1
|
Tsunada J, Wang X, Eliades SJ. Multiple processes of vocal sensory-motor interaction in primate auditory cortex. Nat Commun 2024; 15:3093. [PMID: 38600118 PMCID: PMC11006904 DOI: 10.1038/s41467-024-47510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Sensory-motor interactions in the auditory system play an important role in vocal self-monitoring and control. These result from top-down corollary discharges, relaying predictions about vocal timing and acoustics. Recent evidence suggests such signals may be two distinct processes, one suppressing neural activity during vocalization and another enhancing sensitivity to sensory feedback, rather than a single mechanism. Single-neuron recordings have been unable to disambiguate due to overlap of motor signals with sensory inputs. Here, we sought to disentangle these processes in marmoset auditory cortex during production of multi-phrased 'twitter' vocalizations. Temporal responses revealed two timescales of vocal suppression: temporally-precise phasic suppression during phrases and sustained tonic suppression. Both components were present within individual neurons, however, phasic suppression presented broadly regardless of frequency tuning (gating), while tonic was selective for vocal frequencies and feedback (prediction). This suggests that auditory cortex is modulated by concurrent corollary discharges during vocalization, with different computational mechanisms.
Collapse
Affiliation(s)
- Joji Tsunada
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Chinese Institute for Brain Research, Beijing, China
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven J Eliades
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Zhang Y, Shen SX, Bibic A, Wang X. Evolutionary continuity and divergence of auditory dorsal and ventral pathways in primates revealed by ultra-high field diffusion MRI. Proc Natl Acad Sci U S A 2024; 121:e2313831121. [PMID: 38377216 PMCID: PMC10907247 DOI: 10.1073/pnas.2313831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Auditory dorsal and ventral pathways in the human brain play important roles in supporting speech and language processing. However, the evolutionary root of the dual auditory pathways in the primate brain is unclear. By parcellating the auditory cortex of marmosets (a New World monkey species), macaques (an Old World monkey species), and humans using the same individual-based analysis method and tracking the pathways from the auditory cortex based on multi-shell diffusion-weighted MRI (dMRI), homologous auditory dorsal and ventral fiber tracks were identified in these primate species. The ventral pathway was found to be well conserved in all three primate species analyzed but extend to more anterior temporal regions in humans. In contrast, the dorsal pathway showed a divergence between monkey and human brains. First, frontal regions in the human brain have stronger connections to the higher-level auditory regions than to the lower-level auditory regions along the dorsal pathway, while frontal regions in the monkey brain show opposite connection patterns along the dorsal pathway. Second, the left lateralization of the dorsal pathway is only found in humans. Moreover, the connectivity strength of the dorsal pathway in marmosets is more similar to that of humans than macaques. These results demonstrate the continuity and divergence of the dual auditory pathways in the primate brains along the evolutionary path, suggesting that the putative neural networks supporting human speech and language processing might have emerged early in primate evolution.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sherry Xinyi Shen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, F. M. Kirby Center, Baltimore, MD21205
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
3
|
Tsunada J, Eliades SJ. Frontal-Auditory Cortical Interactions and Sensory Prediction During Vocal Production in Marmoset Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577656. [PMID: 38352422 PMCID: PMC10862695 DOI: 10.1101/2024.01.28.577656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The control of speech and vocal production involves the calculation of error between the intended vocal output and the resulting auditory feedback. Consistent with this model, recent evidence has demonstrated that the auditory cortex is suppressed immediately before and during vocal production, yet is still sensitive to differences between vocal output and altered auditory feedback. This suppression has been suggested to be the result of top-down signals containing information about the intended vocal output, potentially originating from motor or other frontal cortical areas. However, whether such frontal areas are the source of suppressive and predictive signaling to the auditory cortex during vocalization is unknown. Here, we simultaneously recorded neural activity from both the auditory and frontal cortices of marmoset monkeys while they produced self-initiated vocalizations. We found increases in neural activity in both brain areas preceding the onset of vocal production, notably changes in both multi-unit activity and local field potential theta-band power. Connectivity analysis using Granger causality demonstrated that frontal cortex sends directed signaling to the auditory cortex during this pre-vocal period. Importantly, this pre-vocal activity predicted both vocalization-induced suppression of the auditory cortex as well as the acoustics of subsequent vocalizations. These results suggest that frontal cortical areas communicate with the auditory cortex preceding vocal production, with frontal-auditory signals that may reflect the transmission of sensory prediction information. This interaction between frontal and auditory cortices may contribute to mechanisms that calculate errors between intended and actual vocal outputs during vocal communication.
Collapse
Affiliation(s)
- Joji Tsunada
- Chinese Institute for Brain Research, Beijing, China
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Steven J. Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Zhao L, Wang X. Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys. Nat Commun 2023; 14:6634. [PMID: 37857618 PMCID: PMC10587070 DOI: 10.1038/s41467-023-42052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Vocal communication is essential for social behaviors in humans and non-human primates. While the frontal cortex is crucial to human speech production, its role in vocal production in non-human primates has long been questioned. It is unclear whether activities in the frontal cortex represent diverse vocal signals used in non-human primate communication. Here we studied single neuron activities and local field potentials (LFP) in the frontal cortex of male marmoset monkeys while the animal engaged in vocal exchanges with conspecifics in a social environment. We found that both single neuron activities and LFP were modulated by the production of each of the four major call types. Moreover, neural activities showed distinct patterns for different call types and theta-band LFP oscillations showed phase-locking to the phrases of twitter calls, suggesting a neural representation of vocalization features. Our results suggest important functions of the marmoset frontal cortex in supporting the production of diverse vocalizations in communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, 94158, USA.
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Eliades SJ, Tsunada J. Effects of Cortical Stimulation on Feedback-Dependent Vocal Control in Non-Human Primates. Laryngoscope 2023; 133 Suppl 2:S1-S10. [PMID: 35538859 PMCID: PMC9649833 DOI: 10.1002/lary.30175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Hearing plays an important role in our ability to control voice, and perturbations in auditory feedback result in compensatory changes in vocal production. The auditory cortex (AC) has been proposed as an important mediator of this behavior, but causal evidence is lacking. We tested this in an animal model, hypothesizing that AC is necessary for vocal self-monitoring and feedback-dependent control, and that altering activity in AC during vocalization will interfere with vocal control. METHODS We implanted two marmoset monkeys (Callithrix jacchus) with bilateral AC electrode arrays. Acoustic signals were recorded from vocalizing marmosets while altering vocal feedback or electrically stimulating AC during random subsets of vocalizations. Feedback was altered by real-time frequency shifts and presented through headphones and electrical stimulation delivered to individual electrodes. We analyzed recordings to measure changes in vocal acoustics during shifted feedback and stimulation, and to determine their interaction. Results were correlated with the location and frequency tuning of stimulation sites. RESULTS Consistent with previous results, we found electrical stimulation alone evoked changes in vocal production. Results were stronger in the right hemisphere, but decreased with lower currents or repeated stimulation. Simultaneous stimulation and shifted feedback significantly altered vocal control for a subset of sites, decreasing feedback compensation at some and increasing it at others. Inhibited compensation was more likely at sites closer to vocal frequencies. CONCLUSIONS Results provide causal evidence that the AC is involved in feedback-dependent vocal control, and that it is sufficient and may also be necessary to drive changes in vocal production. LEVEL OF EVIDENCE N/A Laryngoscope, 133:1-10, 2023.
Collapse
Affiliation(s)
- Steven J Eliades
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joji Tsunada
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
6
|
Löschner J, Pomberger T, Hage SR. Marmoset monkeys use different avoidance strategies to cope with ambient noise during vocal behavior. iScience 2023; 26:106219. [PMID: 36915693 PMCID: PMC10006620 DOI: 10.1016/j.isci.2023.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Multiple strategies have evolved to compensate for masking noise, leading to changes in call features. One call adjustment is the Lombard effect, an increase in call amplitude in response to noise. Another strategy involves call production in periods where noise is absent. While mechanisms underlying vocal adjustments have been well studied, mechanisms underlying noise avoidance strategies remain largely unclear. We systematically perturbed ongoing phee calls of marmosets to investigate noise avoidance strategies. Marmosets canceled their calls after noise onset and produced longer calls after noise-phases ended. Additionally, the number of uttered syllables decreased during noise perturbation. This behavior persisted beyond the noise-phase. Using machine learning techniques, we found that a fraction of single phees were initially planned as double phees and became interrupted after the first syllable. Our findings indicate that marmosets use different noise avoidance strategies and suggest vocal flexibility at different complexity levels in the marmoset brain.
Collapse
Affiliation(s)
- Julia Löschner
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Hearing Research Center, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Thomas Pomberger
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Hearing Research Center, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074 Tübingen, Germany
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Hearing Research Center, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Zhang G, Cui Z, Fan Z, Yang L, Jia Y, Chen Q, Fu Z. Background noise responding neurons in the inferior colliculus of the CF-FM bat, Hipposideros pratti. Hear Res 2023; 432:108742. [PMID: 37004270 DOI: 10.1016/j.heares.2023.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
The Lombard effect, referring to an involuntary rise in vocal intensity, is a widespread vertebrate mechanism that aims to maintain signal efficiency in response to ambient noise. Previous studies showed that the Lombard effect could be sufficiently implemented at subcortical levels and operated by continuously monitoring background noise, requiring some subcortical auditory sensitive neurons to have continuous responses to background noise. However, such neurons have not been well characterized. The inferior colliculus (IC) is a major auditory integration center under the auditory cortex and provides projections to the putative vocal pattern generator in the brainstem. Thus, it is reasonable to speculate that the IC is a likely auditory nucleus candidate having background noise responding neurons (BNR neurons). In the present study, we isolated 183 sound-sensitive IC neurons in a constant frequency-frequency modulation bat, Hipposideros pratti, and found that around 19% of these IC neurons are BNR neurons when stimulated with 70 dB SPL background white noise. Their firing rates in response to noise increased with increasing noise intensity and could be suppressed by sound stimulation. Furthermore, compared to neurons with similar best frequencies, the BNR neurons had smaller Q10-dB values and lower noise-induced minimal threshold change, indicating that BNR neurons received fewer inhibitory inputs. These results suggested that the BNR neurons are ideal candidates for collecting information about background noise. We proposed that the BNR neurons synapsed with neurons in vocal-pattern-generating networks in the brainstem and initiated the Lombard effect by a feed-forward loop.
Collapse
Affiliation(s)
- Guimin Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zhongdan Cui
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Zihui Fan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Lijian Yang
- College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Ya Jia
- College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Qicai Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Ziying Fu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
8
|
Echolocation-related reversal of information flow in a cortical vocalization network. Nat Commun 2022; 13:3642. [PMID: 35752629 PMCID: PMC9233670 DOI: 10.1038/s41467-022-31230-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.
Collapse
|
9
|
Maiditsch IP, Ladich F. Effects of noise on acoustic and visual signalling in the Croaking Gourami: differences in adaptation strategies in fish. BIOACOUSTICS 2022. [DOI: 10.1080/09524622.2022.2086174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Friedrich Ladich
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Effector-independent brain network for auditory-motor integration: fMRI evidence from singing and cello playing. Neuroimage 2021; 237:118128. [PMID: 33989814 DOI: 10.1016/j.neuroimage.2021.118128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022] Open
Abstract
Many everyday tasks share high-level sensory goals but differ in the movements used to accomplish them. One example of this is musical pitch regulation, where the same notes can be produced using the vocal system or a musical instrument controlled by the hands. Cello playing has previously been shown to rely on brain structures within the singing network for performance of single notes, except in areas related to primary motor control, suggesting that the brain networks for auditory feedback processing and sensorimotor integration may be shared (Segado et al. 2018). However, research has shown that singers and cellists alike can continue singing/playing in tune even in the absence of auditory feedback (Chen et al. 2013, Kleber et al. 2013), so different paradigms are required to test feedback monitoring and control mechanisms. In singing, auditory pitch feedback perturbation paradigms have been used to show that singers engage a network of brain regions including anterior cingulate cortex (ACC), anterior insula (aINS), and intraparietal sulcus (IPS) when compensating for altered pitch feedback, and posterior superior temporal gyrus (pSTG) and supramarginal gyrus (SMG) when ignoring it (Zarate et al. 2005, 2008). To determine whether the brain networks for cello playing and singing directly overlap in these sensory-motor integration areas, in the present study expert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning. We found that cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well. Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring; differences between singing/playing across all three conditions were most prominent in M1, centered on the relevant motor effectors (hand, larynx). These findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network and suggests that differences arise primarily at the level of forward motor control.
Collapse
|
11
|
Neural Correlates of Vocal Auditory Feedback Processing: Unique Insights from Electrocorticography Recordings in a Human Cochlear Implant User. eNeuro 2021; 8:ENEURO.0181-20.2020. [PMID: 33419861 PMCID: PMC7877459 DOI: 10.1523/eneuro.0181-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
There is considerable interest in understanding cortical processing and the function of top-down and bottom-up human neural circuits that control speech production. Research efforts to investigate these circuits are aided by analysis of spectro-temporal response characteristics of neural activity recorded by electrocorticography (ECoG). Further, cortical processing may be altered in the case of hearing-impaired cochlear implant (CI) users, as electric excitation of the auditory nerve creates a markedly different neural code for speech compared with that of the functionally intact hearing system. Studies of cortical activity in CI users typically record scalp potentials and are hampered by stimulus artifact contamination and by spatiotemporal filtering imposed by the skull. We present a unique case of a CI user who required direct recordings from the cortical surface using subdural electrodes implanted for epilepsy assessment. Using experimental conditions where the subject vocalized in the presence (CIs ON) or absence (CIs OFF) of auditory feedback, or listened to playback of self-vocalizations without production, we observed ECoG activity primarily in γ (32–70 Hz) and high γ (70–150 Hz) bands at focal regions on the lateral surface of the superior temporal gyrus (STG). High γ band responses differed in their amplitudes across conditions and cortical sites, possibly reflecting different rates of stimulus presentation and differing levels of neural adaptation. STG γ responses to playback and vocalization with auditory feedback were not different from responses to vocalization without feedback, indicating this activity reflects not only auditory, but also attentional, efference-copy, and sensorimotor processing during speech production.
Collapse
|
12
|
Meekings S, Scott SK. Error in the Superior Temporal Gyrus? A Systematic Review and Activation Likelihood Estimation Meta-Analysis of Speech Production Studies. J Cogn Neurosci 2020; 33:422-444. [PMID: 33326327 DOI: 10.1162/jocn_a_01661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Evidence for perceptual processing in models of speech production is often drawn from investigations in which the sound of a talker's voice is altered in real time to induce "errors." Methods of acoustic manipulation vary but are assumed to engage the same neural network and psychological processes. This paper aims to review fMRI and PET studies of altered auditory feedback and assess the strength of the evidence these studies provide for a speech error correction mechanism. Studies included were functional neuroimaging studies of speech production in neurotypical adult humans, using natural speech errors or one of three predefined speech manipulation techniques (frequency altered feedback, delayed auditory feedback, and masked auditory feedback). Seventeen studies met the inclusion criteria. In a systematic review, we evaluated whether each study (1) used an ecologically valid speech production task, (2) controlled for auditory activation caused by hearing the perturbation, (3) statistically controlled for multiple comparisons, and (4) measured behavioral compensation correlating with perturbation. None of the studies met all four criteria. We then conducted an activation likelihood estimation meta-analysis of brain coordinates from 16 studies that reported brain responses to manipulated over unmanipulated speech feedback, using the GingerALE toolbox. These foci clustered in bilateral superior temporal gyri, anterior to cortical fields typically linked to error correction. Within the limits of our analysis, we conclude that existing neuroimaging evidence is insufficient to determine whether error monitoring occurs in the posterior superior temporal gyrus regions proposed by models of speech production.
Collapse
|
13
|
The second harmonic neurons in auditory midbrain of Hipposideros pratti are more tolerant to background white noise. Hear Res 2020; 400:108142. [PMID: 33310564 DOI: 10.1016/j.heares.2020.108142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Although acoustic communication is inevitably influenced by noise, behaviorally relevant sounds are perceived reliably. The noise-tolerant and -invariant responses of auditory neurons are thought to be the underlying mechanism. So, it is reasonable to speculate that neurons with best frequency tuned to behaviorally relevant sounds will play important role in noise-tolerant perception. Echolocating bats live in groups and emit multiple harmonic signals and analyze the returning echoes to extract information about the target features, making them prone to deal with noise in their natural habitat. The echolocation signal of Hipposideros pratti usually contains 3-4 harmonics (H1H4), the second harmonic has the highest amplitude and is thought to play an essential role during echolocation behavior. Therefore, it is reasonable to propose that neurons tuned to the H2, named the H2 neurons, can be more noise-tolerant to background noise. Taking advantage of bat's stereotypical echolocation signal and single-cell recording, our present study showed that the minimal threshold increases (12.2 dB) of H2 neurons in the auditory midbrain were comparable to increase in bat's call intensity (14.2 dB) observed in 70 dB SPL white noise condition, indicating that the H2 neurons could work as background noise monitor. The H2 neurons had higher minimal thresholds and sharper frequency tuning, which enabled them to be more tolerant to background noise. Furthermore, the H2 neurons had consistent best amplitude spikes and sharper intensity tuning in background white noise condition than in silence. Taken together, these results suggest that the H2 neurons might account for noise-tolerant perception of behaviorally relevant sounds.
Collapse
|
14
|
Nonverbal auditory communication - Evidence for integrated neural systems for voice signal production and perception. Prog Neurobiol 2020; 199:101948. [PMID: 33189782 DOI: 10.1016/j.pneurobio.2020.101948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
While humans have developed a sophisticated and unique system of verbal auditory communication, they also share a more common and evolutionarily important nonverbal channel of voice signaling with many other mammalian and vertebrate species. This nonverbal communication is mediated and modulated by the acoustic properties of a voice signal, and is a powerful - yet often neglected - means of sending and perceiving socially relevant information. From the viewpoint of dyadic (involving a sender and a signal receiver) voice signal communication, we discuss the integrated neural dynamics in primate nonverbal voice signal production and perception. Most previous neurobiological models of voice communication modelled these neural dynamics from the limited perspective of either voice production or perception, largely disregarding the neural and cognitive commonalities of both functions. Taking a dyadic perspective on nonverbal communication, however, it turns out that the neural systems for voice production and perception are surprisingly similar. Based on the interdependence of both production and perception functions in communication, we first propose a re-grouping of the neural mechanisms of communication into auditory, limbic, and paramotor systems, with special consideration for a subsidiary basal-ganglia-centered system. Second, we propose that the similarity in the neural systems involved in voice signal production and perception is the result of the co-evolution of nonverbal voice production and perception systems promoted by their strong interdependence in dyadic interactions.
Collapse
|
15
|
Dissociation of Unit Activity and Gamma Oscillations during Vocalization in Primate Auditory Cortex. J Neurosci 2020; 40:4158-4171. [PMID: 32295815 DOI: 10.1523/jneurosci.2749-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022] Open
Abstract
Vocal production is a sensory-motor process in which auditory self-monitoring is used to ensure accurate communication. During vocal production, the auditory cortex of both humans and animals is suppressed, a phenomenon that plays an important role in self-monitoring and vocal motor control. However, the underlying neural mechanisms of this vocalization-induced suppression are unknown. γ-band oscillations (>25 Hz) have been implicated a variety of cortical functions and are thought to arise from activity of local inhibitory interneurons, but have not been studied during vocal production. We therefore examined γ-band activity in the auditory cortex of vocalizing marmoset monkeys, of either sex, and found that γ responses increased during vocal production. This increase in γ contrasts with simultaneously recorded suppression of single-unit and multiunit responses. Recorded vocal γ oscillations exhibited two separable components: a vocalization-specific nonsynchronized ("induced") response correlating with vocal suppression, and a synchronized ("evoked") response that was also present during passive sound playback. These results provide evidence for the role of cortical γ oscillations during inhibitory processing. Furthermore, the two distinct components of the γ response suggest possible mechanisms for vocalization-induced suppression, and may correspond to the sensory-motor integration of top-down and bottom-up inputs to the auditory cortex during vocal production.SIGNIFICANCE STATEMENT Vocal communication is important to both humans and animals. In order to ensure accurate information transmission, we must monitor our own vocal output. Surprisingly, spiking activity in the auditory cortex is suppressed during vocal production yet maintains sensitivity to the sound of our own voice ("feedback"). The mechanisms of this vocalization-induced suppression are unknown. Here we show that auditory cortical γ oscillations, which reflect interneuron activity, are actually increased during vocal production, the opposite response of that seen in spiking units. We discuss these results with proposed functions of γ activity during inhibitory sensory processing and coordination of different brain regions, suggesting a role in sensory-motor integration.
Collapse
|
16
|
Pomberger T, Löschner J, Hage SR. Compensatory mechanisms affect sensorimotor integration during ongoing vocal motor acts in marmoset monkeys. Eur J Neurosci 2020; 52:3531-3544. [PMID: 32170972 DOI: 10.1111/ejn.14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
Abstract
Any transmission of vocal signals faces the challenge of acoustic interferences such as heavy rain, wind, animal or urban sounds. Consequently, several mechanisms and strategies have evolved to optimize signal-to-noise ratio. Examples to increase detectability are the Lombard effect, an involuntary rise in call amplitude in response to masking ambient noise, which is often associated with other vocal changes such as call frequency and duration, as well as the animals' capability of limiting calling to periods where noise perturbation is absent. Previous studies revealed vocal flexibility and various audio-vocal integration mechanisms in marmoset monkeys. Using acoustic perturbation triggered by vocal behaviour, we investigated whether marmosets are capable of exhibiting changes in call structure when perturbing noise starts after call onset or whether such effects only occur if noise perturbation starts prior to call onset. We show that marmosets are capable of rapidly modulating call amplitude and frequency in response to such noise perturbation. Vocalizations swiftly increased call frequency after noise onset indicating a rapid effect of perturbing noise on vocal motor production. Call amplitudes were also affected. Interestingly, however, the marmosets did not exhibit the Lombard effect as previously reported but decreased call intensity in response to noise. Our findings indicate that marmosets possess a general avoidance strategy to call in the presence of ambient noise and suggest that these animals are capable of counteracting a previously thought involuntary audio-vocal mechanism, the Lombard effect. These findings will pave the way to investigate the underlying audio-vocal integration mechanisms explaining these behaviours.
Collapse
Affiliation(s)
- Thomas Pomberger
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Julia Löschner
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Steffen R Hage
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Department of Otolaryngology - Head and Neck Surgery, Hearing Research Center, University of Tübingen, Medical Center, Tübingen, Germany
| |
Collapse
|
17
|
Abstract
Humans and songbirds learn to sing or speak by listening to acoustic models, forming auditory templates, and then learning to produce vocalizations that match the templates. These taxa have evolved specialized telencephalic pathways to accomplish this complex form of vocal learning, which has been reported for very few other taxa. By contrast, the acoustic structure of most animal vocalizations is produced by species-specific vocal motor programmes in the brainstem that do not require auditory feedback. However, many mammals and birds can learn to fine-tune the acoustic features of inherited vocal motor patterns based upon listening to conspecifics or noise. These limited forms of vocal learning range from rapid alteration based on real-time auditory feedback to long-term changes of vocal repertoire and they may involve different mechanisms than complex vocal learning. Limited vocal learning can involve the brainstem, mid-brain and/or telencephalic networks. Understanding complex vocal learning, which underpins human speech, requires careful analysis of which species are capable of which forms of vocal learning. Selecting multiple animal models for comparing the neural pathways that generate these different forms of learning will provide a richer view of the evolution of complex vocal learning and the neural mechanisms that make it possible. This article is part of the theme issue ‘What can animal communication teach us about human language?’
Collapse
Affiliation(s)
- Peter L Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews KY16 8LB, UK
| |
Collapse
|
18
|
Zhao L, Roy S, Wang X. Rapid modulations of the vocal structure in marmoset monkeys. Hear Res 2019; 384:107811. [PMID: 31678893 DOI: 10.1016/j.heares.2019.107811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Humans and some animal species show flexibility in vocal production either voluntarily or in response to environmental cues. Studies have shown rapid spectrotemporal changes in speech or vocalizations during altered auditory feedback in humans, songbirds and bats. Non-human primates, however, have long been considered lacking the ability to modify spectrotemporal structures of their vocalizations. Here we tested the ability of the common marmoset (Callithrix jacchus), a highly vocal New World primate species to alter spectral and temporal structures of their species-specific vocalizations in the presence of perturbation signals. By presenting perturbation noises while marmosets were vocalizing phee calls, we showed that they were able to change in real-time the duration or spectral trajectory of an ongoing phee phrase by either terminating it before its completion, making rapid shifts in fundamental frequency or in some cases prolonging the duration beyond the natural range of phee calls. In some animals, we observed fragmented phee calls which were not produced by marmosets in their natural environment. Interestingly, some perturbation-induced changes persisted even in the absence of the perturbation noises. These observations provide further evidence that marmoset monkeys are capable of rapidly modulating their vocal structure and suggested potential voluntary vocal control by this non-human primate species.
Collapse
Affiliation(s)
- Lingyun Zhao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sabyasachi Roy
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
19
|
Eliades SJ, Wang X. Corollary Discharge Mechanisms During Vocal Production in Marmoset Monkeys. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:805-812. [PMID: 31420219 PMCID: PMC6733626 DOI: 10.1016/j.bpsc.2019.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/11/2023]
Abstract
Interactions between motor systems and sensory processing are ubiquitous throughout the animal kingdom and play an important role in many sensorimotor behaviors, including both human speech and animal vocalization. During vocal production, the auditory system plays important roles in both encoding feedback of produced sounds, allowing one to self-monitor for vocal errors, and simultaneously maintaining sensitivity to the outside acoustic environment. Supporting these roles is an efferent motor-to-sensory signal known as a corollary discharge. This review summarizes recent work on the role of such signaling during vocalization in the marmoset monkey, a nonhuman primate model of social vocal communication.
Collapse
Affiliation(s)
- Steven J. Eliades
- Auditory and Communication Systems Laboratory, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, U.S.A
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, U.S.A
| |
Collapse
|
20
|
Abstract
Humans exhibit a high level of vocal plasticity in speech production, which allows us to acquire both native and foreign languages and dialects, and adapt to local accents in social communication. In comparison, non-human primates exhibit limited vocal plasticity, especially in adulthood, which would limit their ability to adapt to different social and environmental contexts in vocal communication. Here, we quantitatively examined the ability of adult common marmosets (Callithrix jacchus), a highly vocal New World primate species, to modulate their vocal production in social contexts. While recent studies have demonstrated vocal learning in developing marmosets, we know much less about the extent of vocal learning and plasticity in adult marmosets. We found, in the present study, that marmosets were able to adaptively modify the spectrotemporal structure of their vocalizations when they encountered interfering sounds. Our experiments showed that marmosets shifted the spectrum of their vocalizations away from the spectrum of the interfering sounds in order to avoid the overlap. More interestingly, we found that marmosets made predictive and long-lasting spectral shifts in their vocalizations after they had experienced a particular type of interfering sound. These observations provided evidence for directional control of the vocalization spectrum and long-term vocal plasticity by adult marmosets. The findings reported here have important implications for the ability of this New World primate species in voluntarily and adaptively controlling their vocal production in social communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- 1 Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
| | - Bahar Boroumand Rad
- 2 Department of Biological Sciences, Towson University , Towson, MD 21252 , USA
| | - Xiaoqin Wang
- 1 Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
| |
Collapse
|
21
|
Luo J, Hage SR, Moss CF. The Lombard Effect: From Acoustics to Neural Mechanisms. Trends Neurosci 2018; 41:938-949. [DOI: 10.1016/j.tins.2018.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/27/2018] [Accepted: 07/20/2018] [Indexed: 01/12/2023]
|
22
|
Auditory cortical activity drives feedback-dependent vocal control in marmosets. Nat Commun 2018; 9:2540. [PMID: 29959315 PMCID: PMC6026141 DOI: 10.1038/s41467-018-04961-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
Vocal communication is a sensory-motor process requiring auditory self-monitoring to correct errors and to ensure accurate vocal production. When presented with altered speech feedback, humans rapidly change their speech to compensate. Although previous evidence has demonstrated suppression of auditory cortex during both speech and animal vocalization, the specific role of auditory cortex in such feedback-dependent control is unknown. Here we show the relationship between neural activity in the auditory cortex and feedback-dependent vocal control in marmoset monkeys. We demonstrate that marmosets, like humans, exhibit feedback control of vocal acoustics. We further show that feedback-sensitive activity of auditory cortex neurons predict such compensatory vocal changes. Finally, we demonstrate that electrical microstimulation of auditory cortex rapidly evokes similar changes in vocal production. These results are evidence for a causal role of auditory cortex in vocal self-monitoring and feedback-dependent control, and have implications for understanding human speech motor control. During vocalization, mammals change their vocal production to compensate for altered auditory feedback. Here, Eliades and Tsunada show that neural activity in the marmoset’s auditory cortex mediates this effect, and that stimulation of the auditory cortex evokes similar changes in vocalization.
Collapse
|
23
|
Zollinger SA, Slater PJB, Nemeth E, Brumm H. Higher songs of city birds may not be an individual response to noise. Proc Biol Sci 2018; 284:rspb.2017.0602. [PMID: 28794216 DOI: 10.1098/rspb.2017.0602] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
It has been observed in many songbird species that populations in noisy urban areas sing with a higher minimum frequency than do matched populations in quieter, less developed areas. However, why and how this divergence occurs is not yet understood. We experimentally tested whether chronic noise exposure during vocal learning results in songs with higher minimum frequencies in great tits (Parus major), the first species for which a correlation between anthropogenic noise and song frequency was observed. We also tested vocal plasticity of adult great tits in response to changing background noise levels by measuring song frequency and amplitude as we changed noise conditions. We show that noise exposure during ontogeny did not result in songs with higher minimum frequencies. In addition, we found that adult birds did not make any frequency or song usage adjustments when their background noise conditions were changed after song crystallization. These results challenge the common view of vocal adjustments by city birds, as they suggest that either noise itself is not the causal force driving the divergence of song frequency between urban and forest populations, or that noise induces population-wide changes over a time scale of several generations rather than causing changes in individual behaviour.
Collapse
Affiliation(s)
- Sue Anne Zollinger
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| | - Peter J B Slater
- School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
| | - Erwin Nemeth
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.,BirdLife Austria, 1070 Vienna, Austria
| | - Henrik Brumm
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany
| |
Collapse
|
24
|
Ruch H, Zürcher Y, Burkart JM. The function and mechanism of vocal accommodation in humans and other primates. Biol Rev Camb Philos Soc 2017; 93:996-1013. [PMID: 29111610 DOI: 10.1111/brv.12382] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022]
Abstract
The study of non-human animals, in particular primates, can provide essential insights into language evolution. A critical element of language is vocal production learning, i.e. learning how to produce calls. In contrast to other lineages such as songbirds, vocal production learning of completely new signals is strikingly rare in non-human primates. An increasing body of research, however, suggests that various species of non-human primates engage in vocal accommodation and adjust the structure of their calls in response to environmental noise or conspecific vocalizations. To date it is unclear what role vocal accommodation may have played in language evolution, in particular because it summarizes a variety of heterogeneous phenomena which are potentially achieved by different mechanisms. In contrast to non-human primates, accommodation research in humans has a long tradition in psychology and linguistics. Based on theoretical models from these research traditions, we provide a new framework which allows comparing instances of accommodation across species, and studying them according to their underlying mechanism and ultimate biological function. We found that at the mechanistic level, many cases of accommodation can be explained with an automatic perception-production link, but some instances arguably require higher levels of vocal control. Functionally, both human and non-human primates use social accommodation to signal social closeness or social distance to a partner or social group. Together, this indicates that not only some vocal control, but also the communicative function of vocal accommodation to signal social closeness and distance must have evolved prior to the emergence of language, rather than being the result of it. Vocal accommodation as found in other primates has thus endowed our ancestors with pre-adaptations that may have paved the way for language evolution.
Collapse
Affiliation(s)
- Hanna Ruch
- University Research Priority Program Language and Space, University of Zurich, 8032, Zürich, Switzerland
| | - Yvonne Zürcher
- Department of Anthropology, University of Zurich, 8057, Zürich, Switzerland
| | - Judith M Burkart
- Department of Anthropology, University of Zurich, 8057, Zürich, Switzerland
| |
Collapse
|
25
|
My action lasts longer: Potential link between subjective time and agency during voluntary action. Conscious Cogn 2017; 51:243-257. [PMID: 28412643 DOI: 10.1016/j.concog.2017.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/12/2017] [Accepted: 04/07/2017] [Indexed: 12/17/2022]
Abstract
Time perception distorts across different phases of bodily movement. During motor execution, sensory feedback matching an internal sensorimotor prediction is perceived to last longer. The sensorimotor prediction also underlies sense of agency. We investigated association between subjective time and agency during voluntary action. Participants performed hand action while watching a video feedback of their hand with various delays to manipulate agency. The perceived duration and agency over the video feedback were judged. Minimal delay of the video feedback resulted in longer perceived duration than the actual duration and stronger agency, while substantial feedback delay resulted in shorter perceived duration and weaker agency. These fluctuations of perceived duration and agency were nullified by the feedback of other's hand instead of their own, but not by inverted feedback from a third-person perspective. Subjective time during action might be associated with agency stemming from sensorimotor prediction, and self-other distinction based on bodily appearance.
Collapse
|
26
|
Eliades SJ, Wang X. Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hear Res 2017; 348:98-111. [PMID: 28284736 DOI: 10.1016/j.heares.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/30/2023]
Abstract
During speech, humans continuously listen to their own vocal output to ensure accurate communication. Such self-monitoring is thought to require the integration of information about the feedback of vocal acoustics with internal motor control signals. The neural mechanism of this auditory-vocal interaction remains largely unknown at the cellular level. Previous studies in naturally vocalizing marmosets have demonstrated diverse neural activities in auditory cortex during vocalization, dominated by a vocalization-induced suppression of neural firing. How underlying auditory tuning properties of these neurons might contribute to this sensory-motor processing is unknown. In the present study, we quantitatively compared marmoset auditory cortex neural activities during vocal production with those during passive listening. We found that neurons excited during vocalization were readily driven by passive playback of vocalizations and other acoustic stimuli. In contrast, neurons suppressed during vocalization exhibited more diverse playback responses, including responses that were not predictable by auditory tuning properties. These results suggest that vocalization-related excitation in auditory cortex is largely a sensory-driven response. In contrast, vocalization-induced suppression is not well predicted by a neuron's auditory responses, supporting the prevailing theory that internal motor-related signals contribute to the auditory-vocal interaction observed in auditory cortex.
Collapse
Affiliation(s)
- Steven J Eliades
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Hardman SI, Zollinger SA, Koselj K, Leitner S, Marshall RC, Brumm H. Lombard effect onset times reveal the speed of vocal plasticity in a songbird. J Exp Biol 2017; 220:1065-1071. [DOI: 10.1242/jeb.148734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022]
Abstract
Animals that use vocal signals to communicate often compensate for interference and masking from background noise by raising the amplitude of their vocalisations. This response has been termed the Lombard effect. However, despite more than a century of research little is known how quickly animals can adjust the amplitude of their vocalisations after the onset of noise. The ability to respond quickly to increases in noise levels would allow animals to avoid signal masking and ensure their calls continue to be heard, even if they are interrupted by sudden bursts of high amplitude noise. We tested how quickly singing male canaries (Serinus canaria) exhibit the Lombard effect by exposing them to short playbacks of white noise and measuring the speed of their responses. We show that canaries exhibit the Lombard effect in as little as 300 ms after the onset of noise and are also able to increase the amplitude of their songs mid-song and mid-phrase without pausing. Our results demonstrate high vocal plasticity in this species and suggest that birds are able to adjust the amplitude of their vocalisations very rapidly to ensure they can still be heard even during sudden changes in background noise levels.
Collapse
Affiliation(s)
- Samuel I. Hardman
- The Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
- Communication and Social Behaviour Group, Seewiesen, 82319, Germany
| | | | - Klemen Koselj
- Acoustic and Functional Ecology Group, Seewiesen, 82319, Germany
| | - Stefan Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, 82319, Germany
| | - Rupert C. Marshall
- The Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Henrik Brumm
- Communication and Social Behaviour Group, Seewiesen, 82319, Germany
| |
Collapse
|
28
|
Eliades SJ, Miller CT. Marmoset vocal communication: Behavior and neurobiology. Dev Neurobiol 2016; 77:286-299. [DOI: 10.1002/dneu.22464] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/27/2016] [Accepted: 10/08/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Steven J. Eliades
- Department of Otorhinolaryngology- Head and Neck Surgery; University of Pennsylvania Perelman School of Medicine; Philadelphia Pennsylvania
| | - Cory T. Miller
- Cortical Systems and Behavior Laboratory; University of California San Diego; San Diego California
| |
Collapse
|
29
|
Meekings S, Evans S, Lavan N, Boebinger D, Krieger-Redwood K, Cooke M, Scott SK. Distinct neural systems recruited when speech production is modulated by different masking sounds. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:8. [PMID: 27475128 DOI: 10.1121/1.4948587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
When talkers speak in masking sounds, their speech undergoes a variety of acoustic and phonetic changes. These changes are known collectively as the Lombard effect. Most behavioural research and neuroimaging research in this area has concentrated on the effect of energetic maskers such as white noise on Lombard speech. Previous fMRI studies have argued that neural responses to speaking in noise are driven by the quality of auditory feedback-that is, the audibility of the speaker's voice over the masker. However, we also frequently produce speech in the presence of informational maskers such as another talker. Here, speakers read sentences over a range of maskers varying in their informational and energetic content: speech, rotated speech, speech modulated noise, and white noise. Subjects also spoke in quiet and listened to the maskers without speaking. When subjects spoke in masking sounds, their vocal intensity increased in line with the energetic content of the masker. However, the opposite pattern was found neurally. In the superior temporal gyrus, activation was most strongly associated with increases in informational, rather than energetic, masking. This suggests that the neural activations associated with speaking in noise are more complex than a simple feedback response.
Collapse
Affiliation(s)
- Sophie Meekings
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Samuel Evans
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Nadine Lavan
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Dana Boebinger
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Katya Krieger-Redwood
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Martin Cooke
- University of the Basque Country, Facultad de Letras, Universidad del País Vasco/EHU, Paseo de la Universidad 5, Vitoria, Alava 01006, Spain
| | - Sophie K Scott
- Psychology and Language Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X. Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron 2016; 90:219-33. [PMID: 27100195 PMCID: PMC4840471 DOI: 10.1016/j.neuron.2016.03.018] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 10/21/2022]
Abstract
The common marmoset (Callithrix jacchus) has garnered interest recently as a powerful model for the future of neuroscience research. Much of this excitement has centered on the species' reproductive biology and compatibility with gene editing techniques, which together have provided a path for transgenic marmosets to contribute to the study of disease as well as basic brain mechanisms. In step with technical advances is the need to establish experimental paradigms that optimally tap into the marmosets' behavioral and cognitive capacities. While conditioned task performance of a marmoset can compare unfavorably with rhesus monkey performance on conventional testing paradigms, marmosets' social behavior and cognition are more similar to that of humans. For example, marmosets are among only a handful of primates that, like humans, routinely pair bond and care cooperatively for their young. They are also notably pro-social and exhibit social cognitive abilities, such as imitation, that are rare outside of the Apes. In this Primer, we describe key facets of marmoset natural social behavior and demonstrate that emerging behavioral paradigms are well suited to isolate components of marmoset cognition that are highly relevant to humans. These approaches generally embrace natural behavior, which has been rare in conventional primate testing, and thus allow for a new consideration of neural mechanisms underlying primate social cognition and signaling. We anticipate that through parallel technical and paradigmatic advances, marmosets will become an essential model of human social behavior, including its dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | - Winrich A Freiwald
- Laboratory of Neural Systems, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, 358 Meliora Hall, Rochester, NY 14627, USA
| | - Afonso C Silva
- Section on Cerebral Microcirculation, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 6001 Executive Blvd., Bethesda, MD 20892, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Behroozmand R, Oya H, Nourski KV, Kawasaki H, Larson CR, Brugge JF, Howard MA, Greenlee JDW. Neural Correlates of Vocal Production and Motor Control in Human Heschl's Gyrus. J Neurosci 2016; 36:2302-15. [PMID: 26888939 PMCID: PMC4756159 DOI: 10.1523/jneurosci.3305-14.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/06/2023] Open
Abstract
The present study investigated how pitch frequency, a perceptually relevant aspect of periodicity in natural human vocalizations, is encoded in Heschl's gyrus (HG), and how this information may be used to influence vocal pitch motor control. We recorded local field potentials from multicontact depth electrodes implanted in HG of 14 neurosurgical epilepsy patients as they vocalized vowel sounds and received brief (200 ms) pitch perturbations at 100 Cents in their auditory feedback. Event-related band power responses to vocalizations showed sustained frequency following responses that tracked voice fundamental frequency (F0) and were significantly enhanced in posteromedial HG during speaking compared with when subjects listened to the playback of their own voice. In addition to frequency following responses, a transient response component within the high gamma frequency band (75-150 Hz) was identified. When this response followed the onset of vocalization, the magnitude of the response was the same for the speaking and playback conditions. In contrast, when this response followed a pitch shift, its magnitude was significantly enhanced during speaking compared with playback. We also observed that, in anterolateral HG, the power of high gamma responses to pitch shifts correlated with the magnitude of compensatory vocal responses. These findings demonstrate a functional parcellation of HG with neural activity that encodes pitch in natural human voice, distinguishes between self-generated and passively heard vocalizations, detects discrepancies between the intended and heard vocalization, and contains information about the resulting behavioral vocal compensations in response to auditory feedback pitch perturbations. SIGNIFICANCE STATEMENT The present study is a significant contribution to our understanding of sensor-motor mechanisms of vocal production and motor control. The findings demonstrate distinct functional parcellation of core and noncore areas within human auditory cortex on Heschl's gyrus that process natural human vocalizations and pitch perturbations in the auditory feedback. In addition, our data provide evidence for distinct roles of high gamma neural oscillations and frequency following responses for processing periodicity in human vocalizations during vocal production and motor control.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, Speech Neuroscience Laboratory, Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South Carolina 29208,
| | - Hiroyuki Oya
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Kirill V Nourski
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Hiroto Kawasaki
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Charles R Larson
- Speech Physiology Laboratory, Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, and
| | - John F Brugge
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242, Department of Psychology, University of Wisconsin, Madison, Wisconsin 53705
| | - Matthew A Howard
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| | - Jeremy D W Greenlee
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
32
|
Luo J, Lingner A, Firzlaff U, Wiegrebe L. The Lombard effect emerges early in young bats: Implications for the development of audio-vocal integration. J Exp Biol 2016; 220:1032-1037. [DOI: 10.1242/jeb.151050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023]
Abstract
Auditory feedback plays an important role in vocal learning and, more generally, in fine-tuning the acoustic features of communication signals. So far, only a few studies have assessed the developmental onset of auditory feedback. The Lombard effect, a well-studied audio-vocal phenomenon, refers to an increase in vocal loudness of a subject in response to an increase in background noise. Here, we studied the time course of the Lombard effect in developing bats, Phyllostomus discolor. We show that infant bats produced louder vocalizations in noise than in silence at an age of only two weeks. In contrast, the infant bats' morphology and vocalizations changed gradually until two months of age. Furthermore, we found that the Lombard magnitude, i.e. how much the bats increased their vocal loudness in noise relative to silence, correlated positively with the age of the infant bats. We conclude that the Lombard effect features an early developmental origin, indicating a fast maturation of the underlying neural circuits for audio-vocal feedback.
Collapse
Affiliation(s)
- Jinhong Luo
- Max Planck Institute for Ornithology, Acoustic and Functional Ecology Group, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Andrea Lingner
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Chair of Zoology, Technische Universität München, Liesel-Beckmann-Street 4, 85350 Freising-Weihenstephan, Germany
| | - Lutz Wiegrebe
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
33
|
Vocal Learning and Auditory-Vocal Feedback. VERTEBRATE SOUND PRODUCTION AND ACOUSTIC COMMUNICATION 2016. [DOI: 10.1007/978-3-319-27721-9_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Lin IF, Mochida T, Asada K, Ayaya S, Kumagaya SI, Kato M. Atypical delayed auditory feedback effect and Lombard effect on speech production in high-functioning adults with autism spectrum disorder. Front Hum Neurosci 2015; 9:510. [PMID: 26441607 PMCID: PMC4585204 DOI: 10.3389/fnhum.2015.00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/01/2015] [Indexed: 11/13/2022] Open
Abstract
Individuals with autism spectrum disorder (ASD) show impaired social interaction and communication, which may be related to their difficulties in speech production. To investigate the mechanisms of atypical speech production in this population, we examined feedback control by delaying the auditory feedback of their own speech, which degraded speech fluency. We also examined feedforward control by adding loud pink noise to the auditory feedback, which led to increased vocal effort in producing speech. The results of Japanese speakers show that, compared with neurotypical (NT) individuals, high-functioning adults with ASD (including Asperger’s disorder, autistic disorder, and pervasive developmental disorder not otherwise specified) were more affected by delayed auditory feedback but less affected by external noise. These findings indicate that, in contrast to NT individuals, those with ASD relied more on feedback control than on feedforward control in speech production, which is consistent with the hypothesis that this population exhibits attenuated Bayesian priors.
Collapse
Affiliation(s)
- I-Fan Lin
- Human and Information Science Laboratory, NTT Communication Science Laboratories Atsugi, Japan
| | - Takemi Mochida
- Human and Information Science Laboratory, NTT Communication Science Laboratories Atsugi, Japan
| | - Kosuke Asada
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Satsuki Ayaya
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Shin-Ichiro Kumagaya
- Research Center for Advanced Science and Technology, The University of Tokyo Tokyo, Japan
| | - Masaharu Kato
- Human and Information Science Laboratory, NTT Communication Science Laboratories Atsugi, Japan ; Center for Baby Science, Doshisha University Kizugawa, Japan
| |
Collapse
|
35
|
Choi JY, Takahashi DY, Ghazanfar AA. Cooperative vocal control in marmoset monkeys via vocal feedback. J Neurophysiol 2015; 114:274-83. [PMID: 25925323 PMCID: PMC4507967 DOI: 10.1152/jn.00228.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022] Open
Abstract
Humans adjust speech amplitude as a function of distance from a listener; we do so in a manner that would compensate for such distance. This ability is presumed to be the product of high-level sociocognitive skills. Nonhuman primates are thought to lack such socially related flexibility in vocal production. Using predictions from a simple arousal-based model whereby vocal feedback from a conspecific modulates the drive to produce a vocalization, we tested whether another primate exhibits this type of cooperative vocal control. We conducted a playback experiment with marmoset monkeys and simulated "far-away" and "nearby" conspecifics using contact calls that differed in sound intensity. We found that marmoset monkeys increased the amplitude of their contact calls and produced such calls with shorter response latencies toward more distant conspecifics. The same was not true in response to changing levels of background noise. To account for how simulated conspecific distance can change both the amplitude and timing of vocal responses, we developed a model that incorporates dynamic interactions between the auditory system and limbic "drive" systems. Overall, our data show that, like humans, marmoset monkeys cooperatively control the acoustics of their vocalizations according to changes in listener distance, increasing the likelihood that a conspecific will hear their call. However, we propose that such cooperative vocal control is a system property that does not necessitate any particularly advanced sociocognitive skill. At least in marmosets, this vocal control can be parsimoniously explained by the regulation of arousal states across two interacting individuals via vocal feedback.
Collapse
Affiliation(s)
- Jung Yoon Choi
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey; Department of Psychology, Princeton University, Princeton, New Jersey; and
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey; Department of Psychology, Princeton University, Princeton, New Jersey; and
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey; Department of Psychology, Princeton University, Princeton, New Jersey; and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
36
|
Hotchkin CF, Parks SE, Weiss DJ. Noise-Induced Frequency Modifications of Tamarin Vocalizations: Implications for Noise Compensation in Nonhuman Primates. PLoS One 2015; 10:e0130211. [PMID: 26107515 PMCID: PMC4479599 DOI: 10.1371/journal.pone.0130211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/17/2015] [Indexed: 12/02/2022] Open
Abstract
Previous research suggests that nonhuman primates have limited flexibility in the frequency content of their vocalizations, particularly when compared to human speech. Consistent with this notion, several nonhuman primate species have demonstrated noise-induced changes in call amplitude and duration, with no evidence of changes to spectral content. This experiment used broad- and narrow-band noise playbacks to investigate the vocal control of two call types produced by cotton-top tamarins (Saguinus Oedipus). In 'combination long calls' (CLCs), peak fundamental frequency and the distribution of energy between low and high frequency harmonics (spectral tilt) changed in response to increased noise amplitude and bandwidth. In chirps, peak and maximum components of the fundamental frequency increased with increasing noise level, with no changes to spectral tilt. Other modifications included the Lombard effect and increases in chirp duration. These results provide the first evidence for noise-induced frequency changes in nonhuman primate vocalizations and suggest that future investigations of vocal plasticity in primates should include spectral parameters.
Collapse
Affiliation(s)
- Cara F. Hotchkin
- Intercollege Graduate Degree Program in Ecology, Penn State University, University Park, PA, United States of America
| | - Susan E. Parks
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | - Daniel J. Weiss
- Department of Psychology and Program in Linguistics, Penn State University, University Park, PA, United States of America
| |
Collapse
|
37
|
Miller CT, Thomas AW, Nummela SU, de la Mothe LA. Responses of primate frontal cortex neurons during natural vocal communication. J Neurophysiol 2015; 114:1158-71. [PMID: 26084912 DOI: 10.1152/jn.01003.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/15/2015] [Indexed: 11/22/2022] Open
Abstract
The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Neurosciences Graduate Program, University of California, San Diego, La Jolla, California;
| | - A Wren Thomas
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California; Helen Wills Neuroscience Graduate Program, University of California, Berkeley, Berkeley, California; and
| | - Samuel U Nummela
- Cortical Systems and Behavior Laboratory, Department of Psychology, University of California, San Diego, La Jolla, California
| | - Lisa A de la Mothe
- Department of Psychology, Tennessee State University, Nashville, Tennessee
| |
Collapse
|
38
|
Weiss DJ, Hotchkin CF, Parks SE. Modification of spectral features by nonhuman primates. Behav Brain Sci 2014; 37:574-6; discussion 577-604. [PMID: 25514964 PMCID: PMC5596894 DOI: 10.1017/s0140525x13004226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ackermann et al. discuss the lack of evidence for vocal control in nonhuman primates. We suggest that nonhuman primates may be capable of achieving greater vocal control than previously supposed. In support of this assertion, we discuss new evidence that nonhuman primates are capable of modifying spectral features in their vocalizations.
Collapse
Affiliation(s)
- Daniel J Weiss
- Department of Psychology and Program in Linguistics,Pennsylvania State University,University Park, PA ://weisslab.weebly.com/
| | | | - Susan E Parks
- Department of Biology,Syracuse University,Syracuse, NY ://parkslab.syr.edu/
| |
Collapse
|
39
|
Ghazanfar AA, Eliades SJ. The neurobiology of primate vocal communication. Curr Opin Neurobiol 2014; 28:128-35. [PMID: 25062473 PMCID: PMC4177356 DOI: 10.1016/j.conb.2014.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022]
Abstract
Recent investigations of non-human primate communication revealed vocal behaviors far more complex than previously appreciated. Understanding the neural basis of these communicative behaviors is important as it has the potential to reveal the basic underpinnings of the still more complex human speech. The latest work revealed vocalization-sensitive regions both within and beyond the traditional boundaries of the central auditory system. The importance and mechanisms of multi-sensory face-voice integration in vocal communication are also increasingly apparent. Finally, studies on the mechanisms of vocal production demonstrated auditory-motor interactions that may allow for self-monitoring and vocal control. We review the current work in these areas of primate communication research.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Steven J Eliades
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Yang XJ, Slabbekoorn H. Timing vocal behavior: Lack of temporal overlap avoidance to fluctuating noise levels in singing Eurasian wrens. Behav Processes 2014; 108:131-7. [DOI: 10.1016/j.beproc.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
41
|
Stowe LM, Golob EJ. Evidence that the Lombard effect is frequency-specific in humans. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2013; 134:640-647. [PMID: 23862838 PMCID: PMC3985863 DOI: 10.1121/1.4807645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 04/23/2013] [Accepted: 05/01/2013] [Indexed: 06/02/2023]
Abstract
Recent perspectives suggest that the Lombard effect is an increase in the suprasegmental speech parameters of vocal intensity, duration, and fundamental frequency in the presence of noise. It has been viewed as a non-specific response to ambient noise, but this assumption has not been thoroughly tested. Two experiments using healthy adults measured intensity, duration, and F0 changes in broadband (0.2-20 kHz) and notched noise (0.05-4 kHz removed) during a picture naming task. The pilot experiment showed that broadband noise containing speech-similar frequencies significantly increased intensity, duration, and F0 while notched noise, which removed the majority of speech-similar frequencies, had no effect. The main experiment added bandpass noise (0.05-4.0 kHz) which contained a major portion of speech-similar frequencies and was the mirror image of the notched noise. Broadband and notched noise results were replicated. Bandpass noise increased intensity and duration, but to a lesser degree than did broadband noise, and had no effect on F0. Findings show that the Lombard effect is sensitive to frequencies vital for speech and is not a general response to any competing sound in the environment. Implications for suprasegmental control of speech are discussed.
Collapse
Affiliation(s)
- Lauren M Stowe
- Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, Louisiana 70118, USA.
| | | |
Collapse
|
42
|
Eliades SJ, Wang X. Comparison of auditory-vocal interactions across multiple types of vocalizations in marmoset auditory cortex. J Neurophysiol 2012; 109:1638-57. [PMID: 23274315 DOI: 10.1152/jn.00698.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Auditory-vocal interaction, the modulation of auditory sensory responses during vocal production, is an important but poorly understood neurophysiological phenomenon in nonhuman primates. This sensory-motor processing has important behavioral implications for self-monitoring during vocal production as well as feedback-mediated vocal control for both animals and humans. Previous studies in marmosets have shown that a large portion of neurons in the auditory cortex are suppressed during self-produced vocalization but have primarily focused on a single type of isolation vocalization. The present study expands previous analyses to compare auditory-vocal interaction of cortical responses between different types of vocalizations. We recorded neurons from the auditory cortex of unrestrained marmoset monkeys with implanted electrode arrays and showed that auditory-vocal interactions generalize across vocalization types. We found the following: 1) Vocal suppression and excitation are a general phenomenon, occurring for all four major vocalization types. 2) Within individual neurons, suppression was the more general response, occurring for multiple vocalization types, while excitation tended to be more specific to a single vocalization type. 3) A subset of neurons changed their responses between different types of vocalization, most often from strong suppression or excitation for one vocalization to unresponsive for another, and only rarely from suppression to excitation. 4) Differences in neural responses between vocalization types were weakly correlated with passive response properties, measured by playbacks of acoustic stimuli including recorded vocalizations. These results indicate that vocalization-induced modulation of the auditory cortex is a general phenomenon applicable to all vocalization types, but variations within individual neurons suggest possible vocalization-specific coding.
Collapse
Affiliation(s)
- Steven J Eliades
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|