1
|
Thergarajan P, O'Brien TJ, Jones NC, Ali I. Ligand-receptor interactions: A key to understanding microglia and astrocyte roles in epilepsy. Epilepsy Behav 2025; 163:110219. [PMID: 39693861 DOI: 10.1016/j.yebeh.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy continues to pose significant social and economic challenges on a global scale. Existing therapeutic approaches predominantly revolve around neurocentric mechanisms, and fail to control seizures in approximately one-third of patients. This underscores the pressing need for novel and complementary treatment approaches to address this gap. An increasing body of literature points to a role for glial cells, including microglia and astrocytes, in the pathogenesis of epilepsy. Notably, microglial cells, which serve as pivotal inflammatory mediators within the epileptic brain, have received increasing attention over recent years. These immune cells react to epileptogenic insults, regulate neuronal processes, and play diverse roles during the process of epilepsy development. Additionally, astrocytes, another integral non-neuronal brain cells, have garnered increasing recognition for their dynamic contributions to the pathophysiology of epilepsy. Their complex interactions with neurons and other glial cells involve modulating synaptic activity and neuronal excitability, thereby influencing the aberrant networks formed during epileptogenesis. This review explores the alterations in microglial and astrocytic function and their mechanisms of communication following an epileptogenic insult, examining their contribution to epilepsy development. By comprehensively studying these mechanisms, potential avenues could emerge for refining therapeutic strategies and ameliorating the impact of this complex neurological disease.
Collapse
Affiliation(s)
- Peravina Thergarajan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| | - Idrish Ali
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, 3004, Australia; Department of Neurology, The Alfred Hospital, Melbourne, Victoria, 3004, Australia; Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, 3000, Australia
| |
Collapse
|
2
|
Navarro-Ledesma S, Hamed-Hamed D, Gonzalez-Muñoz A, Pruimboom L. Impact of physical therapy techniques and common interventions on sleep quality in patients with chronic pain: A systematic review. Sleep Med Rev 2024; 76:101937. [PMID: 38669729 DOI: 10.1016/j.smrv.2024.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
This systematic review aims to find effectful healthcare strategies, with special focus on drug-free interventions and physical therapy, as part of the treatment for sleep in patients with chronic musculoskeletal pain. Data search was conducted across seven scientific databases. This review is deposited in the Prospero International prospective register of systematic reviews (CRD42023452574). Seventeen RCTs from different healthcare fields complied with our inclusion criteria. Two RCTs investigated manual therapy, five RCTs therapeutic exercise, one RCT Fu's subcutaneous needling, two RCTs physical agents (one on balneotherapy and one on cryo-stimulation), two RCTs cognitive-behavioral therapy, and four RCTs pharmacological therapy and their effect on sleep quality and/or quantity in patients suffering from chronic pain. We included the four RCT's in this systematic review with the purpose to be able to compare natural interventions with allopathic ones. As allopathic interventions are more prone to have secondary negative effects than physical therapy, compare the two types of interventions could be in favor of choosing the most effective treatment with the least secondary negative effects. Additionally, two RCTs on neurofeedback and limbic neuromodulation were also included. The results of the included studies suggest that strategies such as manual therapy, therapeutic exercise, Fu's subcutaneous needling, balneotherapy, cryo-stimulation, neurofeedback, limbic neuromodulation, cognitive-behavioral therapy, and pharmacological therapies have positive effects on patients suffering from chronic pain and sleep disturbances, especially when they suffer musculoskeletal pain. Secondary negative effects were found for the possible overuse of certain medicines such as morphine, a huge problem in the United States. Sleep deficiency is an independent risk factor for many diseases, including chronic pain syndrome and therefore more studies are needed to find non-toxic interventions for people suffering sleep disorders associated with systemic diseases and pain.
Collapse
Affiliation(s)
- Santiago Navarro-Ledesma
- Department of Physical Therapy, Faculty of Health Sciences, Campus of Melilla, University of Granada, Spain; University Chair in Clinical Psychoneuroimmunology (University of Granada and PNI Europe), Spain.
| | - Dina Hamed-Hamed
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, Granada, Spain
| | - Ana Gonzalez-Muñoz
- Clinical Medicine and Public Health PhD Program, Faculty of Health Sciences, University of Granada, Granada, Spain; Clinica Ana Gonzalez, Avenida Hernan Nuñez de Toledo 6, 29018, Malaga, Spain
| | - Leo Pruimboom
- University Chair in Clinical Psychoneuroimmunology (University of Granada and PNI Europe), Spain
| |
Collapse
|
3
|
Guo H, Hu WC, Xian H, Shi YX, Liu YY, Ma SB, Pan KQ, Wu SX, Xu LY, Luo C, Xie RG. CCL2 Potentiates Inflammation Pain and Related Anxiety-Like Behavior Through NMDA Signaling in Anterior Cingulate Cortex. Mol Neurobiol 2024; 61:4976-4991. [PMID: 38157119 DOI: 10.1007/s12035-023-03881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Previous studies have shown that the C-C motif chemokine ligand 2 (CCL2) is widely expressed in the nervous system and involved in regulating the development of chronic pain and related anxiety-like behaviors, but its precise mechanism is still unclear. This paper provides an in-depth examination of the involvement of CCL2-CCR2 signaling in the anterior cingulate cortex (ACC) in intraplantar injection of complete Freund's adjuvant (CFA) leading to inflammatory pain and its concomitant anxiety-like behaviors by modulation of glutamatergic N-methyl-D-aspartate receptor (NMDAR). Our findings suggest that local bilateral injection of CCR2 antagonist in the ACC inhibits CFA-induced inflammatory pain and anxiety-like behavior. Meanwhile, the expression of CCR2 and CCL2 was significantly increased in ACC after 14 days of intraplantar injection of CFA, and CCR2 was mainly expressed in excitatory neurons. Whole-cell patch-clamp recordings showed that the CCR2 inhibitor RS504393 reduced the frequency of miniature excitatory postsynaptic currents (mEPSC) in ACC, and CCL2 was involved in the regulation of NMDAR-induced current in ACC neurons in the pathological state. In addition, local injection of the NR2B inhibitor of NMDAR subunits, Ro 25-6981, attenuated the effects of CCL2-induced hyperalgesia and anxiety-like behavior in the ACC. In summary, CCL2 acts on CCR2 in ACC excitatory neurons and participates in the regulation of CFA-induced pain and related anxiety-like behaviors through upregulation of NR2B. CCR2 in the ACC neuron may be a potential target for the treatment of chronic inflammatory pain and pain-related anxiety.
Collapse
Affiliation(s)
- Huan Guo
- Department of Basic Medical Sciences, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hang Xian
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yun-Xin Shi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
| | - Yuan-Ying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
- School of Life Science & Research Center for Resource Peptide Drugs, Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
| | - Sui-Bin Ma
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Kun-Qing Pan
- No.19 Cadet Regiment, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Yan Xu
- Department of Basic Medical Sciences, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, China.
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
4
|
Fu S, Sun H, Wang J, Gao S, Zhu L, Cui K, Liu S, Qi X, Guan R, Fan X, Liu Q, Chen W, Su L, Cui S, Liao F, Liu F, Wong CCL, Yi M, Wan Y. Impaired neuronal macroautophagy in the prelimbic cortex contributes to comorbid anxiety-like behaviors in rats with chronic neuropathic pain. Autophagy 2024; 20:1559-1576. [PMID: 38522078 PMCID: PMC11210912 DOI: 10.1080/15548627.2024.2330038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
A large proportion of patients with chronic pain experience co-morbid anxiety. The medial prefrontal cortex (mPFC) is proposed to underlie this comorbidity, but the molecular and neuronal mechanisms are not fully understood. Here, we reported that impaired neuronal macroautophagy in the prelimbic cortical (PrL) subregion of the mPFC paralleled the occurrence of anxiety-like behaviors in rats with chronic spared nerve injury (SNI). Intriguingly, such macroautophagy impairment was mainly observed in a FOS/c-Fos+ neuronal subpopulation in the PrL. Chemogenetic inactivation of this comorbid anxiety-related neuronal ensemble relieved pain-induced anxiety-like behaviors. Rescuing macroautophagy impairment in this neuronal ensemble relieved chronic pain-associated anxiety and mechanical allodynia and restored synaptic homeostasis at the molecular level. By contrast, artificial disruption of macroautophagy induced early-onset co-morbid anxiety in neuropathic rats, but not general anxiety in normal rats. Taken together, our work identifies causal linkage between PrL neuronal macroautophagy dysfunction and comorbid anxiety in neuropathic pain and provides novel insights into the role of PrL by differentiating its contribution in pain-induced comorbid anxiety from its modulation over general anxiety-like behaviors.Abbreviation: AAV: adeno-associated viruses; ACC: anterior cingulate cortex; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; CAMK2/CaMKII: calcium/calmodulin-dependent protein kinase II; CNO: clozapine-N-oxide; CQ: chloroquine; DIA: data independent acquisition; DIO: double floxed inverse orf; DLG4/PSD-95: discs large MAGUK scaffold protein 4; Dox: doxycycline; GABA: γ-aminobutyric acid; GFP: green fluorescent protein; GO: gene ontology; Gi: inhibitory guanine nucleotide-binding proteins; HsCHRM4/M4D: human cholinergic receptor muscarinic 4; HsSYN: human synapsin; KEGG: Kyoto encyclopedia of genes and genomes; LAMP1: lysosomal-associated membrane protein 1; LC3-II: PE conjugated microtubule-associated protein 1 light chain3; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; mPFC: medial prefrontal cortex; P2A: 2A self-cleaving peptide; PPI: protein-protein interaction networks; PrL: prelimbic cortex; RBFOX3/NeuN: RNA binding protein, fox-1 homolog (C. elegans) 3; rtTA: reverse tetracycline-transactivator; SDS-PAGE: sodium dodecylsulfate-polyacrylamide gel electrophoresis; SHANK3: SH3 and multiple ankyrin repeat domains 3; SLC1A1/EAAC1: solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, systemXag), member 1; SNAP23: synaptosomal-associated protein 23; SNI:spared nerve injury; SQSTM1/p62: sequestosome 1; SYT3: synaptotagmin 3; TRE: tetracycline-responsive element; TRE3G: third-generation tetracycline-responsive element.
Collapse
Affiliation(s)
- Su Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Haojie Sun
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
- UCL School of Pharmacy, University College London, London, UK
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Shuaixin Gao
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
- Human Nutrition Program, Department of Human Sciences & James Comprehensive Cancer Center, 309 Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Liu Zhu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Shimeng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Rui Guan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Xiaocen Fan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Qingying Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Wen Chen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Li Su
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Feifei Liao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education and National Health Commission, Peking University, Beijing, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, P.R. China
| |
Collapse
|
5
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Han S, Ren J, Li Z, Wen J, Jiang B, Wei X. Deactivation of dorsal CA1 pyramidal neurons projecting to medial prefrontal cortex contributes to neuropathic pain and short-term memory impairment. Pain 2024; 165:1044-1059. [PMID: 37889600 DOI: 10.1097/j.pain.0000000000003100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Neuropathic pain after peripheral nerve injury is a multidimensional experience that includes sensory, affective, and cognitive components that interact with one another. Hypoexcitation of the medial prefrontal cortex (mPFC) was observed in mice with peripheral nerve injury, but the changes in neural inputs onto the mPFC have not been completely explored. Here, we report that the neural terminals from the dorsal hippocampus CA1 (dCA1) form excitatory connection with layer 5 pyramidal neurons in the prelimbic area (PrL) of the mPFC. Spared nerve injury (SNI) induced a reduction in the intrinsic excitability of dCA1 pyramidal neurons innervating the PrL and impairment in excitatory synaptic transmission onto dCA1 pyramidal cells. Specifically, activating the neural circuit from dCA1 to mPFC alleviated neuropathic pain behaviors and improved novel object recognition ability in SNI mice, whereas deactivating this pathway in naïve animals recapitulated tactile allodynia and memory deficits. These results indicated that hypoactivity in dCA1 pyramidal cells after SNI in turn deactivated layer 5 pyramidal neurons in PrL and ultimately caused pain hypersensitivity and memory deficits.
Collapse
Affiliation(s)
- Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiale Ren
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziming Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Junjian Wen
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Yao R, Man Y, Lu Y, Su Y, Zhou M, Wang S, Gu X, Wang R, Wu Y, Wang L. Infliximab alleviates memory impairment in rats with chronic pain by suppressing neuroinflammation and restoring hippocampal neurogenesis. Neuropharmacology 2024; 245:109813. [PMID: 38110173 DOI: 10.1016/j.neuropharm.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Patients with chronic pain commonly report impaired memory. Increasing evidence has demonstrated that inhibition of neurogenesis by neuroinflammation plays a crucial role in chronic pain-associated memory impairments. There is currently a lack of treatment strategies for this condition. An increasing number of clinical trials have reported the therapeutic potential of anti-inflammatory therapies targeting tumour necrosis factor-α (TNF-α) for inflammatory diseases. The present study investigated whether infliximab alleviates chronic pain-associated memory impairments in rats with chronic constriction injury (CCI). We demonstrated that infliximab alleviated spatial memory impairment and hyperalgesia induced by CCI. Furthermore, infliximab inhibited the activation of hippocampal astrocytes and microglia and decreased the release of proinflammatory cytokines in CCI rats. Furthermore, infliximab reversed the decrease in the numbers of newborn neurons and mature neurons in the dentate gyrus (DG) caused by chronic pain. Our data provide evidence that infliximab alleviates chronic pain-associated memory impairments, suppresses neuroinflammation and restores hippocampal neurogenesis in a CCI model. These facts indicate that infliximab may be a potential therapeutic agent for the treatment of chronic pain and associated memory impairments.
Collapse
Affiliation(s)
- Rui Yao
- Department of Anesthesiology, Xuzhou First People's Hospital, Xuzhou, 22100, China
| | - Yuanyuan Man
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou, 22100, China
| | - Yao Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 22100, China
| | - Yang Su
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 22100, China
| | - Meiyan Zhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China
| | - Shuang Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Rongguo Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China.
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 22100, China.
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, 22100, China.
| |
Collapse
|
8
|
Wang Y, Liu N, Ma L, Yue L, Cui S, Liu FY, Yi M, Wan Y. Ventral Hippocampal CA1 Pyramidal Neurons Encode Nociceptive Information. Neurosci Bull 2024; 40:201-217. [PMID: 37440103 PMCID: PMC10838882 DOI: 10.1007/s12264-023-01086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 07/14/2023] Open
Abstract
As a main structure of the limbic system, the hippocampus plays a critical role in pain perception and chronicity. The ventral hippocampal CA1 (vCA1) is closely associated with negative emotions such as anxiety, stress, and fear, yet how vCA1 neurons encode nociceptive information remains unclear. Using in vivo electrophysiological recording, we characterized vCA1 pyramidal neuron subpopulations that exhibited inhibitory or excitatory responses to plantar stimuli and were implicated in encoding stimuli modalities in naïve rats. Functional heterogeneity of the vCA1 pyramidal neurons was further identified in neuropathic pain conditions: the proportion and magnitude of the inhibitory response neurons paralleled mechanical allodynia and contributed to the confounded encoding of innocuous and noxious stimuli, whereas the excitatory response neurons were still instrumental in the discrimination of stimulus properties. Increased theta power and theta-spike coupling in vCA1 correlated with nociceptive behaviors. Optogenetic inhibition of vCA1 pyramidal neurons induced mechanical allodynia in naïve rats, whereas chemogenetic reversal of the overall suppressed vCA1 activity had analgesic effects in rats with neuropathic pain. These results provide direct evidence for the representations of nociceptive information in vCA1.
Collapse
Affiliation(s)
- Yue Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Naizheng Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
9
|
Chen L, Qin Q, Huang P, Cao F, Yin M, Xie Y, Wang W. Chronic pain accelerates cognitive impairment by reducing hippocampal neurogenesis may via CCL2/CCR2 signaling in APP/PS1 mice. Brain Res Bull 2023; 205:110801. [PMID: 37931808 DOI: 10.1016/j.brainresbull.2023.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
Patients with chronic pain often have cognitive impairment; this is especially true in elderly patients with neurodegenerative diseases such as Alzheimer's disease (AD), but the mechanism underlying this association remains unclear. This was addressed in the present study by investigating the effect of chronic neuropathic pain on hippocampal neurogenesis and cognitive impairment using amyloid precursor protein/presenilin 1 (APP/PS1) double transgenic mice subjected to spared-nerve injury (SNI). The Von Frey test was performed to determine the mechanical threshold of mouse hind limbs after SNI. The Morris water maze test was used to evaluate spatial learning and memory. Doublecortin-positive (DCX+), 5-bromo-2'-deoxyuridine (BrdU)+, BrdU+/neuronal nuclei (NeuN)+, and C-C motif chemokine ligand 2 (CCL2)+ neurons in the dentate gyrus of the hippocampus were detected by immunohistochemistry and immunofluorescence analysis. CCL2 and C-C chemokine receptor type 2 (CCR2) protein levels in the mouse hippocampus were analyzed by western blotting. The results showed that APP/PS1 mice with chronic neuropathic pain induced by SNI had significant learning and memory impairment. This was accompanied by increased CCL2 and CCR2 expression and decreases in the number of DCX+, BrdU+, and BrdU+/NeuN+ neurons. These results suggest that chronic neuropathic pain is associated with cognitive impairment, which may be caused by CCL2/CCR2 signaling-mediated inhibition of hippocampal neurogenesis. Thus, therapeutic strategies that alleviate neuropathic pain can potentially slow cognitive decline in patients with AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Lili Chen
- Department of Pain, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qin Qin
- Department of Pain, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Panchuan Huang
- Department of Pain, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fangli Cao
- Department of Pain, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Maojia Yin
- Department of Pain, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yachen Xie
- Department of Pain, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Wuchao Wang
- Department of Pain, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
10
|
Liu Q, Lu Z, Ren H, Fu L, Wang Y, Bu H, Ma M, Ma L, Huang C, Wang J, Zang W, Cao J, Fan X. Cav3.2 T-Type calcium channels downregulation attenuates bone cancer pain induced by inhibiting IGF-1/HIF-1α signaling pathway in the rat spinal cord. J Bone Oncol 2023; 42:100495. [PMID: 37583441 PMCID: PMC10423893 DOI: 10.1016/j.jbo.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
Background Bone cancer pain (BCP) is one of the most ubiquitous and refractory symptoms of cancer patients that needs to be urgently addressed. Substantial studies have revealed the pivotal role of Cav3.2 T-type calcium channels in chronic pain, however, its involvement in BCP and the specific molecular mechanism have not been fully elucidated. Methods The expression levels of Cav3.2, insulin-like growth factor 1(IGF-1), IGF-1 receptor (IGF-1R) and hypoxia-inducible factor-1α (HIF-1α) were detected by Western blot in tissues and cells. X-ray and Micro CT used to detect bone destruction in rats. Immunofluorescence was used to detect protein expression and spatial location in the spinal dorsal horn. Electrophoretic mobility shift assay used to verify the interaction between HIF-1α and Cav3.2. Results The results showed that the expression of Cav3.2 channel was upregulated and blockade of this channel alleviated mechanical allodynia and thermal hyperalgesia in BCP rats. Additionally, inhibition of IGF-1/IGF-1R signaling not only reversed the BCP-induced upregulation of Cav3.2 and HIF-1α, but also decreased nociceptive hypersensitivity in BCP rats. Inhibition of IGF-1 increased Cav3.2 expression levels, which were abolished by pretreatment with HIF-1α siRNA in PC12 cells. Furthermore, nuclear HIF-1α bound to the promoter of Cav3.2 to regulate the Cav3.2 transcription level, and knockdown of HIF-1α suppresses the IGF-1-induced upregulation of Cav3.2 and pain behaviors in rats with BCP. Conclusion These findings suggest that spinal Cav3.2 T-type calcium channels play a central role during the development of bone cancer pain in rats via regulation of the IGF-1/IGF-1R/HIF-1α pathway.
Collapse
Affiliation(s)
- Qingying Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhongyuan Lu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huan Ren
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Lijun Fu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yueliang Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huilian Bu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Minyu Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Letian Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chen Huang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
11
|
Yue C, Luan W, Gu H, Qiu D, Ding X, Liu P, Wang X, Hashimoto K, Yang JJ. The role of the gut-microbiota-brain axis via the subdiaphragmatic vagus nerve in chronic inflammatory pain and comorbid spatial working memory impairment in complete Freund's adjuvant mice. J Psychiatr Res 2023; 166:61-73. [PMID: 37741061 DOI: 10.1016/j.jpsychires.2023.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/09/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Chronic inflammatory pain (CIP) is a common public medical problem, often accompanied by memory impairment. However, the mechanisms underlying CIP and comorbid memory impairment remain elusive. This study aimed to examine the role of the gut-microbiota-brain axis in CIP and comorbid memory impairment in mice treated with complete Freund's adjuvant (CFA). 16S rRNA analysis showed the altered diversity of gut microbiota from day 1 to day 14 after CFA injection. Interestingly, fecal microbiota transplantation (FMT) from healthy naive mice ameliorated comorbidities, such as mechanical allodynia, thermal hyperalgesia, spatial working memory impairment, neuroinflammation, and abnormal composition of gut microbiota in the CFA mice. Additionally, subdiaphragmatic vagotomy (SDV) blocked the onset of these comorbidities. Interestingly, the relative abundance of the bacterial genus or species was also correlated with these comorbidities after FMT or SDV. Therefore, our results suggest that the gut-microbiota-brain axis via the subdiaphragmatic vagus nerve is crucial for the development of CIP and comorbid spatial working memory impairment in CFA mice.
Collapse
Affiliation(s)
- Caibao Yue
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Weiwei Luan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hanwen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Di Qiu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Ding
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xingming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
12
|
Zheng Y, Shao S, Zhang Y, Yuan S, Xing Y, Wang J, Qi X, Cui K, Tong J, Liu F, Cui S, Wan Y, Yi M. HCN2 Channels in the Ventral Hippocampal CA1 Regulate Nociceptive Hypersensitivity in Mice. Int J Mol Sci 2023; 24:13823. [PMID: 37762124 PMCID: PMC10531460 DOI: 10.3390/ijms241813823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic pain is a significant health problem worldwide. Recent evidence has suggested that the ventral hippocampus is dysfunctional in humans and rodents, with decreased neuronal excitability and connectivity with other brain regions, parallel pain chronicity, and persistent nociceptive hypersensitivity. But the molecular mechanisms underlying hippocampal modulation of pain remain poorly elucidated. In this study, we used ex vivo whole-cell patch-clamp recording, immunofluorescence staining, and behavioral tests to examine whether hyperpolarization-activated cyclic nucleotide-gated channels 2 (HCN2) in the ventral hippocampal CA1 (vCA1) were involved in regulating nociceptive perception and CFA-induced inflammatory pain in mice. Reduced sag potential and firing rate of action potentials were observed in vCA1 pyramidal neurons from CFA-injected mice. Moreover, the expression of HCN2, but not HCN1, in vCA1 decreased in mice injected with CFA. HCN2 knockdown in vCA1 pyramidal neurons induced thermal hypersensitivity, whereas overexpression of HCN2 alleviated thermal hyperalgesia induced by intraplantar injection of CFA in mice. Our findings suggest that HCN2 in the vCA1 plays an active role in pain modulation and could be a promising target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yu Zhang
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS) & Peking Union Medical College (PUMC), Beijing 100101, China;
| | - Shulu Yuan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Yuanwei Xing
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Kun Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Jifu Tong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (Y.Z.); (S.S.); (S.Y.); (Y.X.); (J.W.); (X.Q.); (K.C.); (J.T.); (F.L.); (S.C.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100101, China
| |
Collapse
|
13
|
Illesca-Matus R, Ardiles NM, Munoz F, Moya PR. Implications of Physical Exercise on Episodic Memory and Anxiety: The Role of the Serotonergic System. Int J Mol Sci 2023; 24:11372. [PMID: 37511128 PMCID: PMC10379296 DOI: 10.3390/ijms241411372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
There is a growing interest in investigating the effects of physical exercise on cognitive performance, particularly episodic memory. Similarly, an increasing number of studies in recent decades have studied the effects of physical activity on mood and anxiety disorders. Moreover, the COVID-19 pandemic has raised awareness of the importance of regular physical activity for both mental and physical health. Nevertheless, the exact mechanisms underlying these effects are not fully understood. Interestingly, recent findings suggest that the serotonergic system may play a key role in mediating the effects of physical exercise on episodic memory and anxiety. In this review, we discuss the impact of physical exercise on both episodic memory and anxiety in human and animal models. In addition, we explore the accumulating evidence that supports a role for the serotonergic system in the effects of physical exercise on episodic memory and anxiety.
Collapse
Affiliation(s)
- Ricardo Illesca-Matus
- Laboratorio de Neurodinámica Básica y Aplicada, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Centro de Investigación Avanzada en Educación (CIAE), Universidad de Chile, Santiago 8320000, Chile
| | - Nicolás M Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Felipe Munoz
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua 2820000, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
14
|
Jiang Y, Liu Q, Zhao Y, Wang C, Sun M. Activation of CREB-BDNF Pathway in Pyramidal Neurons in the Hippocampus Improves the Neurological Outcome of Mice with Ischemic Stroke. Mol Neurobiol 2023; 60:1766-1781. [PMID: 36571720 DOI: 10.1007/s12035-022-03174-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Cerebral ischemia is characterized by several pathological reaction evolving over time. Hyperactivation of glutamatergic neurons is the main factor leading to excitotoxicity which potentiates oxidative stress and triggers the mechanisms of neural apoptosis after cerebral ischemia. However, it is unclear whether glutamate in the ventral hippocampal Cornus Ammonis 1 (vCA1) acts a part in neurological deficits, pain perception, anxiety, and depression induced by ischemic stroke. We investigated the effects of chemogenetic inhibition or activation of vCA1 pyramidal neurons which are mainly glutamatergic neurons on sequelae induced by cerebral ischemia. Our results revealed that inhibition of vCA1 pyramidal neurons by chemogenetics alleviated neurological deficits, pain perception, anxiety, and depression caused by cerebral ischemia in mice, but activation of vCA1 pyramidal neurons had limited effects. Moreover, we found that stroke was accompanied by decreased levels of cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in vCA1, which are modulated by glutamate. In this study, overexpression of CREB protein in pyramidal neurons in vCA1 by AAV virus significantly upregulated the content of BDNF and ameliorated the dysfunction induced by ischemic stroke. Our results demonstrated activation of the CREB-BDNF pathway in vCA1 pyramidal neurons significantly improved neurological deficits, pain perception, anxiety, and depression induced by ischemic stroke.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qingying Liu
- Department of Pain Management, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chunyang Wang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Minami K, Kami K, Nishimura Y, Kawanishi M, Imashiro K, Kami T, Habata S, Senba E, Umemoto Y, Tajima F. Voluntary running-induced activation of ventral hippocampal GABAergic interneurons contributes to exercise-induced hypoalgesia in neuropathic pain model mice. Sci Rep 2023; 13:2645. [PMID: 36788313 PMCID: PMC9929335 DOI: 10.1038/s41598-023-29849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The exact mechanism of exercise-induced hypoalgesia (EIH) in exercise therapy to improve chronic pain has not been fully clarified. Recent studies have suggested the importance of the ventral hippocampus (vHPC) in inducing chronic pain. We investigated the effects of voluntary running (VR) on FosB+ cells and GABAergic interneurons (parvalbumin-positive [PV+] and somatostatin-positive [SOM+]) in the vHPC-CA1 in neuropathic pain (NPP) model mice. VR significantly improved thermal hyperalgesia in the NPP model. The number of the FosB+ cells was significantly higher in partial sciatic nerve ligation-sedentary mice than in Sham and Naive mice, whereas VR significantly suppressed the FosB+ cells in the vHPC-CA1. Furthermore, VR significantly increased the proportion of activated PV+ and SOM+ interneurons in the vHPC-CA1, and tracer experiments indicated that approximately 24% of neurons projecting from the vHPC-CA1 to the basolateral nucleus of amygdala were activated in NPP mice. These results indicate that feedforward suppression of the activated neurons via VR-induced activation of GABAergic interneurons in the vHPC-CA1 may be a mechanism to produce EIH effects, and suggested that disappearance of negative emotions such as fear and anxiety by VR may play a critical role in improving chronic pain.
Collapse
Affiliation(s)
- Kohei Minami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Katsuya Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.
- Department of Rehabilitation, Faculty of Wakayama Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan.
| | - Yukihide Nishimura
- Department of Rehabilitation Medicine, Iwate Medical University, Morioka, Japan
| | - Makoto Kawanishi
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kyosuke Imashiro
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takuma Kami
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shogo Habata
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Emiko Senba
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
- Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan
| | - Yasunori Umemoto
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
16
|
Shao S, Zheng Y, Fu Z, Wang J, Zhang Y, Wang C, Qi X, Gong T, Ma L, Lin X, Yu H, Yuan S, Wan Y, Zhang H, Yi M. Ventral hippocampal CA1 modulates pain behaviors in mice with peripheral inflammation. Cell Rep 2023; 42:112017. [PMID: 36662622 DOI: 10.1016/j.celrep.2023.112017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/12/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Chronic pain is one of the most significant medical problems throughout the world. Recent evidence has confirmed the hippocampus as an active modulator of pain chronicity, but the underlying mechanisms remain unclear. Using in vivo electrophysiology, we identify a neural ensemble in the ventral hippocampal CA1 (vCA1) that shows inhibitory responses to noxious but not innocuous stimuli. Following peripheral inflammation, this ensemble becomes responsive to innocuous stimuli, representing hypersensitivity. Mimicking the inhibition of vCA1 neurons using chemogenetics induces chronic pain-like behaviors in naive mice, whereas activating vCA1 neurons in mice with peripheral inflammation results in a reduction of pain-related behaviors. Pathway-specific manipulation of vCA1 projections to basolateral amygdala (BLA) and infralimbic cortex (IL) shows that these pathways are differentially involved in pain modulation at different temporal stages of chronic inflammatory pain. These results confirm a crucial role of the vCA1 and its circuits in modulating the development of chronic pain.
Collapse
Affiliation(s)
- Shan Shao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Yawen Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Zibing Fu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Jiaxin Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Yu Zhang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS), Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing 100021, P.R. China
| | - Cheng Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Chinese Institute for Brain Research, Beijing 102206, P.R. China
| | - Xuetao Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Tingting Gong
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - Xi Lin
- Department of Civil Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Haitao Yu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Shulu Yuan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing 100083, P.R. China
| | - Haolin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, P.R. China.
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100083, P.R. China; Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing 100083, P.R. China.
| |
Collapse
|
17
|
Wang A, Guo D, Cheng H, Jiang H, Liu X, Tie M. Regulatory mechanism of Scutellaria baicalensis Georgi on bone cancer pain based on network pharmacology and experimental verification. PeerJ 2022; 10:e14394. [PMID: 36415861 PMCID: PMC9676018 DOI: 10.7717/peerj.14394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Context Scutellaria baicalensis Georgi (SBG) may relieve bone cancer pain (BCP) by regulating cell proliferation, angiogenesis, and apoptosis. Objective The mechanism of SBG in the treatment of BCP remains to be further explored. Methods The active compounds and targets of SBG were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SwissTargetPrediction databases. BCP-related targets were screened from NCBI and GeneCards databases. Additionally, Cytoscape software was applied to construct network diagrams, and OmicShare platform was used to enrich Gene Ontology (GO) and pathways. Finally, the verification of active compounds and core targets was performed based on quantitative real-time PCR (qRT-PCR). Results Interestingly, we identified baicalein and wogonin as the main active components of SBG. A total of 41 SBG targets, including VEGFA, IL6, MAPK3, JUN and TNF, were obtained in the treatment of BCP. In addition, pathways in cancer may be an essential way of SBG in the treatment of BCP. Experimental verification had shown that baicalein and wogonin were significantly related to BCP core targets. Conclusions The active components of SBG have been clarified, and the mechanism of the active components in treating BCP has been predicted and verified, which provides an experimental and theoretical basis for the in-depth elucidation of the pharmacodynamics material basis and mechanism of SBG.
Collapse
Affiliation(s)
- Aitao Wang
- Inner Mongolia People’s Hospital, Hohhot, China
| | - Dongmei Guo
- Inner Mongolia People’s Hospital, Hohhot, China
| | - Hongyu Cheng
- Inner Mongolia Medical University, Hohhot, China
| | - Hui Jiang
- Baotou Medical College, Baotou, China
| | | | - Muer Tie
- Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
18
|
The modulatory role of dopamine receptors within the hippocampal cornu ammonis area 1 in stress-induced analgesia in an animal model of persistent inflammatory pain. Behav Pharmacol 2022; 33:492-504. [PMID: 36148837 DOI: 10.1097/fbp.0000000000000697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The intrinsic pain inhibitory mechanisms can be activated by fear, anxiety, and stress. Stressful experiences produce analgesia, referred to as stress-induced analgesia (SIA). Major components of the limbic system, including the ventral tegmental area, nucleus accumbens, amygdala, and hippocampus, are involved in the SIA. In this study, we tried to understand the role of dopamine receptors in the cornu ammonis area 1 (CA1) of the hippocampus in the forced swim stress (FSS)-induced analgesia. Stereotaxic surgery was unilaterally performed on 129 adult male Wistar rats weighing 220-280 g. SCH23390 (0.25, 1, and 4 μg/0.5 μl saline) or sulpiride (0.25, 1, and 4 μg/0.5 μl DMSO), as D1- and D2-like dopamine receptor antagonists, respectively, were microinjected into the CA1 area, 5 min before exposure to FSS for a 6-min period. The vehicle groups received saline or DMSO instead of SCH23390 or sulpiride, respectively. The formalin test was done using formalin injection (50 μl; 2.5%) into the plantar surface of the rat's hind paw immediately after exposure to FSS. The results demonstrated that FSS produces analgesia during the early and late phases of the formalin test. However, intra-CA1 microinjection of SCH23390 or sulpiride attenuated the FSS-induced analgesia in both phases of the formalin test. This study provides new insight into the role of D1- and D2-like dopamine receptors in the CA1 area in the FSS-induced analgesia during persistent inflammatory pain.
Collapse
|
19
|
Jiang S, Zheng C, Wen G, Bu B, Zhao S, Xu X. Down-regulation of NR2B receptors contributes to the analgesic and antianxiety effects of enriched environment mediated by endocannabinoid system in the inflammatory pain mice. Behav Brain Res 2022; 435:114062. [PMID: 35985400 DOI: 10.1016/j.bbr.2022.114062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Chronic pain states are highly prevalent and yet poorly controlled by currently available analgesics. It has been reported that enriched environment (EE), as a new way of endogenous pharmacotherapy, is effective in attenuating chronic inflammatory pain. However, the underlying molecular mechanisms are still not fully understood. NMDA NR2B receptor plays a critical role in pain transmission and modulation. Thus, in this study, we aimed at the effect of EE on the NR2B receptors expression in the prefrontal cortex, hippocampus and thalamus in the inflammatory pain mice. The results showed a significant increase of NR2B receptors in the thalamus of mice at 7 d following injection of CFA in the subcutaneous of the bottom of the left hind paw. EE significantly reduced the duration of mechanical hypersensitivity and anxiety-related behavior and the expression of NR2B receptors as compared to the standard condition. Furthermore, EE significantly increased 2-arachidonoylglycero (2-AG) levels at 7 d in the inflammatory pain mice as compared to the standard condition, and the effect of EE on the behavior and the expression of NR2B receptors was abolished by intraperitoneal injection of AM281 (a selective antagonist of CB1 receptor). Elevated 2-AG levels by intraperitoneal injection of JZL184 (a selective inhibitor of MAGL, the enzyme responsible for 2-AG hydrolysis) produced the same effect as EE. Results from this study provide the evidence that EE mimics endocannabinoids to take analgesic and anti-anxiety activities by decreasing the expression of the NR2B receptors via the CB1 receptor in the thalamus, pending further studies.
Collapse
Affiliation(s)
- Shukun Jiang
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Chuanfei Zheng
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Gehua Wen
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Bin Bu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Shuang Zhao
- China Medical University Center of Forensic Investigation, Shenyang, PR China
| | - Xiaoming Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, China Medical University, Shenyang, PR China; Key Laboratory of Forensic Bio-evidence Sciences, Liaoning Province, PR China; China Medical University Center of Forensic Investigation, Shenyang, PR China.
| |
Collapse
|
20
|
Brain Mechanisms of Exercise-Induced Hypoalgesia: To Find a Way Out from "Fear-Avoidance Belief". Int J Mol Sci 2022; 23:ijms23052886. [PMID: 35270027 PMCID: PMC8911154 DOI: 10.3390/ijms23052886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
It is well known that exercise produces analgesic effects (exercise-induced hypoalgesia (EIH)) in animal models and chronic pain patients, but the brain mechanisms underlying these EIH effects, especially concerning the emotional aspects of pain, are not yet fully understood. In this review, we describe drastic changes in the mesocorticolimbic system of the brain which permit the induction of EIH effects. The amygdala (Amyg) is a critical node for the regulation of emotions, such as fear and anxiety, which are closely associated with chronic pain. In our recent studies using neuropathic pain (NPP) model mice, we extensively examined the association between the Amyg and EIH effects. We found that voluntary exercise (VE) activated glutamate (Glu) neurons in the medial basal Amyg projecting to the nucleus accumbens (NAc) lateral shell, while it almost completely suppressed NPP-induced activation of GABA neurons in the central nucleus of the Amyg (CeA). Furthermore, VE significantly inhibited activation of pyramidal neurons in the ventral hippocampus-CA1 region, which play important roles in contextual fear conditioning and the retrieval of fear memory. This review describes novel information concerning the brain mechanisms underlying EIH effects as a result of overcoming the fear-avoidance belief of chronic pain.
Collapse
|
21
|
Experimental Arthritis Inhibits Adult Hippocampal Neurogenesis in Mice. Cells 2022; 11:cells11050791. [PMID: 35269413 PMCID: PMC8909078 DOI: 10.3390/cells11050791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Adult-born neurons of the hippocampal dentate gyrus play a role in specific forms of learning, and disturbed neurogenesis seems to contribute to the development of neuropsychiatric disorders, such as major depression. Neuroinflammation inhibits adult neurogenesis, but the effect of peripheral inflammation on this form of neuroplasticity is ambiguous. Objective: Our aim was to investigate the influence of acute and chronic experimental arthritis on adult hippocampal neurogenesis and to elucidate putative regulatory mechanisms. Methods: Arthritis was triggered by subcutaneous injection of complete Freund’s adjuvant (CFA) into the hind paws of adult male mice. The animals were killed either seven days (acute inflammation) or 21 days (chronic inflammation) after the CFA injection. Behavioral tests were used to demonstrate arthritis-related hypersensitivity to painful stimuli. We used in vivo bioluminescence imaging to verify local inflammation. The systemic inflammatory response was assessed by complete blood cell counts and by measurement of the cytokine/chemokine concentrations of TNF-α, IL-1α, IL-4, IL-6, IL-10, KC and MIP-2 in the inflamed hind limbs, peripheral blood and hippocampus to characterize the inflammatory responses in the periphery and in the brain. In the hippocampal dentate gyrus, the total number of newborn neurons was determined with quantitative immunohistochemistry visualizing BrdU- and doublecortin-positive cells. Microglial activation in the dentate gyrus was determined by quantifying the density of Iba1- and CD68-positive cells. Results: Both acute and chronic arthritis resulted in paw edema, mechanical and thermal hyperalgesia. We found phagocytic infiltration and increased levels of TNF-α, IL-4, IL-6, KC and MIP-2 in the inflamed hind paws. Circulating neutrophil granulocytes and IL-6 levels increased in the blood solely during the acute phase. In the dentate gyrus, chronic arthritis reduced the number of doublecortin-positive cells, and we found increased density of CD68-positive macrophages/microglia in both the acute and chronic phases. Cytokine levels, however, were not altered in the hippocampus. Conclusions: Our data suggest that acute peripheral inflammation initiates a cascade of molecular and cellular changes that eventually leads to reduced adult hippocampal neurogenesis, which was detectable only in the chronic inflammatory phase.
Collapse
|
22
|
Yang N, Liu F, Zhang X, Chen C, Xia Z, Fu S, Wang J, Xu J, Cui S, Zhang Y, Yi M, Wan Y, Li Q, Xu S. A Hybrid Titanium-Softmaterial, High-Strength, Transparent Cranial Window for Transcranial Injection and Neuroimaging. BIOSENSORS 2022; 12:bios12020129. [PMID: 35200389 PMCID: PMC8870569 DOI: 10.3390/bios12020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/04/2023]
Abstract
A transparent and penetrable cranial window is essential for neuroimaging, transcranial injection and comprehensive understanding of cortical functions. For these applications, cranial windows made from glass coverslip, polydimethylsiloxane (PDMS), polymethylmethacrylate, crystal and silicone hydrogel have offered remarkable convenience. However, there is a lack of high-strength, high-transparency, penetrable cranial window with clinical application potential. We engineer high-strength hybrid Titanium-PDMS (Ti-PDMS) cranial windows, which allow large transparent area for in vivo two-photon imaging, and provide a soft window for transcranial injection. Laser scanning and 3D printing techniques are used to match the hybrid cranial window to different skull morphology. A multi-cycle degassing pouring process ensures a good combination of PDMS and Ti frame. Ti-PDMS cranial windows have a high fracture strength matching human skull bone, excellent light transmittance up to 94.4%, and refractive index close to biological tissue. Ti-PDMS cranial windows show excellent bio-compatibility during 21-week implantation in mice. Dye injection shows that the PDMS window has a "self-sealing" to keep liquid from leaking out. Two-photon imaging for brain tissues could be achieved up to 450 µm in z-depth. As a novel brain-computer-interface, this Ti-PDMS device offers an alternative choice for in vivo drug delivery, optical experiments, ultrasonic treatment and electrophysiology recording.
Collapse
Affiliation(s)
- Nana Yang
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
| | - Fengyu Liu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
- Correspondence: (F.L.); (S.X.)
| | - Xinyue Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Chenni Chen
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Zhiyuan Xia
- Department of Material Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Su Fu
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jiaxin Wang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Jingjing Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Shuang Cui
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Yong Zhang
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Ming Yi
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - You Wan
- Neuroscience Research Institute, Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (C.C.); (S.F.); (J.W.); (S.C.); (Y.Z.); (M.Y.); (Y.W.)
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing 100191, China
| | - Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (X.Z.); (Q.L.)
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing 100081, China
| | - Shengyong Xu
- Key Laboratory for the Physics & Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871, China; (N.Y.); (J.X.)
- Correspondence: (F.L.); (S.X.)
| |
Collapse
|
23
|
Yuan T, Orock A, Greenwood-VanMeerveld B. An enriched environment reduces chronic stress-induced visceral pain through modulating microglial activity in the central nucleus of the amygdala. Am J Physiol Gastrointest Liver Physiol 2022; 322:G223-G233. [PMID: 34877892 PMCID: PMC8793868 DOI: 10.1152/ajpgi.00307.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cognitive behavioral therapy (CBT) improves the quality of life for patients with brain-gut disorders; however, the underlying mechanisms of CBT remain to be explored. Previously, we showed that environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, ameliorates chronic stress-induced visceral hypersensitivity in a rodent model via mechanisms involving altered activity in the central nucleus of amygdala (CeA). In the present study, we investigated whether microglia-mediated synaptic plasticity in the CeA is a potential mechanism underlying the protective effects of EE against stress-induced visceral hypersensitivity. We stereotaxically implanted corticosterone (CORT) micropellets onto the dorsal margin of the CeA shown previously to induce colonic hypersensitivity. Animals were housed in EE cages or standard cages for 14 days after CORT implantation. Visceral sensitivity was assessed via visceromotor behavioral response to colorectal distension. Microglial morphology, microglia-mediated synaptic engulfment, and the expression of synaptic pruning-related signals complement component 1q (C1q), complement component 3 (C3), and C3 receptor (C3R) were measured using immunofluorescence and RNAscope assay. We found that housing CORT implanted rats in EE cages for 14 days attenuated visceral hypersensitivity in both male and female rats as compared with control rats maintained in standard housing. EE reduced CORT-induced microglial remodeling and microglia-mediated synaptic pruning with reduced C1q and CR3, but not C3, expression. Our data suggest that exposure to EE is sufficient to ameliorate stress-induced visceral pain via reducing amygdala microglia-modulated neuronal plasticity.NEW & NOTEWORTHY Clinical studies show that cognitive behavioral therapy (CBT) is effective in ameliorating visceral pain in patient with irritable bowel syndrome (IBS), yet the underlying mechanisms remain unexplored. By using environmental enrichment (EE), an experimental paradigm that mirrors positive behavioral intervention, we demonstrated that microglia-mediated synaptic plasticity in the CeA explains, plays a role, at least in part, in the positive effects of EE to reduce visceral hypersensitivity.
Collapse
Affiliation(s)
- Tian Yuan
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Albert Orock
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Beverley Greenwood-VanMeerveld
- 1Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma,2Oklahoma City Veterans Affairs Health Care System, Oklahoma City, Oklahoma
| |
Collapse
|
24
|
Bagnato S. The role of plasticity in the recovery of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:375-395. [PMID: 35034750 DOI: 10.1016/b978-0-12-819410-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disorders of consciousness (DOCs), i.e., coma, vegetative state, and minimally conscious state are the consequences of a severe brain injury that disrupts the brain ability to generate consciousness. Recovery from DOCs requires functional and structural changes in the brain. The sites where these plastic changes take place vary according to the pathophysiology of the DOC. The ascending reticular activating system of the brainstem and its complex connections with the thalamus and cortex are involved in the pathophysiology of coma. Subcortical structures, such as the striatum and globus pallidus, together with thalamocortical and corticothalamic projections, the basal forebrain, and several networks among different cortical areas are probably involved in vegetative and minimally conscious states. Some mechanisms of plasticity that allegedly operate in each of these sites to promote recovery of consciousness will be discussed in this chapter. While some mechanisms of plasticity work at a local level, others produce functional changes in complex neuronal networks, for example by entraining neuronal oscillations. The specific mechanisms of brain plasticity represent potential targets for future treatments aiming to restore consciousness in patients with severe DOCs.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù (PA), Italy.
| |
Collapse
|
25
|
Estrázulas M, Freitas RDS, Käfer ET, Dagnino APA, Campos MM. Central and peripheral effects of environmental enrichment in a mouse model of arthritis. Int Immunopharmacol 2022; 102:108386. [PMID: 34824037 DOI: 10.1016/j.intimp.2021.108386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/07/2023]
Abstract
This study analyzed whether environmental enrichment (EE) modulates the nociceptive and inflammatory responses in the mouse model of arthritis induced by Complete Freund's Adjuvant (CFA). Ninety male mice (C57BL/6-JUnib, 4-weeks-old; 20-25 g) were distributed into EE and standard (SE) groups. For EE, mice were kept in bigger cages using an alternation of materials to chew (wood and paper), for nesting (cotton), to use as hiding places (plastic tunnels), and for voluntary exercise (wheel running). Arthritis was induced by an injection of CFA (50 μL) into the right hind paw or saline solution in the control group. Separate groups received the anti-inflammatory drug dexamethasone (0.5 mg/kg; every 48 h). Inflammatory and pain measurements were performed from 1 to 35 days after CFA administration. EE per se reduced the acute paw edema formation and arthritis scores. The serum levels of tumor necrosis factor (TNF) were undetectable in any experimental groups. EE diminished the immunopositivity for the microglia marker IBA1 in the pre-frontal cortex, with slight changes for hippocampal GFAP-positive activated astrocytes. Finally, EE induced a marked increment of brain-derived nerve factor (BDNF) expression in the hippocampus, an effect that was fully prevented by dexamethasone. These data bring novel evidence on the peripheral and central effects of EE in a mouse arthritis model.
Collapse
Affiliation(s)
- Marina Estrázulas
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Raquel D S Freitas
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduarda T Käfer
- Curso de Graduação em Medicina, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana P A Dagnino
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Programa de Pós-graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Centro de Pesquisas em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Wei M, Feng S, Zhang L, Wang C, Chu S, Shi T, Zhou W, Zhang Y. Active Fraction Combination From Liuwei Dihuang Decoction Improves Adult Hippocampal Neurogenesis and Neurogenic Microenvironment in Cranially Irradiated Mice. Front Pharmacol 2021; 12:717719. [PMID: 34630096 PMCID: PMC8495126 DOI: 10.3389/fphar.2021.717719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Cranial radiotherapy is clinically used in the treatment of brain tumours; however, the consequent cognitive and emotional dysfunctions seriously impair the life quality of patients. LW-AFC, an active fraction combination extracted from classical traditional Chinese medicine prescription Liuwei Dihuang decoction, can improve cognitive and emotional dysfunctions in many animal models; however, the protective effect of LW-AFC on cranial irradiation–induced cognitive and emotional dysfunctions has not been reported. Recent studies indicate that impairment of adult hippocampal neurogenesis (AHN) and alterations of the neurogenic microenvironment in the hippocampus constitute critical factors in cognitive and emotional dysfunctions following cranial irradiation. Here, our research further investigated the potential protective effects and mechanisms of LW-AFC on cranial irradiation–induced cognitive and emotional dysfunctions in mice. Methods: LW-AFC (1.6 g/kg) was intragastrically administered to mice for 14 days before cranial irradiation (7 Gy γ-ray). AHN was examined by quantifying the number of proliferative neural stem cells and immature neurons in the dorsal and ventral hippocampus. The contextual fear conditioning test, open field test, and tail suspension test were used to assess cognitive and emotional functions in mice. To detect the change of the neurogenic microenvironment, colorimetry and multiplex bead analysis were performed to measure the level of oxidative stress, neurotrophic and growth factors, and inflammation in the hippocampus. Results: LW-AFC exerted beneficial effects on the contextual fear memory, anxiety behaviour, and depression behaviour in irradiated mice. Moreover, LW-AFC increased the number of proliferative neural stem cells and immature neurons in the dorsal hippocampus, displaying a regional specificity of neurogenic response. For the neurogenic microenvironment, LW-AFC significantly increased the contents of superoxide dismutase, glutathione peroxidase, glutathione, and catalase and decreased the content of malondialdehyde in the hippocampus of irradiated mice, accompanied by the increase in brain-derived neurotrophic factor, insulin-like growth factor-1, and interleukin-4 content. Together, LW-AFC improved cognitive and emotional dysfunctions, promoted AHN preferentially in the dorsal hippocampus, and ameliorated disturbance in the neurogenic microenvironment in irradiated mice. Conclusion: LW-AFC ameliorates cranial irradiation–induced cognitive and emotional dysfunctions, and the underlying mechanisms are mediated by promoting AHN in the dorsal hippocampus and improving the neurogenic microenvironment. LW-AFC might be a promising therapeutic agent to treat cognitive and emotional dysfunctions in patients receiving cranial radiotherapy.
Collapse
Affiliation(s)
- Mingxiao Wei
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shufang Feng
- Department of Poisoning and the Treatment, Affiliated Hospital to Academy of Military Medical Sciences (the 307 Hospital), Beijing, China
| | - Lin Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chen Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shasha Chu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Tianyao Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yongxiang Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
27
|
Neurogenesis in the adult brain functionally contributes to the maintenance of chronic neuropathic pain. Sci Rep 2021; 11:18549. [PMID: 34535707 PMCID: PMC8448753 DOI: 10.1038/s41598-021-97093-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Maladaptive adult neurogenesis in the mammalian brain has been associated with diverse behaviors including disrupted learning, negative mood disorders and psychiatric conditions. However, its functional role in the generation and maintenance of chronic pathological pain has not yet been elucidated. Using an inducible genetic deletion in vivo mouse model, different behavioural paradigms and home cage monitoring systems, we show that an absence of adult neurogenesis does not impact the development of neuropathic injury-induced peripheral nociceptive hypersensitivity, but rather promotes the recovery of pathological pain as well as improves parameters associated with the state of well-being of the injured mice. These results provide a mechanistic insight into the mechanisms of chronic pain and implicate neurogenic processes as a potential therapeutic target for reducing pain and improving the quality of life for patients.
Collapse
|
28
|
Shao FB, Fang JF, Wang SS, Qiu MT, Xi DN, Jin XM, Liu JG, Shao XM, Shen Z, Liang Y, Fang JQ, Du JY. Anxiolytic effect of GABAergic neurons in the anterior cingulate cortex in a rat model of chronic inflammatory pain. Mol Brain 2021; 14:139. [PMID: 34507588 PMCID: PMC8431944 DOI: 10.1186/s13041-021-00849-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Chronic pain easily leads to concomitant mood disorders, and the excitability of anterior cingulate cortex (ACC) pyramidal neurons (PNs) is involved in chronic pain-related anxiety. However, the mechanism by which PNs regulate pain-related anxiety is still unknown. The GABAergic system plays an important role in modulating neuronal activity. In this paper, we aimed to study how the GABAergic system participates in regulating the excitability of ACC PNs, consequently affecting chronic inflammatory pain-related anxiety. A rat model of CFA-induced chronic inflammatory pain displayed anxiety-like behaviors, increased the excitability of ACC PNs, and reduced inhibitory presynaptic transmission; however, the number of GAD65/67 was not altered. Interestingly, intra-ACC injection of the GABAAR agonist muscimol relieved anxiety-like behaviors but had no effect on chronic inflammatory pain. Intra-ACC injection of the GABAAR antagonist picrotoxin induced anxiety-like behaviors but had no effect on pain in normal rats. Notably, chemogenetic activation of GABAergic neurons in the ACC alleviated chronic inflammatory pain and pain-induced anxiety-like behaviors, enhanced inhibitory presynaptic transmission, and reduced the excitability of ACC PNs. Chemogenetic inhibition of GABAergic neurons in the ACC led to pain-induced anxiety-like behaviors, reduced inhibitory presynaptic transmission, and enhanced the excitability of ACC PNs but had no effect on pain in normal rats. We demonstrate that the GABAergic system mediates a reduction in inhibitory presynaptic transmission in the ACC, which leads to enhanced excitability of pyramidal neurons in the ACC and is associated with chronic inflammatory pain-related anxiety.
Collapse
Affiliation(s)
- Fang-Bing Shao
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Jun-Fan Fang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Si-Si Wang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Meng-Ting Qiu
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Dan-Ning Xi
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Xiao-Ming Jin
- Department of Anatomy and Cell Biology, Stark Neurosciences Research Institute, Indiana University School of Medicine, NB Building, 320w 15th Street #141, Indianapolis, IN, 46202, USA
| | - Jing-Gen Liu
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.,Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao-Mei Shao
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Zui Shen
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China
| | - Jian-Qiao Fang
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| | - Jun-Ying Du
- Department of Neurobiology and Acupuncture Research, the Third School of Clinical Medicine, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, 310053, China.
| |
Collapse
|
29
|
Jiang YP, Jin Y, Bao J, Wang S, Lai WD, Wen CP, Xu ZH, Yu J. Inconsistent Time-Dependent Effects of Tetramethylpyrazine on Primary Neurological Disorders and Psychiatric Comorbidities. Front Pharmacol 2021; 12:708517. [PMID: 34489702 PMCID: PMC8417558 DOI: 10.3389/fphar.2021.708517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the time dependent effects of tetramethylpyrazine (TMP, main activity compound of Ligusticum chuanxiong Hort) on two neurological disorders and their neuropsychiatric comorbidities. 6 Hz corneal rapid kindling was used to induce epileptogenesis and the inflammatory pain was induced by intra-articular Complete Freund's adjuvant (CFA) injection. The mechanical pain thresholds were measured using von Frey hair (D4, D11, D18, D25 after CFA first injection), and the vertical rearings of the mice was observed. To test the neuropsychiatric comorbidities, anxiety-like behaviors of mice were examined by open field and elevated plus maze tests. Two behavioral despair models, tail suspension test and forced swimming test were also used to evaluate the depressive like behaviors. The results showed that TMP administered from the initial day (D1-D35 in kindling model, D0-D14 and D0-D28 in CFA model) of modeling retarded both the developments of 6 Hz corneal rapid kindling epileptogenesis and the CFA induced inflammatory pain. In comparison, late periods administration of TMP (D21-D35 in kindling and D14-D28 in CFA model) showed no effect on the epileptogenesis and the generalized seizures (GS) of kindling, but alleviated maintenance of CFA induced inflammatory pain. Furthermore, we also found all TMP treatments from the initial day of modeling alleviated the co-morbid depressive and anxiety-like behaviors in both models; however, late periods treatments did not, either in kindling or the CFA induced inflammatory pain. BDNF/ERK signaling impairment was also tested by western blot, and the results showed that TMP administered from the initial day of modeling increased the hippocampal BDNF/ERK expression, whereas late period administration showed no effects. Overall, our findings reveal the inconsistent time dependent effects of Tetramethylpyrazine on neurological disorders and their relative neuropsychiatric comorbidities, and provide novel insight into the early application of TMP that might enhance hippocampal BDNF/ERK signaling to alleviate neuropsychiatric comorbidities in neurological diseases.
Collapse
Affiliation(s)
- Yue-Peng Jiang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Bao
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei-Dong Lai
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cheng-Ping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Hao Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
30
|
Carpenter JM, Brown KA, Diaz AN, Dockman RL, Benbow RA, Harn DA, Norberg T, Wagner JJ, Filipov NM. Delayed treatment with the immunotherapeutic LNFPIII ameliorates multiple neurological deficits in a pesticide-nerve agent prophylactic mouse model of Gulf War Illness. Neurotoxicol Teratol 2021; 87:107012. [PMID: 34256162 DOI: 10.1016/j.ntt.2021.107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Residual effects of the 1990-1991 Gulf War (GW) still plague veterans 30 years later as Gulf War Illness (GWI). Thought to stem mostly from deployment-related chemical overexposures, GWI is a disease with multiple neurological symptoms with likely immunological underpinnings. Currently, GWI remains untreatable, and the long-term neurological disease manifestation is not characterized fully. The present study sought to expand and evaluate the long-term implications of prior GW chemicals exposure on neurological function 6-8 months post GWI-like symptomatology induction. Additionally, the beneficial effects of delayed treatment with the glycan immunotherapeutic lacto-N-fucopentaose III (LNFPIII) were evaluated. Male C57BL/6J mice underwent a 10-day combinational exposure (i.p.) to GW chemicals, the nerve agent prophylactic pyridostigmine bromide (PB) and the insecticide permethrin (PM; 0.7 and 200 mg/kg, respectively). Beginning 4 months after PB/PM exposure, a subset of the mice were treated twice a week until study completion with LNFPIII. Evaluation of cognition/memory, motor function, and mood was performed beginning 1 month after LNFPIII treatment initiation. Prior exposure to PB/PM produced multiple locomotor, neuromuscular, and sensorimotor deficits across several motor tests. Subtle anxiety-like behavior was also present in PB/PM mice in mood tests. Further, PB/PM-exposed mice learned at a slower rate, mostly during early phases of the learning and memory tests employed. LNFPIII treatment restored or improved many of these behaviors, particularly in motor and cognition/memory domains. Electrophysiology data collected from hippocampal slices 8 months post PB/PM exposure revealed modest aberrations in basal synaptic transmission and long-term potentiation in the dorsal or ventral hippocampus that were improved by LNFPIII treatment. Immunohistochemical analysis of tyrosine hydroxylase (TH), a dopaminergic marker, did not detect major PB/PM effects along the nigrostriatal pathway, but LNFPIII increased striatal TH. Additionally, neuroinflammatory cells were increased in PB/PM mice, an effect reduced by LNFPIII. Collectively, long-term neurobehavioral and neurobiological dysfunction associated with prior PB/PM exposure was characterized; delayed LNFPIII treatment provided multiple behavioral and biological beneficial effects in the context of GWI, highlighting its potential as a GWI therapeutic.
Collapse
Affiliation(s)
- Jessica M Carpenter
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States
| | - Kyle A Brown
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States
| | - Alexa N Diaz
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Rachel L Dockman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Robert A Benbow
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Donald A Harn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States; Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Thomas Norberg
- Department of Chemistry, University of Uppsala, Uppsala, Sweden
| | - John J Wagner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.
| | - Nikolay M Filipov
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States; Neuroscience Program, University of Georgia, Athens, GA, United States; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, United States.
| |
Collapse
|
31
|
Tomiga Y, Sakai K, Ra SG, Kusano M, Ito A, Uehara Y, Takahashi H, Kawanaka K, Soejima H, Higaki Y. Short-term running exercise alters DNA methylation patterns in neuronal nitric oxide synthase and brain-derived neurotrophic factor genes in the mouse hippocampus and reduces anxiety-like behaviors. FASEB J 2021; 35:e21767. [PMID: 34325488 DOI: 10.1096/fj.202100630r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Running exercise has beneficial effects on brain health. However, the effects of relatively short-term running exercise (STEx) on behavior, and its underlying signaling pathways, are poorly understood. In this study, we evaluated the possibility that the regulation by STEx of brain-derived neurotrophic factor (BDNF) and neuronal nitric oxide synthase (nNOS, encoded by NOS1), which are important molecules for anxiety regulation, might involve mechanisms of epigenetic modification, such as DNA methylation. C57BL/6J male mice were divided into sedentary (SED, n = 12) and STEx (EX, n = 15) groups; STEx was conducted with the mice for a duration of 11 days. STEx reduced anxiety-like behaviors, and STEx reduced Nos1α and increased Bdnf exon I and IV mRNA levels in the hippocampus. Interestingly, behavioral parameters were associated with Bdnf exon I and IV and Nos1α mRNA levels in the ventral, but not dorsal, hippocampal region. However, STEx had no effect on peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc-1α) or fibronectin type III domain-containing 5 (Fndc5) mRNA levels, which are relatively long-term exercise-induced upstream regulators of BDNF. In parallel with gene expression changes, we found, for the first time, that STEx downregulated Bdnf promoter IV and upregulated Nos1 DNA methylation levels in the hippocampus, and these patterns were partially different between the dorsal and ventral regions. These findings suggest that the beneficial effects of running exercise on mood regulation may be controlled by alterations in epigenetic mechanisms, especially in the ventral hippocampus. These effects occur even after a relatively short-term period of exercise.
Collapse
Affiliation(s)
- Yuki Tomiga
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazuya Sakai
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Song-Gyu Ra
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kusano
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Ai Ito
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Liver Center, Saga University Hospital, Saga, Japan
| | - Kentaro Kawanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
32
|
Kami K, Tajima F, Senba E. Plastic changes in amygdala subregions by voluntary running contribute to exercise-induced hypoalgesia in neuropathic pain model mice. Mol Pain 2021; 16:1744806920971377. [PMID: 33297861 PMCID: PMC7734490 DOI: 10.1177/1744806920971377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Physical exercise has been established as a low-cost, safe, and effective way to manage chronic pain, but exact mechanisms underlying such exercise-induced hypoalgesia (EIH) are not fully understood. Since a growing body of evidence implicated the amygdala (Amyg) as a critical node in emotional affective aspects of chronic pain, we hypothesized that the Amyg may play important roles to produce EIH effects. Here, using partial sciatic nerve ligation (PSL) model mice, we investigated the effects of voluntary running (VR) on the basal amygdala (BA) and the central nuclei of amygdala (CeA). The present study indicated that VR significantly improved heat hyperalgesia which was exacerbated in PSL-Sedentary mice, and that a significant positive correlation was detected between total running distances after PSL-surgery and thermal withdrawal latency. The number of activated glutamate (Glu) neurons in the medal BA (medBA) was significantly increased in PSL-Runner mice, while those were increased in the lateral BA in sedentary mice. Furthermore, in all subdivisions of the CeA, the number of activated gamma-aminobutyric acid (GABA) neurons was dramatically increased in PSL-Sedentary mice, but these numbers were significantly decreased in PSL-Runner mice. In addition, a tracer experiment demonstrated a marked increase in activated Glu neurons in the medBA projecting into the nucleus accumbens lateral shell in runner mice. Thus, our results suggest that VR may not only produce suppression of the negative emotion such as fear and anxiety closely related with pain chronification, but also promote pleasant emotion and hypoalgesia. Therefore, we conclude that EIH effects may be produced, at least in part, via such plastic changes in the Amyg.
Collapse
Affiliation(s)
- Katsuya Kami
- Department of Rehabilitation, Wakayama Faculty of Health Care Sciences, Takarazuka University of Medical and Health Care, Wakayama, Japan.,Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fumihiro Tajima
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan
| | - Emiko Senba
- Department of Rehabilitation Medicine, Wakayama Medical University, Wakayama, Japan.,Department of Physical Therapy, Osaka Yukioka College of Health Science, Ibaraki, Japan
| |
Collapse
|
33
|
A Runner's High for New Neurons? Potential Role for Endorphins in Exercise Effects on Adult Neurogenesis. Biomolecules 2021; 11:biom11081077. [PMID: 34439743 PMCID: PMC8392752 DOI: 10.3390/biom11081077] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
Physical exercise has wide-ranging benefits to cognitive functioning and mental state, effects very closely resembling enhancements to hippocampal functioning. Hippocampal neurogenesis has been implicated in many of these mental benefits of exercise. However, precise mechanisms behind these effects are not well known. Released peripherally during exercise, beta-endorphins are an intriguing candidate for moderating increases in neurogenesis and the related behavioral benefits of exercise. Although historically ignored due to their peripheral release and status as a peptide hormone, this review highlights reasons for further exploring beta-endorphin as a key mediator of hippocampal neurogenesis. This includes possible routes for beta-endorphin signaling into the hippocampus during exercise, direct effects of beta-endorphin on cell proliferation and neurogenesis, and behavioral effects of manipulating endogenous opioid signaling. Together, beta-endorphin appears to be a promising mechanism for understanding the specific ways that exercise promotes adult neurogenesis specifically and brain health broadly.
Collapse
|
34
|
Silva-Cardoso GK, Lazarini-Lopes W, Hallak JE, Crippa JA, Zuardi AW, Garcia-Cairasco N, Leite-Panissi CRA. Cannabidiol effectively reverses mechanical and thermal allodynia, hyperalgesia, and anxious behaviors in a neuropathic pain model: Possible role of CB1 and TRPV1 receptors. Neuropharmacology 2021; 197:108712. [PMID: 34274349 DOI: 10.1016/j.neuropharm.2021.108712] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023]
Abstract
The incidence of chronic pain is high in the general population and it is closely related to anxiety disorders, which promote negative effects on the quality of life. The cannabinoid system has essential participation in the pain sensitivity circuit. In this perspective, cannabidiol (CBD) is considered a promising strategy for treating neuropathic pain. Our study aimed to evaluate the effects of sub-chronic systemic treatment with CBD (0.3, 3, 10, or 30 mg/kg, i.p.) in male in rats submitted to chronic constriction injury of the sciatic nerve (CCI) or not (SHAM) and assessed in nociceptive tests (von Frey, acetone, and hot plate, three days CBD's treatment) and in the open field test (OFT, two days CBD's treatment). We performed a screening immunoreactivity of CB1 and TRPV1 receptors in cortical and limbic regions tissues, which were collected after 1.5 h of behavioral tests on the 24th experimental day. This study presents a dose-response curve to understand better the effects of low doses (3 mg/kg) on CBD's antiallodynic and anxiolytic effects. Also, low doses of CBD were able to (1) reverse mechanical and thermal allodynia (cold) and hyperalgesia, (2) reverse anxious behaviors (reduction of the % of grooming and freezing time, and increase of the % of center time in the OFT) induced by chronic pain. The peripheral neuropathy promoted the increase in the expression of CB1 and TRPV1 receptors in the anterior cingulate cortex (ACC), anterior insular cortex (AIC), basolateral amygdala (BLA), dorsal hippocampus (DH), and ventral hippocampus (VH). CBD potentiated this effect in the ACC, AIC, BLA, DH, and VH regions. These results provide substantial evidence of the role of the ACC-AIC-BLA corticolimbic circuit, and BLA-VH for pain regulation. These results can be clinically relevant since they contribute to the evidence of CBD's beneficial effects on treating chronic pain and associated comorbidities such as anxiety.
Collapse
Affiliation(s)
- Gleice K Silva-Cardoso
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Willian Lazarini-Lopes
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Jaime E Hallak
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Brazil
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Brazil; National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo, Brazil.
| |
Collapse
|
35
|
Kimura LF, Novaes LS, Picolo G, Munhoz CD, Cheung CW, Camarini R. How environmental enrichment balances out neuroinflammation in chronic pain and comorbid depression and anxiety disorders. Br J Pharmacol 2021; 179:1640-1660. [PMID: 34076891 DOI: 10.1111/bph.15584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Depression and anxiety commonly occur in chronic pain states and the coexistence of these diseases worsens outcomes for both disorders and may reduce treatment adherence and response. Despite the advances in the knowledge of chronic pain mechanisms, pharmacological treatment is still unsatisfactory. Research based on exposure to environmental enrichment is currently under investigation and seems to offer a promising low-cost strategy with no side effects. In this review, we discuss the role of inflammation as a major biological substrate and aetiological factor of chronic pain and depression/anxiety and report a collection of preclinical evidence of the effects and mechanisms of environmental enrichment. As microglia participates in the development of both conditions, we also discuss microglia as a potential target underlying the beneficial actions of environmental enrichment in chronic pain and comorbid depression/anxiety. We also discuss how alternative interventions under clinical guidelines, such as environmental enrichment, may improve treatment compliance and patient outcomes.
Collapse
Affiliation(s)
- Louise F Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | - Leonardo S Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | - Carolina D Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Chi W Cheung
- Department of Anesthesiology, University of Hong Kong, Hong Kong
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Burek DJ, Massaly N, Doering M, Zec A, Gaelen J, Morón JA. Long-term inflammatory pain does not impact exploratory behavior and stress coping strategies in mice. Pain 2021; 162:1705-1721. [PMID: 33433146 PMCID: PMC8119306 DOI: 10.1097/j.pain.0000000000002179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Pain puts patients at risk for developing psychiatric conditions such as anxiety and depression. Preclinical mouse models of pain-induced affective behavior vary widely in methodology and results, impairing progress towards improved therapeutics. To systematically investigate the effect of long-term inflammatory pain on exploratory behavior and stress coping strategy, we assessed male C57BL/6J mice in the forced swim test (FST), elevated zero maze, and open field test at 4 and 6 weeks postinjection of Complete Freund's Adjuvant, while controlling for testing order and combination. Inflammatory pain did not induce a passive stress coping strategy in the FST and did not reduce exploratory behavior in the elevated zero maze or the open field test. Using systematic correlational analysis and composite behavioral scores, we found no consistent association among measures for mice with or without inflammatory pain. A meta-analysis of similar studies indicated a modest, significant effect of Complete Freund's Adjuvant on exploratory behavior, but not immobility in the FST, and high heterogeneity among effect sizes in all 3 paradigms. Given the urgency for understanding the mechanisms of pain comorbidities and identifying novel therapies, these findings support the reallocation of our limited resources away from such unreliable assays and toward motivated and naturalistic behaviors. Future studies in pain and psychiatric translational research may benefit by considering outcomes beyond binary categorization, quantifying the associations between multiple measured behaviors, and agnostically identifying subtle yet meaningful patterns in behaviors.
Collapse
Affiliation(s)
- Dominika J. Burek
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Michelle Doering
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Azra Zec
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Jordan Gaelen
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
| | - Jose A. Morón
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Washington University in St. Louis Pain Center, St. Louis, MO, 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110, USA
| |
Collapse
|
37
|
Whole Genomic DNA Methylation Profiling of CpG Sites in Promoter Regions of Dorsal Root Ganglion in Diabetic Neuropathic Pain Mice. J Mol Neurosci 2021; 71:2558-2565. [PMID: 33950354 DOI: 10.1007/s12031-021-01847-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation and demethylation play an important role in neuropathic pain. In general, DNA methylation of CpG sites in the promoter region impedes gene expression, whereas DNA demethylation contributes to gene expression. Here, we evaluated the methylation status of CpG sites in genomic DNA promoter regions in dorsal root ganglions (DRGs) of diabetic neuropathic pain (DNP) mice. In our research, streptozotocin (STZ) was intraperitoneally injected into mice to construct DNP models. The DNP mice showed higher fasting blood glucose (above 11.1 mmol/L), lower body weight, and mechanical allodynia than control mice. Whole-genome bisulfite sequencing (WGBS) revealed an altered methylation pattern in CpG sites in the DNA promoter regions in DRGs of DNP mice. The results showed 376 promoter regions with hypermethylated CpG sites and 336 promoter regions with hypomethylated CpG sites. In addition, our data indicated that altered DNA methylation occurs primarily on CpG sites in DNA promoter regions. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that differentially methylated CpG sites annotated genes were involved in activities of the nervous and sensory systems. Enrichment analysis indicated that genes in these pathways contributed to diabetes or pain. In conclusion, our study enriched the role of DNA methylation in DNP.
Collapse
|
38
|
Chen Q, Liu Q, Zhang Y, Li S, Yi S. Leukemia inhibitory factor regulates Schwann cell proliferation and migration and affects peripheral nerve regeneration. Cell Death Dis 2021; 12:417. [PMID: 33888681 PMCID: PMC8062678 DOI: 10.1038/s41419-021-03706-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine that stimulates neuronal development and survival. Our previous study has demonstrated that LIF mRNA is dysregulated in the peripheral nerve segments after nerve injury. Here, we show that LIF protein is abundantly expressed in Schwann cells after rat sciatic nerve injury. Functionally, suppressed or elevated LIF increases or decreases the proliferation rate and migration ability of Schwann cells, respectively. Morphological observations demonstrate that in vivo application of siRNA against LIF after peripheral nerve injury promotes Schwann cell migration and proliferation, axon elongation, and myelin formation. Electrophysiological and behavior assessments disclose that knockdown of LIF benefits the function recovery of injured peripheral nerves. Differentially expressed LIF affects the metabolism of Schwann cells and negatively regulates ERFE (Erythroferrone). Collectively, our observations reveal the essential roles for LIF in regulating the proliferation and migration of Schwann cells and the regeneration of injured peripheral nerves, discover ERFE as a downstream effector of LIF, and extend our understanding of the molecular mechanisms underlying peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qianqian Chen
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.,State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Qianyan Liu
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yunsong Zhang
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Shiying Li
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Sheng Yi
- NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
39
|
Territo PR, Zarrinmayeh H. P2X 7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches. Front Cell Neurosci 2021; 15:617036. [PMID: 33889073 PMCID: PMC8055960 DOI: 10.3389/fncel.2021.617036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5′-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
40
|
Yu AQ, Wang J, Zhou XJ, Chen KY, Cao YD, Wang ZX, Mao ZB. Senescent Cell-Secreted Netrin-1 Modulates Aging-Related Disorders by Recruiting Sympathetic Fibers. Front Aging Neurosci 2021; 12:507140. [PMID: 33390926 PMCID: PMC7772213 DOI: 10.3389/fnagi.2020.507140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is implicated in several lines of aging-related disorders. However, the potential molecular mechanisms by which cellular senescence modulates age-related pathologies remain largely unexplored. Herein, we report that the density of sympathetic fibers (SFs) is significantly elevated in naturally aged mouse tissues and human colon adenoma tissues compared to the SFs densities in the corresponding young mouse tissues and human non-lesion colon tissues. A dorsal root ganglion (DRG)-human diploid fibroblast coculture assay revealed that senescent cells promote the outgrowth of SFs, indicating that the senescent cells induce recruitment of SFs in vitro. Additionally, subcutaneous transplantation of 2BS fibroblasts in nude mice shows that transplanted senescent 2BS fibroblasts promote SFs infiltration. Intra-articular senolytic molecular injection can reduce SFs density and inhibit SFs infiltration caused by senescent cells in osteoarthritis (OA), suggesting senescent cells promote the infiltration of SFs in vivo in aged tissues. Notably, the elevated level of SFs contributes to impaired cognitive function in naturally aged mice, which can be reversed by treatment with propranolol hydrochloride, a non-selective β receptor blocker that inhibits sympathetic nerve activity (SNA) by blocking non-selective β receptors. Additionally, 6-hydroxydopamine (6-OHDA)-induced sympathectomy improved hepatic sympathetic overactivity mediated hepatic steatosis in high fat diet (HFD)-fed APOE knockout mice (APOE−/− mice) by reducing hepatic SNA. Taken together, this study concludes that senescent cell-secreted netrin-1 mediated SFs outgrowth and infiltration, which contributes to aging-related disorders, suggesting that clearing senescent cells or inhibiting SNA is a promising therapeutic strategy for improving sympathetic nervous system (SNS) hyperactivity-induced aging-related pathologies.
Collapse
Affiliation(s)
- Ai Qing Yu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Research Center on Aging, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jie Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao Jia Zhou
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ke Yu Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - You De Cao
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhi Xiao Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China.,Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ze Bin Mao
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Research Center on Aging, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
41
|
Chamaa F, Darwish B, Nahas Z, Al-Chaer ED, Saadé NE, Abou-Kheir W. Long-term stimulation of the anteromedial thalamus increases hippocampal neurogenesis and spatial reference memory in adult rats. Behav Brain Res 2021; 402:113114. [PMID: 33417991 DOI: 10.1016/j.bbr.2021.113114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/07/2023]
Abstract
Deep brain stimulation (DBS) has shown positive clinical results in neurodegenerative diseases. Previous work from our group showed that a single session of DBS to the anteromedial thalamic nucleus (AMN) in awake rats, increased proliferation of stem/progenitor cells in the dentate gyrus (DG) of the hippocampus. We thought to examine the effect of single versus multiple sessions of DBS to the AMN in modulating adult hippocampal neurogenesis. Rats received unilateral single session, multiple sessions or no electrical stimulation (sham) in the right AMN. Rats received 5'-bromo-2'-deoxyuridine (BrdU) injections and were followed over a period of 1 week or 4 weeks. Single session of electrical stimulation induced a 1.9-fold increase in the number of proliferating BrdU positive cells after one week from stimulation and a 1.8-fold increase at four weeks post stimulation, both in the ipsilateral DG. As for multiple sessions of stimulation, they induced a 3- fold increase that extended to the contralateral DG after 4 weeks from stimulation. Spatial reference memory was tested in the Y-maze test by examining novel arm exploration. Both single and multiple sessions of stimulation prompted an increase in novel arm exploration at week 4, while only the multiple sessions of stimulation had this effect starting from week 1. This study demonstrates that sustained activation of the AMN boosts neurogenesis and improves spatial reference memory.
Collapse
Affiliation(s)
- Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Batoul Darwish
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ziad Nahas
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
| | - Elie D Al-Chaer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nayef E Saadé
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
42
|
Serotonin receptor 4 in the hippocampus modulates mood and anxiety. Mol Psychiatry 2021; 26:2334-2349. [PMID: 33441982 PMCID: PMC8275670 DOI: 10.1038/s41380-020-00994-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022]
Abstract
Serotonin receptor 4 (5-HT4R) plays an important role in regulating mood, anxiety, and cognition, and drugs that activate this receptor have fast-acting antidepressant (AD)-like effects in preclinical models. However, 5-HT4R is widely expressed throughout the central nervous system (CNS) and periphery, making it difficult to pinpoint the cell types and circuits underlying its effects. Therefore, we generated a Cre-dependent 5-HT4R knockout mouse line to dissect the function of 5-HT4R in specific brain regions and cell types. We show that the loss of functional 5-HT4R specifically from excitatory neurons of hippocampus led to robust AD-like behavioral responses and an elevation in baseline anxiety. 5-HT4R was necessary to maintain the proper excitability of dentate gyrus (DG) granule cells and cell type-specific molecular profiling revealed a dysregulation of genes necessary for normal neural function and plasticity in cells lacking 5-HT4R. These adaptations were accompanied by an increase in the number of immature neurons in ventral, but not dorsal, dentate gyrus, indicating a broad impact of 5-HT4R loss on the local cellular environment. This study is the first to use conditional genetic targeting to demonstrate a direct role for hippocampal 5-HT4R signaling in modulating mood and anxiety. Our findings also underscore the need for cell type-based approaches to elucidate the complex action of neuromodulatory systems on distinct neural circuits.
Collapse
|
43
|
Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain. Mol Psychiatry 2021; 26:4616-4632. [PMID: 32612250 PMCID: PMC8589654 DOI: 10.1038/s41380-020-0823-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
In mammals, most adult neural stem cells (NSCs) are located in the ventricular-subventricular zone (V-SVZ) along the wall of the lateral ventricles and they are the source of olfactory bulb interneurons. Adult NSCs exhibit an apico-basal polarity; they harbor a short apical process and a long basal process, reminiscent of radial glia morphology. In the adult mouse brain, we detected extremely long radial glia-like fibers that originate from the anterior-ventral V-SVZ and that are directed to the ventral striatum. Interestingly, a fraction of adult V-SVZ-derived neuroblasts dispersed in close association with the radial glia-like fibers in the nucleus accumbens (NAc). Using several in vivo mouse models, we show that newborn neurons integrate into preexisting circuits in the NAc where they mature as medium spiny neurons (MSNs), i.e., a type of projection neurons formerly believed to be generated only during embryonic development. Moreover, we found that the number of newborn neurons in the NAc is dynamically regulated by persistent pain, suggesting that adult neurogenesis of MSNs is an experience-modulated process.
Collapse
|
44
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
45
|
Alberca CD, Papale LA, Madrid A, Gianatiempo O, Cánepa ET, Alisch RS, Chertoff M. Perinatal protein malnutrition results in genome-wide disruptions of 5-hydroxymethylcytosine at regions that can be restored to control levels by an enriched environment. Epigenetics 2020; 16:1085-1101. [PMID: 33172347 DOI: 10.1080/15592294.2020.1841871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Maternal malnutrition remains one of the major adversities affecting brain development and long-term mental health outcomes, increasing the risk to develop anxiety and depressive disorders. We have previously shown that malnutrition-induced anxiety-like behaviours can be rescued by a social and sensory stimulation (enriched environment) in male mice. Here, we expand these findings to adult female mice and profiled genome-wide ventral hippocampal 5hmC levels related to malnutrition-induced anxiety-like behaviours and their rescue by an enriched environment. This approach revealed 508 differentially hydroxymethylated genes associated with protein malnutrition and that several genes (N = 34) exhibited a restored 5hmC abundance to control levels following exposure to an enriched environment, including genes involved in neuronal functions like dendrite outgrowth, axon guidance, and maintenance of neuronal circuits (e.g. Fltr3, Itsn1, Lman1, Lsamp, Nav, and Ror1) and epigenetic mechanisms (e.g. Hdac9 and Dicer1). Sequence motif predictions indicated that 5hmC may be modulating the binding of transcription factors for several of these transcripts, suggesting a regulatory role for 5hmC in response to perinatal malnutrition and exposure to an enriched environment. Together, these findings establish a role for 5hmC in early-life malnutrition and reveal genes linked to malnutrition-induced anxious behaviours that are mitigated by an enriched environment.
Collapse
Affiliation(s)
- Carolina D Alberca
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Octavio Gianatiempo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Mariela Chertoff
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Neuroepigenetica, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
46
|
Xia SH, Hu SW, Ge DG, Liu D, Wang D, Zhang S, Zhang Q, Yuan L, Li YQ, Yang JX, Wu P, Zhang H, Han MH, Ding HL, Cao JL. Chronic Pain Impairs Memory Formation via Disruption of Neurogenesis Mediated by Mesohippocampal Brain-Derived Neurotrophic Factor Signaling. Biol Psychiatry 2020; 88:597-610. [PMID: 32307038 DOI: 10.1016/j.biopsych.2020.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic pain patients often complain of their poor memory. The mechanisms underlying chronic pain-related memory impairment remain elusive, and there are few clinical therapeutic strategies available for this condition. METHODS In a neuropathic pain model induced by chronic constrictive injury of the sciatic nerve in male mice, we used circuit-specific electrophysiological recording, combined with chemogenetic, molecular, and pharmacologic methods, to examine the circuit and molecular mechanisms underlying chronic pain-related memory impairment. RESULTS Our current results show that chronic neuropathic pain impaired the acquisition of spatial memory and, meanwhile, reduced adult neurogenesis in the dentate gyrus. Experimentally reducing dentate gyrus neurogenesis mimicked this pain-induced effect on spatial memory formation in naïve mice. Furthermore, pain-associated impairments of both hippocampal neurogenesis and memory formation were rescued or mimicked by chemogenetic activation or deactivation, respectively, of the ventral tegmental area dopaminergic projection, through which ventral tegmental area-released brain-derived neurotrophic factor was required. Importantly, we found that chronic, but not acute, systematic administration of subanesthetic doses of ketamine, while without relieving pain, ameliorated chronic pain-related impairment of spatial memory formation, potentially by rescuing brain-derived neurotrophic factor-mediated dentate gyrus neurogenesis. CONCLUSIONS These findings provide a novel, circuit-based mechanistic link between chronic pain and memory formation deficit, and potential new therapeutic options for chronic pain-related learning deficit and memory impairment.
Collapse
Affiliation(s)
- Sun-Hui Xia
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - De-Gao Ge
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Di Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Song Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ling Yuan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Qiang Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Ming-Hu Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Department of Pharmacological Sciences, Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, New York; Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
47
|
Fang A, Li Y, Wu X, Wu B, Zhang Y. Baicalin attenuates inflammatory pain associated depressive symptoms via Akt-mediated adult hippocampal neurogenesis. Metab Brain Dis 2020; 35:1085-1093. [PMID: 32643091 DOI: 10.1007/s11011-020-00599-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023]
Abstract
Depression is one of main symptoms accompanying thermal hyperalgesia and mechanical allodynia induced by inflammatory pain. On physiological level, depressive symptoms could be attenuated by sufficient level of hippocampal neural plasticity. Adult hippocampal neurogenesis (AHN) plays critical roles in clearing panic memory, increasing psychiatric adaptability and preventing depressive emotion. Thus, targeting AHN is the applicable strategy to improve neural functions impaired and attenuate inflammatory pain. Previous reports indicate natural compound baicalin (BA) is one of the effective agents to promote AHN. In present study, we tested the effects of BA in mouse model of inflammatory pain as well as its biological underpinning. Behavioral tests indicate that BA treatment attenuated thermal hyperalgesia, mechanical allodynia and depressive symptoms. Meanwhile, treatment of BA promoted growth and differentiation of neural stem cells in hippocampus. AHN blocker temozolomide (TMZ) resulted in significant suppressed effects of BA to promote AHN, suggesting the critical role of AHN in regulating behavioral effects of BA to inflammatory pain. Akt plays the critical roles in the effects of BA to attenuate inflammatory pain induced symptoms. Prohibiting of Akt with GSK960693 dramatically prevented the effects of BA in attenuating inflammatory pain induced behavioral symptoms. Taken together, BA is the potential pain killer to alleviating inflammatory pain via Akt-mediated adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Aili Fang
- Department of Anesthesiology, Shanxi Bethune Hospital, No.99 Longcheng Street, Taiyuan, Shanxi Province, 030012, People's Republic of China.
| | - Yan Li
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xuemei Wu
- Department of Neurology, General Hospital of TISCO, Taiyuan, Shanxi Province, China
| | - Bin Wu
- Department of Central Laboratory, General Hospital of TISCO, Taiyuan, Shanxi Province, China
| | - Yinhong Zhang
- Department of Laboratory Animal Science, Shanxi Key Laboratory of Laboratory Animal and Animal Model of Human Diseases, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
48
|
The Pelvic Girdle Pain deadlock: 2. Topics that, so far, have remained out of focus. Musculoskelet Sci Pract 2020; 48:102166. [PMID: 32560869 DOI: 10.1016/j.msksp.2020.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In our preceding paper, we concluded that Pelvic Girdle Pain (PGP) should be taken seriously. Still, we do not know its causes. Literature reviews on treatment fail to reveal a consistent pattern, and there are patients who do not respond well to treatment. We designated the lack of progress in research and in the clinic as 'deadlock', and proposed a 'deconstruction' of PGP, that is to say, taking PGP apart into its relevant dimensions. PURPOSE We examine the proposition that PGP may emerge as local inflammation. Inflammation would be a new dimension to be taken into account, between biomechanics and psychology. To explore the consequences of this idea, we present four different topics that, so far, have remained out of focus. One: The importance of microtrauma. Two: Ways to counteract chronification. Three: The importance of sickness behaviour when systemic inflammation turns into neuroinflammation of the brain. And Four: The mainly emotional and cognitive nature of chronic pain, and how aberrant neuroinflammation may render chronic pain intractable. For intractable pain, sleep and stress management are promising treatment options. IMPLICATIONS The authors hope that the present paper helps to stimulate the flexible creativity that is required to deal with the biological and psychological impact of PGP. Measuring inflammatory mediators in PGP should be a research priority. It should be understood that the boundaries between biology and psychology are becoming blurred. Clinicians must frequently monitor pain, disability, and mood, and be ready to switch treatment whenever the patient does not improve.
Collapse
|
49
|
Liu F, Tian N, Zhang HQ, Li SH, Zhou QZ, Yang Y, Zheng J, Wang JZ. GSK-3β activation accelerates early-stage consumption of Hippocampal Neurogenesis in senescent mice. Theranostics 2020; 10:9674-9685. [PMID: 32863953 PMCID: PMC7449917 DOI: 10.7150/thno.43829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) deficits contribute to the progression of cognitive impairments during accelerated senescence, with the mechanistic causes poorly understood. Glycogen synthase kinase-3β (GSK-3β) is a critical regulator in prenatal neurodevelopment. The present study aims to study whether and how GSK-3β regulates AHN during the accelerated senescence. Methods: AHN and AHN-dependent cognition and GSK-3β were evaluated in 3- and 6-month senescence-accelerated mice prone 8 (SAM-P8) and senescence resistant 1 (SAM-R1) mice, respectively. GSK-3β was selectively overexpressed in wild-type mice using adeno-associated virus, or knocked-out by crossbreeding with GSK-3β floxed mice in the neural stem cells (NSCs) of Nestin-Cre mice, or pharmacologically inhibited with SB216763 in SAM-P8 mice. AHN was evaluated by BrdU-, DCX-staining and retrovirus-labeling. Results: AHN transiently increased at 3-month, but dramatically dropped at 6-month of age in SAM-P8 mice with a simultaneous activation of GSK-3β at 3-month. Selective overexpression of GSK-3β in hippocampal NSCs of wildtype mice induced long-term AHN deficits due to an accelerated depletion of NSC pool, although it transiently increased the proliferation and survival of the newborn neurons. Pharmacologically inhibiting GSK-3β by SB216763 efficiently preserved AHN and improved contextual memory in 6-month SAM-P8 mice, while conditional knock-out of GSK-3β in NSCs impaired AHN. Conclusion: Early-stage activation of GSK-3β in NSCs impairs AHN by accelerating the depletion of NSC pool, and pharmacological inhibition of GSK-3β is efficient to preserve AHN during the accelerated aging. These results reveal novel mechanisms underlying the AHN impairments during accelerated senescence and provide new targets for pro-neurogenic therapies for related diseases.
Collapse
Affiliation(s)
- Fei Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Human Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Na Tian
- Department of Histology and Embryology, Key Laboratory of Ministry of Education of China for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua-Qiu Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ying Yang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Zheng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China
| |
Collapse
|
50
|
Zhang Z, Ishrat S, O'Bryan M, Klein B, Saraswati M, Robertson C, Kannan S. Pediatric Traumatic Brain Injury Causes Long-Term Deficits in Adult Hippocampal Neurogenesis and Cognition. J Neurotrauma 2020; 37:1656-1667. [DOI: 10.1089/neu.2019.6894] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zhi Zhang
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Samiha Ishrat
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Megan O'Bryan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Brandon Klein
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Manda Saraswati
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Courtney Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|