1
|
Cover KK, Elliott K, Preuss SM, Krauzlis RJ. A distinct circuit for biasing visual perceptual decisions and modulating superior colliculus activity through the mouse posterior striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605853. [PMID: 39372791 PMCID: PMC11451588 DOI: 10.1101/2024.07.31.605853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The basal ganglia play a key role in visual perceptual decisions. Despite being the primary target in the basal ganglia for inputs from the visual cortex, the posterior striatum's (PS) involvement in visual perceptual behavior remains unknown in rodents. We reveal that the PS direct pathway is largely segregated from the dorsomedial striatum (DMS) direct pathway, the other major striatal target for visual cortex. We investigated the role of the PS in visual perceptual decisions by optogenetically stimulating striatal medium spiny neurons in the direct pathway (D1-MSNs) of mice performing a visual change-detection task. PS D1-MSN activation robustly biased visual decisions in a manner dependent on visual context, timing, and reward expectation. We examined the effects of PS and DMS direct pathway activation on neuronal activity in the superior colliculus (SC), a major output target of the basal ganglia. Activation of either direct pathway rapidly modulated SC neurons, but mostly targeted different SC neurons and had opposite effects. These results demonstrate that the PS in rodents provides an important route for controlling visual decisions, in parallel with the better known DMS, but with distinct anatomical and functional properties.
Collapse
Affiliation(s)
- Kara K. Cover
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Kerry Elliott
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Sarah M. Preuss
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| | - Richard J. Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute Bethesda, Maryland 20892 USA
| |
Collapse
|
2
|
Ambrad Giovannetti E, Rancz E. Behind mouse eyes: The function and control of eye movements in mice. Neurosci Biobehav Rev 2024; 161:105671. [PMID: 38604571 DOI: 10.1016/j.neubiorev.2024.105671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The mouse visual system has become the most popular model to study the cellular and circuit mechanisms of sensory processing. However, the importance of eye movements only started to be appreciated recently. Eye movements provide a basis for predictive sensing and deliver insights into various brain functions and dysfunctions. A plethora of knowledge on the central control of eye movements and their role in perception and behaviour arose from work on primates. However, an overview of various eye movements in mice and a comparison to primates is missing. Here, we review the eye movement types described to date in mice and compare them to those observed in primates. We discuss the central neuronal mechanisms for their generation and control. Furthermore, we review the mounting literature on eye movements in mice during head-fixed and freely moving behaviours. Finally, we highlight gaps in our understanding and suggest future directions for research.
Collapse
Affiliation(s)
| | - Ede Rancz
- INMED, INSERM, Aix-Marseille University, Marseille, France.
| |
Collapse
|
3
|
Veale R, Takahashi M. Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience 2024; 545:86-110. [PMID: 38484836 DOI: 10.1016/j.neuroscience.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.
Collapse
Affiliation(s)
- Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
4
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
5
|
Mishra Y, Mallick BN. Rapid eye movements associated with REM sleep is involved in consolidation of visuospatial learning in rats. Physiol Behav 2023; 271:114352. [PMID: 37714322 DOI: 10.1016/j.physbeh.2023.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Rapid eye movement (REM) sleep plays a significant role in visuospatial learning and memory consolidation; however, its mechanism of action is unknown. Rapid eye movements (REMs), a characteristic active feature of REM sleep, is a potential correlate of neural processing for visual memory consolidation. The superior colliculus (SC) plays a central role in oculomotor control and spatial localization of objects in the visual field. We proposed that local reversible inactivation of the SC during post-learning sessions might interfere with REMs and negatively impact REM sleep associated consolidation of the visuospatial learnt task. Under gaseous anesthesia, bilateral cannulae aiming SC and electrodes for recording electrophysiological signals to classify sleep-waking were implanted. Following standard protocol, all rats were subjected to Morris water maze (MWM) training for 5 consecutive days followed by probe trial. After MWM training, on all except the probe test days, the rat SC were bilaterally infused with either vehicle (control, Group 1), Lidocaine hydrochloride a local anesthetic (Lox 2%, Group 2), or muscimol (Mus, GABA agonist, Group 3) and sleep-wakefulness recorded after day 1, 4, and post-probe learning sessions. Post-learning, compared to vehicle, Mus treated group significantly decreased REMs, phasic REM sleep, percent time spent in REM sleep and REM sleep frequency/hr. Also, during probe test, the escape latency was significantly increased, and the percentage time spent in the platform quadrant were significantly decreased in both, Mus and Lox 2% treated rats, while the number of platform location crossings was decreased in Mus treated group. The results showed that Lox 2% and Mus into SC reduced consolidation of visuospatial learning. The findings support our contention that SC mediated activation of REMs exerts a positive influence in processing and consolidation of visual learning during REM sleep. The findings explain the role of REMs during REM sleep in visual memory consolidation.
Collapse
Affiliation(s)
- Yashaswee Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Amity Institute of Neuropsychology and Neurosciences, Amity University Campus, Gautam Budh Nagar Sector 125, Noida, Uttar Pradesh 201313, India.
| |
Collapse
|
6
|
Chinta S, Pluta SR. Neural mechanisms for the localization of unexpected external motion. Nat Commun 2023; 14:6112. [PMID: 37777516 PMCID: PMC10542789 DOI: 10.1038/s41467-023-41755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/15/2023] [Indexed: 10/02/2023] Open
Abstract
To localize objects during active sensing, animals must differentiate stimuli caused by volitional movement from real-world object motion. To determine a neural basis for this ability, we examined the mouse superior colliculus (SC), which contains multiple egocentric maps of sensorimotor space. By placing mice in a whisker-guided virtual reality, we discovered a rapidly adapting tactile response that transiently emerged during externally generated gains in whisker contact. Responses to self-generated touch that matched self-generated history were significantly attenuated, revealing that transient response magnitude is controlled by sensorimotor predictions. The magnitude of the transient response gradually decreased with repetitions in external motion, revealing a slow habituation based on external history. The direction of external motion was accurately encoded in the firing rates of transiently responsive neurons. These data reveal that whisker-specific adaptation and sensorimotor predictions in SC neurons enhance the localization of unexpected, externally generated changes in tactile space.
Collapse
Affiliation(s)
- Suma Chinta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Scott R Pluta
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Gehr C, Sibille J, Kremkow J. Retinal input integration in excitatory and inhibitory neurons in the mouse superior colliculus in vivo. eLife 2023; 12:RP88289. [PMID: 37682267 PMCID: PMC10491433 DOI: 10.7554/elife.88289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
The superior colliculus (SC) is a midbrain structure that receives inputs from retinal ganglion cells (RGCs). The SC contains one of the highest densities of inhibitory neurons in the brain but whether excitatory and inhibitory SC neurons differentially integrate retinal activity in vivo is still largely unknown. We recently established a recording approach to measure the activity of RGCs simultaneously with their postsynaptic SC targets in vivo, to study how SC neurons integrate RGC activity. Here, we employ this method to investigate the functional properties that govern retinocollicular signaling in a cell type-specific manner by identifying GABAergic SC neurons using optotagging in VGAT-ChR2 mice. Our results demonstrate that both excitatory and inhibitory SC neurons receive comparably strong RGC inputs and similar wiring rules apply for RGCs innervation of both SC cell types, unlike the cell type-specific connectivity in the thalamocortical system. Moreover, retinal activity contributed more to the spiking activity of postsynaptic excitatory compared to inhibitory SC neurons. This study deepens our understanding of cell type-specific retinocollicular functional connectivity and emphasizes that the two major brain areas for visual processing, the visual cortex and the SC, differently integrate sensory afferent inputs.
Collapse
Affiliation(s)
- Carolin Gehr
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Jeremie Sibille
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin BerlinBerlinGermany
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| |
Collapse
|
8
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus cell types bidirectionally modulate choice activity in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537884. [PMID: 37162880 PMCID: PMC10168218 DOI: 10.1101/2023.04.22.537884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
9
|
Benarroch E. What Are the Functions of the Superior Colliculus and Its Involvement in Neurologic Disorders? Neurology 2023; 100:784-790. [PMID: 37068960 PMCID: PMC10115501 DOI: 10.1212/wnl.0000000000207254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
|
10
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
11
|
Villalobos CA, Basso MA. Optogenetic activation of the inhibitory nigro-collicular circuit evokes contralateral orienting movements in mice. Cell Rep 2022; 39:110699. [PMID: 35443172 PMCID: PMC10144672 DOI: 10.1016/j.celrep.2022.110699] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/20/2021] [Accepted: 03/29/2022] [Indexed: 11/03/2022] Open
Abstract
We report that increasing inhibition from the basal ganglia (BG) to the superior colliculus (SC) through the substantia nigra pars reticulata (nigra) using in vivo optogenetic activation of GABAergic terminals in mice produces contralateral orienting movements. These movements are unexpected because decreases, and not increases, in nigral activity are generally associated with the initiation of orienting movements. We found that, in slice recordings, the same optogenetic stimulation of nigral terminals producing movements in vivo evokes post-inhibitory rebound depolarization followed by Na+ spikes in SC output neurons. Moreover, blocking T-type Ca2+ channels in slices prevent post-inhibitory rebound and subsequent Na+ spiking in SC output neurons and also reduce the likelihood of contralateral orienting in vivo. On the basis of these results, we propose that, in addition to the permissive role, the BG may play an active role in the generation of orienting movements in mice by driving post-inhibitory rebound depolarization in SC output neurons.
Collapse
Affiliation(s)
- Claudio A Villalobos
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Lee J, Sabatini BL. Striatal indirect pathway mediates exploration via collicular competition. Nature 2021; 599:645-649. [PMID: 34732888 DOI: 10.1038/s41586-021-04055-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
The ability to suppress actions that lead to a negative outcome and explore alternative actions is necessary for optimal decision making. Although the basal ganglia have been implicated in these processes1-5, the circuit mechanisms underlying action selection and exploration remain unclear. Here, using a simple lateralized licking task, we show that indirect striatal projection neurons (iSPN) in the basal ganglia contribute to these processes through modulation of the superior colliculus (SC). Optogenetic activation of iSPNs suppresses contraversive licking and promotes ipsiversive licking. Activity in lateral superior colliculus (lSC), a region downstream of the basal ganglia, is necessary for task performance and predicts lick direction. Furthermore, iSPN activation suppresses ipsilateral lSC, but surprisingly excites contralateral lSC, explaining the emergence of ipsiversive licking. Optogenetic inactivation reveals inter-collicular competition whereby each hemisphere of the superior colliculus inhibits the other, thus allowing the indirect pathway to disinhibit the contralateral lSC and trigger licking. Finally, inactivating iSPNs impairs suppression of devalued but previously rewarded licking and reduces exploratory licking. Our results reveal that iSPNs engage the competitive interaction between lSC hemispheres to trigger a motor action and suggest a general circuit mechanism for exploration during action selection.
Collapse
Affiliation(s)
- Jaeeon Lee
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Huang M, Li D, Cheng X, Pei Q, Xie Z, Gu H, Zhang X, Chen Z, Liu A, Wang Y, Sun F, Li Y, Zhang J, He M, Xie Y, Zhang F, Qi X, Shang C, Cao P. The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat Commun 2021; 12:4409. [PMID: 34285209 PMCID: PMC8292483 DOI: 10.1038/s41467-021-24696-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Appetitive locomotion is essential for animals to approach rewards, such as food and prey. The neuronal circuitry controlling appetitive locomotion is unclear. In a goal-directed behavior-predatory hunting, we show an excitatory brain circuit from the superior colliculus (SC) to the substantia nigra pars compacta (SNc) to enhance appetitive locomotion in mice. This tectonigral pathway transmits locomotion-speed signals to dopamine neurons and triggers dopamine release in the dorsal striatum. Synaptic inactivation of this pathway impairs appetitive locomotion but not defensive locomotion. Conversely, activation of this pathway increases the speed and frequency of approach during predatory hunting, an effect that depends on the activities of SNc dopamine neurons. Together, these data reveal that the SC regulates locomotion-speed signals to SNc dopamine neurons to enhance appetitive locomotion in mice.
Collapse
Affiliation(s)
- Meizhu Huang
- grid.508040.9Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Dapeng Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xinyu Cheng
- grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China ,grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Qing Pei
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Zhiyong Xie
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Huating Gu
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Xuerong Zhang
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Zijun Chen
- grid.9227.e0000000119573309State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Aixue Liu
- grid.506261.60000 0001 0706 7839Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China ,grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fangmiao Sun
- grid.11135.370000 0001 2256 9319College of Life Sciences, Peking University, Beijing, China
| | - Yulong Li
- grid.11135.370000 0001 2256 9319College of Life Sciences, Peking University, Beijing, China
| | - Jiayi Zhang
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Miao He
- grid.8547.e0000 0001 0125 2443State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuan Xie
- grid.256883.20000 0004 1760 8442Key Laboratory of Neural and Vascular Biology in Ministry of Education, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei China
| | - Fan Zhang
- grid.256883.20000 0004 1760 8442Key Laboratory of Neural and Vascular Biology in Ministry of Education, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei China
| | - Xiangbing Qi
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Congping Shang
- grid.508040.9Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Peng Cao
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China ,grid.12527.330000 0001 0662 3178Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Essig J, Hunt JB, Felsen G. Inhibitory neurons in the superior colliculus mediate selection of spatially-directed movements. Commun Biol 2021; 4:719. [PMID: 34117346 PMCID: PMC8196039 DOI: 10.1038/s42003-021-02248-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Decision making is a cognitive process that mediates behaviors critical for survival. Choosing spatial targets is an experimentally-tractable form of decision making that depends on the midbrain superior colliculus (SC). While physiological and computational studies have uncovered the functional topographic organization of the SC, the role of specific SC cell types in spatial choice is unknown. Here, we leveraged behavior, optogenetics, neural recordings and modeling to directly examine the contribution of GABAergic SC neurons to the selection of opposing spatial targets. Although GABAergic SC neurons comprise a heterogeneous population with local and long-range projections, our results demonstrate that GABAergic SC neurons do not locally suppress premotor output, suggesting that functional long-range inhibition instead plays a dominant role in spatial choice. An attractor model requiring only intrinsic SC circuitry was sufficient to account for our experimental observations. Overall, our study elucidates the role of GABAergic SC neurons in spatial choice.
Collapse
Affiliation(s)
- Jaclyn Essig
- Department of Physiology and Biophysics, and Neuroscience Program University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Hunt
- Department of Physiology and Biophysics, and Neuroscience Program University of Colorado School of Medicine, Aurora, CO, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, and Neuroscience Program University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
15
|
Zhang B, Kan JYY, Yang M, Wang X, Tu J, Dorris MC. Transforming absolute value to categorical choice in primate superior colliculus during value-based decision making. Nat Commun 2021; 12:3410. [PMID: 34099726 PMCID: PMC8184840 DOI: 10.1038/s41467-021-23747-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/23/2021] [Indexed: 11/09/2022] Open
Abstract
Value-based decision making involves choosing from multiple options with different values. Despite extensive studies on value representation in various brain regions, the neural mechanism for how multiple value options are converted to motor actions remains unclear. To study this, we developed a multi-value foraging task with varying menu of items in non-human primates using eye movements that dissociates value and choice, and conducted electrophysiological recording in the midbrain superior colliculus (SC). SC neurons encoded "absolute" value, independent of available options, during late fixation. In addition, SC neurons also represent value threshold, modulated by available options, different from conventional motor threshold. Electrical stimulation of SC neurons biased choices in a manner predicted by the difference between the value representation and the value threshold. These results reveal a neural mechanism directly transforming absolute values to categorical choices within SC, supporting highly efficient value-based decision making critical for real-world economic behaviors.
Collapse
Affiliation(s)
- Beizhen Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Janis Ying Ying Kan
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Mingpo Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Xiaochun Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Jiahao Tu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Michael Christopher Dorris
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Isa T, Marquez-Legorreta E, Grillner S, Scott EK. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. Curr Biol 2021; 31:R741-R762. [PMID: 34102128 DOI: 10.1016/j.cub.2021.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superior colliculus, or tectum in the case of non-mammalian vertebrates, is a part of the brain that registers events in the surrounding space, often through vision and hearing, but also through electrosensation, infrared detection, and other sensory modalities in diverse vertebrate lineages. This information is used to form maps of the surrounding space and the positions of different salient stimuli in relation to the individual. The sensory maps are arranged in layers with visual input in the uppermost layer, other senses in deeper positions, and a spatially aligned motor map in the deepest layer. Here, we will review the organization and intrinsic function of the tectum/superior colliculus and the information that is processed within tectal circuits. We will also discuss tectal/superior colliculus outputs that are conveyed directly to downstream motor circuits or via the thalamus to cortical areas to control various aspects of behavior. The tectum/superior colliculus is evolutionarily conserved among all vertebrates, but tailored to the sensory specialties of each lineage, and its roles have shifted with the emergence of the cerebral cortex in mammals. We will illustrate both the conserved and divergent properties of the tectum/superior colliculus through vertebrate evolution by comparing tectal processing in lampreys belonging to the oldest group of extant vertebrates, larval zebrafish, rodents, and other vertebrates including primates.
Collapse
Affiliation(s)
- Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, 606-8501, Japan
| | | | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Ethan K Scott
- The Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
17
|
Effects of Transcranial Ultrasound Stimulation on Trigeminal Blink Reflex Excitability. Brain Sci 2021; 11:brainsci11050645. [PMID: 34063492 PMCID: PMC8156436 DOI: 10.3390/brainsci11050645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
Recent evidence indicates that transcranial ultrasound stimulation (TUS) modulates sensorimotor cortex excitability. However, no study has assessed possible TUS effects on the excitability of deeper brain areas, such as the brainstem. In this study, we investigated whether TUS delivered on the substantia nigra, superior colliculus, and nucleus raphe magnus modulates the excitability of trigeminal blink reflex, a reliable neurophysiological technique to assess brainstem functions in humans. The recovery cycle of the trigeminal blink reflex (interstimulus intervals of 250 and 500 ms) was tested before (T0), and 3 (T1) and 30 min (T2) after TUS. The effects of substantia nigra-TUS, superior colliculus-TUS, nucleus raphe magnus-TUS and sham-TUS were assessed in separate and randomized sessions. In the superior colliculus-TUS session, the conditioned R2 area increased at T1 compared with T0, while T2 and T0 values did not differ. Results were independent of the interstimulus intervals tested and were not related to trigeminal blink reflex baseline (T0) excitability. Conversely, the conditioned R2 area was comparable at T0, T1, and T2 in the nucleus raphe magnus-TUS and substantia nigra-TUS sessions. Our findings demonstrate that the excitability of brainstem circuits, as evaluated by testing the recovery cycle of the trigeminal blink reflex, can be increased by TUS. This result may reflect the modulation of inhibitory interneurons within the superior colliculus.
Collapse
|
18
|
The Substantia Nigra Pars Reticulata Modulates Error-Based Saccadic Learning in Monkeys. eNeuro 2021; 8:ENEURO.0519-20.2021. [PMID: 33707204 PMCID: PMC8114898 DOI: 10.1523/eneuro.0519-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
The basal ganglia have long been considered crucial for associative learning, but whether they also are involved in another type of learning, error-based motor learning, is not clear. Error-based learning has been considered the province of the cerebellum. However, learning to use a robotic arm and saccade adaptation, which use error-based learning, are facilitated by motivation, which is a function of the basal ganglia. Additionally, patients with Parkinson’s disease, a basal ganglia deficit, show slower saccade adaptation than age matched controls. To further investigate whether the basal ganglia actually influence error-based learning, we reversibly inactivated the oculomotor portion of the substantia nigra pars reticulata (SNr) in two monkeys and tested saccade adaptation. Here, we show that nigral inactivation affected saccade adaptation. In particular, the inactivation facilitated the amplitude decrease adaptation of ipsiversive saccades. Consistent with previous studies, no effect was seen on the amplitude of the ipsiversive saccades when we did not induce adaptation. Therefore, the facilitated adaptation was not caused by inactivation directly modulating ipsiversive saccades. On the other hand, the kinematics of corrective saccades, which represent error processing, were changed after the inactivation. Thus, our data suggest that the oculomotor SNr assists saccade adaptation by strengthening the error signal. This effect indicates the basal ganglia influence error-based motor learning, a previously unrecognized function.
Collapse
|
19
|
Abstract
Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Luke T Coddington
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA;
| |
Collapse
|
20
|
Pretegiani E, Vanegas-Arroyave N, FitzGibbon EJ, Hallett M, Optican LM. Evidence From Parkinson's Disease That the Superior Colliculus Couples Action and Perception. Mov Disord 2019; 34:1680-1689. [PMID: 31633242 DOI: 10.1002/mds.27861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Action and perception should be coordinated for good visual-motor performance. The mechanism coupling action and perception may be a prominence map in the intermediate layer of the superior colliculus that modulates motor and attentional/perceptual processes. This coordination comes with a cost: the misperception that briefly overlapping stimuli are separated in time. Our model predicts that abnormal intermediate layer of the superior colliculus inhibition, such as that arising from increased basal ganglia output, would affect the action and perception coupling, and it would worsen the misperception. OBJECTIVE To test the prominence map model by measuring reaction times and perceptions in human intermediate layer of the superior colliculus dysfunction. METHODS We measured the saccadic and perceptual reaction time changes and the percept for different temporal asynchronies between fixation point offset and peripheral target onset in Parkinson's disease (PD). RESULTS We found that increased basal ganglia inhibitory output to the intermediate layer of the superior colliculus prominence map disrupted the normal coupling of action and perception. With increasing temporal asynchronies, the PD perceptual reaction times increased approximately 3 times more than the increase of the saccadic reaction times. Also, PD subjects misperceive small overlaps as gaps for temporal asynchronies up to 3 times longer than controls. The results can be reproduced by an intermediate layer of the superior colliculus rostral-caudal gradient of inhibition. CONCLUSION These findings support the hypothesis that a prominence map in the intermediate layer of the superior colliculus couples action and perception through modulation of attention. A dysfunction of this network quantifies abnormal basal ganglia output and could underlie visual deficits, including common, yet poorly understood, misperceptions and visual-motor deficits of PD. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elena Pretegiani
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Nora Vanegas-Arroyave
- Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Edmond J FitzGibbon
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Lance M Optican
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Crapse TB, Lau H, Basso MA. A Role for the Superior Colliculus in Decision Criteria. Neuron 2019; 97:181-194.e6. [PMID: 29301100 DOI: 10.1016/j.neuron.2017.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
Abstract
Simple decisions arise from the evaluation of sensory evidence. But decisions are determined by more than just evidence. Individuals establish internal decision criteria that influence how they respond. Where or how decision criteria are established in the brain remains poorly understood. Here, we show that neuronal activity in the superior colliculus (SC) predicts changes in decision criteria. Using a novel "Yes-No" task that isolates changes in decision criterion from changes in decision sensitivity, and computing neuronal measures of sensitivity and criterion, we find that SC neuronal activity correlates with the decision criterion regardless of the location of the choice report. We also show that electrical manipulation of activity within the SC produces changes in decisions consistent with changes in decision criteria and are largely independent of the choice report location. Our correlational and causal results together provide strong evidence that SC activity signals the position of a decision criterion. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Trinity B Crapse
- Fuster Laboratory of Cognitive Neuroscience, UCLA, Los Angeles, CA 90095, USA; Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA; Semel Institute of Neuroscience and Human Behavior , UCLA, Los Angeles, CA 90095, USA; Brain Research Institute , UCLA, Los Angeles, CA 90095, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Hakwan Lau
- Department of Psychology, UCLA, Los Angeles, CA 90095, USA
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, UCLA, Los Angeles, CA 90095, USA; Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, UCLA, Los Angeles, CA 90095, USA; Semel Institute of Neuroscience and Human Behavior , UCLA, Los Angeles, CA 90095, USA; Brain Research Institute , UCLA, Los Angeles, CA 90095, USA; David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Foik AT, Ghazaryan A, Waleszczyk WJ. Oscillations in Spontaneous and Visually Evoked Neuronal Activity in the Superficial Layers of the Cat's Superior Colliculus. Front Syst Neurosci 2018; 12:60. [PMID: 30559653 PMCID: PMC6287086 DOI: 10.3389/fnsys.2018.00060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Oscillations are ubiquitous features of neuronal activity in sensory systems and are considered as a substrate for the integration of sensory information. Several studies have described oscillatory activity in the geniculate visual pathway, but little is known about this phenomenon in the extrageniculate visual pathway. We describe oscillations in evoked and background activity in the cat's superficial layers of the superior colliculus, a retinorecipient structure in the extrageniculate visual pathway. Extracellular single-unit activity was recorded during periods with and without visual stimulation under isoflurane anesthesia in the mixture of N2O/O2. Autocorrelation, FFT and renewal density analyses were used to detect and characterize oscillations in the neuronal activity. Oscillations were common in the background and stimulus-evoked activity. Frequency range of background oscillations spanned between 5 and 90 Hz. Oscillations in evoked activity were observed in about half of the cells and could appear in two forms —stimulus-phase-locked (10–100 Hz), and stimulus-phase-independent (8–100 Hz) oscillations. Stimulus-phase-independent and background oscillatory frequencies were very similar within activity of particular neurons suggesting that stimulus-phase-independent oscillations may be a form of enhanced “spontaneous” oscillations. Stimulus-phase-locked oscillations were present in responses to moving and flashing stimuli. In contrast to stimulus-phase-independent oscillations, the strength of stimulus-phase-locked oscillations was positively correlated with stimulus velocity and neuronal firing rate. Our results suggest that in the superficial layers of the superior colliculus stimulus-phase-independent oscillations may be generated by the same mechanism(s) that lie in the base of “spontaneous” oscillations, while stimulus-phase-locked oscillations may result from interactions within the intra-collicular network and/or from a phase reset of oscillations present in the background activity.
Collapse
Affiliation(s)
- Andrzej T Foik
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anaida Ghazaryan
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Wioletta J Waleszczyk
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| |
Collapse
|
23
|
Beck RB, Kneafsey SL, Narasimham S, O’Riordan S, Isa T, Hutchinson M, Reilly RB. Reduced Frequency of Ipsilateral Express Saccades in Cervical Dystonia: Probing the Nigro-Tectal Pathway. Tremor Other Hyperkinet Mov (N Y) 2018; 8:592. [PMID: 30510845 PMCID: PMC6262171 DOI: 10.7916/d8864094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/02/2018] [Indexed: 12/01/2022] Open
Abstract
Background Cervical dystonia is a hyperkinetic movement disorder of unknown cause. Symptoms of cervical dystonia have been induced in animals in which the integrity of the nigro-tectal pathway is disrupted, resulting in reduced inhibition of the deep layers of the superior colliculus. This same pathway is believed to play a critical role in saccade generation, particularly visually guided, express saccades. It was hypothesized that individuals with cervical dystonia would present with a higher frequency of express saccades and more directional errors. Methods Eight individuals with cervical dystonia and 11 age- and sex-matched control participants performed three saccadic paradigms: pro-saccade, gap, and anti-saccade (120 trials per task). Eye movements were recorded using electro-oculography. Results Mean saccadic reaction times were slower in the cervical dystonia group (only statistically significant in the anti-saccade task, F(1, 35) = 4.76, p = 0.036); participants with cervical dystonia produced fewer directional errors (mean 14% vs. 22%) in the anti-saccade task; and had similar frequencies of express saccades in the gap task relative to our control population (chi-square = 1.13, p = 0.287). All cervical dystonia participants had lower frequencies of express saccades ipsilateral to their dystonic side (the side to which their head turns), (chi-square = 3.57, p = 0.059). Discussion The finding of slower saccadic reaction times in cervical dystonia does not support the concept of reduced inhibition in the nigro-tectal pathway. Further research is required to confirm the observed relationship between the lateralization of lower frequencies of express saccades and direction of head rotation in cervical dystonia.
Collapse
Affiliation(s)
- Rebecca B. Beck
- School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, IE
- Trinity Centre for BioEngineering, Trinity College Dublin, The University of Dublin, IE
| | - Simone L. Kneafsey
- School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, IE
- Trinity Centre for BioEngineering, Trinity College Dublin, The University of Dublin, IE
| | - Shruti Narasimham
- School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, IE
- Trinity Centre for BioEngineering, Trinity College Dublin, The University of Dublin, IE
| | - Sean O’Riordan
- Department of Neurology, St. Vincent’s University Hospital, Dublin, IE
- School of Medicine and Medical Sciences, University College DublinIE
| | - Tadashi Isa
- Department of Neuroscience, Kyoto University, Kyoto, JP
| | - Michael Hutchinson
- Department of Neurology, St. Vincent’s University Hospital, Dublin, IE
- School of Medicine and Medical Sciences, University College DublinIE
| | - Richard B. Reilly
- School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, IE
- Trinity Centre for BioEngineering, Trinity College Dublin, The University of Dublin, IE
- School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, IE
| |
Collapse
|
24
|
Chronic amphetamine enhances visual input to and suppresses visual output from the superior colliculus in withdrawal. Neuropharmacology 2018; 138:118-129. [DOI: 10.1016/j.neuropharm.2018.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022]
|
25
|
Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat Commun 2018; 9:1232. [PMID: 29581428 PMCID: PMC5964329 DOI: 10.1038/s41467-018-03580-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 02/23/2018] [Indexed: 01/30/2023] Open
Abstract
Animals respond to environmental threats, e.g. looming visual stimuli, with innate defensive behaviors such as escape and freezing. The key neural circuits that participate in the generation of such dimorphic defensive behaviors remain unclear. Here we show that the dimorphic behavioral patterns triggered by looming visual stimuli are mediated by parvalbumin-positive (PV+) projection neurons in mouse superior colliculus (SC). Two distinct groups of SC PV+ neurons form divergent pathways to transmit threat-relevant visual signals to neurons in the parabigeminal nucleus (PBGN) and lateral posterior thalamic nucleus (LPTN). Activations of PV+ SC-PBGN and SC-LPTN pathways mimic the dimorphic defensive behaviors. The PBGN and LPTN neurons are co-activated by looming visual stimuli. Bilateral inactivation of either nucleus results in the defensive behavior dominated by the other nucleus. Together, these data suggest that the SC orchestrates dimorphic defensive behaviors through two separate tectofugal pathways that may have interactions. In response to environmental threats, such as visual looming stimuli, mice either freeze or escape. Here the authors demonstrate that these two behaviors are mediated by separate tectofugal pathways formed by parvalbumin-positive neurons in the superior colliculus.
Collapse
|
26
|
Ito S, Feldheim DA. The Mouse Superior Colliculus: An Emerging Model for Studying Circuit Formation and Function. Front Neural Circuits 2018; 12:10. [PMID: 29487505 PMCID: PMC5816945 DOI: 10.3389/fncir.2018.00010] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
The superior colliculus (SC) is a midbrain area where visual, auditory and somatosensory information are integrated to initiate motor commands. The SC plays a central role in visual information processing in the mouse; it receives projections from 85% to 90% of the retinal ganglion cells (RGCs). While the mouse SC has been a long-standing model used to study retinotopic map formation, a number of technological advances in mouse molecular genetic techniques, large-scale physiological recordings and SC-dependent visual behavioral assays have made the mouse an even more ideal model to understand the relationship between circuitry and behavior.
Collapse
Affiliation(s)
- Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David A Feldheim
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
27
|
Color-Change Detection Activity in the Primate Superior Colliculus. eNeuro 2017; 4:eN-NWR-0046-17. [PMID: 28413825 PMCID: PMC5388837 DOI: 10.1523/eneuro.0046-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 11/25/2022] Open
Abstract
The primate superior colliculus (SC) is a midbrain structure that participates in the control of spatial attention. Previous studies examining the role of the SC in attention have mostly used luminance-based visual features (e.g., motion, contrast) as the stimuli and saccadic eye movements as the behavioral response, both of which are known to modulate the activity of SC neurons. To explore the limits of the SC’s involvement in the control of spatial attention, we recorded SC neuronal activity during a task using color, a visual feature dimension not traditionally associated with the SC, and required monkeys to detect threshold-level changes in the saturation of a cued stimulus by releasing a joystick during maintained fixation. Using this color-based spatial attention task, we found substantial cue-related modulation in all categories of visually responsive neurons in the intermediate layers of the SC. Notably, near-threshold changes in color saturation, both increases and decreases, evoked phasic bursts of activity with magnitudes as large as those evoked by stimulus onset. This change-detection activity had two distinctive features: activity for hits was larger than for misses, and the timing of change-detection activity accounted for 67% of joystick release latency, even though it preceded the release by at least 200 ms. We conclude that during attention tasks, SC activity denotes the behavioral relevance of the stimulus regardless of feature dimension and that phasic event-related SC activity is suitable to guide the selection of manual responses as well as saccadic eye movements.
Collapse
|
28
|
Van Den Berge N, Albaugh DL, Salzwedel A, Vanhove C, Van Holen R, Gao W, Stuber GD, Shih YYI. Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI. Neuroimage 2017; 146:1050-1061. [PMID: 27825979 PMCID: PMC5322177 DOI: 10.1016/j.neuroimage.2016.10.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/08/2016] [Accepted: 10/31/2016] [Indexed: 01/11/2023] Open
Abstract
The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei. In the present study, we employed simultaneous deep brain stimulation and functional magnetic resonance imaging (DBS-fMRI) with cerebral blood volume (CBV) measurements to functionally and unbiasedly map the circuit- and network level connectivity of the SNr and GPe. Sprague-Dawley rats were implanted with a custom-made MR-compatible stimulating electrode in the right SNr (n=6) or GPe (n=7). SNr- and GPe-DBS, conducted across a wide range of stimulation frequencies, revealed a number of surprising evoked responses, including unexpected CBV decreases within the striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal cortex. Functional connectivity MRI revealed global modulation of neural networks during DBS at either target, sensitive to stimulation frequency and readily reversed following cessation of stimulation. This work thus contributes to a growing literature demonstrating extensive and unanticipated functional connectivity among basal ganglia nuclei.
Collapse
Affiliation(s)
- Nathalie Van Den Berge
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Daniel L Albaugh
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Vanhove
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Roel Van Holen
- Medical Image and Signal Processing Group, Ghent University, Ghent, Belgium
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Garret D Stuber
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Neurobiology, University of North Carolina, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
|
30
|
Castro-Alamancos MA, Favero M. Whisker-related afferents in superior colliculus. J Neurophysiol 2016; 115:2265-79. [PMID: 26864754 DOI: 10.1152/jn.00028.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/03/2016] [Indexed: 11/22/2022] Open
Abstract
Rodents use their whiskers to explore the environment, and the superior colliculus is part of the neural circuits that process this sensorimotor information. Cells in the intermediate layers of the superior colliculus integrate trigeminotectal afferents from trigeminal complex and corticotectal afferents from barrel cortex. Using histological methods in mice, we found that trigeminotectal and corticotectal synapses overlap somewhat as they innervate the lower and upper portions of the intermediate granular layer, respectively. Using electrophysiological recordings and optogenetics in anesthetized mice in vivo, we showed that, similar to rats, whisker deflections produce two successive responses that are driven by trigeminotectal and corticotectal afferents. We then employed in vivo and slice experiments to characterize the response properties of these afferents. In vivo, corticotectal responses triggered by electrical stimulation of the barrel cortex evoke activity in the superior colliculus that increases with stimulus intensity and depresses with increasing frequency. In slices from adult mice, optogenetic activation of channelrhodopsin-expressing trigeminotectal and corticotectal fibers revealed that cells in the intermediate layers receive more efficacious trigeminotectal, than corticotectal, synaptic inputs. Moreover, the efficacy of trigeminotectal inputs depresses more strongly with increasing frequency than that of corticotectal inputs. The intermediate layers of superior colliculus appear to be tuned to process strong but infrequent trigeminal inputs and weak but more persistent cortical inputs, which explains features of sensory responsiveness, such as the robust rapid sensory adaptation of whisker responses in the superior colliculus.
Collapse
Affiliation(s)
- Manuel A Castro-Alamancos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Morgana Favero
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Butler JS, Beiser IM, Williams L, McGovern E, Molloy F, Lynch T, Healy DG, Moore H, Walsh R, Reilly RB, O'Riordan S, Walsh C, Hutchinson M. Age-Related Sexual Dimorphism in Temporal Discrimination and in Adult-Onset Dystonia Suggests GABAergic Mechanisms. Front Neurol 2015; 6:258. [PMID: 26696957 PMCID: PMC4677337 DOI: 10.3389/fneur.2015.00258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/23/2015] [Indexed: 12/04/2022] Open
Abstract
Background Adult-onset isolated focal dystonia (AOIFD) presenting in early adult life is more frequent in men, whereas in middle age it is female predominant. Temporal discrimination, an endophenotype of adult-onset idiopathic isolated focal dystonia, shows evidence of sexual dimorphism in healthy participants. Objectives We assessed the distinctive features of age-related sexual dimorphism of (i) sex ratios in dystonia phenotypes and (ii) sexual dimorphism in temporal discrimination in unaffected relatives of cervical dystonia patients. Methods We performed (i) a meta-regression analysis of the proportion of men in published cohorts of phenotypes of adult-onset dystonia in relation to their mean age of onset and (ii) an analysis of temporal discrimination thresholds in 220 unaffected first-degree relatives (125 women) of cervical dystonia patients. Results In 53 studies of dystonia phenotypes, the proportion of men showed a highly significant negative association with mean age of onset (p < 0.0001, pseudo-R2 = 59.6%), with increasing female predominance from 40 years of age. Age of onset and phenotype together explained 92.8% of the variance in proportion of men. Temporal discrimination in relatives under the age of 35 years is faster in women than men but the age-related rate of deterioration in women is twice that of men; after 45 years of age, men have faster temporal discrimination than women. Conclusion Temporal discrimination in unaffected relatives of cervical dystonia patients and sex ratios in adult-onset dystonia phenotypes show similar patterns of age-related sexual dimorphism. Such age-related sexual dimorphism in temporal discrimination and adult-onset focal dystonia may reflect common underlying mechanisms. Cerebral GABA levels have been reported to show similar age-related sexual dimorphism in healthy participants and may be the mechanism underlying the observed age-related sexual dimorphism in temporal discrimination and the sex ratios in AOIFD.
Collapse
Affiliation(s)
- John S Butler
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin , Dublin , Ireland
| | - Ines M Beiser
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland
| | - Laura Williams
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland
| | - Eavan McGovern
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland
| | | | - Tim Lynch
- Dublin Neurological Institute, Mater Misericordiae University Hospital , Dublin , Ireland
| | | | | | | | - Richard B Reilly
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin , Dublin , Ireland ; School of Medicine, Trinity College Dublin , Dublin , Ireland
| | - Seán O'Riordan
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland
| | - Cathal Walsh
- Department of Statistics, Trinity College Dublin , Dublin , Ireland ; Department of Mathematics and Statistics, University of Limerick , Limerick , Ireland
| | - Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Sciences, University College Dublin , Dublin , Ireland
| |
Collapse
|
32
|
Wolf AB, Lintz MJ, Costabile JD, Thompson JA, Stubblefield EA, Felsen G. An integrative role for the superior colliculus in selecting targets for movements. J Neurophysiol 2015. [PMID: 26203103 DOI: 10.1152/jn.00262.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental goal of systems neuroscience is to understand the neural mechanisms underlying decision making. The midbrain superior colliculus (SC) is known to be central to the selection of one among many potential spatial targets for movements, which represents an important form of decision making that is tractable to rigorous experimental investigation. In this review, we first discuss data from mammalian models-including primates, cats, and rodents-that inform our understanding of how neural activity in the SC underlies the selection of targets for movements. We then examine the anatomy and physiology of inputs to the SC from three key regions that are themselves implicated in motor decisions-the basal ganglia, parabrachial region, and neocortex-and discuss how they may influence SC activity related to target selection. Finally, we discuss the potential for methodological advances to further our understanding of the neural bases of target selection. Our overarching goal is to synthesize what is known about how the SC and its inputs act together to mediate the selection of targets for movements, to highlight open questions about this process, and to spur future studies addressing these questions.
Collapse
Affiliation(s)
- Andrew B Wolf
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Mario J Lintz
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - Jamie D Costabile
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth A Stubblefield
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado; Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
33
|
Barter JW, Li S, Lu D, Bartholomew RA, Rossi MA, Shoemaker CT, Salas-Meza D, Gaidis E, Yin HH. Beyond reward prediction errors: the role of dopamine in movement kinematics. Front Integr Neurosci 2015; 9:39. [PMID: 26074791 PMCID: PMC4444742 DOI: 10.3389/fnint.2015.00039] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/06/2015] [Indexed: 11/13/2022] Open
Abstract
We recorded activity of dopamine (DA) neurons in the substantia nigra pars compacta in unrestrained mice while monitoring their movements with video tracking. Our approach allows an unbiased examination of the continuous relationship between single unit activity and behavior. Although DA neurons show characteristic burst firing following cue or reward presentation, as previously reported, their activity can be explained by the representation of actual movement kinematics. Unlike neighboring pars reticulata GABAergic output neurons, which can represent vector components of position, DA neurons represent vector components of velocity or acceleration. We found neurons related to movements in four directions-up, down, left, right. For horizontal movements, there is significant lateralization of neurons: the left nigra contains more rightward neurons, whereas the right nigra contains more leftward neurons. The relationship between DA activity and movement kinematics was found on both appetitive trials using sucrose and aversive trials using air puff, showing that these neurons belong to a velocity control circuit that can be used for any number of purposes, whether to seek reward or to avoid harm. In support of this conclusion, mimicry of the phasic activation of DA neurons with selective optogenetic stimulation could also generate movements. Contrary to the popular hypothesis that DA neurons encode reward prediction errors, our results suggest that nigrostriatal DA plays an essential role in controlling the kinematics of voluntary movements. We hypothesize that DA signaling implements gain adjustment for adaptive transition control, and describe a new model of the basal ganglia (BG) in which DA functions to adjust the gain of the transition controller. This model has significant implications for our understanding of movement disorders implicating DA and the BG.
Collapse
Affiliation(s)
- Joseph W Barter
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Suellen Li
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Dongye Lu
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Ryan A Bartholomew
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Mark A Rossi
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Charles T Shoemaker
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Daniel Salas-Meza
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Erin Gaidis
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Department of Neurobiology, Center for Cognitive Neuroscience, Duke University Durham, NC, USA
| |
Collapse
|
34
|
Kardamakis AA, Saitoh K, Grillner S. Tectal microcircuit generating visual selection commands on gaze-controlling neurons. Proc Natl Acad Sci U S A 2015; 112:E1956-65. [PMID: 25825743 PMCID: PMC4403191 DOI: 10.1073/pnas.1504866112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The optic tectum (called superior colliculus in mammals) is critical for eye-head gaze shifts as we navigate in the terrain and need to adapt our movements to the visual scene. The neuronal mechanisms underlying the tectal contribution to stimulus selection and gaze reorientation remains, however, unclear at the microcircuit level. To analyze this complex--yet phylogenetically conserved--sensorimotor system, we developed a novel in vitro preparation in the lamprey that maintains the eye and midbrain intact and allows for whole-cell recordings from prelabeled tectal gaze-controlling cells in the deep layer, while visual stimuli are delivered. We found that receptive field activation of these cells provide monosynaptic retinal excitation followed by local GABAergic inhibition (feedforward). The entire remaining retina, on the other hand, elicits only inhibition (surround inhibition). If two stimuli are delivered simultaneously, one inside and one outside the receptive field, the former excitatory response is suppressed. When local inhibition is pharmacologically blocked, the suppression induced by competing stimuli is canceled. We suggest that this rivalry between visual areas across the tectal map is triggered through long-range inhibitory tectal connections. Selection commands conveyed via gaze-controlling neurons in the optic tectum are, thus, formed through synaptic integration of local retinotopic excitation and global tectal inhibition. We anticipate that this mechanism not only exists in lamprey but is also conserved throughout vertebrate evolution.
Collapse
Affiliation(s)
- Andreas A Kardamakis
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; and
| | - Kazuya Saitoh
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; and Faculty of Education, Kumamoto University, Kumamoto 860-8556, Japan
| | - Sten Grillner
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden; and
| |
Collapse
|
35
|
Ding S, Li L, Zhou FM. Robust presynaptic serotonin 5-HT(1B) receptor inhibition of the striatonigral output and its sensitization by chronic fluoxetine treatment. J Neurophysiol 2015; 113:3397-409. [PMID: 25787955 DOI: 10.1152/jn.00831.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/12/2015] [Indexed: 11/22/2022] Open
Abstract
The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT(1B)Rs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT(1B)Rs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT(1B)R agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT(1B)R-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT(1B)Rs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT(1B)R-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Li Li
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, Tennessee
| |
Collapse
|
36
|
Abstract
The superior colliculus is part of a broader neural network that can decode whisker movements in air and on objects, which is a strategy used by behaving rats to sense the environment. The intermediate layers of the superior colliculus receive whisker-related excitatory afferents from the trigeminal complex and barrel cortex, inhibitory afferents from extrinsic and intrinsic sources, and neuromodulatory afferents from cholinergic and monoaminergic nuclei. However, it is not well known how these inputs regulate whisker-related activity in the superior colliculus. We found that barrel cortex afferents drive the superior colliculus during the middle portion of the rising phase of the whisker movement protraction elicited by artificial (fictive) whisking in anesthetized rats. In addition, both spontaneous and whisker-related neural activities in the superior colliculus are under strong inhibitory and neuromodulator control. Cholinergic stimulation activates the superior colliculus by increasing spontaneous firing and, in some cells, whisker-evoked responses. Monoaminergic stimulation has the opposite effects. The actions of neuromodulator and inhibitory afferents may be the basis of the different firing rates and sensory responsiveness observed in the superior colliculus of behaving animals during distinct behavioral states.
Collapse
|
37
|
Hutchinson M, Isa T, Molloy A, Kimmich O, Williams L, Molloy F, Moore H, Healy DG, Lynch T, Walsh C, Butler J, Reilly RB, Walsh R, O'Riordan S. Cervical dystonia: a disorder of the midbrain network for covert attentional orienting. Front Neurol 2014; 5:54. [PMID: 24803911 PMCID: PMC4009446 DOI: 10.3389/fneur.2014.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/03/2014] [Indexed: 01/30/2023] Open
Abstract
While the pathogenesis of cervical dystonia remains unknown, recent animal and clinical experimental studies have indicated its probable mechanisms. Abnormal temporal discrimination is a mediational endophenotype of cervical dystonia and informs new concepts of disease pathogenesis. Our hypothesis is that both abnormal temporal discrimination and cervical dystonia are due to a disorder of the midbrain network for covert attentional orienting caused by reduced gamma-aminobutyric acid (GABA) inhibition, resulting, in turn, from as yet undetermined, genetic mutations. Such disinhibition is (a) subclinically manifested by abnormal temporal discrimination due to prolonged duration firing of the visual sensory neurons in the superficial laminae of the superior colliculus and (b) clinically manifested by cervical dystonia due to disinhibited burst activity of the cephalomotor neurons of the intermediate and deep laminae of the superior colliculus. Abnormal temporal discrimination in unaffected first-degree relatives of patients with cervical dystonia represents a subclinical manifestation of defective GABA activity both within the superior colliculus and from the substantia nigra pars reticulata. A number of experiments are required to prove or disprove this hypothesis.
Collapse
Affiliation(s)
- Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences , Okazaki , Japan
| | - Anna Molloy
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Okka Kimmich
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Laura Williams
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Fiona Molloy
- Department of Neurophysiology, Beaumont Hospital , Dublin , Ireland
| | | | - Daniel G Healy
- Department of Neurology, Beaumont Hospital , Dublin , Ireland
| | - Tim Lynch
- Dublin Neurological Institute, Mater Misericordiae Hospital , Dublin , Ireland
| | - Cathal Walsh
- Department of Statistics, Trinity College Dublin , Dublin , Ireland
| | - John Butler
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard Walsh
- Department of Neurology, The Adelaide and Meath Hospital , Dublin , Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| |
Collapse
|
38
|
Phongphanphanee P, Marino RA, Kaneda K, Yanagawa Y, Munoz DP, Isa T. Distinct local circuit properties of the superficial and intermediate layers of the rodent superior colliculus. Eur J Neurosci 2014; 40:2329-43. [PMID: 24708086 DOI: 10.1111/ejn.12579] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/29/2023]
Abstract
The superior colliculus (SC) is critical in localizing salient visual stimuli and making decisions on the location of the next saccade. Lateral interactions across the spatial map of the SC are hypothesized to help mediate these processes. Here, we investigate lateral interactions within the SC by applying whole-cell recordings in horizontal slices of mouse SC, which maintained the local structure of the superficial (SCs) visual layer, which is hypothesized to participate in localizing salient stimuli, and the intermediate (SCi) layer, which is supposed to participate in saccade decision-making. When effects of either electrical or chemical (uncaging of free glutamate) stimuli were applied to multiple sites with various distances from the recorded cell, a pattern of center excitation-surround inhibition was found to be prominent in SCs. When the interactions of synaptic effects induced by simultaneous stimulation of two sites were tested, non-linear facilitatory or inhibitory interactions were observed. In contrast, in the SCi, stimulation induced mainly excitation, which masked underlying inhibition. The excitatory synaptic effects of stimulation applied at remote sites were summed in a near linear manner. The result suggested that SCs lateral interactions appear suitable for localizing salient stimuli, while the lateral interactions within SCi are more suitable for faithfully accumulating subthreshold signals for saccadic decision-making. Implementation of this laminar-specific organization makes the SC a unique structure for serially processing signals for saliency localization and saccadic decision-making.
Collapse
Affiliation(s)
- Penphimon Phongphanphanee
- Department of Developmental Physiology, National Institute of Physiological Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Mahamed S, Garrison TJ, Shires J, Basso MA. Stimulation of the substantia nigra influences the specification of memory-guided saccades. J Neurophysiol 2013; 111:804-16. [PMID: 24259551 DOI: 10.1152/jn.00002.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the absence of sensory information, we rely on past experience or memories to guide our actions. Because previous experimental and clinical reports implicate basal ganglia nuclei in the generation of movement in the absence of sensory stimuli, we ask here whether one output nucleus of the basal ganglia, the substantia nigra pars reticulata (nigra), influences the specification of an eye movement in the absence of sensory information to guide the movement. We manipulated the level of activity of neurons in the nigra by introducing electrical stimulation to the nigra at different time intervals while monkeys made saccades to different locations in two conditions: one in which the target location remained visible and a second in which the target location appeared only briefly, requiring information stored in memory to specify the movement. Electrical manipulation of the nigra occurring during the delay period of the task, when information about the target was maintained in memory, altered the direction and the occurrence of subsequent saccades. Stimulation during other intervals of the memory task or during the delay period of the visually guided saccade task had less effect on eye movements. On stimulated trials, and only when the visual stimulus was absent, monkeys occasionally (∼20% of the time) failed to make saccades. When monkeys made saccades in the absence of a visual stimulus, stimulation of the nigra resulted in a rotation of the endpoints ipsilaterally (∼2°) and increased the reaction time of contralaterally directed saccades. When the visual stimulus was present, stimulation of the nigra resulted in no significant rotation and decreased the reaction time of contralaterally directed saccades slightly. Based on these measurements, stimulation during the delay period of the memory-guided saccade task influenced the metrics of saccades much more than did stimulation during the same period of the visually guided saccade task. Because these effects occurred with manipulation of nigral activity well before the initiation of saccades and in trials in which the visual stimulus was absent, we conclude that information from the basal ganglia influences the specification of an action as it is evolving primarily during performance of memory-guided saccades. When visual information is available to guide the specification of the saccade, as occurs during visually guided saccades, basal ganglia information is less influential.
Collapse
Affiliation(s)
- Safraaz Mahamed
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | | | | | | |
Collapse
|
40
|
α6* nicotinic acetylcholine receptor expression and function in a visual salience circuit. J Neurosci 2012; 32:10226-37. [PMID: 22836257 DOI: 10.1523/jneurosci.0007-12.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing α6 subunits are expressed in only a few brain areas, including midbrain dopamine (DA) neurons, noradrenergic neurons of the locus ceruleus, and retinal ganglion cells. To better understand the regional and subcellular expression pattern of α6-containing nAChRs, we created and studied transgenic mice expressing a variant α6 subunit with green fluorescent protein (GFP) fused in-frame in the M3-M4 intracellular loop. In α6-GFP transgenic mice, α6-dependent synaptosomal DA release and radioligand binding experiments confirmed correct expression and function in vivo. In addition to strong α6* nAChR expression in glutamatergic retinal axons, which terminate in superficial superior colliculus (sSC), we also found α6 subunit expression in a subset of GABAergic cell bodies in this brain area. In patch-clamp recordings from sSC neurons in brain slices from mice expressing hypersensitive α6* nAChRs, we confirmed functional, postsynaptic α6* nAChR expression. Further, sSC GABAergic neurons expressing α6* nAChRs exhibit a tonic conductance mediated by standing activation of hypersensitive α6* nAChRs by ACh. α6* nAChRs also appear in a subpopulation of SC neurons in output layers. Finally, selective activation of α6* nAChRs in vivo induced sSC neuronal activation as measured with c-Fos expression. Together, these results demonstrate that α6* nAChRs are uniquely situated to mediate cholinergic modulation of glutamate and GABA release in SC. The SC has emerged as a potential key brain area responsible for transmitting short-latency salience signals to thalamus and midbrain DA neurons, and these results suggest that α6* nAChRs may be important for nicotinic cholinergic sensitization of this pathway.
Collapse
|
41
|
Kaneda K, Yanagawa Y, Isa T. Transient enhancement of inhibition following visual cortical lesions in the mouse superior colliculus. Eur J Neurosci 2012; 36:3066-76. [PMID: 22775357 DOI: 10.1111/j.1460-9568.2012.08224.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous studies have investigated the effects of lesions of the primary visual cortex (V1) on visual responses in neurons of the superficial layer of the superior colliculus (sSC), which receives visual information from both the retina and V1. However, little is known about the changes in the local circuit dynamics of the sSC after receiving V1 lesions. Here, we show that surround inhibition of sSC neurons is transiently enhanced following V1 lesions in mice and that this enhancement may be attributed to alterations in the balance between excitatory and inhibitory inputs to sSC neurons. Extracellular recordings in vivo revealed that sSC neuronal responses to large visual stimuli were transiently reduced at about 1 week after visual cortical lesions compared with normal mice and that this reduction was partially recovered at about 1 month after the lesions. By using whole-cell patch-clamp recordings from sSC neurons in slice preparations obtained from mice that had received visual cortical lesions at 1 week prior to the recordings, we found cell type-dependent changes in the balance between excitation and inhibition. In non-GABAergic cells, inhibition predominated over excitation, whereas the excitation-inhibition balance did not change in GABAergic neurons. These results suggest that enhanced inhibition may be partially responsible for the reduced responses to large visual stimuli in some sSC neurons. Thus, we propose that the enhanced surround inhibition shortly after visual cortical lesions may prevent hyperexcitability in the sSC local circuit, contributing to reconstructing the finely tuned receptive field organization of sSC neurons after the visual cortical lesions.
Collapse
Affiliation(s)
- Katsuyuki Kaneda
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | |
Collapse
|
42
|
Sooksawate T, Yanagawa Y, Isa T. Cholinergic responses in GABAergic and non-GABAergic neurons in the intermediate gray layer of mouse superior colliculus. Eur J Neurosci 2012; 36:2440-51. [PMID: 22712760 DOI: 10.1111/j.1460-9568.2012.08169.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurons in the intermediate gray layer (SGI) of the mammalian superior colliculus (SC) receive dense cholinergic innervations from the brainstem parabrachial region. Such cholinergic inputs may influence execution of orienting behaviors. To obtain deeper insights into how the cholinergic inputs modulate the SC local circuits, we analysed the cholinergic responses in identified γ-aminobutyric acid (GABA)ergic and non-GABAergic neurons using SC slices obtained from GAD67-GFP knock-in mice. The responses of SGI neurons to cholinergic agonists were various combinations of fast inward currents mediated mainly via α4β2 and partly by α7 nicotinic receptors (nIN), slow inward currents caused by activation of M1 plus M3 muscarinic receptors (mIN), and slow outward currents caused by activation of M2 muscarinic receptors (mOUT). The most common cholinergic responses in non-GABAergic neurons was nIN + mIN + mOUT (38/68), followed by nIN + mIN (16/68), nIN + mOUT (11/68), nIN only (2/68), and no response (1/68). On the other hand, the major response pattern in GABAergic neurons was either nIN only (26/54) or nIN + mIN (21/54), followed by nIN + mOUT (4/54), mOUT only (2/54), and no response (1/54). Thus, major effects of cholinergic inputs to both SGI GABAergic and non-GABAergic neurons are excitatory, but the response patterns in these two types of SGI neurons are different. Thus, actions of the cholinergic inputs to non-GABAergic and GABAergic SGI neurons are not simple push-pull mechanisms, like excitation vs inhibition, but might cooperate to balance the level of excitation and inhibition for setting the state of the response property of the local circuit.
Collapse
Affiliation(s)
- Thongchai Sooksawate
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | |
Collapse
|
43
|
Zhou FM, Lee CR. Intrinsic and integrative properties of substantia nigra pars reticulata neurons. Neuroscience 2011; 198:69-94. [PMID: 21839148 PMCID: PMC3221915 DOI: 10.1016/j.neuroscience.2011.07.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/07/2011] [Accepted: 07/14/2011] [Indexed: 11/27/2022]
Abstract
The GABA projection neurons of the substantia nigra pars reticulata (SNr) are output neurons for the basal ganglia and thus critical for movement control. Their most striking neurophysiological feature is sustained, spontaneous high frequency spike firing. A fundamental question is: what are the key ion channels supporting the remarkable firing capability in these neurons? Recent studies indicate that these neurons express tonically active type 3 transient receptor potential (TRPC3) channels that conduct a Na-dependent inward current even at hyperpolarized membrane potentials. When the membrane potential reaches -60 mV, a voltage-gated persistent sodium current (I(NaP)) starts to activate, further depolarizing the membrane potential. At or slightly below -50 mV, the large transient voltage-activated sodium current (I(NaT)) starts to activate and eventually triggers the rapid rising phase of action potentials. SNr GABA neurons have a higher density of I(NaT), contributing to the faster rise and larger amplitude of action potentials, compared with the slow-spiking dopamine neurons. I(NaT) also recovers from inactivation more quickly in SNr GABA neurons than in nigral dopamine neurons. In SNr GABA neurons, the rising phase of the action potential triggers the activation of high-threshold, inactivation-resistant Kv3-like channels that can rapidly repolarize the membrane. These intrinsic ion channels provide SNr GABA neurons with the ability to fire spontaneous and sustained high frequency spikes. Additionally, robust GABA inputs from direct pathway medium spiny neurons in the striatum and GABA neurons in the globus pallidus may inhibit and silence SNr GABA neurons, whereas glutamate synaptic input from the subthalamic nucleus may induce burst firing in SNr GABA neurons. Thus, afferent GABA and glutamate synaptic inputs sculpt the tonic high frequency firing of SNr GABA neurons and the consequent inhibition of their targets into an integrated motor control signal that is further fine-tuned by neuromodulators including dopamine, serotonin, endocannabinoids, and H₂O₂.
Collapse
Affiliation(s)
- F-M Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA.
| | | |
Collapse
|
44
|
Efficient gene therapy for Parkinson's disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol Ther 2011; 20:534-43. [PMID: 22086235 DOI: 10.1038/mt.2011.249] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Current gene therapy approaches for Parkinson's disease (PD) deliver neurotrophic factors like glial cell line-derived neurotrophic factor (GDNF) or neurturin via neuronal transgene expression. Since these potent signaling-inducing neurotrophic factors can be distributed through long-distance neuronal projections to unaffected brain sites, this mode of delivery may eventually cause side effects. To explore a localized and thus potentially safer alternative for gene therapy of PD, we expressed GDNF exclusively in astrocytes and evaluated the efficacy of this approach in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and rat 6-hydroxy-dopamine (6-OHDA) models of PD. In terms of protection of dopaminergic cell bodies and projections, dopamine (DA) synthesis and behaviour, astrocyte-derived GDNF demonstrated the same efficacy as neuron-derived GDNF. In terms of safety, unilateral striatal GDNF expression in astrocytes did not result in delivery of bio-active GDNF to the contralateral hemispheres (potential off-target sites) as happened when GDNF was expressed in neurons. Thus, astrocytic GDNF expression represents a localized but efficient alternative to current gene therapeutic strategies for the treatment of PD, especially if viral vectors with enhanced tissue penetration are considered. Astrocytic neurotrophic factor expression may open new venues for neurotrophic factor-based gene therapy targeting severe diseases of the brain.
Collapse
|
45
|
Abstract
The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Department of Physiology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | |
Collapse
|
46
|
Bosman LWJ, Houweling AR, Owens CB, Tanke N, Shevchouk OT, Rahmati N, Teunissen WHT, Ju C, Gong W, Koekkoek SKE, De Zeeuw CI. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front Integr Neurosci 2011; 5:53. [PMID: 22065951 PMCID: PMC3207327 DOI: 10.3389/fnint.2011.00053] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/26/2011] [Indexed: 11/29/2022] Open
Abstract
The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.
Collapse
Affiliation(s)
- Laurens W. J. Bosman
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| | | | - Cullen B. Owens
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Nouk Tanke
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Negah Rahmati
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chiheng Ju
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | - Wei Gong
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdam, Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Arts and SciencesAmsterdam, Netherlands
| |
Collapse
|
47
|
Vokoun CR, Jackson MB, Basso MA. Circuit dynamics of the superior colliculus revealed by in vitro voltage imaging. Ann N Y Acad Sci 2011; 1233:41-7. [PMID: 21950974 DOI: 10.1111/j.1749-6632.2011.06166.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superior colliculus (SC) is well known for its involvement in the conversion of sensory stimuli into motor commands. This sensorimotor integration is made possible by the collective activity of multiple neuronal connections throughout the SC. Still, the majority of SC research focuses on in vivo extracellular recordings of behaving monkeys or in vitro patch-clamp recordings from lower mammals. Here, we discuss the results of an in vitro voltage-imaging technique in which population activity across the rodent SC circuitry was visualized to bridge the gap between single-cell recordings and whole-animal behavior. The high temporal and spatial resolution of the voltage-imaging technique allowed us to visualize patterns of activity following stimulation at discrete laminae. Stimulation within either the superficial or intermediate layer showed recruitment of disparate SC circuitry. These results provide insight into the circuit dynamics and neuronal populations that underlie behavior.
Collapse
Affiliation(s)
- Corinne R Vokoun
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
48
|
Boehnke SE, Berg DJ, Marino RA, Baldi PF, Itti L, Munoz DP. Visual adaptation and novelty responses in the superior colliculus. Eur J Neurosci 2011; 34:766-79. [PMID: 21864319 DOI: 10.1111/j.1460-9568.2011.07805.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The brain's ability to ignore repeating, often redundant, information while enhancing novel information processing is paramount to survival. When stimuli are repeatedly presented, the response of visually sensitive neurons decreases in magnitude, that is, neurons adapt or habituate, although the mechanism is not yet known. We monitored the activity of visual neurons in the superior colliculus (SC) of rhesus monkeys who actively fixated while repeated visual events were presented. We dissociated adaptation from habituation as mechanisms of the response decrement by using a Bayesian model of adaptation, and by employing a paradigm including rare trials that included an oddball stimulus that was either brighter or dimmer. If the mechanism is adaptation, response recovery should be seen only for the brighter stimulus; if the mechanism is habituation, response recovery ('dishabituation') should be seen for both the brighter and dimmer stimuli. We observed a reduction in the magnitude of the initial transient response and an increase in response onset latency with stimulus repetition for all visually responsive neurons in the SC. Response decrement was successfully captured by the adaptation model, which also predicted the effects of presentation rate and rare luminance changes. However, in a subset of neurons with sustained activity in response to visual stimuli, a novelty signal akin to dishabituation was observed late in the visual response profile for both brighter and dimmer stimuli, and was not captured by the model. This suggests that SC neurons integrate both rapidly discounted information about repeating stimuli and novelty information about oddball events, to support efficient selection in a cluttered dynamic world.
Collapse
Affiliation(s)
- Susan E Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
49
|
Basso MA, Sommer MA. Exploring the role of the substantia nigra pars reticulata in eye movements. Neuroscience 2011; 198:205-12. [PMID: 21884760 DOI: 10.1016/j.neuroscience.2011.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/06/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
Experiments that demonstrated a role for the substantia nigra in eye movements have played an important role in our understanding of the function of the basal ganglia in behavior more broadly. In this review we explore more recent experiments that extend the role of the substantia nigra pars reticulata from a simple gate for eye movements to include a role in cognitive processes for eye movements. We review recent evidence suggesting that basal ganglia nuclei beyond the substantia nigra may also play a role in eye movements and the cognitive events leading up to the production of eye movements. We close by pointing out some unresolved questions in our understanding of the relationship of basal ganglia nuclei and eye movements.
Collapse
Affiliation(s)
- M A Basso
- Department of Neuroscience, Ophthalmology and Visual Sciences University of Wisconsin Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
50
|
Abstract
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.
Collapse
|