13098-021-00630-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The daily peak in dopaminergic neuronal activity at the area of the biological clock (hypothalamic suprachiasmatic nuclei [SCN]) is diminished in obese/insulin resistant vs lean/insulin sensitive animals. The impact of targeted lesioning of dopamine (DA) neurons specifically at the area surrounding (and that communicate with) the SCN (but not within the SCN itself) upon glucose metabolism, adipose and liver lipid gene expression, and cardiovascular biology in normal laboratory animals has not been investigated and was the focus of this study. METHODS Female Sprague-Dawley rats received either DA neuron neurotoxic lesion by bilateral intra-cannula injection of 6-hydroxydopamine (2-4 μg/side) or vehicle treatment at the area surrounding the SCN at 20 min post protriptyline ip injection (20 mg/kg) to protect against damage to noradrenergic and serotonergic neurons. RESULTS At 16 weeks post-lesion relative to vehicle treatment, peri-SCN area DA neuron lesioning increased weight gain (34.8%, P < 0.005), parametrial and retroperitoneal fat weight (45% and 90% respectively, P < 0.05), fasting plasma insulin, leptin and norepinephrine levels (180%, 71%, and 40% respectively, P < 0.05), glucose tolerance test area under the curve (AUC) insulin (112.5%, P < 0.05), and insulin resistance (44%-Matsuda Index, P < 0.05) without altering food consumption during the test period. Such lesion also induced the expression of several lipid synthesis genes in adipose and liver and the adipose lipolytic gene, hormone sensitive lipase in adipose (P < 0.05 for all). Liver monocyte chemoattractant protein 1 (a proinflammatory protein associated with metabolic syndrome) gene expression was also significantly elevated in peri-SCN area dopaminergic lesioned rats. Peri-SCN area dopaminergic neuron lesioned rats were also hypertensive (systolic BP rose from 157 ± 5 to 175 ± 5 mmHg, P < 0.01; diastolic BP rose from 109 ± 4 to 120 ± 3 mmHg, P < 0.05 and heart rate increase from 368 ± 12 to 406 ± 12 BPM, P < 0.05) and had elevated plasma norepinephrine levels (40% increased, P < 0.05) relative to controls. CONCLUSIONS These findings indicate that reduced dopaminergic neuronal activity in neurons at the area of and communicating with the SCN contributes significantly to increased sympathetic tone and the development of metabolic syndrome, without effect on feeding.
Collapse
Affiliation(s)
- Shuqin Luo
- VeroScience LLC, 1334 Main Road, Tiverton, RI, 02878, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Vasopressin in circadian function of SCN. J Biosci 2020. [DOI: 10.1007/s12038-020-00109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Touitou Y, Point S. Effects and mechanisms of action of light-emitting diodes on the human retina and internal clock. ENVIRONMENTAL RESEARCH 2020; 190:109942. [PMID: 32758719 DOI: 10.1016/j.envres.2020.109942] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 05/11/2023]
Abstract
White light-emitting diodes (LEDs) will likely become the most used lighting devices worldwide in the future because of their very low prices over the course of their long lifespans which can be up to several tens of thousands of hours. The expansion of LED use in both urban and domestic lighting has prompted questions regarding their possible health effects, because the light that they provide is potentially high in the harmful blue band (400-500 nm) of the visible light spectrum. Research on the potential effects of LEDs and their blue band on human health has followed three main directions: 1) examining their retinal phototoxicity; 2) examining disruption of the internal clock, i.e., an out-of-sync clock, in shift workers and night workers, including the accompanying health issues, most concerningly an increased relative risk of cancer; and 3) examining risky, inappropriate late-night use of smartphones and consoles among children and adolescents. Here, we document the recognized or potential health issues associated with LED lighting together with their underlying mechanisms of action. There is so far no evidence that LED lighting is deleterious to human retina under normal use. However, exposure to artificial light at night is a new source of pollution because it affects the circadian clock. Blue-rich light, including cold white LEDs, should be considered a new endocrine disruptor, because it affects estrogen secretion and has unhealthful consequences in women, as demonstrated to occur via a complex mechanism.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, 75019, Paris, France.
| | | |
Collapse
|
11
|
Santos RC, Silva ACPE, José Dos Santos M, Barbosa MR, Coimbra DG, Gitaí DLG, de Andrade TG. Environmental temperature as a mediator on the association between photoperiod at birth and chronotype. Chronobiol Int 2020; 37:1662-1668. [PMID: 32573265 DOI: 10.1080/07420528.2020.1773843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The association between chronotypes and season of birth (SOB) remains an inconclusive issue due, in some extension, to the lack of investigations of mediation mechanisms. We evaluated the association of photoperiod at birth (PAB) with chronotypes and sleep duration in Brazil (n = 810), and the mediating effect of meteorological factors, sex, age and rs4753426 polymorphism in the melatonin receptor MTNR1B. Longer PAB was associated with a delayed mid-sleep phase with a suppressive effect of maximum environmental temperature. No significant interactions were identified for the other variables. These findings suggest that photoperiod and environmental temperature modulate chronotype development at early stages.
Collapse
Affiliation(s)
- Renata Costa Santos
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas , Maceió, Brazil
| | | | | | | | - Daniel Gomes Coimbra
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas , Maceió, Brazil
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Feferal University of Alagoas , Maceió, Brazil
| | - Tiago Gomes de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas , Maceió, Brazil
| |
Collapse
|
12
|
Jiang L, Zhang F, Fan W, Zheng M, Kang J, Huang F, He H. Expression of circadian clock genes during differentiation of rat dental papilla cells in vitro. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1777049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Liulin Jiang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fuping Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Miaomiao Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jun Kang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Batotsyrenova E, Kashuro V, Ivanov M. The role of light desynchronosis in the development of stress-induced aging. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202201006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The long-term change of the light mode for three months – light desynchronosis, disturbs the rhythm of the signals received from the external pacemaker. As a result of the study, it was found that a long-term change in the light mode and a violation of the rhythmicity of signals received from an external pacemaker contributes to the activation of ROS formation as triggers for bioenergetic processes in the cell. At the same time, changing the light mode disrupts the balance of oxygen in the cell and this is a provoking factor for the stress of the antioxidant cell system. The resulting tissue hypoxia in chronic light desynchronosis disrupts the bioenergetic potential of the cell, contributing to the development of pathophysiological processes and the death of neurons. Therefore, a violation of the balance of the pro-oxidant and anti-oxidant systems leads to destructive processes in the brain. A significant change in the concentration of the neurotrohic markers indicates destructive processes in the brain tissues. Summarizing the above, we conclude that light desynchronosis is directly involved in the ROS-dependent stress-induced aging of brain cells and in that way, to the progression of processes that lead to aging of the body.
Collapse
|
14
|
Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS, Brown SA. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 2019; 366:366/6462/eaav2642. [DOI: 10.1126/science.aav2642] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day–dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles.
Collapse
Affiliation(s)
- Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Franziska Brüning
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Spinnler
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dennis Mircsof
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zurich–Eidgenosissche Technische Hochschule, Zurich, Switzerland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Maria S. Robles
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
15
|
Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, Hastings MH. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 2019; 363:187-192. [PMID: 30630934 DOI: 10.1126/science.aat4104] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
Abstract
Circadian (~24-hour) rhythms depend on intracellular transcription-translation negative feedback loops (TTFLs). How these self-sustained cellular clocks achieve multicellular integration and thereby direct daily rhythms of behavior in animals is largely obscure. The suprachiasmatic nucleus (SCN) is the fulcrum of this pathway from gene to cell to circuit to behavior in mammals. We describe cell type-specific, functionally distinct TTFLs in neurons and astrocytes of the SCN and show that, in the absence of other cellular clocks, the cell-autonomous astrocytic TTFL alone can drive molecular oscillations in the SCN and circadian behavior in mice. Astrocytic clocks achieve this by reinstating clock gene expression and circadian function of SCN neurons via glutamatergic signals. Our results demonstrate that astrocytes can autonomously initiate and sustain complex mammalian behavior.
Collapse
Affiliation(s)
- Marco Brancaccio
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Mathew D Edwards
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Nicola J Smyllie
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Johanna E Chesham
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Elizabeth S Maywood
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
16
|
Functional annotation of extensively and divergently expressed miRNAs in suprachiasmatic nucleus of Clock Δ19 mutant mice. Biosci Rep 2018; 38:BSR20180233. [PMID: 30413606 PMCID: PMC6435474 DOI: 10.1042/bsr20180233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023] Open
Abstract
Circadian locomotor output cycles kaput protein (CLOCK) is a core transcription factor of complex integrated feedback loops in mammalian circadian clock. More genes have been reported to be regulated by CLOCK, however little is known about the role of CLOCK-mediated miRNAs. To dissect this, we used microarray analysis to measure miRNAs expression in suprachiasmatic nuclei (SCN) of wild-type (WT) and ClockΔ19 mutant mice at two different time points. We found that miRNAs regulation in two time points was extensive (nearly 75% of the miRNAs expressed at each time point), and very little overlap, with only six miRNAs in common. Besides this, the predicted CLOCK regulated miRNAs at two time points participated in extremely diverse pathways. We validated nine miRNAs (miR-125a-3p, miR-144, miR-199a-5p, miR-199b*, miR-200a, miR-200b, miR-203, miR-449a, and miR-96), which were involved in the same signaling pathway-hippo signaling pathway. The rhythms of these miRNAs showed a broad distribution of phase, amplitude, and waveform in Clock mutation. And further analysis indicated that there may be three models of miRNA-mediated circadian rhythms and hippo signaling pathway. MiRNA, the small player, may play a hub role in connecting circadian rhythms and other pathways via its multiple target genes networks.
Collapse
|
17
|
Ross CA, Margolis RL. Research Domain Criteria: Cutting Edge Neuroscience or Galen's Humors Revisited? MOLECULAR NEUROPSYCHIATRY 2018; 4:158-163. [PMID: 30643789 DOI: 10.1159/000493685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 02/03/2023]
Abstract
The Research Domain Criteria (RDoC) scheme has guided the research agenda of the National Institute of Mental Health for the past decade. The essence of RDoC is its dimensional conception of mental illness, with the assumption that psychopathology is a manifestation of extremes along axes of neuropsychological variation. Research, it follows, should emphasize normal neuropsychological function and its associated neurocircuitry. We argue that RDoC, dressed in terms of modern neurobiology, is in fact a return to the humoral theory of Galen, a dimensional approach in which physical and mental health requires a balance of the four basic bodily humors (blood, black bile, yellow bile, and phlegm). The RDoC/Galenic approach may be useful in understanding those conditions best understood as extremes along a continuum, such as personality disorders. However, we contend that for the most severe psychiatric disorders - categorically defined diseases such as schizophrenia, bipolar disorder, and autism - RDoC's Galenic dimensionalism is a retreat from the biomedical approach that seeks to find rational therapeutic targets by identifying etiologic factors and pathogenic pathways. Abandoning this medical model now, in the context of remarkable advances in genetics, neuroimaging, and neuroscience, is a major setback for the advancement of scientific psychiatry.
Collapse
Affiliation(s)
- Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Abstract
Circadian rhythms are a ubiquitous feature of virtually all living organisms, regulating a wide diversity of physiological systems. It has long been established that the circadian clockwork plays a key role in innate immune responses, and recent studies reveal that several aspects of adaptive immunity are also under circadian control. We discuss the latest insights into the genetic and biochemical mechanisms linking immunity to the core circadian clock of the cell and hypothesize as to why the immune system is so tightly controlled by circadian oscillations. Finally, we consider implications for human health, including vaccination strategies and the emerging field of chrono-immunotherapy.
Collapse
Affiliation(s)
- Christoph Scheiermann
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Julie Gibbs
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Louise Ince
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany
| | - Andrew Loudon
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
19
|
A Meta-Analysis Characterizing Stem-Like Gene Expression in the Suprachiasmatic Nucleus and Its Circadian Clock. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3610603. [PMID: 30046594 PMCID: PMC6038684 DOI: 10.1155/2018/3610603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/24/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022]
Abstract
Cells expressing proteins characteristic of stem cells and progenitor cells are present in the suprachiasmatic nucleus (SCN) of the adult mammalian hypothalamus. Any relationship between this distinctive feature and the master circadian clock of the SCN is unclear. Considering the lack of obvious neurogenesis in the adult SCN relative to the hippocampus and other structures that provide neurons and glia, it is possible that the SCN has partially differentiated cells that can provide neural circuit plasticity rather than ongoing neurogenesis. To test this possibility, available databases and publications were explored to identify highly expressed genes in the mouse SCN that also have known or suspected roles in cell differentiation, maintenance of stem-like states, or cell-cell interactions found in adult and embryonic stem cells and cancer stem cells. The SCN was found to have numerous genes associated with stem cell maintenance and increased motility from which we selected 25 of the most relevant genes. Over ninety percent of these stem-like genes were expressed at higher levels in the SCN than in other brain areas. Further analysis of this gene set could provide a greater understanding of how adjustments in cell contacts alter period and phase relationships of circadian rhythms. Circadian timing and its role in cancer, sleep, and metabolic disorders are likely influenced by genes selected in this study.
Collapse
|
20
|
Kronfeld-Schor N, Visser ME, Salis L, van Gils JA. Chronobiology of interspecific interactions in a changing world. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0248. [PMID: 28993492 DOI: 10.1098/rstb.2016.0248] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 01/10/2023] Open
Abstract
Animals should time activities, such as foraging, migration and reproduction, as well as seasonal physiological adaptation, in a way that maximizes fitness. The fitness outcome of such activities depends largely on their interspecific interactions; the temporal overlap with other species determines when they should be active in order to maximize their encounters with food and to minimize their encounters with predators, competitors and parasites. To cope with the constantly changing, but predictable structure of the environment, organisms have evolved internal biological clocks, which are synchronized mainly by light, the most predictable and reliable environmental cue (but which can be masked by other variables), which enable them to anticipate and prepare for predicted changes in the timing of the species they interact with, on top of responding to them directly. Here, we review examples where the internal timing system is used to predict interspecific interactions, and how these interactions affect the internal timing system and activity patterns. We then ask how plastic these mechanisms are, how this plasticity differs between and within species and how this variability in plasticity affects interspecific interactions in a changing world, in which light, the major synchronizer of the biological clock, is no longer a reliable cue owing to the rapidly changing climate, the use of artificial light and urbanization.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, Wageningen 6700 AB, The Netherlands
| | - Lucia Salis
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, Wageningen 6700 AB, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, PO Box 59, Den Burg 1790 AB, The Netherlands
| |
Collapse
|
21
|
The Role of Circadian Rhythms in the Hypertension of Diabetes Mellitus and the Metabolic Syndrome. Curr Hypertens Rep 2018; 20:43. [PMID: 29730779 DOI: 10.1007/s11906-018-0843-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE REVIEW Cellular circadian clocks regulate physiological functions during day and night. It has been convincingly demonstrated that hypertension in patients suffering from diabetes mellitus or metabolic syndrome is characterized in most cases by a disturbed 24-h profile resulting in a nondipper pattern. We consider possible correlation between biological clocks and symptoms of the metabolic syndrome. RECENT FINDINGS Changes in circadian clock function have been linked to metabolic disorders in genome-wide association studies. Epidemiological studies have shown that a loss of nocturnal decline in blood pressure increases the risk of cardiovascular morbidity and mortality and end-organ damage. Looking at clock genes, however, there is no obvious association between symptoms of diabetes or metabolic syndrome and clock gene expression. Emerging data suggest that circadian rhythm disruption is a risk factor for metabolic and cardiovascular disorders, while disease feedback on clock function is limited.
Collapse
|
22
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
23
|
Weger M, Diotel N, Dorsemans AC, Dickmeis T, Weger BD. Stem cells and the circadian clock. Dev Biol 2017; 431:111-123. [DOI: 10.1016/j.ydbio.2017.09.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
|
24
|
Combined Pharmacological and Genetic Manipulations Unlock Unprecedented Temporal Elasticity and Reveal Phase-Specific Modulation of the Molecular Circadian Clock of the Mouse Suprachiasmatic Nucleus. J Neurosci 2017; 36:9326-41. [PMID: 27605609 DOI: 10.1523/jneurosci.0958-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/15/2016] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The suprachiasmatic nucleus (SCN) is the master circadian oscillator encoding time-of-day information. SCN timekeeping is sustained by a cell-autonomous transcriptional-translational feedback loop, whereby expression of the Period and Cryptochrome genes is negatively regulated by their protein products. This loop in turn drives circadian oscillations in gene expression that direct SCN electrical activity and thence behavior. The robustness of SCN timekeeping is further enhanced by interneuronal, circuit-level coupling. The aim of this study was to combine pharmacological and genetic manipulations to push the SCN clockwork toward its limits and, by doing so, probe cell-autonomous and emergent, circuit-level properties. Circadian oscillation of mouse SCN organotypic slice cultures was monitored as PER2::LUC bioluminescence. SCN of three genetic backgrounds-wild-type, short-period CK1ε(Tau/Tau) mutant, and long-period Fbxl3(Afh/Afh) mutant-all responded reversibly to pharmacological manipulation with period-altering compounds: picrotoxin, PF-670462 (4-[1-Cyclohexyl-4-(4-fluorophenyl)-1H-imidazol-5-yl]-2-pyrimidinamine dihydrochloride), and KNK437 (N-Formyl-3,4-methylenedioxy-benzylidine-gamma-butyrolactam). This revealed a remarkably wide operating range of sustained periods extending across 25 h, from ≤17 h to >42 h. Moreover, this range was maintained at network and single-cell levels. Development of a new technique for formal analysis of circadian waveform, first derivative analysis (FDA), revealed internal phase patterning to the circadian oscillation at these extreme periods and differential phase sensitivity of the SCN to genetic and pharmacological manipulations. For example, FDA of the CK1ε(Tau/Tau) mutant SCN treated with the CK1ε-specific inhibitor PF-4800567 (3-[(3-Chlorophenoxy)methyl]-1-(tetrahydro-2H-pyran-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine hydrochloride) revealed that period acceleration in the mutant is due to inappropriately phased activity of the CK1ε isoform. In conclusion, extreme period manipulation reveals unprecedented elasticity and temporal structure of the SCN circadian oscillation. SIGNIFICANCE STATEMENT The master circadian clock of the suprachiasmatic nucleus (SCN) encodes time-of-day information that allows mammals to predict and thereby adapt to daily environmental cycles. Using combined genetic and pharmacological interventions, we assessed the temporal elasticity of the SCN network. Despite having evolved to generate a 24 h circadian period, we show that the molecular clock is surprisingly elastic, able to reversibly sustain coherent periods between ≤17 and >42 h at the levels of individual cells and the overall circuit. Using quantitative techniques to analyze these extreme periodicities, we reveal that the oscillator progresses as a sequence of distinct stages. These findings reveal new properties of how the SCN functions as a network and should inform biological and mathematical analyses of circadian timekeeping.
Collapse
|
25
|
Tan SHX, Sim YF, Hsu CYS. Difference in Striae Periodicity of Heilongjiang and Singaporean Chinese Teeth. Front Physiol 2017; 8:442. [PMID: 28706489 PMCID: PMC5489628 DOI: 10.3389/fphys.2017.00442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Striae periodicity refers to the number of cross-striations between successive lines of Retzius in tooth enamel. A regular time dependency of striae periodicity, known as the circaseptan interval, has been proposed. Previous studies on striae periodicity have been carried out on both modern and early humans given its potential applications in forensic age estimations and anthropology. Nevertheless, research comparing striae periodicities across gender groups and populations in different geographical locations, particularly in Asia, is lacking. In this study, we compared the striae periodicities of Heilongjiang and Singaporean Chinese, as well as that of Singaporean Chinese males and females. Results showed that while the median striae periodicity counts of Heilongjiang Chinese and Singaporean Chinese teeth are both 7, Heilongjiang Chinese tend to have lower striae periodicity counts than Singaporean Chinese (p < 0.01). No significant gender difference was observed between the median striae periodicity of Singaporean Chinese Female and Singaporean Chinese Male teeth (p = 0.511). We concluded that the median striae periodicity may statistically differ with geographical location, but not gender, provided that ethnicity and geographical location are held constant. Further studies are required to examine the causes for variation in striae periodicities between geographical locations, as well as to verify the other bio-environmental determinants of striae periodicity.
Collapse
Affiliation(s)
| | - Yu Fan Sim
- Faculty of Dentistry, National University Health System, National University of SingaporeSingapore, Singapore
| | - Chin-Ying S. Hsu
- Department of Dentistry, Faculty of Dentistry, National University Health System, National University of SingaporeSingapore, Singapore
| |
Collapse
|
26
|
Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron 2017; 93:1420-1435.e5. [PMID: 28285822 PMCID: PMC5376383 DOI: 10.1016/j.neuron.2017.02.030] [Citation(s) in RCA: 298] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/25/2017] [Accepted: 02/16/2017] [Indexed: 12/02/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus orchestrates daily rhythms of physiology and behavior in mammals. Its circadian (∼24 hr) oscillations of gene expression and electrical activity are generated intrinsically and can persist indefinitely in temporal isolation. This robust and resilient timekeeping is generally regarded as a product of the intrinsic connectivity of its neurons. Here we show that neurons constitute only one “half” of the SCN clock, the one metabolically active during circadian daytime. In contrast, SCN astrocytes are active during circadian nighttime, when they suppress the activity of SCN neurons by regulating extracellular glutamate levels. This glutamatergic gliotransmission is sensed by neurons of the dorsal SCN via specific pre-synaptic NMDA receptor assemblies containing NR2C subunits. Remarkably, somatic genetic re-programming of intracellular clocks in SCN astrocytes was capable of remodeling circadian behavioral rhythms in adult mice. Thus, SCN circuit-level timekeeping arises from interdependent and mutually supportive astrocytic-neuronal signaling. SCN neurons are active during circadian day, but SCN astrocytes are active at night Astrocytes direct circadian cycles of extracellular glutamate to inhibit SCN neurons Astrocyte-derived inhibition is mediated by NMDAR2C complexes on dorsal SCN neurons Genetic re-programming of the clock in SCN astrocytes reshapes circadian behavior
Collapse
Affiliation(s)
- Marco Brancaccio
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| | - Andrew P Patton
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Johanna E Chesham
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Elizabeth S Maywood
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
27
|
Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2017; 114:E2476-E2485. [PMID: 28270612 DOI: 10.1073/pnas.1616815114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms.
Collapse
|
28
|
Laing EE, Möller-Levet CS, Poh N, Santhi N, Archer SN, Dijk DJ. Blood transcriptome based biomarkers for human circadian phase. eLife 2017; 6. [PMID: 28218891 PMCID: PMC5318160 DOI: 10.7554/elife.20214] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/28/2017] [Indexed: 12/31/2022] Open
Abstract
Diagnosis and treatment of circadian rhythm sleep-wake disorders both require assessment of circadian phase of the brain’s circadian pacemaker. The gold-standard univariate method is based on collection of a 24-hr time series of plasma melatonin, a suprachiasmatic nucleus-driven pineal hormone. We developed and validated a multivariate whole-blood mRNA-based predictor of melatonin phase which requires few samples. Transcriptome data were collected under normal, sleep-deprivation and abnormal sleep-timing conditions to assess robustness of the predictor. Partial least square regression (PLSR), applied to the transcriptome, identified a set of 100 biomarkers primarily related to glucocorticoid signaling and immune function. Validation showed that PLSR-based predictors outperform published blood-derived circadian phase predictors. When given one sample as input, the R2 of predicted vs observed phase was 0.74, whereas for two samples taken 12 hr apart, R2 was 0.90. This blood transcriptome-based model enables assessment of circadian phase from a few samples. DOI:http://dx.doi.org/10.7554/eLife.20214.001
Collapse
Affiliation(s)
- Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carla S Möller-Levet
- Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Norman Poh
- Department of Computer Science, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nayantara Santhi
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Simon N Archer
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
29
|
Enoki R, Ono D, Kuroda S, Honma S, Honma KI. Dual origins of the intracellular circadian calcium rhythm in the suprachiasmatic nucleus. Sci Rep 2017; 7:41733. [PMID: 28155916 PMCID: PMC5290527 DOI: 10.1038/srep41733] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/03/2017] [Indexed: 12/01/2022] Open
Abstract
In mammals, the master circadian clock is located in the suprachiasmatic nucleus (SCN), where most neurons show circadian rhythms of intracellular Ca2+ levels. However, the origin of these Ca2+ rhythms remains largely unknown. In this study, we successfully monitored the intracellular circadian Ca2+ rhythms together with the circadian PER2 and firing rhythms in a single SCN slice ex vivo, which enabled us to explore the origins. The phase relation between the circadian PER2 and Ca2+ rhythms, but not between the circadian PER2 and firing rhythms, was significantly altered in Cry1/Cry2 double knockout mice, which display a loss of intercellular synchronization in the SCN. In addition, in Cry1/Cry2 double knockout mice, circadian Ca2+ rhythms were abolished in the dorsolateral SCN, but were maintained in the majority of the ventromedial SCN. These findings indicate that intracellular circadian Ca2+ rhythms are composed of an exogenous and endogenous component involving PER2 expression.
Collapse
Affiliation(s)
- Ryosuke Enoki
- Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.,Department of Chronomedicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Daisuke Ono
- Photonic Bioimaging Section, Research Center for Cooperative Projects, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Shigeru Kuroda
- Mathematical and Physical Ethology Laboratory, Research Institute for Electrical Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
30
|
Chernysheva MP, Nozdrachev AD. Neuroendocrine hypothalamus as a homeostat of endogenous time. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s002209301701001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Yan SS, Wang W. The effect of lens aging and cataract surgery on circadian rhythm. Int J Ophthalmol 2016; 9:1066-74. [PMID: 27500118 DOI: 10.18240/ijo.2016.07.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/14/2016] [Indexed: 12/31/2022] Open
Abstract
Many organisms have evolved an approximately 24-hour circadian rhythm that allows them to achieve internal physiological homeostasis with external environment. Suprachiasmatic nucleus (SCN) is the central pacemaker of circadian rhythm, and its activity is entrained to the external light-dark cycle. The SCN controls circadian rhythm through regulating the synthesis of melatonin by pineal gland via a multisynaptic pathway. Light, especially short-wavelength blue light, is the most potent environmental time cue in circadian photoentrainment. Recently, the discovery of a novel type of retinal photoreceptors, intrinsically photosensitive retinal ganglion cells, sheds light on the mechanism of circadian photoentrainment and raises concerns about the effect of ocular diseases on circadian system. With age, light transmittance is significantly decreased due to the aging of crystalline lens, thus possibly resulting in progressive loss of circadian photoreception. In the current review, we summarize the circadian physiology, highlight the important role of light in circadian rhythm regulation, discuss about the correlation between age-related cataract and sleep disorders, and compare the effect of blue light- filtering intraocular lenses (IOLs) and ultraviolet only filtering IOLs on circadian rhythm.
Collapse
Affiliation(s)
- Shen-Shen Yan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
32
|
Jones KA, Han JE, DeBruyne JP, Philpot BD. Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci Rep 2016; 6:28238. [PMID: 27306933 PMCID: PMC4910164 DOI: 10.1038/srep28238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/31/2016] [Indexed: 01/31/2023] Open
Abstract
Mutations or deletions of the maternal allele of the UBE3A gene cause Angelman syndrome (AS), a severe neurodevelopmental disorder. The paternal UBE3A/Ube3a allele becomes epigenetically silenced in most neurons during postnatal development in humans and mice; hence, loss of the maternal allele largely eliminates neuronal expression of UBE3A protein. However, recent studies suggest that paternal Ube3a may escape silencing in certain neuron populations, allowing for persistent expression of paternal UBE3A protein. Here we extend evidence in AS model mice (Ube3a(m-/p+)) of paternal UBE3A expression within the suprachiasmatic nucleus (SCN), the master circadian pacemaker. Paternal UBE3A-positive cells in the SCN show partial colocalization with the neuropeptide arginine vasopressin (AVP) and clock proteins (PER2 and BMAL1), supporting that paternal UBE3A expression in the SCN is often of neuronal origin. Paternal UBE3A also partially colocalizes with a marker of neural progenitors, SOX2, implying that relaxed or incomplete imprinting of paternal Ube3a reflects an overall immature molecular phenotype. Our findings highlight the complexity of Ube3a imprinting in the brain and illuminate a subpopulation of SCN neurons as a focal point for future studies aimed at understanding the mechanisms of Ube3a imprinting.
Collapse
Affiliation(s)
- Kelly A. Jones
- Department of Cell Biology & Physiology, UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ji Eun Han
- Department of Cell Biology & Physiology, UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jason P. DeBruyne
- Department of Pharmacology & Toxicology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Benjamin D. Philpot
- Department of Cell Biology & Physiology, UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
33
|
Abstract
There is a growing recognition that the coordinated timing of behavioral, physiologic, and metabolic circadian rhythms is a requirement for a healthy body and mind. In mammals, the primary circadian oscillator is the hypothalamic suprachiasmatic nucleus (SCN), which is responsible for circadian coordination throughout the organism. Temporal homeostasis is recognized as a complex interplay between rhythmic clock gene expression in brain regions outside the SCN and in peripheral organs. Abnormalities in this intricate circadian orchestration may alter sleep patterns and contribute to the pathophysiology of affective disorders.
Collapse
|
34
|
Husse J, Eichele G, Oster H. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time. Bioessays 2015; 37:1119-28. [PMID: 26252253 PMCID: PMC5054915 DOI: 10.1002/bies.201500026] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A vast network of cellular circadian clocks regulates 24-hour rhythms of behavior and physiology in mammals. Complex environments are characterized by multiple, and often conflicting time signals demanding flexible mechanisms of adaptation of endogenous rhythms to external time. Traditionally this process of circadian entrainment has been conceptualized in a hierarchical scheme with a light-reset master pacemaker residing in the hypothalamus that subsequently aligns subordinate peripheral clocks with each other and with external time. Here we review new experiments using conditional mouse genetics suggesting that resetting of the circadian system occurs in a more "federated" and tissue-specific fashion, which allows for increased noise resistance and plasticity of circadian timekeeping under natural conditions.
Collapse
Affiliation(s)
- Jana Husse
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Gregor Eichele
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henrik Oster
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
35
|
Sherman SM, Mumford JA, Schnyer DM. Hippocampal activity mediates the relationship between circadian activity rhythms and memory in older adults. Neuropsychologia 2015. [PMID: 26205911 DOI: 10.1016/j.neuropsychologia.2015.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Older adults experience parallel changes in sleep, circadian rhythms, and episodic memory. These processes appear to be linked such that disruptions in sleep contribute to deficits in memory. Although more variability in circadian patterns is a common feature of aging and predicts pathology, little is known about how alterations in circadian activity rhythms within older adults influence new episodic learning. Following 10 days of recording sleep-wake patterns using actigraphy, healthy older adults underwent fMRI while performing an associative memory task. The results revealed better associative memory was related to more consistent circadian activity rhythms, independent of total sleep time, sleep efficiency, and level of physical activity. Moreover, hippocampal activity during successful memory retrieval events was positively correlated with associative memory accuracy and circadian activity rhythm (CAR) consistency. We demonstrated that the link between consistent rhythms and associative memory performance was mediated by hippocampal activity. These findings provide novel insight into how the circadian rhythm of sleep-wake cycles are associated with memory in older adults and encourage further examination of circadian activity rhythms as a biomarker of cognitive functioning.
Collapse
Affiliation(s)
- Stephanie M Sherman
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton A8000, Austin, TX 78712, USA.
| | - Jeanette A Mumford
- Center for Investigating Healthy Minds at the Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Suite S119, Madison, WI 53705, USA
| | - David M Schnyer
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton A8000, Austin, TX 78712, USA; The Institute for Neuroscience, The University of Texas at Austin, 1 University Station, C7000, Austin, TX 78712, USA
| |
Collapse
|