1
|
Matusova Z, Dykstra W, de Pablo Y, Zetterdahl OG, Canals I, van Gelder CAGH, Vos HR, Pérez-Sala D, Kubista M, Abaffy P, Ahlenius H, Valihrach L, Hol EM, Pekny M. Aberrant neurodevelopment in human iPS cell-derived models of Alexander disease. Glia 2025; 73:57-79. [PMID: 39308436 DOI: 10.1002/glia.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 12/21/2024]
Abstract
Alexander disease (AxD) is a rare and severe neurodegenerative disorder caused by mutations in glial fibrillary acidic protein (GFAP). While the exact disease mechanism remains unknown, previous studies suggest that mutant GFAP influences many cellular processes, including cytoskeleton stability, mechanosensing, metabolism, and proteasome function. While most studies have primarily focused on GFAP-expressing astrocytes, GFAP is also expressed by radial glia and neural progenitor cells, prompting questions about the impact of GFAP mutations on central nervous system (CNS) development. In this study, we observed impaired differentiation of astrocytes and neurons in co-cultures of astrocytes and neurons, as well as in neural organoids, both generated from AxD patient-derived induced pluripotent stem (iPS) cells with a GFAPR239C mutation. Leveraging single-cell RNA sequencing (scRNA-seq), we identified distinct cell populations and transcriptomic differences between the mutant GFAP cultures and a corrected isogenic control. These findings were supported by results obtained with immunocytochemistry and proteomics. In co-cultures, the GFAPR239C mutation resulted in an increased abundance of immature cells, while in unguided neural organoids and cortical organoids, we observed altered lineage commitment and reduced abundance of astrocytes. Gene expression analysis revealed increased stress susceptibility, cytoskeletal abnormalities, and altered extracellular matrix and cell-cell communication patterns in the AxD cultures, which also exhibited higher cell death after stress. Overall, our results point to altered cell differentiation in AxD patient-derived iPS-cell models, opening new avenues for AxD research.
Collapse
Affiliation(s)
- Zuzana Matusova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Werner Dykstra
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Oskar G Zetterdahl
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Isaac Canals
- Glial and Neuronal Biology Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
- Division of Metabolism, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- ITINERARE-Innovative therapies in rare diseases, University Research Priority Program, University of Zurich, Zurich, Switzerland
| | - Charlotte A G H van Gelder
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harmjan R Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Henrik Ahlenius
- Stem Cells, Aging and Neurodegeneration Lab, Department of Experimental Medical Science, Faculty of Medicine, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Centre Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
2
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Chen T, Majerníková N, Marmolejo-Garza A, Trombetta-Lima M, Sabogal-Guáqueta AM, Zhang Y, Ten Kate R, Zuidema M, Mulder PPMFA, den Dunnen W, Gosens R, Verpoorte E, Culmsee C, Eisel ULM, Dolga AM. Mitochondrial transplantation rescues neuronal cells from ferroptosis. Free Radic Biol Med 2023; 208:62-72. [PMID: 37536459 DOI: 10.1016/j.freeradbiomed.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Ferroptosis is a type of oxidative cell death that can occur in neurodegenerative diseases and involves damage to mitochondria. Previous studies demonstrated that preventing mitochondrial dysfunction can rescue cells from ferroptotic cell death. However, the complexity of mitochondrial dysfunction and the timing of therapeutic interventions make it difficult to develop an effective treatment strategy against ferroptosis in neurodegeneration conditions. In this study, we explored the use of mitochondrial transplantation as a novel therapeutic approach for preventing ferroptotic neuronal cell death. Our data showed that isolated exogenous mitochondria were incorporated into both healthy and ferroptotic immortalized hippocampal HT-22 cells and primary cortical neurons (PCN). The mitochondrial incorporation was accompanied by increased metabolic activity and cell survival through attenuating lipid peroxidation and mitochondrial superoxide production. Further, the function of mitochondrial complexes I, III and V activities contributed to the neuroprotective activity of exogenous mitochondria. Similarly, we have also showed the internalization of exogenous mitochondria in mouse PCN; these internalized mitochondria were found to effectively preserve the neuronal networks when challenged with ferroptotic stimuli. The administration of exogenous mitochondria into the axonal compartment of a two-compartment microfluidic device induced mitochondrial transportation to the cell body, which prevented fragmentation of the neuronal network in ferroptotic PCN. These findings suggest that mitochondria transplantation may be a promising therapeutic approach for protecting neuronal cells from ferroptotic cell death.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Nad'a Majerníková
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Alejandro Marmolejo-Garza
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marina Trombetta-Lima
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Angélica María Sabogal-Guáqueta
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Yuequ Zhang
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Ruth Ten Kate
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Minte Zuidema
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Patty P M F A Mulder
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Wilfred den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Verpoorte
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Gebert M, Sławski J, Kalinowski L, Collawn JF, Bartoszewski R. The Unfolded Protein Response: A Double-Edged Sword for Brain Health. Antioxidants (Basel) 2023; 12:1648. [PMID: 37627643 PMCID: PMC10451475 DOI: 10.3390/antiox12081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-134 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Narutowicza Street, 80-233 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Shiohama T, Stewart N, Nangaku M, van der Kouwe AJ, Takahashi E. Identification of association fibers using ex vivo diffusion tractography in Alexander disease brains. J Neuroimaging 2022; 32:866-874. [PMID: 35983725 PMCID: PMC9474676 DOI: 10.1111/jon.13040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Alexander disease (AxD) is a neurodegenerative disorder caused by heterozygous Glial Fibrillary Acidic Protein mutation. The characteristic structural findings of AxD, such as leukodystrophic features, are well known, while association fibers of AxD remain uninvestigated. The aim of this study was to explore global and subcortical fibers in four brains with AxD using ex vivo diffusion tractography METHODS: High-angular-resolution diffusion magnetic resonance imaging (HARDI) tractography and diffusion-tensor imaging (DTI) tractography were used to evaluate long and short association fibers and compared to histological findings in brain specimens obtained from four donors with AxD and two donors without neurological disorders RESULTS: AxD brains showed impairment of long association fibers, except for the arcuate fasciculus and cingulum bundle, and abnormal trajectories of the inferior longitudinal and fronto-occipital fasciculi on HARDI tractography and loss of multidirectionality in subcortical fibers on DTI tractography. In histological studies, AxD brains showed diffuse low density on Klüver-Barrera and neurofilament staining and sporadic Rosenthal fibers on hematoxylin and eosin staining CONCLUSIONS: This study describes the spatial distribution of degenerations of short and long association fibers in AxD brains using combined tractography and pathological findings.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Natalie Stewart
- College of Science, Northeastern University, Boston, MA 02115, USA
| | | | - Andre J.W. van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02144, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Viedma-Poyatos Á, González-Jiménez P, Pajares MA, Pérez-Sala D. Alexander disease GFAP R239C mutant shows increased susceptibility to lipoxidation and elicits mitochondrial dysfunction and oxidative stress. Redox Biol 2022; 55:102415. [PMID: 35933901 PMCID: PMC9364016 DOI: 10.1016/j.redox.2022.102415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/04/2023] Open
Abstract
Alexander disease is a fatal neurological disorder caused by mutations in the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP), which is key for astrocyte homeostasis. These mutations cause GFAP aggregation, astrocyte dysfunction and neurodegeneration. Remarkably, most of the known GFAP mutations imply a change by more nucleophilic amino acids, mainly cysteine or histidine, which are more susceptible to oxidation and lipoxidation. Therefore, we hypothesized that a higher susceptibility of Alexander disease GFAP mutants to oxidative or electrophilic damage, which frequently occurs during neurodegeneration, could contribute to disease pathogenesis. To address this point, we have expressed GFP-GFAP wild type or the harmful Alexander disease GFP-GFAP R239C mutant in astrocytic cells. Interestingly, GFAP R239C appears more oxidized than the wild type under control conditions, as indicated both by its lower cysteine residue accessibility and increased presence of disulfide-bonded oligomers. Moreover, GFP-GFAP R239C undergoes lipoxidation to a higher extent than GFAP wild type upon treatment with the electrophilic mediator 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Importantly, GFAP R239C filament organization is altered in untreated cells and is earlier and more severely disrupted than GFAP wild type upon exposure to oxidants (diamide, H2O2) or electrophiles (4-hydroxynonenal, 15d-PGJ2), which exacerbate GFAP R239C aggregation. Furthermore, H2O2 causes reversible alterations in GFAP wild type, but irreversible damage in GFAP R239C expressing cells. Finally, we show that GFAP R239C expression induces a more oxidized cellular status, with decreased free thiol content and increased mitochondrial superoxide generation. In addition, mitochondria show decreased mass, increased colocalization with GFAP and altered morphology. Notably, a GFP-GFAP R239H mutant recapitulates R239C-elicited alterations whereas an R239G mutant induces a milder phenotype. Together, our results outline a deleterious cycle involving altered GFAP R239C organization, mitochondrial dysfunction, oxidative stress, and further GFAP R239C protein damage and network disruption, which could contribute to astrocyte derangement in Alexander disease.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
7
|
Hagemann TL. Alexander disease: models, mechanisms, and medicine. Curr Opin Neurobiol 2022; 72:140-147. [PMID: 34826654 PMCID: PMC8901527 DOI: 10.1016/j.conb.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Alexander disease is a primary disorder of astrocytes caused by gain-of-function mutations in the gene for glial fibrillary acidic protein (GFAP), which lead to protein aggregation and a reactive astrocyte response, with devastating effects on the central nervous system. Over the past two decades since the discovery of GFAP as the culprit, several cellular and animal models have been generated, and much has been learned about underlying mechanisms contributing to the disease. Despite these efforts, many aspects of Alexander disease have remained enigmatic, particularly the initiating events in GFAP accumulation and astrocyte pathology, the relation between astrocyte dysfunction and myelin deficits, and the variability in age of onset and disease severity. More recent work in both old and new models has begun to address these complex questions and identify new therapeutics that finally offer the promise of effective treatment.
Collapse
Affiliation(s)
- Tracy L. Hagemann
- Waisman Center, University of Wisconsin – Madison, 1500 Highland Ave, Madison, WI 53705
| |
Collapse
|
8
|
Berdowski WM, Sanderson LE, van Ham TJ. The multicellular interplay of microglia in health and disease: lessons from leukodystrophy. Dis Model Mech 2021; 14:dmm048925. [PMID: 34282843 PMCID: PMC8319551 DOI: 10.1242/dmm.048925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Microglia are highly dynamic cells crucial for developing and maintaining lifelong brain function and health through their many interactions with essentially all cellular components of the central nervous system. The frequent connection of microglia to leukodystrophies, genetic disorders of the white matter, has highlighted their involvement in the maintenance of white matter integrity. However, the mechanisms that underlie their putative roles in these processes remain largely uncharacterized. Microglia have also been gaining attention as possible therapeutic targets for many neurological conditions, increasing the demand to understand their broad spectrum of functions and the impact of their dysregulation. In this Review, we compare the pathological features of two groups of genetic leukodystrophies: those in which microglial dysfunction holds a central role, termed 'microgliopathies', and those in which lysosomal or peroxisomal defects are considered to be the primary driver. The latter are suspected to have notable microglia involvement, as some affected individuals benefit from microglia-replenishing therapy. Based on overlapping pathology, we discuss multiple ways through which aberrant microglia could lead to white matter defects and brain dysfunction. We propose that the study of leukodystrophies, and their extensively multicellular pathology, will benefit from complementing analyses of human patient material with the examination of cellular dynamics in vivo using animal models, such as zebrafish. Together, this will yield important insight into the cell biological mechanisms of microglial impact in the central nervous system, particularly in the development and maintenance of myelin, that will facilitate the development of new, and refinement of existing, therapeutic options for a range of brain diseases.
Collapse
Affiliation(s)
| | | | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
9
|
Williams JB, Cao Q, Yan Z. Transcriptomic analysis of human brains with Alzheimer's disease reveals the altered expression of synaptic genes linked to cognitive deficits. Brain Commun 2021; 3:fcab123. [PMID: 34423299 PMCID: PMC8374979 DOI: 10.1093/braincomms/fcab123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder associated with memory loss and impaired executive function. The molecular underpinnings causing cognitive deficits in Alzheimer's disease are loosely understood. Here, we performed cross-study large-scale transcriptomic analyses of postmortem prefrontal cortex derived from Alzheimer's disease patients to reveal the role of aberrant gene expression in this disease. We identified that one of the most prominent changes in prefrontal cortex of Alzheimer's disease humans was the downregulation of genes in excitatory and inhibitory neurons that are associated with synaptic functions, particularly the SNARE-binding complex, which is essential for vesicle docking and neurotransmitter release. Comparing genomic data of Alzheimer's disease with proteomic data of cognitive trajectory, we found that many of the lost synaptic genes in Alzheimer's disease encode hub proteins whose increased abundance is required for cognitive stability. This study has revealed potential molecular targets for therapeutic intervention of cognitive decline associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Jamal B Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
10
|
Hedgehog Signaling Modulates Glial Proteostasis and Lifespan. Cell Rep 2021; 30:2627-2643.e5. [PMID: 32101741 DOI: 10.1016/j.celrep.2020.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The conserved Hedgehog signaling pathway has well-established roles in development. However, its function during adulthood remains largely unknown. Here, we investigated whether the Hedgehog signaling pathway is active during adult life in Drosophila melanogaster, and we uncovered a protective function for Hedgehog signaling in coordinating correct proteostasis in glial cells. Adult-specific depletion of Hedgehog reduces lifespan, locomotor activity, and dopaminergic neuron integrity. Conversely, increased expression of Hedgehog extends lifespan and improves fitness. Moreover, Hedgehog pathway activation in glia rescues the lifespan and age-associated defects of hedgehog mutants. The Hedgehog pathway regulates downstream chaperones, whose overexpression in glial cells was sufficient to rescue the shortened lifespan and proteostasis defects of hedgehog mutants. Finally, we demonstrate the protective ability of Hedgehog signaling in a Drosophila Alzheimer's disease model expressing human amyloid beta in the glia. Overall, we propose that Hedgehog signaling is requisite for lifespan determination and correct proteostasis in glial cells.
Collapse
|
11
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
12
|
Candiani S, Carestiato S, Mack AF, Bani D, Bozzo M, Obino V, Ori M, Rosamilia F, De Sarlo M, Pestarino M, Ceccherini I, Bachetti T. Alexander Disease Modeling in Zebrafish: An In Vivo System Suitable to Perform Drug Screening. Genes (Basel) 2020; 11:E1490. [PMID: 33322348 PMCID: PMC7764705 DOI: 10.3390/genes11121490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/03/2022] Open
Abstract
Alexander disease (AxD) is a rare astrogliopathy caused by heterozygous mutations, either inherited or arising de novo, on the glial fibrillary acid protein (GFAP) gene (17q21). Mutations in the GFAP gene make the protein prone to forming aggregates which, together with heat-shock protein 27 (HSP27), αB-crystallin, ubiquitin, and proteasome, contribute to form Rosenthal fibers causing a toxic effect on the cell. Unfortunately, no pharmacological treatment is available yet, except for symptom reduction therapies, and patients undergo a progressive worsening of the disease. The aim of this study was the production of a zebrafish model for AxD, to have a system suitable for drug screening more complex than cell cultures. To this aim, embryos expressing the human GFAP gene carrying the most severe p.R239C under the control of the zebrafish gfap gene promoter underwent functional validation to assess several features already observed in in vitro and other in vivo models of AxD, such as the localization of mutant GFAP inclusions, the ultrastructural analysis of cells expressing mutant GFAP, the effects of treatments with ceftriaxone, and the heat shock response. Our results confirm that zebrafish is a suitable model both to study the molecular pathogenesis of GFAP mutations and to perform pharmacological screenings, likely useful for the search of therapies for AxD.
Collapse
Affiliation(s)
- Simona Candiani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.C.); (M.B.); (V.O.); (F.R.); (M.P.)
| | - Silvia Carestiato
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.C.); (M.B.); (V.O.); (F.R.); (M.P.)
| | - Andreas F. Mack
- Institut für Klinische Anatomie und Zellanalytik, Universitaet Tuebingen, 72076 Tuebingen, Germany;
| | - Daniele Bani
- Department of Clinical and Experimental Medicine, University of Florence, 50121 Florence, Italy;
| | - Matteo Bozzo
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.C.); (M.B.); (V.O.); (F.R.); (M.P.)
| | - Valentina Obino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.C.); (M.B.); (V.O.); (F.R.); (M.P.)
| | - Michela Ori
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.O.); (M.D.S.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Francesca Rosamilia
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.C.); (M.B.); (V.O.); (F.R.); (M.P.)
| | - Miriam De Sarlo
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.O.); (M.D.S.)
| | - Mario Pestarino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.C.); (M.B.); (V.O.); (F.R.); (M.P.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, Unità Operativa Semplice Dipartimentale, Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Tiziana Bachetti
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (S.C.); (S.C.); (M.B.); (V.O.); (F.R.); (M.P.)
| |
Collapse
|
13
|
Hillen AEJ, Heine VM. Glutamate Carrier Involvement in Mitochondrial Dysfunctioning in the Brain White Matter. Front Mol Biosci 2020; 7:151. [PMID: 32793632 PMCID: PMC7385250 DOI: 10.3389/fmolb.2020.00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 11/24/2022] Open
Abstract
Glutamate homeostasis is an important determinant of health of the central nervous system (CNS). Mitochondria play crucial roles in glutamate metabolism, especially in processes with a high energy demand such as action potential generation. Mitochondrial glutamate carriers (GCs) and aspartate-GCs (AGCs) regulate the transport of glutamate from the cytoplasm across the mitochondrial membrane, which is needed to control energy demand, lipid metabolism, and metabolic activity including oxidative phosphorylation and glycolysis. Dysfunction in these carriers are associated with seizures, spasticity, and/or myelin deficits, all of which are associated with inherited metabolic disorders. Since solute carrier functioning and associated processes are cell type- and context-specific, selective vulnerability to glutamate excitotoxicity and mitochondrial dysfunctioning is expected. Understanding this could offer important insights into the pathomechanisms of associated disorders. This perspective aims to explore the link between functions of both AGCs and GCs and their role in metabolic disorders, with a focus on a subclass of lysosomal storage disorders called leukodystrophies (LDs).
Collapse
Affiliation(s)
- Anne E J Hillen
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vivi M Heine
- Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Kim T, Song B, Lee IS. Drosophila Glia: Models for Human Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E4859. [PMID: 32660023 PMCID: PMC7402321 DOI: 10.3390/ijms21144859] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are key players in the proper formation and maintenance of the nervous system, thus contributing to neuronal health and disease in humans. However, little is known about the molecular pathways that govern glia-neuron communications in the diseased brain. Drosophila provides a useful in vivo model to explore the conserved molecular details of glial cell biology and their contributions to brain function and disease susceptibility. Herein, we review recent studies that explore glial functions in normal neuronal development, along with Drosophila models that seek to identify the pathological implications of glial defects in the context of various central nervous system disorders.
Collapse
Affiliation(s)
| | | | - Im-Soon Lee
- Department of Biological Sciences, Center for CHANS, Konkuk University, Seoul 05029, Korea; (T.K.); (B.S.)
| |
Collapse
|
15
|
Transcriptomic and proteomic profiling of glial versus neuronal Dube3a overexpression reveals common molecular changes in gliopathic epilepsies. Neurobiol Dis 2020; 141:104879. [PMID: 32344153 DOI: 10.1016/j.nbd.2020.104879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/04/2020] [Accepted: 04/23/2020] [Indexed: 01/05/2023] Open
Abstract
Epilepsy affects millions of individuals worldwide and many cases are pharmacoresistant. Duplication 15q syndrome (Dup15q) is a genetic disorder caused by duplications of the 15q11.2-q13.1 region. Phenotypes include a high rate of pharmacoresistant epilepsy. We developed a Dup15q model in Drosophila melanogaster that recapitulates seizures in Dup15q by over-expressing fly Dube3a or human UBE3A in glial cells, but not neurons, implicating glia in the Dup15q epilepsy phenotype. We compared Dube3a overexpression in glia (repo>Dube3a) versus neurons (elav>Dube3a) using transcriptomics and proteomics of whole fly head extracts. We identified 851 transcripts differentially regulated in repo>Dube3a, including an upregulation of glutathione S-transferase (GST) genes that occurred cell autonomously within glial cells. We reliably measured approximately 2,500 proteins by proteomics, most of which were also quantified at the transcript level. Combined transcriptomic and proteomic analysis revealed an enrichment of 21 synaptic transmission genes downregulated at the transcript and protein in repo>Dube3a indicating synaptic proteins change in a cell non-autonomous manner in repo>Dube3a flies. We identified 6 additional glia originating bang-sensitive seizure lines and found upregulation of GSTs in 4 out of these 6 lines. These data suggest GST upregulation is common among gliopathic seizures and may ultimately provide insight for treating epilepsy.
Collapse
|
16
|
Stanhope BA, Jaggard JB, Gratton M, Brown EB, Keene AC. Sleep Regulates Glial Plasticity and Expression of the Engulfment Receptor Draper Following Neural Injury. Curr Biol 2020; 30:1092-1101.e3. [PMID: 32142708 DOI: 10.1016/j.cub.2020.02.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Chronic sleep disturbance is associated with numerous health consequences, including neurodegenerative disease and cognitive decline [1]. Neurite damage due to apoptosis, trauma, or genetic factors is a common feature of aging, and clearance of damaged neurons is essential for maintenance of brain function. In the central nervous system, damaged neurites are cleared by Wallerian degeneration, in which activated microglia and macrophages engulf damaged neurons [2]. The fruit fly Drosophila melanogaster provides a powerful model for investigating the relationship between sleep and Wallerian degeneration [3]. Several lines of evidence suggest that glia influence sleep duration, sleep-mediated neuronal homeostasis, and clearance of toxic substances during sleep, raising the possibility that glial engulfment of damaged axons is regulated by sleep [4]. To explore this possibility, we axotomized olfactory receptor neurons and measured the effects of sleep loss or gain on the clearance of damaged neurites. Mechanical and genetic sleep deprivation impaired the clearance of damaged neurites. Conversely, treatment with the sleep-promoting drug gaboxadol accelerated clearance, while genetic induction of sleep promotes Draper expression. In sleep-deprived animals, multiple markers of glial activation were delayed, including activation of the JAK-STAT pathway, upregulation of the cell corpse engulfment receptor Draper, and innervation of the antennal lobe by glial membranes. These markers were all enhanced following genetic and pharmacological sleep induction. Taken together, these findings reveal a critical association between sleep and glial activation following neural injury, providing a platform for further investigations of the molecular mechanisms underlying sleep-dependent modulation of glial function and neurite clearance.
Collapse
Affiliation(s)
- Bethany A Stanhope
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - James B Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Melanie Gratton
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Elizabeth B Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL 33458.
| |
Collapse
|
17
|
Knopp RC, Lee SH, Hollas M, Nepomuceno E, Gonzalez D, Tam K, Aamir D, Wang Y, Pierce E, BenAissa M, Thatcher GRJ. Interaction of oxidative stress and neurotrauma in ALDH2 -/- mice causes significant and persistent behavioral and pro-inflammatory effects in a tractable model of mild traumatic brain injury. Redox Biol 2020; 32:101486. [PMID: 32155582 PMCID: PMC7063127 DOI: 10.1016/j.redox.2020.101486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/29/2020] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress induced by lipid peroxidation products (LPP) accompanies aging and has been hypothesized to exacerbate the secondary cascade in traumatic brain injury (TBI). Increased oxidative stress is a contributor to loss of neural reserve that defines the ability to maintain healthy cognitive function despite the accumulation of neuropathology. ALDH2−/− mice are unable to clear aldehyde LPP by mitochondrial aldehyde dehydrogenase-2 (Aldh2) detoxification and provide a model to study mild TBI (mTBI), therapeutic interventions, and underlying mechanisms. The ALDH2−/− mouse model presents with elevated LPP-mediated protein modification, lowered levels of PSD-95, PGC1-α, and SOD-1, and mild cognitive deficits from 4 months of age. LPP scavengers are neuroprotective in vitro and in ALDH2−/− mice restore cognitive performance. A single-hit, closed skull mTBI failed to elicit significant effects in WT mice; however, ALDH2−/− mice showed a significant inflammatory cytokine surge in the ipsilateral hemisphere 24 h post-mTBI, and increased GFAP cleavage, a biomarker for TBI. Known neuroprotective agents, were able to reverse the effects of mTBI. This new preclinical model of mTBI, incorporating significant perturbations in behavior, inflammation, and clinically relevant biomarkers, allows mechanistic study of the interaction of LPP and neurotrauma in loss of neural reserve. ALDH2−/− mice have elevated brain LPP adducts and mild cognitive impairment. The effects of a “2nd hit” via LPS are exacerbated by LPP in vitro and in vivo. ALDH2−/− mice + mTBI show amplified/prolonged cognitive deficits and neuroinflammation. This new preclinical model for mTBI supports a role for LPP in reduced neural reserve.
Collapse
Affiliation(s)
- Rachel C Knopp
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sue H Lee
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael Hollas
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA
| | - Emily Nepomuceno
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - David Gonzalez
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Kevin Tam
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniyal Aamir
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yueting Wang
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Emily Pierce
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Manel BenAissa
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA
| | - Gregory R J Thatcher
- Department of Pharmaceutical Science, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, USA; UICentre (Drug Discovery @ UIC), University of Illinois at Chicago, 833 S. Wood St, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Glutathionylation primes soluble glyceraldehyde-3-phosphate dehydrogenase for late collapse into insoluble aggregates. Proc Natl Acad Sci U S A 2019; 116:26057-26065. [PMID: 31772010 DOI: 10.1073/pnas.1914484116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein aggregation is a complex physiological process, primarily determined by stress-related factors revealing the hidden aggregation propensity of proteins that otherwise are fully soluble. Here we report a mechanism by which glycolytic glyceraldehyde-3-phosphate dehydrogenase of Arabidopsis thaliana (AtGAPC1) is primed to form insoluble aggregates by the glutathionylation of its catalytic cysteine (Cys149). Following a lag phase, glutathionylated AtGAPC1 initiates a self-aggregation process resulting in the formation of branched chains of globular particles made of partially misfolded and totally inactive proteins. GSH molecules within AtGAPC1 active sites are suggested to provide the initial destabilizing signal. The following removal of glutathione by the formation of an intramolecular disulfide bond between Cys149 and Cys153 reinforces the aggregation process. Physiological reductases, thioredoxins and glutaredoxins, could not dissolve AtGAPC1 aggregates but could efficiently contrast their growth. Besides acting as a protective mechanism against overoxidation, S-glutathionylation of AtGAPC1 triggers an unexpected aggregation pathway with completely different and still unexplored physiological implications.
Collapse
|
19
|
Li L, Tian E, Chen X, Chao J, Klein J, Qu Q, Sun G, Sun G, Huang Y, Warden CD, Ye P, Feng L, Li X, Cui Q, Sultan A, Douvaras P, Fossati V, Sanjana NE, Riggs AD, Shi Y. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease. Cell Stem Cell 2019; 23:239-251.e6. [PMID: 30075130 DOI: 10.1016/j.stem.2018.07.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/23/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by mutations in the astrocytic filament gene GFAP. While astrocytes are thought to have important roles in controlling myelination, AxD animal models do not recapitulate critical myelination phenotypes and it is therefore not clear how AxD astrocytes contribute to leukodystrophy. Here, we show that AxD patient iPSC-derived astrocytes recapitulate key features of AxD pathology such as GFAP aggregation. Moreover, AxD astrocytes inhibit proliferation of human iPSC-derived oligodendrocyte progenitor cells (OPCs) in co-culture and reduce their myelination potential. CRISPR/Cas9-based correction of GFAP mutations reversed these phenotypes. Transcriptomic analyses of AxD astrocytes and postmortem brains identified CHI3L1 as a key mediator of AxD astrocyte-induced inhibition of OPC activity. Thus, this iPSC-based model of AxD not only recapitulates patient phenotypes not observed in animal models, but also reveals mechanisms underlying disease pathology and provides a platform for assessing therapeutic interventions.
Collapse
Affiliation(s)
- Li Li
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - E Tian
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xianwei Chen
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jianfei Chao
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Jeremy Klein
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiuhao Qu
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Guoqiang Sun
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanzhou Huang
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Charles D Warden
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Peng Ye
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Lizhao Feng
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xinqiang Li
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qi Cui
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Abdullah Sultan
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Panagiotis Douvaras
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019, USA
| | - Neville E Sanjana
- New York Genome Center, New York, NY 10013, USA; Department of Biology, New York University, New York, NY 10003, USA; Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Arthur D Riggs
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
20
|
Heaven MR, Wilson L, Barnes S, Brenner M. Relative stabilities of wild-type and mutant glial fibrillary acidic protein in patients with Alexander disease. J Biol Chem 2019; 294:15604-15612. [PMID: 31484723 DOI: 10.1074/jbc.ra119.009777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Indexed: 01/13/2023] Open
Abstract
Alexander disease (AxD) is an often fatal astrogliopathy caused by dominant gain-of-function missense mutations in the glial fibrillary acidic protein (GFAP) gene. The mechanism by which the mutations produce the AxD phenotype is not known. However, the observation that features of AxD are displayed by mice that express elevated levels of GFAP from a human WT GFAP transgene has contributed to the notion that the mutations produce AxD by increasing accumulation of total GFAP above some toxic threshold rather than the mutant GFAP being inherently toxic. A possible mechanism for accumulation of GFAP in AxD patients is that the mutated GFAP variants are more stable than the WT, an attribution abetted by observations that GFAP complexes containing GFAP variants are more resistant to solvent extraction. Here we tested this hypothesis by determining the relative levels of WT and mutant GFAP in three individuals with AxD, each of whom carried a common but different GFAP mutation (R79C, R239H, or R416W). Mass spectrometry analysis identified a peptide specific to the mutant or WT GFAP in each patient, and we quantified this peptide by comparing its signal to that of an added [15N]GFAP standard. In all three individuals, the level of mutant GFAP was less than that of the WT. This finding suggests that AxD onset is due to an intrinsic toxicity of the mutant GFAP instead of it acting indirectly by being more stable than WT GFAP and thereby increasing the total GFAP level.
Collapse
Affiliation(s)
- Michael R Heaven
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294
| | - Landon Wilson
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama, Birmingham, Alabama 35294
| | - Stephen Barnes
- Department of Biochemistry and Molecular Genetics, University of Alabama, Birmingham, Alabama 35294.,Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama, Birmingham, Alabama 35294
| | - Michael Brenner
- Department of Neurobiology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
21
|
Olsen AL, Feany MB. Glial α-synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia 2019; 67:1933-1957. [PMID: 31267577 DOI: 10.1002/glia.23671] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022]
Abstract
α-Synucleinopathies are neurodegenerative diseases that are characterized pathologically by α-synuclein inclusions in neurons and glia. The pathologic contribution of glial α-synuclein in these diseases is not well understood. Glial α-synuclein may be of particular importance in multiple system atrophy (MSA), which is defined pathologically by glial cytoplasmic α-synuclein inclusions. We have previously described Drosophila models of neuronal α-synucleinopathy, which recapitulate key features of the human disorders. We have now expanded our model to express human α-synuclein in glia. We demonstrate that expression of α-synuclein in glia alone results in α-synuclein aggregation, death of dopaminergic neurons, impaired locomotor function, and autonomic dysfunction. Furthermore, co-expression of α-synuclein in both neurons and glia worsens these phenotypes as compared to expression of α-synuclein in neurons alone. We identify unique transcriptomic signatures induced by glial as opposed to neuronal α-synuclein. These results suggest that glial α-synuclein may contribute to the burden of pathology in the α-synucleinopathies through a cell type-specific transcriptional program. This new Drosophila model system enables further mechanistic studies dissecting the contribution of glial and neuronal α-synuclein in vivo, potentially shedding light on mechanisms of disease that are especially relevant in MSA but also the α-synucleinopathies more broadly.
Collapse
Affiliation(s)
- Abby L Olsen
- Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Su TT. Drug screening in Drosophila; why, when, and when not? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e346. [PMID: 31056843 DOI: 10.1002/wdev.346] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
The best global seller among oncology drugs in 2018 is lenalidomide, an analog of thalidomide. It took 53 years and a circuitous route from the discovery of thalidomide to approval of an analog for use in treatment of cancer. We understand now a lot more about the genetic and molecular basis of diseases than we did in 1953 when thalidomide was discovered. We have also no shortage of chemical libraries with hundreds of thousands of compounds, both synthetic and natural. What we need are better ways to search among these rich resources for compounds with the potential to do what we want them to do. This review summarizes examples from the literature that make Drosophila melanogaster a good model to screen for drugs, and discusses knowledge gaps and technical challenges that make Drosophila models not as widely used as they could or should be. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado.,Molecular, Cellular and Developmental Biology, University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
23
|
Sosunov A, Olabarria M, Goldman JE. Alexander disease: an astrocytopathy that produces a leukodystrophy. Brain Pathol 2019; 28:388-398. [PMID: 29740945 DOI: 10.1111/bpa.12601] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/02/2018] [Indexed: 02/02/2023] Open
Abstract
Alexander Disease (AxD) is a degenerative disorder caused by mutations in the GFAP gene, which encodes the major intermediate filament of astrocytes. As other cells in the CNS do not express GFAP, AxD is a primary astrocyte disease. Astrocytes acquire a large number of pathological features, including changes in morphology, the loss or diminution of a number of critical astrocyte functions and the activation of cell stress and inflammatory pathways. AxD is also characterized by white matter degeneration, a pathology that has led it to be included in the "leukodystrophies." Furthermore, variable degrees of neuronal loss take place. Thus, the astrocyte pathology triggers alterations in other cell types. Here, we will review the neuropathology of AxD and discuss how a disease of astrocytes can lead to severe pathologies in non-astrocytic cells. Our knowledge of the pathophysiology of AxD will also lead to a better understanding of how astrocytes interact with other CNS cells and how astrocytes in the gliosis that accompanies many neurological disorders can damage the function and survival of other cells.
Collapse
Affiliation(s)
| | - Markel Olabarria
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| | - James E Goldman
- Departments of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
24
|
Viedma-Poyatos Á, de Pablo Y, Pekny M, Pérez-Sala D. The cysteine residue of glial fibrillary acidic protein is a critical target for lipoxidation and required for efficient network organization. Free Radic Biol Med 2018; 120:380-394. [PMID: 29635011 DOI: 10.1016/j.freeradbiomed.2018.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/14/2022]
Abstract
The type III intermediate filament protein glial fibrillary acidic protein (GFAP) contributes to the homeostasis of astrocytes, where it co-polymerizes with vimentin. Conversely, alterations in GFAP assembly or degradation cause intracellular aggregates linked to astrocyte dysfunction and neurological disease. Moreover, injury and inflammation elicit extensive GFAP organization and expression changes, which underline reactive gliosis. Here we have studied GFAP as a target for modification by electrophilic inflammatory mediators. We show that the GFAP cysteine, C294, is targeted by lipoxidation by cyclopentenone prostaglandins (cyPG) in vitro and in cells. Electrophilic modification of GFAP in cells leads to a striking filament rearrangement, with retraction from the cell periphery and juxtanuclear condensation in thick bundles. Importantly, the C294S mutant is resistant to cyPG addition and filament disruption, thus highlighting the critical role of this residue as a sensor of oxidative damage. However, GFAP C294S shows defective or delayed network formation in GFAP-deficient cells, including SW13/cl.2 cells and GFAP- and vimentin-deficient primary astrocytes. Moreover, GFAP C294S does not effectively integrate with and even disrupts vimentin filaments in the short-term. Interestingly, short-spacer bifunctional cysteine crosslinking produces GFAP-vimentin heterodimers, suggesting that a certain proportion of cysteine residues from both proteins are spatially close. Collectively, these results support that the conserved cysteine residue in type III intermediate filament proteins serves as an electrophilic stress sensor and structural element. Therefore, oxidative modifications of this cysteine could contribute to GFAP disruption or aggregation in pathological situations associated with oxidative or electrophilic stress.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C. Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Yolanda de Pablo
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9 A, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 9 A, Gothenburg, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; University of Newcastle, New South Wales, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, C.S.I.C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nat Commun 2018; 9:1899. [PMID: 29765022 PMCID: PMC5954157 DOI: 10.1038/s41467-018-04269-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/12/2018] [Indexed: 12/22/2022] Open
Abstract
Glial cells have increasingly been implicated as active participants in the pathogenesis of neurological diseases, but critical pathways and mechanisms controlling glial function and secondary non-cell autonomous neuronal injury remain incompletely defined. Here we use models of Alexander disease, a severe brain disorder caused by gain-of-function mutations in GFAP, to demonstrate that misregulation of GFAP leads to activation of a mechanosensitive signaling cascade characterized by activation of the Hippo pathway and consequent increased expression of A-type lamin. Importantly, we use genetics to verify a functional role for dysregulated mechanotransduction signaling in promoting behavioral abnormalities and non-cell autonomous neurodegeneration. Further, we take cell biological and biophysical approaches to suggest that brain tissue stiffness is increased in Alexander disease. Our findings implicate altered mechanotransduction signaling as a key pathological cascade driving neuronal dysfunction and neurodegeneration in Alexander disease, and possibly also in other brain disorders characterized by gliosis. Alexander disease is a rare neurodegeneration caused by mutations in a glial gene GFAP. Here, Wang and colleagues show in animal models of Alexander disease that GFAP mutant brain and cells have greater tissue and cellular stiffness and greater activation of mechanosensitive signaling cascade.
Collapse
|
26
|
Jonson M, Nyström S, Sandberg A, Carlback M, Michno W, Hanrieder J, Starkenberg A, Nilsson KPR, Thor S, Hammarström P. Aggregated Aβ1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila. Cell Chem Biol 2018; 25:595-610.e5. [PMID: 29657084 DOI: 10.1016/j.chembiol.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
The basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human Aβ1-42 associated with Alzheimer's disease. Expression of Aβ1-42 in various neurons resulted in concentration-dependent severe neurodegenerative phenotypes, and intraneuronal ring-tangle-like aggregates with immature fibril properties when analyzed by aggregate-specific ligands. Unexpectedly, expression of Aβ1-42 from a pan-glial driver produced a mild phenotype despite massive brain load of Aβ1-42 aggregates, even higher than in the strongest neuronal driver. Glial cells formed more mature fibrous aggregates, morphologically distinct from aggregates found in neurons, and was mainly extracellular. Our findings implicate that Aβ1-42 cytotoxicity is both cell and aggregate morphotype dependent.
Collapse
Affiliation(s)
- Maria Jonson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Alexander Sandberg
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Marcus Carlback
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; Department of Molecular Neuroscience, Institute of Neurology, University College London, London W1C3BG, UK
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-581 85, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-581 85, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden.
| |
Collapse
|
27
|
Elevated MeCP2 in Mice Causes Neurodegeneration Involving Tau Dysregulation and Excitotoxicity: Implications for the Understanding and Treatment of MeCP2 Triplication Syndrome. Mol Neurobiol 2018; 55:9057-9074. [PMID: 29637441 DOI: 10.1007/s12035-018-1046-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022]
Abstract
Expression of MeCP2 must be carefully regulated as a reduction or increase results in serious neurological disorders. We are studying transgenic mice in which the MeCP2 gene is expressed at about three times higher than the normal level. Male MeCP2-Tg mice, but not female mice, suffer motor and cognitive deficits and die at 18-20 weeks of age. MeCP2-Tg mice display elevated GFAP and Tau expression within the hippocampus and cortex followed by neuronal loss in these brain regions. Loss of Purkinje neurons, but not of granule neurons in the cerebellar cortex is also seen. Exposure of cultured cortical neurons to either conditioned medium from astrocytes (ACM) derived from male MeCP2-Tg mice or normal astrocytes in which MeCP2 is expressed at elevated levels promotes their death. Interestingly, ACM from male, but not female MeCP2-Tg mice, displays this neurotoxicity reflecting the gender selectivity of neurological symptoms in mice. Male ACM, but not female ACM, contains highly elevated levels of glutamate, and its neurotoxicity can be prevented by MK-801, indicating that it is caused by excitotoxicity. Based on the close phenotypic resemblance of MeCP2-Tg mice to patients with MECP2 triplication syndrome, we suggest for the first time that the human syndrome is a neurodegenerative disorder resulting from astrocyte dysfunction that leads to Tau-mediated excitotoxic neurodegeneration. Loss of cortical and hippocampal neurons may explain the mental retardation and epilepsy in patients, whereas ataxia likely results from the loss of Purkinje neurons.
Collapse
|
28
|
Neuronal-specific impairment of heparan sulfate degradation in Drosophila reveals pathogenic mechanisms for Mucopolysaccharidosis type IIIA. Exp Neurol 2018; 303:38-47. [PMID: 29408731 DOI: 10.1016/j.expneurol.2018.01.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2017] [Accepted: 01/31/2018] [Indexed: 01/17/2023]
Abstract
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder resulting from the deficit of the N-sulfoglucosamine sulfohydrolase (SGSH) enzyme that leads to accumulation of partially-degraded heparan sulfate. MPS IIIA is characterized by severe neurological symptoms, clinically presenting as Sanfilippo syndrome, for which no effective therapy is available. The lysosomal SGSH enzyme is conserved in Drosophila and we have identified increased levels of heparan sulfate in flies with ubiquitous knockdown of SGSH/CG14291. Using neuronal specific knockdown of SGSH/CG14291 we have also observed a higher abundance of Lysotracker-positive puncta as well as increased expression of GFP tagged Ref(2)P supporting disruption to lysosomal function. We have also observed a progressive defect in climbing ability, a hallmark of neurological dysfunction. Genetic screens indicate proteins and pathways that can functionally modify the climbing phenotype, including autophagy-related proteins (Atg1 and Atg18), superoxide dismutase enzymes (Sod1 and Sod2) and heat shock protein (HSPA1). In addition, reducing heparan sulfate biosynthesis by knocking down sulfateless or slalom expression significantly worsens the phenotype; an important observation given that substrate inhibition is being evaluated clinically as a treatment for MPS IIIA. Identifying the cellular pathways that can modify MPS IIIA neuropathology is an essential step in the development of novel therapeutic approaches to prevent and/or ameliorate symptoms in children with Sanfilippo syndrome.
Collapse
|
29
|
Abstract
Alexander disease is a rare and generally fatal disorder of the central nervous system, originally defined by the distinctive neuropathology consisting of abundant Rosenthal fibers within the cytoplasm and processes of astrocytes. More recently, mutations in GFAP, encoding glial fibrillary acidic protein, the major intermediate filament protein of astrocytes, have been identified in nearly all patients. No other genetic causes have yet been identified. The precise mechanisms by which mutations lead to disease are poorly understood. Despite the genetic homogeneity, there are a wide range of clinical phenotypes. The genetic issues and the approach to diagnosis are the prime consideration in this chapter.
Collapse
Affiliation(s)
- Albee Messing
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
30
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Prasad S, Sajja RK, Kaisar MA, Park JH, Villalba H, Liles T, Abbruscato T, Cucullo L. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol 2017; 12:58-69. [PMID: 28212524 PMCID: PMC5312505 DOI: 10.1016/j.redox.2017.02.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) is associated with vascular endothelial dysfunction in a causative way primarily related to the TS content of reactive oxygen species (ROS), nicotine, and inflammation. TS promotes glucose intolerance and increases the risk of developing type-2 diabetes mellitus (2DM) with which it shares other pathogenic traits including the high risk of cerebrovascular and neurological disorders like stroke via ROS generation, inflammation, and blood-brain barrier (BBB) impairment. Herein we provide evidence of the role played by nuclear factor erythroid 2-related factor (Nrf2) in CS-induced cerebrobvascular/BBB impairments and how these cerebrovascular harmful effects can be circumvented by the use of metformin (MF; a widely prescribed, firstline anti-diabetic drug) treatment. Our data in fact revealed that MF activates counteractive mechanisms primarily associated with the Nrf2 pathway which drastically reduce CS toxicity at the cerebrovascular level. These include the suppression of tight junction (TJ) protein downregulation and loss of BBB integrity induced by CS, reduction of inflammation and oxidative stress, renormalization of the expression levels of the major BBB glucose transporter Glut-1 and that of the anticoagulant factor thrombomodulin. Further, we provide additional insights on the controversial interplay between Nrf2 and AMPK.
Collapse
Affiliation(s)
- Shikha Prasad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | - Ravi K Sajja
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | - Mohammad Abul Kaisar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | - Jee Hyun Park
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | - Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | - Taylor Liles
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA.
| | - Thomas Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX 79106, USA; Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
32
|
Prabakaran R, Goel D, Kumar S, Gromiha MM. Aggregation prone regions in human proteome: Insights from large-scale data analyses. Proteins 2017; 85:1099-1118. [DOI: 10.1002/prot.25276] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 12/25/2022]
Affiliation(s)
- R. Prabakaran
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
| | - Dhruv Goel
- Department of Computer Science and Engineering; Motilal Nehru National Institute of Technology; Allahabad 211004 India
| | - Sandeep Kumar
- Biotherapeutics Pharmaceutical Sciences, Pfizer Inc; 700 Chesterfield Parkway West Chesterfield Missouri 63017, USA
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences; Indian Institute of Technology Madras; Chennai 600036 India
| |
Collapse
|
33
|
de Souza SRG, de Miranda Neto MH, Martins Perles JVC, Vieira Frez FC, Zignani I, Ramalho FV, Hermes-Uliana C, Bossolani GDP, Zanoni JN. Antioxidant Effects of the Quercetin in the Jejunal Myenteric Innervation of Diabetic Rats. Front Med (Lausanne) 2017; 4:8. [PMID: 28224126 PMCID: PMC5293826 DOI: 10.3389/fmed.2017.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose Enteric glial cells (EGCs) exert a critical role in the structural integrity, defense, and metabolic function of enteric neurons. Diabetes mellitus is a chronic disease characterized by metabolic disorders and chronic autonomic neuropathy. Quercetin supplementation, which is a potent antioxidant, has been used in order to reduce the effects of diabetes-induced oxidative stress. The purpose of this research was to investigate the effects of quercetin supplementation in the drinking water at a daily dose of 40 mg on the glial cells and neurons in the jejunum of diabetic rats. Materials and methods Twenty 90-day-old male adult Wistar rats were split into four groups: normoglycemic control (C), normoglycemic control supplemented with quercetin (Q), diabetic (D), and diabetic supplemented with quercetin (DQ). After 120 days, the jejunums were collected, and immunohistochemical technique was performed to label S-100-immunoreactive glial cells and HuC/D-immunoreactive neurons. Results An intense neuronal and glial reduction was observed in the jejunum of diabetic rats. Quercetin displayed neuroprotective effects due to reduced cell body areas of neurons and glial cells in Q and DQ groups compared to their controls (C and D groups). Interestingly, quercetin prevented the glial and neuronal loss with a higher density for the HuC/D-immunoreactive neurons (23.06%) and for the S100-immunoreactive glial cells (14.55%) in DQ group compared to D group. Conclusion Quercetin supplementation promoted neuroprotective effects through the reduction of neuronal and glial body areas and a slight prevention of neuronal and glial density reduction.
Collapse
Affiliation(s)
- Sara R Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | | | | | | | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | - Francielle Veiga Ramalho
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | | | | | | |
Collapse
|
34
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
35
|
Malik T, Hasan S, Pervez S, Fatima T, Haleem DJ. Nigella sativa Oil Reduces Extrapyramidal Symptoms (EPS)-Like Behavior in Haloperidol-Treated Rats. Neurochem Res 2016; 41:3386-3398. [PMID: 27752803 DOI: 10.1007/s11064-016-2073-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
Abstract
The symptoms of Parkinsonism and oral dyskinesia have been showing to be induced by neuroleptics that significantly affect its clinical use. In this study, we investigate whether Nigella sativa-oil (NS) (black cumin seeds)-a traditional medicine used for the seizure treatment in eastern country-may reduce the haloperidol (HAL)-induced extrapyramidal symptoms (EPS)-like behavior in rats. After combine treatment with HAL (1 mg/kg) on NS (0.2 ml/rat), rats displayed a significant decreased EPS-like behavior including movement disorders and oral dyskinesia as compared to controls. Immunohistochemical analysis indicates that NS reduced astrogliosis in caudate and accumbens nuclei. These results suggest that NS may consider as an adjunct to antipsychotics to reduce the EPS-like side effect.
Collapse
Affiliation(s)
- Tafheem Malik
- Neurochemistry and Biochemical Neuropharmacology Unit, Department of Biochemistry, The University of Karachi, Karachi, 75270, Pakistan. .,Basic Sciences, Physiology, National University of Health Sciences, Lombard, IL, USA. .,Histopathology Unit, Department of Pathology and Microbiology, The Aga Khan University Hospital, Karachi, Pakistan.
| | - Sheema Hasan
- Histopathology Unit, Department of Pathology and Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Shahid Pervez
- Histopathology Unit, Department of Pathology and Microbiology, The Aga Khan University Hospital, Karachi, Pakistan
| | - Tasneem Fatima
- Department of Anatomy, United Medical and Dental College, Karachi, Pakistan
| | - Darakhshan Jabeen Haleem
- Neurochemistry and Biochemical Neuropharmacology Unit, Department of Biochemistry, The University of Karachi, Karachi, 75270, Pakistan.,Neuroscience Research Laboratory, Dr Panjwani Center for Molecular Medicine and Drug Research, The University of Karachi, Karachi, Pakistan
| |
Collapse
|
36
|
Chandrasekaran A, Avci HX, Leist M, Kobolák J, Dinnyés A. Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Front Cell Neurosci 2016; 10:215. [PMID: 27725795 PMCID: PMC5035736 DOI: 10.3389/fncel.2016.00215] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have a central role in brain development and function, and so have gained increasing attention over the past two decades. Consequently, our knowledge about their origin, differentiation and function has increased significantly, with new research showing that astrocytes cultured alone or co-cultured with neurons have the potential to improve our understanding of various central nervous system diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, or Alexander disease. The generation of astrocytes derived from pluripotent stem cells (PSCs) opens up a new area for studying neurologic diseases in vitro; these models could be exploited to identify and validate potential drugs by detecting adverse effects in the early stages of drug development. However, as it is now known that a range of astrocyte populations exist in the brain, it will be important in vitro to develop standardized protocols for the in vitro generation of astrocyte subsets with defined maturity status and phenotypic properties. This will then open new possibilities for co-cultures with neurons and the generation of neural organoids for research purposes. The aim of this review article is to compare and summarize the currently available protocols and their strategies to generate human astrocytes from PSCs. Furthermore, we discuss the potential role of human-induced PSCs derived astrocytes in disease modeling.
Collapse
Affiliation(s)
| | - Hasan X Avci
- BioTalentum LtdGödöllő, Hungary; Department of Medical Chemistry, University of SzegedSzeged, Hungary
| | - Marcel Leist
- Dorenkamp-Zbinden Chair, Faculty of Mathematics and Sciences, University of Konstanz Konstanz, Germany
| | | | - Andras Dinnyés
- BioTalentum LtdGödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan UniversityGödöllő, Hungary
| |
Collapse
|
37
|
Kawasaki F, Koonce NL, Guo L, Fatima S, Qiu C, Moon MT, Zheng Y, Ordway RW. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration. Dis Model Mech 2016; 9:953-64. [PMID: 27483356 PMCID: PMC5047692 DOI: 10.1242/dmm.026385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila. This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule cytoskeleton after HS stress. These findings establish a model for genetic analysis of degeneration and protection mechanisms involving contributions of environmental factors, and advance our understanding of the protective functions and therapeutic potential of small HSPs. Summary: A Drosophila model for environmental-stress-induced degeneration exhibits key features for genetic analysis of degenerative disease mechanisms and reveals new forms of protection mediated by small heat shock proteins.
Collapse
Affiliation(s)
- Fumiko Kawasaki
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Noelle L Koonce
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Linda Guo
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shahroz Fatima
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Catherine Qiu
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie T Moon
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yunzhen Zheng
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard W Ordway
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
38
|
An In Vivo Pharmacological Screen Identifies Cholinergic Signaling as a Therapeutic Target in Glial-Based Nervous System Disease. J Neurosci 2016; 36:1445-55. [PMID: 26843629 DOI: 10.1523/jneurosci.0256-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The role that glia play in neurological disease is poorly understood but increasingly acknowledged to be critical in a diverse group of disorders. Here we use a simple genetic model of Alexander disease, a progressive and severe human degenerative nervous system disease caused by a primary astroglial abnormality, to perform an in vivo screen of 1987 compounds, including many FDA-approved drugs and natural products. We identify four compounds capable of dose-dependent inhibition of nervous system toxicity. Focusing on one of these hits, glycopyrrolate, we confirm the role for muscarinic cholinergic signaling in pathogenesis using additional pharmacologic reagents and genetic approaches. We further demonstrate that muscarinic cholinergic signaling works through downstream Gαq to control oxidative stress and death of neurons and glia. Importantly, we document increased muscarinic cholinergic receptor expression in Alexander disease model mice and in postmortem brain tissue from Alexander disease patients, and that blocking muscarinic receptors in Alexander disease model mice reduces oxidative stress, emphasizing the translational significance of our findings. We have therefore identified glial muscarinic signaling as a potential therapeutic target in Alexander disease, and possibly in other gliopathic disorders as well. SIGNIFICANCE STATEMENT Despite the urgent need for better treatments for neurological diseases, drug development for these devastating disorders has been challenging. The effectiveness of traditional large-scale in vitro screens may be limited by the lack of the appropriate molecular, cellular, and structural environment. Using a simple Drosophila model of Alexander disease, we performed a moderate throughput chemical screen of FDA-approved drugs and natural compounds, and found that reducing muscarinic cholinergic signaling ameliorated clinical symptoms and oxidative stress in Alexander disease model flies and mice. Our work demonstrates that small animal models are valuable screening tools for therapeutic compound identification in complex human diseases and that existing drugs can be a valuable resource for drug discovery given their known pharmacological and safety profiles.
Collapse
|
39
|
Pekny M, Pekna M, Messing A, Steinhäuser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A. Astrocytes: a central element in neurological diseases. Acta Neuropathol 2016; 131:323-45. [PMID: 26671410 DOI: 10.1007/s00401-015-1513-1] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 11/21/2015] [Indexed: 12/18/2022]
Abstract
The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer's disease as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Milos Pekny
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden.
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.
- University of Newcastle, New South Wales, Australia.
| | - Marcela Pekna
- Department of Clinical Neuroscience and Rehabilitation, Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 405 30, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- University of Newcastle, New South Wales, Australia
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI, 53705, USA
| | - Christian Steinhäuser
- Medical faculty, Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Jin-Moo Lee
- Department of Neurology, The Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, USA
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center, Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy and Nanotechnology Laboratories, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 429, Birmingham, AL, 35294, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael V Sofroniew
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
- University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia.
| |
Collapse
|
40
|
Nitric oxide mediates glial-induced neurodegeneration in Alexander disease. Nat Commun 2015; 6:8966. [PMID: 26608817 PMCID: PMC4674772 DOI: 10.1038/ncomms9966] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction. Alexander disease is a rare neurological disorder caused by mutations in GFAP, yet it is unclear how glial disruptions lead to neural death. Here, Wang et al. identify a mechanism by which glial-derived nitric oxide leads to neuronal degeneration in fly and mouse models of the disease.
Collapse
|
41
|
Mensah LB, Davison C, Fan SJ, Morris JF, Goberdhan DCI, Wilson C. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster. PLoS One 2015; 10:e0143818. [PMID: 26599788 PMCID: PMC4658134 DOI: 10.1371/journal.pone.0143818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/09/2015] [Indexed: 11/24/2022] Open
Abstract
Insulin/insulin-like growth factor signalling (IIS), acting primarily through the PI3-kinase (PI3K)/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K’s direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten), in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1) pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight muscles, offering a new system to study the in vivo roles of IIS in the maintenance of mitochondrial integrity and adult ageing.
Collapse
Affiliation(s)
- Lawrence B. Mensah
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, United Kingdom
| | - Claire Davison
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, United Kingdom
| | - Shih-Jung Fan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, United Kingdom
| | - John F. Morris
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, United Kingdom
| | - Deborah C. I. Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, United Kingdom
| | - Clive Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Sun J, Groppi VE, Gui H, Chen L, Xie Q, Liu L, Omary MB. High-Throughput Screening for Drugs that Modulate Intermediate Filament Proteins. Methods Enzymol 2015; 568:163-85. [PMID: 26795471 DOI: 10.1016/bs.mie.2015.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intermediate filament (IF) proteins have unique and complex cell and tissue distribution. Importantly, IF gene mutations cause or predispose to more than 80 human tissue-specific diseases (IF-pathies), with the most severe disease phenotypes being due to mutations at conserved residues that result in a disrupted IF network. A critical need for the entire IF-pathy field is the identification of drugs that can ameliorate or cure these diseases, particularly since all current therapies target the IF-pathy complication, such as diabetes or cardiovascular disease, rather than the mutant IF protein or gene. We describe a high-throughput approach to identify drugs that can normalize disrupted IF proteins. This approach utilizes transduction of lentivirus that expresses green fluorescent protein-tagged keratin 18 (K18) R90C in A549 cells. The readout is drug "hits" that convert the dot-like keratin filament distribution, due to the R90C mutation, to a wild-type-like filamentous array. A similar strategy can be used to screen thousands of compounds and can be utilized for practically any IF protein with a filament-disrupting mutation, and could therefore potentially target many IF-pathies. "Hits" of interest require validation in cell culture then using in vivo experimental models. Approaches to study the mechanism of mutant IF normalization by potential drugs of interest are also described. The ultimate goal of this drug screening approach is to identify effective and safe compounds that can potentially be tested for clinical efficacy in patients.
Collapse
Affiliation(s)
- Jingyuan Sun
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Vincent E Groppi
- Department of Pharmacology, The Center for Chemical Genomics, University of Michigan, Ann Arbor, Michigan, USA
| | - Honglian Gui
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA; Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Lu Chen
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, PR China
| | - Li Liu
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Parodi J, Ormeño D, Ochoa-de la Paz LD. Amyloid pore-channel hypothesis: effect of ethanol on aggregation state using frog oocytes for an Alzheimer's disease study. BMB Rep 2015; 48:13-8. [PMID: 25047445 PMCID: PMC4345636 DOI: 10.5483/bmbrep.2015.48.1.125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease severely compromises cognitive function. One of the mechanisms to explain the pathology of Alzheimer’s disease has been the hypotheses of amyloid-pore/channel formation by complex Aβ-aggregates. Clinical studies suggested the moderate alcohol consumption can reduces probability developing neurodegenerative pathologies. A recent report explored the ability of ethanol to disrupt the generation of complex Aβ in vitro and reduce the toxicity in two cell lines. Molecular dynamics simulations were applied to understand how ethanol blocks the aggregation of amyloid. On the other hand, the in silico modeling showed ethanol effect over the dynamics assembling for complex Aβ-aggregates mediated by break the hydrosaline bridges between Asp 23 and Lys 28, was are key element for amyloid dimerization. The amyloid pore/channel hypothesis has been explored only in neuronal models, however recently experiments suggested the frog oocytes such an excellent model to explore the mechanism of the amyloid pore/channel hypothesis. So, the used of frog oocytes to explored the mechanism of amyloid aggregates is new, mainly for amyloid/pore hypothesis. Therefore, this experimental model is a powerful tool to explore the mechanism implicates in the Alzheimer’s disease pathology and also suggests a model to prevent the Alzheimer’s disease pathology. [BMB Reports 2015; 48(1): 13-18]
Collapse
Affiliation(s)
- Jorge Parodi
- Laboratorio de Fisiología de la Reproducción, Núcleo de Investigaciónen Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - David Ormeño
- Laboratorio de Fisiología de la Reproducción, Núcleo de Investigaciónen Producción Alimentaria, Facultad de Recursos Naturales, Escuela de Medicina Veterinaria, Universidad Católica de Temuco, Temuco, Chile
| | - Lenin D Ochoa-de la Paz
- Laboratorio de Fisiología Celular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| |
Collapse
|
44
|
|
45
|
Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Cotrina ML, Chen M, Han X, Iliff J, Ren Z, Sun W, Hagemann T, Goldman J, Messing A, Nedergaard M. Effects of traumatic brain injury on reactive astrogliosis and seizures in mouse models of Alexander disease. Brain Res 2014; 1582:211-9. [PMID: 25069089 DOI: 10.1016/j.brainres.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 06/30/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Alexander disease (AxD) is the only known human pathology caused by mutations in an astrocyte-specific gene, glial fibrillary acidic protein (GFAP). These mutations result in abnormal GFAP accumulations that promote seizures, motor delays and, ultimately, death. The exact contribution of increased, abnormal levels of astrocytic mutant GFAP in the development and progression of the epileptic phenotype is not clear, and we addressed this question using two mouse models of AxD. Comparison of brain seizure activity spontaneously and after traumatic brain injury (TBI), an effective way to trigger seizures, revealed that abnormal GFAP accumulation contributes to anomalous brain activity (increased non-convulsive hyperactivity) but is not a risk factor for the development of epilepsy after TBI. These data highlight the need to further explore the complex and heterogeneous response of astrocytes towards injury and the involvement of GFAP in the progression of AxD.
Collapse
Affiliation(s)
- Maria Luisa Cotrina
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA.
| | - Michael Chen
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| | - Xiaoning Han
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| | - Jeffrey Iliff
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| | - Zeguang Ren
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| | - Wei Sun
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| | - Tracy Hagemann
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - James Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Albee Messing
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Ave, Box 645, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic inclusions known as Rosenthal fibers (RFs) within astrocytes, and is caused by dominant mutations in the coding region of the gene encoding glial fibrillary acidic protein (GFAP). GFAP is the major astrocytic intermediate filament, and in AxD patient brain tissue GFAP is a major component of RFs. TAR DNA binding protein of 43 kDa (TDP-43) is the major pathological protein in almost all cases of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and ∼50% of frontotemporal lobar degeneration (FTLD), designated as FTLD-TDP. In ALS and FTLD-TDP, TDP-43 becomes insoluble, ubiquitinated, and pathologically phosphorylated and accumulates in cytoplasmic inclusions in both neurons and glia of affected brain and spinal cord regions. Previously, TDP-43 was detected in RFs of human pilocytic astrocytomas; however, involvement of TDP-43 in AxD has not been determined. Here we show that TDP-43 is present in RFs in AxD patient brains, and that insoluble phosphorylated full-length and high molecular weight TDP-43 accumulates in white matter of such brains. Phosphorylated TDP-43 also accumulates in the detergent-insoluble fraction from affected brain regions of Gfap(R236H/+) knock-in mice, which harbor a GFAP mutation homologous to one that causes AxD in humans, and TDP-43 colocalizes with astrocytic RF pathology in Gfap(R236H/+) mice and transgenic mice overexpressing human wild-type GFAP. These findings suggest common pathogenic mechanisms in ALS, FTLD, and AxD, and this is the first report of TDP-43 involvement in a neurological disorder primarily affecting astrocytes.
Collapse
|
48
|
Effects of a polymorphism in the GFAP promoter on the age of onset and ambulatory disability in late-onset Alexander disease. J Hum Genet 2013; 58:635-8. [PMID: 23903069 DOI: 10.1038/jhg.2013.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/18/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023]
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder. Most patients with AxD have a de novo dominant missense mutation in the glial fibrillary acidic protein (GFAP) gene. Patients with late-onset AxD exhibit a more variable onset and severity than patients with early-onset AxD, suggesting the existence of factors that modify the clinical phenotype of late-onset AxD. A -250-bp C/A single-nucleotide polymorphism (SNP) of the GFAP promoter (rs2070935) in the activator protein-1 binding site is a candidate factor for modification of the clinical phenotype. We analyzed the SNP in 10 patients with late-onset AxD and evaluated the effects of the SNP on the clinical course of late-onset AxD. Three of four cases with the C/C genotype lost the ability to walk in their 30s or 40s, whereas all six cases with the other genotypes retained the ability to walk throughout their 30s. The age of onset in patients with the C/C genotype was significantly earlier than in patients with the other genotypes (P<0.05). A more severe phenotype was observed in the patient in whom the C allele of rs2070935 was in cis with the GFAP mutation compared with the patient in whom the C allele of rs2070935 was in trans with the GFAP mutation. Our investigation revealed the possibility that the C/C genotype at rs2070935 of the GFAP promoter in late-onset AxD was associated with an earlier onset and a more rapid progression of ambulatory disability compared with the other genotypes.
Collapse
|
49
|
Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations. J Hum Genet 2013; 58:183-8. [DOI: 10.1038/jhg.2012.152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Hrizo SL, Fisher IJ, Long DR, Hutton JA, Liu Z, Palladino MJ. Early mitochondrial dysfunction leads to altered redox chemistry underlying pathogenesis of TPI deficiency. Neurobiol Dis 2013; 54:289-96. [PMID: 23318931 DOI: 10.1016/j.nbd.2012.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/28/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Triose phosphate isomerase (TPI) is responsible for the interconversion of dihydroxyacetone phosphate to glyceraldehyde-3-phosphate in glycolysis. Point mutations in this gene are associated with a glycolytic enzymopathy called TPI deficiency. This study utilizes a Drosophila melanogaster model of TPI deficiency; TPI(sugarkill) is a mutant allele with a missense mutation (M80T) that causes phenotypes similar to human TPI deficiency. In this study, the redox status of TPI(sugarkill) flies was examined and manipulated to provide insight into the pathogenesis of this disease. Our data show that TPI(sugarkill) animals exhibit higher levels of the oxidized forms of NAD(+), NADP(+) and glutathione in an age-dependent manner. Additionally, we demonstrate that mitochondrial redox state is significantly more oxidized in TPI(sugarkill) animals. We hypothesized that TPI(sugarkill) animals may be more sensitive to oxidative stress and that this may underlie the progressive nature of disease pathogenesis. The effect of oxidizing and reducing stressors on behavioral phenotypes of the TPI(sugarkill) animals was tested. As predicted, oxidative stress worsened these phenotypes. Importantly, we discovered that reducing stress improved the behavioral and longevity phenotypes of the mutant organism without having an effect on TPI(sugarkill) protein levels. Overall, these data suggest that reduced activity of TPI leads to an oxidized redox state in these mutants and that the alleviation of this stress using reducing compounds can improve the mutant phenotypes.
Collapse
Affiliation(s)
- Stacy L Hrizo
- Deparment of Pharmacology & Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | |
Collapse
|