1
|
Strohmer B, Najarro E, Ausborn J, Berg RW, Tolu S. Sparse Firing in a Hybrid Central Pattern Generator for Spinal Motor Circuits. Neural Comput 2024; 36:759-780. [PMID: 38658025 DOI: 10.1162/neco_a_01660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses.
Collapse
Affiliation(s)
- Beck Strohmer
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Elias Najarro
- Department of Digital Design, IT University of Copenhagen, DK-2300 Copenhagen, Denmark
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, U.S.A.
| | - Rune W Berg
- Department of Neuroscience, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Silvia Tolu
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
2
|
Zheng Y, Kang S, O'Neill J, Bojak I. Spontaneous slow wave oscillations in extracellular field potential recordings reflect the alternating dominance of excitation and inhibition. J Physiol 2024; 602:713-736. [PMID: 38294945 DOI: 10.1113/jp284587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
In the resting state, cortical neurons can fire action potentials spontaneously but synchronously (Up state), followed by a quiescent period (Down state) before the cycle repeats. Extracellular recordings in the infragranular layer of cortex with a micro-electrode display a negative deflection (depth-negative) during Up states and a positive deflection (depth-positive) during Down states. The resulting slow wave oscillation (SWO) has been studied extensively during sleep and under anaesthesia. However, recent research on the balanced nature of synaptic excitation and inhibition has highlighted our limited understanding of its genesis. Specifically, are excitation and inhibition balanced during SWOs? We analyse spontaneous local field potentials (LFPs) during SWOs recorded from anaesthetised rats via a multi-channel laminar micro-electrode and show that the Down state consists of two distinct synaptic states: a Dynamic Down state associated with depth-positive LFPs and a prominent dipole in the extracellular field, and a Static Down state with negligible (≈ 0 mV $ \approx 0{\mathrm{\;mV}}$ ) LFPs and a lack of dipoles extracellularly. We demonstrate that depth-negative and -positive LFPs are generated by a shift in the balance of synaptic excitation and inhibition from excitation dominance (depth-negative) to inhibition dominance (depth-positive) in the infragranular layer neurons. Thus, although excitation and inhibition co-tune overall, differences in their timing lead to an alternation of dominance, manifesting as SWOs. We further show that Up state initiation is significantly faster if the preceding Down state is dynamic rather than static. Our findings provide a coherent picture of the dependence of SWOs on synaptic activity. KEY POINTS: Cortical neurons can exhibit repeated cycles of spontaneous activity interleaved with periods of relative silence, a phenomenon known as 'slow wave oscillation' (SWO). During SWOs, recordings of local field potentials (LFPs) in the neocortex show depth-negative deflection during the active period (Up state) and depth-positive deflection during the silent period (Down state). Here we further classified the Down state into a dynamic phase and a static phase based on a novel method of classification and revealed non-random, stereotypical sequences of the three states occurring with significantly different transitional kinetics. Our results suggest that the positive and negative deflections in the LFP reflect the shift of the instantaneous balance between excitatory and inhibitory synaptic activity of the local cortical neurons. The differences in transitional kinetics may imply distinct synaptic mechanisms for Up state initiation. The study may provide a new approach for investigating spontaneous brain rhythms.
Collapse
Affiliation(s)
- Ying Zheng
- School of Biological Sciences, Whiteknights, University of Reading, Reading, UK
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
| | - Sungmin Kang
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Ingo Bojak
- Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, UK
- School of Psychology and Clinical Language Science, Whiteknights, University of Reading, Reading, UK
| |
Collapse
|
3
|
Hayashi M, Gullo M, Senturk G, Di Costanzo S, Nagasaki SC, Kageyama R, Imayoshi I, Goulding M, Pfaff SL, Gatto G. A spinal synergy of excitatory and inhibitory neurons coordinates ipsilateral body movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533603. [PMID: 36993220 PMCID: PMC10055247 DOI: 10.1101/2023.03.21.533603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Innate and goal-directed movements require a high-degree of trunk and appendicular muscle coordination to preserve body stability while ensuring the correct execution of the motor action. The spinal neural circuits underlying motor execution and postural stability are finely modulated by propriospinal, sensory and descending feedback, yet how distinct spinal neuron populations cooperate to control body stability and limb coordination remains unclear. Here, we identified a spinal microcircuit composed of V2 lineage-derived excitatory (V2a) and inhibitory (V2b) neurons that together coordinate ipsilateral body movements during locomotion. Inactivation of the entire V2 neuron lineage does not impair intralimb coordination but destabilizes body balance and ipsilateral limb coupling, causing mice to adopt a compensatory festinating gait and be unable to execute skilled locomotor tasks. Taken together our data suggest that during locomotion the excitatory V2a and inhibitory V2b neurons act antagonistically to control intralimb coordination, and synergistically to coordinate forelimb and hindlimb movements. Thus, we suggest a new circuit architecture, by which neurons with distinct neurotransmitter identities employ a dual-mode of operation, exerting either synergistic or opposing functions to control different facets of the same motor behavior.
Collapse
Affiliation(s)
- Marito Hayashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Gullo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gokhan Senturk
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Biological Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Stefania Di Costanzo
- Biological Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Shinji C. Nagasaki
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
- RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Itaru Imayoshi
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Samuel L. Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Graziana Gatto
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurology Department, University Hospital of Cologne, Cologne, 50937, Germany
| |
Collapse
|
4
|
Valero M, Navas-Olive A, de la Prida LM, Buzsáki G. Inhibitory conductance controls place field dynamics in the hippocampus. Cell Rep 2022; 40:111232. [PMID: 36001959 PMCID: PMC9595125 DOI: 10.1016/j.celrep.2022.111232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hippocampal place cells receive a disparate collection of excitatory and inhibitory currents that endow them with spatially selective discharges and rhythmic activity. Using a combination of in vivo intracellular and extracellular recordings with opto/chemogenetic manipulations and computational modeling, we investigate the influence of inhibitory and excitatory inputs on CA1 pyramidal cell responses. At the cell bodies, inhibition leads and is stronger than excitation across the entire theta cycle. Pyramidal neurons fire on the ascending phase of theta when released from inhibition. Computational models equipped with the observed conductances reproduce these dynamics. In these models, place field properties are favored when the increased excitation is coupled with a reduction of inhibition within the field. As predicted by our simulations, firing rate within place fields and phase locking to theta are impaired by DREADDs activation of interneurons. Our results indicate that decreased inhibitory conductance is critical for place field expression. Valero et al. examine the influence of inhibition on place fields. They show that hippocampal neurons are dominated by inhibitory conductances during theta oscillations. A transient increase of excitation and drop of inhibition mediates place field emergence in simulations. Consistently, chemogenetic activation of interneurons deteriorates place cell properties in vivo.
Collapse
Affiliation(s)
- Manuel Valero
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Andrea Navas-Olive
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain
| | - Liset M de la Prida
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain.
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
5
|
McMahon C, Kowalski DP, Krupka AJ, Lemay MA. Single-cell and ensemble activity of lumbar intermediate and ventral horn interneurons in the spinal air-stepping cat. J Neurophysiol 2022; 127:99-115. [PMID: 34851739 PMCID: PMC8721903 DOI: 10.1152/jn.00202.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
We explored the relationship between population interneuronal network activation and motor output in the adult, in vivo, air-stepping, spinal cat. By simultaneously measuring the activity of large numbers of spinal interneurons, we explored ensembles of coherently firing interneurons and their relation to motor output. In addition, the networks were analyzed in relation to their spatial distribution along the lumbar enlargement for evidence of localized groups driving particular phases of the locomotor step cycle. We simultaneously recorded hindlimb EMG activity during stepping and extracellular signals from 128 channels across two polytrodes inserted within lamina V-VII of two separate lumbar segments. Results indicated that spinal interneurons participate in one of two ensembles that are highly correlated with the flexor or the extensor muscle bursts during stepping. Interestingly, less than half of the isolated single units were significantly unimodally tuned during the step cycle whereas >97% of the single units of the ensembles were significantly correlated with muscle activity. These results show the importance of population scale analysis in neural studies of behavior as there is a much greater correlation between muscle activity and ensemble firing than between muscle activity and individual neurons. Finally, we show that there is no correlation between interneurons' rostrocaudal locations within the lumbar enlargement and their preferred phase of firing or ensemble participation. These findings indicate that spinal interneurons of lamina V-VII encoding for different phases of the locomotor cycle are spread throughout the lumbar enlargement in the adult spinal cord.NEW & NOTEWORTHY We report on the ensemble organization of interneuronal activity in the spinal cord during locomotor movements and show that lumbar intermediate zone interneurons organize in two groups related to the two major phases of walking: stance and swing. Ensemble organization is also shown to better correlate with muscular output than single-cell activity, although ensemble membership does not appear to be somatotopically organized within the spinal cord.
Collapse
Affiliation(s)
- Chantal McMahon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | - David P Kowalski
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| | | | - Michel A Lemay
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Lindén H, Berg RW. Why Firing Rate Distributions Are Important for Understanding Spinal Central Pattern Generators. Front Hum Neurosci 2021; 15:719388. [PMID: 34539363 PMCID: PMC8446347 DOI: 10.3389/fnhum.2021.719388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/02/2021] [Indexed: 01/16/2023] Open
Abstract
Networks in the spinal cord, which are responsible for the generation of rhythmic movements, commonly known as central pattern generators (CPGs), have remained elusive for decades. Although it is well-known that many spinal neurons are rhythmically active, little attention has been given to the distribution of firing rates across the population. Here, we argue that firing rate distributions can provide an important clue to the organization of the CPGs. The data that can be gleaned from the sparse literature indicate a firing rate distribution, which is skewed toward zero with a long tail, akin to a normal distribution on a log-scale, i.e., a “log-normal” distribution. Importantly, such a shape is difficult to unite with the widespread assumption of modules composed of recurrently connected excitatory neurons. Spinal modules with recurrent excitation has the propensity to quickly escalate their firing rate and reach the maximum, hence equalizing the spiking activity across the population. The population distribution of firing rates hence would consist of a narrow peak near the maximum. This is incompatible with experiments, that show wide distributions and a peak close to zero. A way to resolve this puzzle is to include recurrent inhibition internally in each CPG modules. Hence, we investigate the impact of recurrent inhibition in a model and find that the firing rate distributions are closer to the experimentally observed. We therefore propose that recurrent inhibition is a crucial element in motor circuits, and suggest that future models of motor circuits should include recurrent inhibition as a mandatory element.
Collapse
Affiliation(s)
- Henrik Lindén
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune W Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
GABAergic Mechanisms Can Redress the Tilted Balance between Excitation and Inhibition in Damaged Spinal Networks. Mol Neurobiol 2021; 58:3769-3786. [PMID: 33826070 PMCID: PMC8279998 DOI: 10.1007/s12035-021-02370-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Correct operation of neuronal networks depends on the interplay between synaptic excitation and inhibition processes leading to a dynamic state termed balanced network. In the spinal cord, balanced network activity is fundamental for the expression of locomotor patterns necessary for rhythmic activation of limb extensor and flexor muscles. After spinal cord lesion, paralysis ensues often followed by spasticity. These conditions imply that, below the damaged site, the state of balanced networks has been disrupted and that restoration might be attempted by modulating the excitability of sublesional spinal neurons. Because of the widespread expression of inhibitory GABAergic neurons in the spinal cord, their role in the early and late phases of spinal cord injury deserves full attention. Thus, an early surge in extracellular GABA might be involved in the onset of spinal shock while a relative deficit of GABAergic mechanisms may be a contributor to spasticity. We discuss the role of GABA A receptors at synaptic and extrasynaptic level to modulate network excitability and to offer a pharmacological target for symptom control. In particular, it is proposed that activation of GABA A receptors with synthetic GABA agonists may downregulate motoneuron hyperexcitability (due to enhanced persistent ionic currents) and, therefore, diminish spasticity. This approach might constitute a complementary strategy to regulate network excitability after injury so that reconstruction of damaged spinal networks with new materials or cell transplants might proceed more successfully.
Collapse
|
8
|
Biological data questions the support of the self inhibition required for pattern generation in the half center model. PLoS One 2020; 15:e0238586. [PMID: 32915814 PMCID: PMC7485810 DOI: 10.1371/journal.pone.0238586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Locomotion control in mammals has been hypothesized to be governed by a central pattern generator (CPG) located in the circuitry of the spinal cord. The most common model of the CPG is the half center model, where two pools of neurons generate alternating, oscillatory activity. In this model, the pools reciprocally inhibit each other ensuring alternating activity. There is experimental support for reciprocal inhibition. However another crucial part of the half center model is a self inhibitory mechanism which prevents the neurons of each individual pool from infinite firing. Self-inhibition is hence necessary to obtain alternating activity. But critical parts of the experimental bases for the proposed mechanisms for self-inhibition were obtained in vitro, in preparations of juvenile animals. The commonly used adaptation of spike firing does not appear to be present in adult animals in vivo. We therefore modeled several possible self inhibitory mechanisms for locomotor control. Based on currently published data, previously proposed hypotheses of the self inhibitory mechanism, necessary to support the CPG hypothesis, seems to be put into question by functional evaluation tests or by in vivo data. This opens for alternative explanations of how locomotion activity patterns in the adult mammal could be generated.
Collapse
|
9
|
Ebsch C, Rosenbaum R. Spatially extended balanced networks without translationally invariant connectivity. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2020; 10:8. [PMID: 32405723 PMCID: PMC7221049 DOI: 10.1186/s13408-020-00085-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Networks of neurons in the cerebral cortex exhibit a balance between excitation (positive input current) and inhibition (negative input current). Balanced network theory provides a parsimonious mathematical model of this excitatory-inhibitory balance using randomly connected networks of model neurons in which balance is realized as a stable fixed point of network dynamics in the limit of large network size. Balanced network theory reproduces many salient features of cortical network dynamics such as asynchronous-irregular spiking activity. Early studies of balanced networks did not account for the spatial topology of cortical networks. Later works introduced spatial connectivity structure, but were restricted to networks with translationally invariant connectivity structure in which connection probability depends on distance alone and boundaries are assumed to be periodic. Spatial connectivity structure in cortical network does not always satisfy these assumptions. We use the mathematical theory of integral equations to extend the mean-field theory of balanced networks to account for more general dependence of connection probability on the spatial location of pre- and postsynaptic neurons. We compare our mathematical derivations to simulations of large networks of recurrently connected spiking neuron models.
Collapse
Affiliation(s)
- Christopher Ebsch
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, USA
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, USA.
- Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, USA.
| |
Collapse
|
10
|
Bannatyne BA, Hao ZZ, Dyer GMC, Watanabe M, Maxwell DJ, Berkowitz A. Neurotransmitters and Motoneuron Contacts of Multifunctional and Behaviorally Specialized Turtle Spinal Cord Interneurons. J Neurosci 2020; 40:2680-2694. [PMID: 32066584 PMCID: PMC7096148 DOI: 10.1523/jneurosci.2200-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The spinal cord can appropriately generate diverse movements, even without brain input and movement-related sensory feedback, using a combination of multifunctional and behaviorally specialized interneurons. The adult turtle spinal cord can generate motor patterns underlying forward swimming, three forms of scratching, and limb withdrawal (flexion reflex). We previously described turtle spinal interneurons activated during both scratching and swimming (multifunctional interneurons), interneurons activated during scratching but not swimming (scratch-specialized interneurons), and interneurons activated during flexion reflex but not scratching or swimming (flexion reflex-selective interneurons). How multifunctional and behaviorally specialized turtle spinal interneurons affect downstream neurons was unknown. Here, we recorded intracellularly from spinal interneurons activated during these motor patterns in turtles of both sexes in vivo and filled each with dyes. We labeled motoneurons using choline acetyltransferase antibodies or earlier intraperitoneal FluoroGold injection and used immunocytochemistry of interneuron axon terminals to identify their neurotransmitter(s) and putative synaptic contacts with motoneurons. We found that multifunctional interneurons are heterogeneous with respect to neurotransmitter, with some glutamatergic and others GABAergic or glycinergic, and can directly contact motoneurons. Also, scratch-specialized interneurons are heterogeneous with respect to neurotransmitter and some directly contact motoneurons. Thus, scratch-specialized interneurons might directly excite motoneurons that are more strongly activated during scratching than forward swimming, such as hip-flexor motoneurons. Finally, and surprisingly, we found that some motoneurons are behaviorally specialized, for scratching or flexion reflex. Thus, either some limb muscles are only used for a subset of limb behaviors or some limb motoneurons are only recruited during certain limb behaviors.SIGNIFICANCE STATEMENT Both multifunctional and behaviorally specialized spinal cord interneurons have been described in turtles, but their outputs are unknown. We studied responses of multifunctional interneurons (activated during swimming and scratching) and scratch-specialized interneurons, filled each with dyes, and used immunocytochemistry to determine their neurotransmitters and contacts with motoneurons. We found that both multifunctional and scratch-specialized interneurons are heterogeneous with respect to neurotransmitter, with some excitatory and others inhibitory. We found that some multifunctional and some scratch-specialized interneurons directly contact motoneurons. Scratch-specialized interneurons may excite motoneurons that are more strongly activated during scratching than swimming, such as hip-flexor motoneurons, or inhibit their antagonists, hip-extensor motoneurons. Surprisingly, we also found that some motoneurons are behaviorally specialized, for scratching or for flexion reflex.
Collapse
Affiliation(s)
- B Anne Bannatyne
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom G12 8QQ
| | - Zhao-Zhe Hao
- Department of Biology and Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, Oklahoma 73019, and
| | - Georgia M C Dyer
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom G12 8QQ
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - David J Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom G12 8QQ
| | - Ari Berkowitz
- Department of Biology and Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, Oklahoma 73019, and
| |
Collapse
|
11
|
Callahan RA, Roberts R, Sengupta M, Kimura Y, Higashijima SI, Bagnall MW. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. eLife 2019; 8:e47837. [PMID: 31355747 PMCID: PMC6701946 DOI: 10.7554/elife.47837] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.
Collapse
Affiliation(s)
- Rebecca A Callahan
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Richard Roberts
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Mohini Sengupta
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | | | | | - Martha W Bagnall
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| |
Collapse
|
12
|
Radosevic M, Willumsen A, Petersen PC, Lindén H, Vestergaard M, Berg RW. Decoupling of timescales reveals sparse convergent CPG network in the adult spinal cord. Nat Commun 2019; 10:2937. [PMID: 31270315 PMCID: PMC6610135 DOI: 10.1038/s41467-019-10822-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
During the generation of rhythmic movements, most spinal neurons receive an oscillatory synaptic drive. The neuronal architecture underlying this drive is unknown, and the corresponding network size and sparseness have not yet been addressed. If the input originates from a small central pattern generator (CPG) with dense divergent connectivity, it will induce correlated input to all receiving neurons, while sparse convergent wiring will induce a weak correlation, if any. Here, we use pairwise recordings of spinal neurons to measure synaptic correlations and thus infer the wiring architecture qualitatively. A strong correlation on a slow timescale implies functional relatedness and a common source, which will also cause correlation on fast timescale due to shared synaptic connections. However, we consistently find marginal coupling between slow and fast correlations regardless of neuronal identity. This suggests either sparse convergent connectivity or a CPG network with recurrent inhibition that actively decorrelates common input.
Collapse
Affiliation(s)
- Marija Radosevic
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Alex Willumsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Peter C Petersen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Neuroscience Institute, New York University, New York, NY, 10016, USA
| | - Henrik Lindén
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Mikkel Vestergaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine (MDC), 13125, Berlin-Buch, Germany
| | - Rune W Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
13
|
Baker C, Ebsch C, Lampl I, Rosenbaum R. Correlated states in balanced neuronal networks. Phys Rev E 2019; 99:052414. [PMID: 31212573 DOI: 10.1103/physreve.99.052414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Indexed: 06/09/2023]
Abstract
Understanding the magnitude and structure of interneuronal correlations and their relationship to synaptic connectivity structure is an important and difficult problem in computational neuroscience. Early studies show that neuronal network models with excitatory-inhibitory balance naturally create very weak spike train correlations, defining the "asynchronous state." Later work showed that, under some connectivity structures, balanced networks can produce larger correlations between some neuron pairs, even when the average correlation is very small. All of these previous studies assume that the local network receives feedforward synaptic input from a population of uncorrelated spike trains. We show that when spike trains providing feedforward input are correlated, the downstream recurrent network produces much larger correlations. We provide an in-depth analysis of the resulting "correlated state" in balanced networks and show that, unlike the asynchronous state, it produces a tight excitatory-inhibitory balance consistent with in vivo cortical recordings.
Collapse
Affiliation(s)
- Cody Baker
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Christopher Ebsch
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ilan Lampl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
14
|
Berg RW, Willumsen A, Lindén H. When networks walk a fine line: balance of excitation and inhibition in spinal motor circuits. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Petrovic A, Veeraraghavan P, Olivieri D, Nistri A, Jurcic N, Mladinic M. Loss of inhibitory synapses causes locomotor network dysfunction of the rat spinal cord during prolonged maintenance in vitro. Brain Res 2018; 1710:8-21. [PMID: 30578767 DOI: 10.1016/j.brainres.2018.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022]
Abstract
The isolated spinal cord of the neonatal rat is widely employed to clarify the basic mechanisms of network development or the early phase of degeneration after injury. Nevertheless, this preparation survives in Krebs solution up to 24 h only, making it desirable to explore approaches to extend its survival for longitudinal studies. The present report shows that culturing the spinal cord in oxygenated enriched Basal Medium Eagle (BME) provided excellent preservation of neurons (including motoneurons), glia and primary afferents (including dorsal root ganglia) for up to 72 h. Using DMEM medium was unsuccessful. Novel characteristics of spinal networks emerged with strong spontaneous activity, and deficit in fictive locomotion patterns with stereotypically slow cycles. Staining with markers for synaptic proteins synapsin 1 and synaptophysin showed thoroughly weaker signal after 3 days in vitro. Immunohistochemical staining of markers for glutamatergic and glycinergic neurons indicated significant reduction of the latter. Likewise, there was lower expression of the GABA-synthesizing enzyme GAD65. Thus, malfunction of locomotor networks appeared related to loss of inhibitory synapses. This phenomenon did not occur in analogous opossum preparations of the spinal cord kept in vitro. In conclusion, despite histological data suggesting that cultured spinal cords were undamaged (except for inhibitory biomarkers), electrophysiological data revealed important functional impairment. Thus, the downregulation of inhibitory synapses may account for the progressive hyperexcitability of rat spinal networks despite apparently normal histological appearance. Our observations may help to understand the basis of certain delayed effects of spinal injury like chronic pain and spasticity.
Collapse
Affiliation(s)
- Antonela Petrovic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | | | - Dario Olivieri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Nina Jurcic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Miranda Mladinic
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Department of Biotechnology, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
16
|
Abstract
Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| |
Collapse
|
17
|
Stein PSG. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors. J Neurophysiol 2018; 119:422-440. [PMID: 29070633 PMCID: PMC5867383 DOI: 10.1152/jn.00602.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Neuronal networks in the turtle spinal cord have considerable computational complexity even in the absence of connections with supraspinal structures. These networks contain central pattern generators (CPGs) for each of several behaviors, including three forms of scratch, two forms of swim, and one form of flexion reflex. Each behavior is activated by a specific set of cutaneous or electrical stimuli. The process of selection among behaviors within the spinal cord has multisecond memories of specific motor patterns. Some spinal cord interneurons are partially shared among several CPGs, whereas other interneurons are active during only one type of behavior. Partial sharing is a proposed mechanism that contributes to the ability of the spinal cord to generate motor pattern blends with characteristics of multiple behaviors. Variations of motor patterns, termed deletions, assist in characterization of the organization of the pattern-generating components of CPGs. Single-neuron recordings during both normal and deletion motor patterns provide support for a CPG organizational structure with unit burst generators (UBGs) whose members serve a direction of a specific degree of freedom of the hindlimb, e.g., the hip-flexor UBG, the hip-extensor UBG, the knee-flexor UBG, the knee-extensor UBG, etc. The classic half-center hypothesis that includes all the hindlimb flexors in a single flexor half-center and all the hindlimb extensors in a single extensor half-center lacks the organizational complexity to account for the motor patterns produced by turtle spinal CPGs. Thus the turtle spinal cord is a valuable model system for studies of mechanisms responsible for selection and generation of motor behaviors. NEW & NOTEWORTHY The concept of the central pattern generator (CPG) is a major tenet in motor neuroethology that has influenced the design and interpretations of experiments for over a half century. This review concentrates on the turtle spinal cord and describes studies from the 1970s to the present responsible for key developments in understanding the CPG mechanisms responsible for the selection and production of coordinated motor patterns during turtle hindlimb motor behaviors.
Collapse
Affiliation(s)
- Paul S G Stein
- Department of Biology, Washington University , St. Louis, Missouri
| |
Collapse
|
18
|
Berg RW. Commentary: Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity. Front Neural Circuits 2018; 12:1. [PMID: 29403360 PMCID: PMC5778114 DOI: 10.3389/fncir.2018.00001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/04/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Rune W Berg
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Perrier JF, Rasmussen HB, Jørgensen LK, Berg RW. Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism. Front Neural Circuits 2018; 11:111. [PMID: 29375322 PMCID: PMC5767281 DOI: 10.3389/fncir.2017.00111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/15/2017] [Indexed: 01/23/2023] Open
Abstract
Motor fatigue occurring during prolonged physical activity has both peripheral and central origins. It was previously demonstrated that the excitability of motoneurons was decreased when a spillover of serotonin could activate extrasynaptic 5-HT1A receptors at the axon initial segment (AIS) of motoneurons. Here we investigated the impact of massive synaptic release of serotonin on motor behavior in an integrated preparation of the adult turtle performing fictive scratching behaviors. We found that a prolonged electrical stimulation of the raphe spinal pathway induced a reversible inhibition of the motor behavior that lasted several tens of seconds. The effect disappeared when the spinal cord was perfused with an antagonist for 5-HT1A receptors. By demonstrating a direct impact of serotonin on motor behavior, we suggest a central role of this monoamine behind central fatigue.
Collapse
Affiliation(s)
- Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hanne B. Rasmussen
- Department of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone K. Jørgensen
- Department of Biomedical Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune W. Berg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Jensen KHR, Berg RW. Advances and perspectives in tissue clearing using CLARITY. J Chem Neuroanat 2017; 86:19-34. [DOI: 10.1016/j.jchemneu.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
|
21
|
Synaptic Excitation in Spinal Motoneurons Alternates with Synaptic Inhibition and Is Balanced by Outward Rectification during Rhythmic Motor Network Activity. J Neurosci 2017; 37:9239-9248. [PMID: 28842417 DOI: 10.1523/jneurosci.0800-17.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 11/21/2022] Open
Abstract
Regular firing in spinal motoneurons of red-eared turtles (Trachemys scripta elegans, either sex) evoked by steady depolarization at rest is replaced by irregular firing during functional network activity. The transition caused by increased input conductance and synaptic fluctuations in membrane potential was suggested to originate from intense concurrent inhibition and excitation. We show that the conductance increase in motoneurons during functional network activity is mainly caused by intrinsic outward rectification near threshold for action potentials by activation of voltage and Ca2+ gated K channels. Intrinsic outward rectification facilitates spiking by focusing synaptic depolarization near threshold for action potentials. By direct recording of synaptic currents, we also show that motoneurons are activated by out-of-phase peaks in excitation and inhibition during network activity, whereas continuous low-level concurrent inhibition and excitation may contribute to irregular firing.SIGNIFICANCE STATEMENT Neurons embedded in active neural networks can enter a high-conductance state. High-conductance states were observed in spinal motoneurons during rhythmic motor behavior. Assuming no change in intrinsic conductance, it was suggested that the high-conductance state in motoneurons originated from balanced inhibition and excitation. In this study, we demonstrate that intrinsic outward rectification significantly contributes to the high-conductance state. Outward rectification balances synaptic excitation and maintains membrane potential near spike threshold. In addition, direct synaptic current recordings show out-of-phase excitation and inhibition in motoneurons during rhythmic network activity.
Collapse
|
22
|
Kobayashi R, Nishimaru H, Nishijo H, Lansky P. A single spike deteriorates synaptic conductance estimation. Biosystems 2017; 161:41-45. [PMID: 28756162 DOI: 10.1016/j.biosystems.2017.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
Abstract
We investigated the estimation accuracy of synaptic conductances by analyzing simulated voltage traces generated by a Hodgkin-Huxley type model. We show that even a single spike substantially deteriorates the estimation. We also demonstrate that two approaches, namely, negative current injection and spike removal, can ameliorate this deterioration.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan; Department of Informatics, Graduate University for Advanced Studies (Sokendai), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Petr Lansky
- Institute of Physiology, The Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| |
Collapse
|
23
|
Vich C, Berg RW, Guillamon A, Ditlevsen S. Estimation of Synaptic Conductances in Presence of Nonlinear Effects Caused by Subthreshold Ionic Currents. Front Comput Neurosci 2017; 11:69. [PMID: 28790909 PMCID: PMC5524927 DOI: 10.3389/fncom.2017.00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
Subthreshold fluctuations in neuronal membrane potential traces contain nonlinear components, and employing nonlinear models might improve the statistical inference. We propose a new strategy to estimate synaptic conductances, which has been tested using in silico data and applied to in vivo recordings. The model is constructed to capture the nonlinearities caused by subthreshold activated currents, and the estimation procedure can discern between excitatory and inhibitory conductances using only one membrane potential trace. More precisely, we perform second order approximations of biophysical models to capture the subthreshold nonlinearities, resulting in quadratic integrate-and-fire models, and apply approximate maximum likelihood estimation where we only suppose that conductances are stationary in a 50–100 ms time window. The results show an improvement compared to existent procedures for the models tested here.
Collapse
Affiliation(s)
- Catalina Vich
- Departament de Matemàtiques i Informàtica, Universitat de les Illes BalearsPalma, Spain
| | - Rune W Berg
- Center for Neuroscience, University of CopenhagenCopenhagen, Denmark
| | - Antoni Guillamon
- Departament de Matemàtiques, Universitat Politècnica de CatalunyaBarcelona, Spain
| | - Susanne Ditlevsen
- Department of Mathematical Sciences, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|
24
|
Petersen PC, Berg RW. Spinal Cord Preparation from Adult Red-eared Turtles for Electrophysiological Recordings during Motor Activity. Bio Protoc 2017; 7:e2381. [PMID: 34541120 DOI: 10.21769/bioprotoc.2381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/02/2022] Open
Abstract
Although it is known that the generation of movements is performed to a large extent in neuronal circuits located in the spinal cord, the involved mechanisms are still unclear. The turtle as a model system for investigating spinal motor activity has advantages, which far exceeds those of model systems using other animals. The high resistance to anoxia allows for investigation of the fully developed and adult spinal circuitry, as opposed to mammals, which are sensitive to anoxia and where using neonates are often required to remedy the problems. The turtle is mechanically stable and natural sensory inputs can induce multiple complex motor behaviors, without the need for application of neurochemicals. Here, we provide a detailed protocol of how to make the adult turtle preparation, also known as the integrated preparation for electrophysiological investigation. Here, the hind-limb scratch reflex can be induced by mechanical sensory activation, while recording single cells, and the network activity, via intracellular-, extracellular- and electroneurogram recordings. The preparation was developed for the studies by Petersen et al. (2014) and Petersen and Berg (2016), and other ongoing studies.
Collapse
Affiliation(s)
- Peter C Petersen
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Current address: New York University Neuroscience Institute, New York University, New York, New York 10016, USA
| | - Rune W Berg
- Center for Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming. J Neurosci 2017; 36:5799-807. [PMID: 27225769 DOI: 10.1523/jneurosci.0320-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Intense synaptic transmission during scratch network activity increases conductance and induces irregular firing in spinal motoneurons. It is not known whether this high-conductance state is a select feature for scratching or a property that goes with spinal motor network activity in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different in scratching and swimming. Nevertheless, we found increased synaptic fluctuations in membrane potential, irregular firing, and increased conductance in spinal motoneurons during scratch and swim network activity. Our finding indicates that intense synaptic activation of motoneurons is a general feature of spinal motor network activity. SIGNIFICANCE STATEMENT Neurons embedded in active neural networks can enter high-conductance states with irregular firing. This was previously shown for spinal motoneurons during scratching. Because scratching is highly specialized rhythmic behavior, it is not known whether high-conductance states and irregular firing are a peculiarity for motoneurons during scratching. Here, using intracellular recordings from motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles, we demonstrate that irregular firing and high-conductance states are present not only during scratching but also during swimming. Our findings suggest that irregular firing and high-conductance states could be a general feature for motor behaviors.
Collapse
|
26
|
Mirzakhalili E, Gourgou E, Booth V, Epureanu B. Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies. Front Neural Circuits 2017; 11:38. [PMID: 28659765 PMCID: PMC5468411 DOI: 10.3389/fncir.2017.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/22/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons.
Collapse
Affiliation(s)
- Ehsan Mirzakhalili
- Department of Mechanical Engineering, University of MichiganAnn Arbor, MI, United States
| | - Eleni Gourgou
- Department of Mechanical Engineering, University of MichiganAnn Arbor, MI, United States.,Division of Geriatrics, Department of Internal Medicine, Medical School, University of MichiganAnn Arbor, MI, United States
| | - Victoria Booth
- Department of Mathematics, University of MichiganAnn Arbor, MI, United States.,Department of Anesthesiology, Medical School, University of MichiganAnn Arbor, MI, United States
| | - Bogdan Epureanu
- Department of Mechanical Engineering, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
27
|
Petersen PC, Berg RW. Lognormal firing rate distribution reveals prominent fluctuation-driven regime in spinal motor networks. eLife 2016; 5:e18805. [PMID: 27782883 PMCID: PMC5135395 DOI: 10.7554/elife.18805] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022] Open
Abstract
When spinal circuits generate rhythmic movements it is important that the neuronal activity remains within stable bounds to avoid saturation and to preserve responsiveness. Here, we simultaneously record from hundreds of neurons in lumbar spinal circuits of turtles and establish the neuronal fraction that operates within either a 'mean-driven' or a 'fluctuation-driven' regime. Fluctuation-driven neurons have a 'supralinear' input-output curve, which enhances sensitivity, whereas the mean-driven regime reduces sensitivity. We find a rich diversity of firing rates across the neuronal population as reflected in a lognormal distribution and demonstrate that half of the neurons spend at least 50 % of the time in the 'fluctuation-driven' regime regardless of behavior. Because of the disparity in input-output properties for these two regimes, this fraction may reflect a fine trade-off between stability and sensitivity in order to maintain flexibility across behaviors.
Collapse
Affiliation(s)
- Peter C Petersen
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune W Berg
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Pyle R, Rosenbaum R. Highly connected neurons spike less frequently in balanced networks. Phys Rev E 2016; 93:040302. [PMID: 27176240 DOI: 10.1103/physreve.93.040302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 11/07/2022]
Abstract
Biological neuronal networks exhibit highly variable spiking activity. Balanced networks offer a parsimonious model of this variability in which strong excitatory synaptic inputs are canceled by strong inhibitory inputs on average, and irregular spiking activity is driven by fluctuating synaptic currents. Most previous studies of balanced networks assume a homogeneous or distance-dependent connectivity structure, but connectivity in biological cortical networks is more intricate. We use a heterogeneous mean-field theory of balanced networks to show that heterogeneous in-degrees can break balance. Moreover, heterogeneous architectures that achieve balance promote lower firing rates in neurons with larger in-degrees, consistent with some recent experimental observations.
Collapse
Affiliation(s)
- Ryan Pyle
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
29
|
Abstract
When using muscles, the precision with which force is delivered is as important as the delivery of force itself. Force is regulated by both the number of recruited motoneurons and their spike frequency. While it is known that the recruitment is ordered to reduce variability in force, it remains unclear whether the motoneuron gain, i.e., the slope of the transformation between synaptic input and spiking output, is also modulated to reduce variability in force. To address this issue, we use turtle hindlimb scratching as a model for fine motor control, since this behavior involves precise limb movement to rub the location of somatic nuisance touch. We recorded intracellularly from motoneurons in a reduced preparation where the limbs were removed to increase mechanical stability and the motor nerve activity served as a surrogate for muscle force. We found that not only is the gain of motoneurons regulated on a subsecond timescale, it is also adjusted to minimize variability. The modulation is likely achieved via an expansive nonlinearity between spike rate and membrane potential with inhibition having a divisive influence. These findings reveal a versatile mechanism of modulating neuronal sensitivity and suggest that such modulation is fundamentally linked to optimization.
Collapse
|
30
|
Sakurai A, Tamvacakis AN, Katz PS. Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury. eLife 2014; 3. [PMID: 24920390 PMCID: PMC4084405 DOI: 10.7554/elife.02598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022] Open
Abstract
Individuals vary in their responses to stroke and trauma, hampering predictions of outcomes. One reason might be that neural circuits contain hidden variability that becomes relevant only when those individuals are challenged by injury. We found that in the mollusc, Tritonia diomedea, subtle differences between animals within the neural circuit underlying swimming behavior had no behavioral relevance under normal conditions but caused differential vulnerability of the behavior to a particular brain lesion. The extent of motor impairment correlated with the site of spike initiation in a specific neuron in the neural circuit, which was determined by the strength of an inhibitory synapse onto this neuron. Artificially increasing or decreasing this inhibitory synaptic conductance with dynamic clamp correspondingly altered the extent of motor impairment by the lesion without affecting normal operation. The results suggest that neural circuit differences could serve as hidden phenotypes for predicting the behavioral outcome of neural damage.
Collapse
Affiliation(s)
- Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, United States
| | | | - Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, United States
| |
Collapse
|
31
|
Goulding M, Bourane S, Garcia-Campmany L, Dalet A, Koch S. Inhibition downunder: an update from the spinal cord. Curr Opin Neurobiol 2014; 26:161-6. [PMID: 24743058 DOI: 10.1016/j.conb.2014.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/11/2022]
Abstract
Inhibitory neurons in the spinal cord perform dedicated roles in processing somatosensory information and shaping motor behaviors that range from simple protective reflexes to more complex motor tasks such as locomotion, reaching and grasping. Recent efforts examining inhibition in the spinal cord have been directed toward determining how inhibitory cell types are specified and incorporated into the sensorimotor circuitry, identifying and characterizing molecularly defined cohorts of inhibitory neurons and interrogating the functional contribution these cells make to sensory processing and motor behaviors. Rapid progress is being made on all these fronts, driven in large part by molecular genetic and optogenetic approaches that are being creatively combined with neuroanatomical, electrophysiological and behavioral techniques.
Collapse
Affiliation(s)
- Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Steeve Bourane
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lidia Garcia-Campmany
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Antoine Dalet
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephanie Koch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|