1
|
Ma Y, Chen Y, Yu M, Wang Y, Lu S, Guo J, Luo G, Zhao L, Yang P, Lin Q, Jiang Z. Ultrasensitive SERF atomic magnetometer with a miniaturized hybrid vapor cell. MICROSYSTEMS & NANOENGINEERING 2024; 10:121. [PMID: 39214959 PMCID: PMC11364876 DOI: 10.1038/s41378-024-00758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024]
Abstract
The chip-scale hybrid optical pumping spin-exchange relaxation-free (SERF) atomic magnetometer with a single-beam arrangement has prominent applications in biomagnetic measurements because of its outstanding features, including ultrahigh sensitivity, an enhanced signal-to-noise ratio, homogeneous spin polarization and a much simpler optical configuration than other devices. In this work, a miniaturized single-beam hybrid optical pumping SERF atomic magnetometer based on a microfabricated atomic vapor cell is demonstrated. Although the optically thin Cs atoms are spin-polarized, the dense Rb atoms determine the experimental results. The enhanced signal strength and narrowed resonance linewidth are experimentally proven, which shows the superiority of the proposed magnetometer scheme. By using a differential detection scheme, we effectively suppress optical noise with an approximate five-fold improvement. Moreover, the cell temperature markedly affects the performance of the magnetometer. We systematically investigate the effects of temperature on the magnetometer parameters. The theoretical basis for these effects is explained in detail. The developed miniaturized magnetometer has an optimal magnetic sensitivity of 20 fT/Hz1/2. The presented work provides a foundation for the chip-scale integration of ultrahighly sensitive quantum magnetometers that can be used for forward-looking magnetocardiography (MCG) and magnetoencephalography (MEG) applications.
Collapse
Affiliation(s)
- Yintao Ma
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yao Chen
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China.
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Mingzhi Yu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanbin Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shun Lu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ju Guo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Guoxi Luo
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China.
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Yantai, 265503, China.
| | - Ping Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Yantai, 265503, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and Systems, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, Yantai, 265503, China
| |
Collapse
|
2
|
Hillebrand A, Holmes N, Sijsma N, O'Neill GC, Tierney TM, Liberton N, Stam AH, van Klink N, Stam CJ, Bowtell R, Brookes MJ, Barnes GR. Non-invasive measurements of ictal and interictal epileptiform activity using optically pumped magnetometers. Sci Rep 2023; 13:4623. [PMID: 36944674 PMCID: PMC10030968 DOI: 10.1038/s41598-023-31111-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Magneto- and electroencephalography (MEG/EEG) are important techniques for the diagnosis and pre-surgical evaluation of epilepsy. Yet, in current cryogen-based MEG systems the sensors are offset from the scalp, which limits the signal-to-noise ratio (SNR) and thereby the sensitivity to activity from deep structures such as the hippocampus. This effect is amplified in children, for whom adult-sized fixed-helmet systems are typically too big. Moreover, ictal recordings with fixed-helmet systems are problematic because of limited movement tolerance and/or logistical considerations. Optically Pumped Magnetometers (OPMs) can be placed directly on the scalp, thereby improving SNR and enabling recordings during seizures. We aimed to demonstrate the performance of OPMs in a clinical population. Seven patients with challenging cases of epilepsy underwent MEG recordings using a 12-channel OPM-system and a 306-channel cryogen-based whole-head system: three adults with known deep or weak (low SNR) sources of interictal epileptiform discharges (IEDs), along with three children with focal epilepsy and one adult with frequent seizures. The consistency of the recorded IEDs across the two systems was assessed. In one patient the OPMs detected IEDs that were not found with the SQUID-system, and in two patients no IEDs were found with either system. For the other patients the OPM data were remarkably consistent with the data from the cryogenic system, noting that these were recorded in different sessions, with comparable SNRs and IED-yields overall. Importantly, the wearability of OPMs enabled the recording of seizure activity in a patient with hyperkinetic movements during the seizure. The observed ictal onset and semiology were in agreement with previous video- and stereo-EEG recordings. The relatively affordable technology, in combination with reduced running and maintenance costs, means that OPM-based MEG could be used more widely than current MEG systems, and may become an affordable alternative to scalp EEG, with the potential benefits of increased spatial accuracy, reduced sensitivity to volume conduction/field spread, and increased sensitivity to deep sources. Wearable MEG thus provides an unprecedented opportunity for epilepsy, and given its patient-friendliness, we envisage that it will not only be used for presurgical evaluation of epilepsy patients, but also for diagnosis after a first seizure.
Collapse
Affiliation(s)
- Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Systems and Network Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ndedi Sijsma
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| | - Niels Liberton
- Department of Medical Technology, 3D Innovation Lab, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anine H Stam
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Nicole van Klink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
- Brain Imaging, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3AR, UK
| |
Collapse
|
3
|
Zhou P, Quan W, Wei K, Liang Z, Hu J, Liu L, Hu G, Wang A, Ye M. Application of VCSEL in Bio-Sensing Atomic Magnetometers. BIOSENSORS 2022; 12:1098. [PMID: 36551063 PMCID: PMC9775631 DOI: 10.3390/bios12121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Recent years have seen rapid development of chip-scale atomic devices due to their great potential in the field of biomedical imaging, namely chip-scale atomic magnetometers that enable high resolution magnetocardiography (MCG) and magnetoencephalography (MEG). For atomic devices of this kind, vertical cavity surface emitting lasers (VCSELs) have become the most crucial components as integrated pumping sources, which are attracting growing interest. In this paper, the application of VCSELs in chip-scale atomic devices are reviewed, where VCSELs are integrated in various atomic bio-sensing devices with different operating environments. Secondly, the mode and polarization control of VCSELs in the specific applications are reviewed with their pros and cons discussed. In addition, various packaging of VCSEL based on different atomic devices in pursuit of miniaturization and precision measurement are reviewed and discussed. Finally, the VCSEL-based chip-scale atomic magnetometers utilized for cardiac and brain magnetometry are reviewed in detail. Nowadays, biosensors with chip integration, low power consumption, and high sensitivity are undergoing rapid industrialization, due to the growing market of medical instrumentation and portable health monitoring. It is promising that VCSEL-integrated chip-scale atomic biosensors as featured applications of this kind may experience extensive development in the near future.
Collapse
Affiliation(s)
- Peng Zhou
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Wei Quan
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Kai Wei
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Zihua Liang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Jinsheng Hu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Lu Liu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Gen Hu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Ankang Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Mao Ye
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| |
Collapse
|
4
|
Rea M, Boto E, Holmes N, Hill R, Osborne J, Rhodes N, Leggett J, Rier L, Bowtell R, Shah V, Brookes MJ. A 90-channel triaxial magnetoencephalography system using optically pumped magnetometers. Ann N Y Acad Sci 2022; 1517:107-124. [PMID: 36065147 PMCID: PMC9826099 DOI: 10.1111/nyas.14890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnetoencephalography (MEG) measures the small magnetic fields generated by current flow in neural networks, providing a noninvasive metric of brain function. MEG is well established as a powerful neuroscientific and clinical tool. However, current instrumentation is hampered by cumbersome cryogenic field-sensing technologies. In contrast, MEG using optically pumped magnetometers (OPM-MEG) employs small, lightweight, noncryogenic sensors that provide data with higher sensitivity and spatial resolution, a natural scanning environment (including participant movement), and adaptability to any age. However, OPM-MEG is new and the optimum way to design a system is unknown. Here, we construct a novel, 90-channel triaxial OPM-MEG system and use it to map motor function during a naturalistic handwriting task. Results show that high-precision magnetic field control reduced background fields to ∼200 pT, enabling free participant movement. Our triaxial array offered twice the total measured signal and better interference rejection compared to a conventional (single-axis) design. We mapped neural oscillatory activity to the sensorimotor network, demonstrating significant differences in motor network activity and connectivity for left-handed versus right-handed handwriting. Repeatability across scans showed that we can map electrophysiological activity with an accuracy ∼4 mm. Overall, our study introduces a novel triaxial OPM-MEG design and confirms its potential for high-performance functional neuroimaging.
Collapse
Affiliation(s)
- Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Ryan Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | | | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| |
Collapse
|
5
|
Using OPM-MEG in contrasting magnetic environments. Neuroimage 2022; 253:119084. [PMID: 35278706 PMCID: PMC9135301 DOI: 10.1016/j.neuroimage.2022.119084] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Magnetoencephalography (MEG) has been revolutionised by optically pumped magnetometers (OPMs). "OPM-MEG" offers higher sensitivity, better spatial resolution, and lower cost than conventional instrumentation based on superconducting quantum interference devices (SQUIDs). Moreover, because OPMs are small, lightweight, and portable they offer the possibility of lifespan compliance and (with control of background field) motion robustness, dramatically expanding the range of MEG applications. However, OPM-MEG remains nascent technology; it places stringent requirements on magnetic shielding, and whilst a number of viable systems exist, most are custom made and there have been no cross-site investigations showing the reliability of data. In this paper, we undertake the first cross-site OPM-MEG comparison, using near identical commercial systems scanning the same participant. The two sites are deliberately contrasting, with different magnetic environments: a "green field" campus university site with an OPM-optimised shielded room (low interference) and a city centre hospital site with a "standard" (non-optimised) MSR (higher interference). We show that despite a 20-fold difference in background field, and a 30-fold difference in low frequency interference, using dynamic field control and software-based suppression of interference we can generate comparable noise floors at both sites. In human data recorded during a visuo-motor task and a face processing paradigm, we were able to generate similar data, with source localisation showing that brain regions could be pinpointed with just ∼10 mm spatial discrepancy and temporal correlations of > 80%. Overall, our study demonstrates that, with appropriate field control, OPM-MEG systems can be sited even in city centre hospital locations. The methods presented pave the way for wider deployment of OPM-MEG.
Collapse
|
6
|
Mellor S, Tierney TM, O’Neill GC, Alexander N, Seymour RA. Magnetic Field Mapping and Correction for Moving OP-MEG. IEEE Trans Biomed Eng 2022; 69:528-536. [PMID: 34324421 PMCID: PMC7612292 DOI: 10.1109/tbme.2021.3100770] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Optically pumped magnetometers (OPMs) have made moving, wearable magnetoencephalography (MEG) possible. The OPMs typically used for MEG require a low background magnetic field to operate, which is achieved using both passive and active magnetic shielding. However, the background magnetic field is never truly zero Tesla, and so the field at each of the OPMs changes as the participant moves. This leads to position and orientation dependent changes in the measurements, which manifest as low frequency artefacts in MEG data. OBJECTIVE We model the spatial variation in the magnetic field and use the model to predict the movement artefact found in a dataset. METHODS We demonstrate a method for modelling this field with a triaxial magnetometer, then show that we can use the same technique to predict the movement artefact in a real OPM-based MEG (OP-MEG) dataset. RESULTS Using an 86-channel OP-MEG system, we found that this modelling method maximally reduced the power spectral density of the data by 27.8 ± 0.6 dB at 0 Hz, when applied over 5 s non-overlapping windows. CONCLUSION The magnetic field inside our state-of-the art magnetically shielded room can be well described by low-order spherical harmonic functions. We achieved a large reduction in movement noise when we applied this model to OP-MEG data. SIGNIFICANCE Real-time implementation of this method could reduce passive shielding requirements for OP-MEG recording and allow the measurement of low-frequency brain activity during natural participant movement.
Collapse
Affiliation(s)
- Stephanie Mellor
- Wellcome Center for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK, WC1N 3AR
| | - Tim M. Tierney
- Wellcome Center for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK, WC1N 3AR
| | - George C. O’Neill
- Wellcome Center for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK, WC1N 3AR
| | - Nicholas Alexander
- Wellcome Center for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK, WC1N 3AR
| | - Robert A. Seymour
- Wellcome Center for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK, WC1N 3AR
| |
Collapse
|
7
|
Contactless measurements of retinal activity using optically pumped magnetometers. Neuroimage 2021; 243:118528. [PMID: 34464740 DOI: 10.1016/j.neuroimage.2021.118528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022] Open
Abstract
Optically pumped magnetometers (OPMs) have been adopted for the measurement of brain activity. Without the need to be cooled to cryogenic temperatures, an array of these sensors can be placed more flexibly, which allows for the recording of neuronal structures other than neocortex. Here we use eight OPM sensors to record human retinal activity following flash stimulation. We compare this magnetoretinographic (MRG) activity to the simultaneously recorded electroretinogram of the eight participants. The MRG shows the familiar flash-evoked potentials (a-wave and b-wave) and shares a highly significant amount of information with the electroretinogram (both in a simultaneous and separate measurement). We conclude that OPM sensors have the potential to become a contactless alternative to fiber electrodes for the measurement of retinal activity. Such a contactless solution can benefit both clinical and neuroscientific settings.
Collapse
|
8
|
Tierney TM, Levy A, Barry DN, Meyer SS, Shigihara Y, Everatt M, Mellor S, Lopez JD, Bestmann S, Holmes N, Roberts G, Hill RM, Boto E, Leggett J, Shah V, Brookes MJ, Bowtell R, Maguire EA, Barnes GR. Mouth magnetoencephalography: A unique perspective on the human hippocampus. Neuroimage 2020; 225:117443. [PMID: 33059052 PMCID: PMC8214102 DOI: 10.1016/j.neuroimage.2020.117443] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/02/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding the head; this means that they are maximally sensitive to superficial brain structures. New technology based on optical pumping means that we can now consider more flexible and creative sensor placement. Here we explored the magnetic fields generated by a model of the human hippocampus not only across scalp but also at the roof of the mouth. We found that simulated hippocampal sources gave rise to dipolar field patterns with one scalp surface field extremum at the temporal lobe and a corresponding maximum or minimum at the roof of the mouth. We then constructed a fitted dental mould to accommodate an Optically Pumped Magnetometer (OPM). We collected data using a previously validated hippocampal-dependant task to test the empirical utility of a mouth-based sensor, with an accompanying array of left and right temporal lobe OPMs. We found that the mouth sensor showed the greatest task-related theta power change. We found that this sensor had a mild effect on the reconstructed power in the hippocampus (~10% change) but that coherence images between the mouth sensor and reconstructed source images showed a global maximum in the right hippocampus. We conclude that augmenting a scalp-based MEG array with sensors in the mouth shows unique promise for both basic scientists and clinicians interested in interrogating the hippocampus.
Collapse
Affiliation(s)
- Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK.
| | - Andrew Levy
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Daniel N Barry
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Sofie S Meyer
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK; Institute of Cognitive Neuroscience, University College London, 17-19 Queen Square, London WC1N 3AZ, UK
| | | | - Matt Everatt
- S4S (UK) Limited & Smilelign Ltd, 151 Rutland Road, Sheffield S3 9PT, UK
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Jose David Lopez
- Engineering Faculty, Universidad de Antioquia UDEA, calle 70 No 52-21, Medellín, Colombia
| | - Sven Bestmann
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc., 2011 Cherry Street, Unit 112, Louisville, CO 80027, USA
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| |
Collapse
|
9
|
Zhang R, Xiao W, Ding Y, Feng Y, Peng X, Shen L, Sun C, Wu T, Wu Y, Yang Y, Zheng Z, Zhang X, Chen J, Guo H. Recording brain activities in unshielded Earth's field with optically pumped atomic magnetometers. SCIENCE ADVANCES 2020; 6:eaba8792. [PMID: 32582858 PMCID: PMC7292643 DOI: 10.1126/sciadv.aba8792] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/01/2020] [Indexed: 05/23/2023]
Abstract
Understanding the relationship between brain activity and specific mental function is important for medical diagnosis of brain symptoms, such as epilepsy. Magnetoencephalography (MEG), which uses an array of high-sensitivity magnetometers to record magnetic field signals generated from neural currents occurring naturally in the brain, is a noninvasive method for locating the brain activities. The MEG is normally performed in a magnetically shielded room. Here, we introduce an unshielded MEG system based on optically pumped atomic magnetometers. We build an atomic magnetic gradiometer, together with feedback methods, to reduce the environment magnetic field noise. We successfully observe the alpha rhythm signals related to closed eyes and clear auditory evoked field signals in unshielded Earth's field. Combined with improvements in the miniaturization of the atomic magnetometer, our method is promising to realize a practical wearable and movable unshielded MEG system and bring new insights into medical diagnosis of brain symptoms.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
- College of Liberal Arts and Sciences, and Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Wei Xiao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Yudong Ding
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Yulong Feng
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Xiang Peng
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Liang Shen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Chenxi Sun
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Teng Wu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Yulong Wu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Yucheng Yang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Zhaoyu Zheng
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Xiangzhi Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Jingbiao Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| | - Hong Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Hill RM, Boto E, Rea M, Holmes N, Leggett J, Coles LA, Papastavrou M, Everton SK, Hunt BAE, Sims D, Osborne J, Shah V, Bowtell R, Brookes MJ. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 2020; 219:116995. [PMID: 32480036 PMCID: PMC8274815 DOI: 10.1016/j.neuroimage.2020.116995] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Magnetoencephalography (MEG) is a powerful technique for functional
neuroimaging, offering a non-invasive window on brain electrophysiology. MEG
systems have traditionally been based on cryogenic sensors which detect the
small extracranial magnetic fields generated by synchronised current in neuronal
assemblies, however, such systems have fundamental limitations. In recent years,
non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers
(OPMs), in combination with novel techniques for accurate background magnetic
field control, have promised to lift those restrictions offering an adaptable,
motion-robust MEG system, with improved data quality, at reduced cost. However,
OPM-MEG remains a nascent technology, and whilst viable systems exist, most
employ small numbers of sensors sited above targeted brain regions. Here,
building on previous work, we construct a wearable OPM-MEG system with
‘whole-head’ coverage based upon commercially available OPMs, and
test its capabilities to measure alpha, beta and gamma oscillations. We design
two methods for OPM mounting; a flexible (EEG-like) cap and rigid
(additively-manufactured) helmet. Whilst both designs allow for high quality
data to be collected, we argue that the rigid helmet offers a more robust option
with significant advantages for reconstruction of field data into 3D images of
changes in neuronal current. Using repeat measurements in two participants, we
show signal detection for our device to be highly robust. Moreover, via
application of source-space modelling, we show that, despite having 5 times
fewer sensors, our system exhibits comparable performance to an established
cryogenic MEG device. While significant challenges still remain, these
developments provide further evidence that OPM-MEG is likely to facilitate a
step change for functional neuroimaging.
Collapse
Affiliation(s)
- Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Laurence A Coles
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Manolis Papastavrou
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Sarah K Everton
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Benjamin A E Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dominic Sims
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
11
|
Vivekananda U, Mellor S, Tierney TM, Holmes N, Boto E, Leggett J, Roberts G, Hill RM, Litvak V, Brookes MJ, Bowtell R, Barnes GR, Walker MC. Optically pumped magnetoencephalography in epilepsy. Ann Clin Transl Neurol 2020; 7:397-401. [PMID: 32112610 PMCID: PMC7085997 DOI: 10.1002/acn3.50995] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
We demonstrate the first use of Optically Pumped Magnetoencephalography (OP-MEG) in an epilepsy patient with unrestricted head movement. Current clinical MEG uses a traditional SQUID system, where sensors are cryogenically cooled and housed in a helmet in which the patient's head is fixed. Here, we use a different type of sensor (OPM), which operates at room temperature and can be placed directly on the patient's scalp, permitting free head movement. We performed OP-MEG recording in a patient with refractory focal epilepsy. OP-MEG-identified analogous interictal activity to scalp EEG, and source localized this activity to an appropriate brain region.
Collapse
Affiliation(s)
- Umesh Vivekananda
- Wellcome Centre for Human NeuroimagingUCLQueen SquareLondonWC1N 3ARUnited Kingdom
- Department of Clinical and Experimental EpilepsyUCL, Queen Square Institute of NeurologyLondonWC1N 3BGUnited Kingdom
| | - Stephanie Mellor
- Wellcome Centre for Human NeuroimagingUCLQueen SquareLondonWC1N 3ARUnited Kingdom
| | - Tim M. Tierney
- Wellcome Centre for Human NeuroimagingUCLQueen SquareLondonWC1N 3ARUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging CentreSchool of Physics and AstronomyUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - Elena Boto
- Sir Peter Mansfield Imaging CentreSchool of Physics and AstronomyUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - James Leggett
- Sir Peter Mansfield Imaging CentreSchool of Physics and AstronomyUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - Gillian Roberts
- Sir Peter Mansfield Imaging CentreSchool of Physics and AstronomyUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging CentreSchool of Physics and AstronomyUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - Vladimir Litvak
- Wellcome Centre for Human NeuroimagingUCLQueen SquareLondonWC1N 3ARUnited Kingdom
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging CentreSchool of Physics and AstronomyUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging CentreSchool of Physics and AstronomyUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - Gareth R. Barnes
- Wellcome Centre for Human NeuroimagingUCLQueen SquareLondonWC1N 3ARUnited Kingdom
| | - Matthew C. Walker
- Department of Clinical and Experimental EpilepsyUCL, Queen Square Institute of NeurologyLondonWC1N 3BGUnited Kingdom
| |
Collapse
|
12
|
Borna A, Carter TR, Colombo AP, Jau YY, McKay J, Weisend M, Taulu S, Stephen JM, Schwindt PDD. Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System. PLoS One 2020; 15:e0227684. [PMID: 31978102 PMCID: PMC6980641 DOI: 10.1371/journal.pone.0227684] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A non-invasive functional-brain-imaging system based on optically-pumped-magnetometers (OPM) is presented. The OPM-based magnetoencephalography (MEG) system features 20 OPM channels conforming to the subject's scalp. We have conducted two MEG experiments on three subjects: assessment of somatosensory evoked magnetic field (SEF) and auditory evoked magnetic field (AEF) using our OPM-based MEG system and a commercial MEG system based on superconducting quantum interference devices (SQUIDs). We cross validated the robustness of our system by calculating the distance between the location of the equivalent current dipole (ECD) yielded by our OPM-based MEG system and the ECD location calculated by the commercial SQUID-based MEG system. We achieved sub-centimeter accuracy for both SEF and AEF responses in all three subjects. Due to the proximity (12 mm) of the OPM channels to the scalp, it is anticipated that future OPM-based MEG systems will offer enhanced spatial resolution as they will capture finer spatial features compared to traditional MEG systems employing SQUIDs.
Collapse
Affiliation(s)
- Amir Borna
- Sandia National Laboratories, Albuquerque, NM, United States of America
- * E-mail:
| | - Tony R. Carter
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | | | - Yuan-Yu Jau
- Sandia National Laboratories, Albuquerque, NM, United States of America
| | - Jim McKay
- Candoo Systems Inc., Coquitlam, BC, Canada
| | | | - Samu Taulu
- University of Washington Seattle, Seattle, WA, United States of America
| | - Julia M. Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, United States of America
| | | |
Collapse
|
13
|
Hill RM, Boto E, Holmes N, Hartley C, Seedat ZA, Leggett J, Roberts G, Shah V, Tierney TM, Woolrich MW, Stagg CJ, Barnes GR, Bowtell R, Slater R, Brookes MJ. A tool for functional brain imaging with lifespan compliance. Nat Commun 2019; 10:4785. [PMID: 31690797 PMCID: PMC6831615 DOI: 10.1038/s41467-019-12486-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/05/2019] [Indexed: 02/04/2023] Open
Abstract
The human brain undergoes significant functional and structural changes in the first decades of life, as the foundations for human cognition are laid down. However, non-invasive imaging techniques to investigate brain function throughout neurodevelopment are limited due to growth in head-size with age and substantial head movement in young participants. Experimental designs to probe brain function are also limited by the unnatural environment typical brain imaging systems impose. However, developments in quantum technology allowed fabrication of a new generation of wearable magnetoencephalography (MEG) technology with the potential to revolutionise electrophysiological measures of brain activity. Here we demonstrate a lifespan-compliant MEG system, showing recordings of high fidelity data in toddlers, young children, teenagers and adults. We show how this system can support new types of experimental paradigm involving naturalistic learning. This work reveals a new approach to functional imaging, providing a robust platform for investigation of neurodevelopment in health and disease. Magnetoencephalography (MEG) recordings are sensitive to movement and therefore are especially challenging with young participants. Here the authors develop a wearable MEG system based on a modified bicycle helmet, which enables reliable recordings in toddlers, children, teenagers and adults.
Collapse
Affiliation(s)
- Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Caroline Hartley
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Zelekha A Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Vishal Shah
- QuSpin Inc., 2011 Cherry Street, Unit 112, Louisville, CO, 80027, USA
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, United Kingdom
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuro-Imaging, Department of psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, United Kingdom
| | - Charlotte J Stagg
- Oxford Centre for Human Brain Activity (OHBA), Wellcome Centre for Integrative Neuro-Imaging, Department of psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, United Kingdom
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Rebeccah Slater
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
14
|
Duque-Muñoz L, Tierney TM, Meyer SS, Boto E, Holmes N, Roberts G, Leggett J, Vargas-Bonilla JF, Bowtell R, Brookes MJ, López JD, Barnes GR. Data-driven model optimization for optically pumped magnetometer sensor arrays. Hum Brain Mapp 2019; 40:4357-4369. [PMID: 31294909 PMCID: PMC6772064 DOI: 10.1002/hbm.24707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography (MEG). OPMs do not require cryogenic cooling and can therefore be placed directly on the scalp surface. Unlike cryogenic systems, based on a well-characterised fixed arrays essentially linear in applied flux, OPM devices, based on different physical principles, present new modelling challenges. Here, we outline an empirical Bayesian framework that can be used to compare between and optimise sensor arrays. We perturb the sensor geometry (via simulation) and with analytic model comparison methods estimate the true sensor geometry. The width of these perturbation curves allows us to compare different MEG systems. We test this technique using simulated and real data from SQUID and OPM recordings using head-casts and scanner-casts. Finally, we show that given knowledge of underlying brain anatomy, it is possible to estimate the true sensor geometry from the OPM data themselves using a model comparison framework. This implies that the requirement for accurate knowledge of the sensor positions and orientations a priori may be relaxed. As this procedure uses the cortical manifold as spatial support there is no co-registration procedure or reliance on scalp landmarks.
Collapse
Affiliation(s)
- Leonardo Duque-Muñoz
- SISTEMIC, Engineering Faculty, Universidad de Antioquia UDEA, Calle 70 No 52-51, Medellín, Colombia.,MIRP Research Group, Engineering Faculty, Instituto Tecnológico Metropolitano ITM, Medellín, Colombia
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| | - Sofie S Meyer
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK.,Institute of Cognitive Neuroscience, University College London, London, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - J F Vargas-Bonilla
- SISTEMIC, Engineering Faculty, Universidad de Antioquia UDEA, Calle 70 No 52-51, Medellín, Colombia
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Jose D López
- SISTEMIC, Engineering Faculty, Universidad de Antioquia UDEA, Calle 70 No 52-51, Medellín, Colombia
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
15
|
Tierney TM, Holmes N, Mellor S, López JD, Roberts G, Hill RM, Boto E, Leggett J, Shah V, Brookes MJ, Bowtell R, Barnes GR. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. Neuroimage 2019; 199:598-608. [PMID: 31141737 PMCID: PMC6988110 DOI: 10.1016/j.neuroimage.2019.05.063] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 11/17/2022] Open
Abstract
Optically Pumped Magnetometers (OPMs) have emerged as a viable and wearable alternative to cryogenic, superconducting MEG systems. This new generation of sensors has the advantage of not requiring cryogenic cooling and as a result can be flexibly placed on any part of the body. The purpose of this review is to provide a neuroscience audience with the theoretical background needed to understand the physical basis for the signal observed by OPMs. Those already familiar with the physics of MRI and NMR should note that OPMs share much of the same theory as the operation of OPMs rely on magnetic resonance. This review establishes the physical basis for the signal equation for OPMs. We re-derive the equations defining the bounds on OPM performance and highlight the important trade-offs between quantities such as bandwidth, sensor size and sensitivity. These equations lead to a direct upper bound on the gain change due to cross-talk for a multi-channel OPM system.
Collapse
Affiliation(s)
- Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK.
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - José David López
- Engineering Faculty, Universidad de Antioquia UDEA, Calle 70 No 52-21, Medellín, Colombia
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| |
Collapse
|
16
|
Robinson JT, Pohlmeyer E, Gather MC, Kemere C, Kitching JE, Malliaras GG, Marblestone A, Shepard KL, Stieglitz T, Xie C. Developing Next-generation Brain Sensing Technologies - A Review. IEEE SENSORS JOURNAL 2019; 19:10.1109/jsen.2019.2931159. [PMID: 32116472 PMCID: PMC7047830 DOI: 10.1109/jsen.2019.2931159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Advances in sensing technology raise the possibility of creating neural interfaces that can more effectively restore or repair neural function and reveal fundamental properties of neural information processing. To realize the potential of these bioelectronic devices, it is necessary to understand the capabilities of emerging technologies and identify the best strategies to translate these technologies into products and therapies that will improve the lives of patients with neurological and other disorders. Here we discuss emerging technologies for sensing brain activity, anticipated challenges for translation, and perspectives for how to best transition these technologies from academic research labs to useful products for neuroscience researchers and human patients.
Collapse
Affiliation(s)
- Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Pohlmeyer
- John Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Malte C. Gather
- SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS Scotland, UK
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - John E. Kitching
- Time and Frequency Division, NIST, 325 Broadway, Boulder, Colorado 80305, USA
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Adam Marblestone
- MIT Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
| | - Thomas Stieglitz
- Institute of Microsystem Technology, Laboratory for Biomedical Microtechnology, D-79110 Freiburg, Germany
- Cluster of Excellence BrainLinks-BrainTools, University of Freiburg, 79110 Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Chong Xie
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
17
|
Zetter R, Iivanainen J, Stenroos M, Parkkonen L. Requirements for Coregistration Accuracy in On-Scalp MEG. Brain Topogr 2018; 31:931-948. [PMID: 29934728 PMCID: PMC6182446 DOI: 10.1007/s10548-018-0656-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/15/2018] [Indexed: 11/25/2022]
Abstract
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.
Collapse
Affiliation(s)
- Rasmus Zetter
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Aalto, Finland.
| | - Joonas Iivanainen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Aalto, Finland
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Aalto, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Aalto, Finland
- Aalto NeuroImaging, Aalto University, 00076, Aalto, Finland
| |
Collapse
|
18
|
Tierney TM, Holmes N, Meyer SS, Boto E, Roberts G, Leggett J, Buck S, Duque-Muñoz L, Litvak V, Bestmann S, Baldeweg T, Bowtell R, Brookes MJ, Barnes GR. Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. Neuroimage 2018; 181:513-520. [PMID: 30016678 PMCID: PMC6150946 DOI: 10.1016/j.neuroimage.2018.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/10/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ∼10 min total duration) in healthy adults (n = 3). We show that it is possible to lateralise and localise language function on a case by case basis using this system. Specifically, we show that at a sensor and source level we can reliably detect a lateralising beta band (15-30 Hz) desynchronization in all subjects. This is the first study of human cognition using OPMs and not only highlights this technology's utility as tool for (developmental) cognitive neuroscience but also its potential to contribute to surgical planning via mapping of eloquent cortex, especially in young children.
Collapse
Affiliation(s)
- Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK.
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sofie S Meyer
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK; UCL Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Sarah Buck
- Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Leonardo Duque-Muñoz
- Departamento de Ingeniería Electrónica, Universidad de Antioquia, Medellín, Colombia; AE&C Research Group, Insituto Tecnológico Metropolitano, Medellín, Colombia
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sven Bestmann
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Torsten Baldeweg
- Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
19
|
Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018; 555:657-661. [PMID: 29562238 PMCID: PMC6063354 DOI: 10.1038/nature26147] [Citation(s) in RCA: 383] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/13/2018] [Indexed: 12/29/2022]
Abstract
Imaging human brain function with techniques such as magnetoencephalography typically requires a subject to perform tasks while their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or to study processes in adults that require unconstrained head movement (such as spatial navigation). Here we describe a magnetoencephalography system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible owing to the integration of quantum sensors, which do not rely on superconducting technology, with a system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution while subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Our results compare well to those of the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterization of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment and investigating the pathophysiology of movement disorders.
Collapse
|
20
|
Magnetoencephalography for brain electrophysiology and imaging. Nat Neurosci 2017; 20:327-339. [DOI: 10.1038/nn.4504] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
|
21
|
Boto E, Meyer SS, Shah V, Alem O, Knappe S, Kruger P, Fromhold TM, Lim M, Glover PM, Morris PG, Bowtell R, Barnes GR, Brookes MJ. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. Neuroimage 2017; 149:404-414. [PMID: 28131890 PMCID: PMC5562927 DOI: 10.1016/j.neuroimage.2017.01.034] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/11/2017] [Accepted: 01/15/2017] [Indexed: 11/29/2022] Open
Abstract
Advances in the field of quantum sensing mean that magnetic field sensors, operating at room temperature, are now able to achieve sensitivity similar to that of cryogenically cooled devices (SQUIDs). This means that room temperature magnetoencephalography (MEG), with a greatly increased flexibility of sensor placement can now be considered. Further, these new sensors can be placed directly on the scalp surface giving, theoretically, a large increase in the magnitude of the measured signal. Here, we present recordings made using a single optically-pumped magnetometer (OPM) in combination with a 3D-printed head-cast designed to accurately locate and orient the sensor relative to brain anatomy. Since our OPM is configured as a magnetometer it is highly sensitive to environmental interference. However, we show that this problem can be ameliorated via the use of simultaneous reference sensor recordings. Using median nerve stimulation, we show that the OPM can detect both evoked (phase-locked) and induced (non-phase-locked oscillatory) changes when placed over sensory cortex, with signals ~4 times larger than equivalent SQUID measurements. Using source modelling, we show that our system allows localisation of the evoked response to somatosensory cortex. Further, source-space modelling shows that, with 13 sequential OPM measurements, source-space signal-to-noise ratio (SNR) is comparable to that from a 271-channel SQUID system. Our results highlight the opportunity presented by OPMs to generate uncooled, potentially low-cost, high SNR MEG systems.
Collapse
Affiliation(s)
- Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Sofie S Meyer
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom
| | - Vishal Shah
- QuSpin Inc., 2011 Cherry Street, Unit 112, Louisville, CO 80027, USA
| | - Orang Alem
- QuSpin Inc., 2011 Cherry Street, Unit 112, Louisville, CO 80027, USA
| | - Svenja Knappe
- QuSpin Inc., 2011 Cherry Street, Unit 112, Louisville, CO 80027, USA
| | - Peter Kruger
- Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - T Mark Fromhold
- Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Mark Lim
- Chalk Studios Ltd., 14 Windsor Street, London N1 8QG, United Kingdom
| | - Paul M Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Gareth R Barnes
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
22
|
Wilson TW, Heinrichs-Graham E, Proskovec AL, McDermott TJ. Neuroimaging with magnetoencephalography: A dynamic view of brain pathophysiology. Transl Res 2016; 175:17-36. [PMID: 26874219 PMCID: PMC4959997 DOI: 10.1016/j.trsl.2016.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/12/2023]
Abstract
Magnetoencephalography (MEG) is a noninvasive, silent, and totally passive neurophysiological imaging method with excellent temporal resolution (∼1 ms) and good spatial precision (∼3-5 mm). In a typical experiment, MEG data are acquired as healthy controls or patients with neurologic or psychiatric disorders perform a specific cognitive task, or receive sensory stimulation. The resulting data are generally analyzed using standard electrophysiological methods, coupled with advanced image reconstruction algorithms. To date, the total number of MEG instruments and associated users is significantly smaller than comparable human neuroimaging techniques, although this is likely to change in the near future with advances in the technology. Despite this small base, MEG research has made a significant impact on several areas of translational neuroscience, largely through its unique capacity to quantify the oscillatory dynamics of activated brain circuits in humans. This review focuses on the clinical areas where MEG imaging has arguably had the greatest impact in regard to the identification of aberrant neural dynamics at the regional and network level, monitoring of disease progression, determining how efficacious pharmacologic and behavioral interventions modulate neural systems, and the development of neural markers of disease. Specifically, this review covers recent advances in understanding the abnormal neural oscillatory dynamics that underlie Parkinson's disease, autism spectrum disorders, human immunodeficiency virus (HIV)-associated neurocognitive disorders, cerebral palsy, attention-deficit hyperactivity disorder, cognitive aging, and post-traumatic stress disorder. MEG imaging has had a major impact on how clinical neuroscientists understand the brain basis of these disorders, and its translational influence is rapidly expanding with new discoveries and applications emerging continuously.
Collapse
Affiliation(s)
- Tony W Wilson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Neurological Sciences, UNMC, Omaha, Neb.
| | - Elizabeth Heinrichs-Graham
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| | - Amy L Proskovec
- Center for Magnetoencephalography, UNMC, Omaha, Neb; Department of Psychology, University of Nebraska - Omaha, Neb
| | - Timothy J McDermott
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center (UNMC), Omaha, Neb; Center for Magnetoencephalography, UNMC, Omaha, Neb
| |
Collapse
|
23
|
Boto E, Bowtell R, Krüger P, Fromhold TM, Morris PG, Meyer SS, Barnes GR, Brookes MJ. On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study. PLoS One 2016; 11:e0157655. [PMID: 27564416 PMCID: PMC5001648 DOI: 10.1371/journal.pone.0157655] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused by both the inherently small magnetic fields generated by the brain, and the scalp-to-sensor distance. The latter is limited in current systems due to a requirement for pickup coils to be cryogenically cooled. Recent work suggests that optically-pumped magnetometers (OPMs) might be a viable alternative to superconducting detectors for MEG measurement. They have the advantage that sensors can be brought to within ~4 mm of the scalp, thus offering increased sensitivity. Here, using simulations, we quantify the advantages of hypothetical OPM systems in terms of sensitivity, reconstruction accuracy and spatial resolution. Our results show that a multi-channel whole-head OPM system offers (on average) a fivefold improvement in sensitivity for an adult brain, as well as clear improvements in reconstruction accuracy and spatial resolution. However, we also show that such improvements depend critically on accurate forward models; indeed, the reconstruction accuracy of our simulated OPM system only outperformed that of a simulated superconducting system in cases where forward field error was less than 5%. Overall, our results imply that the realisation of a viable whole-head multi-channel OPM system could generate a step change in the utility of MEG as a means to assess brain electrophysiological activity in health and disease. However in practice, this will require both improved hardware and modelling algorithms.
Collapse
Affiliation(s)
- Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Peter Krüger
- Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - T. Mark Fromhold
- Midlands Ultracold Atom Research Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Peter G. Morris
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
| | - Sofie S. Meyer
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, WC1N 3BG, London, United Kingdom
| | - Gareth R. Barnes
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, WC1N 3BG, London, United Kingdom
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, NG7 2RD, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Jensen K, Budvytyte R, Thomas RA, Wang T, Fuchs AM, Balabas MV, Vasilakis G, Mosgaard LD, Stærkind HC, Müller JH, Heimburg T, Olesen SP, Polzik ES. Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity. Sci Rep 2016; 6:29638. [PMID: 27417378 PMCID: PMC4945862 DOI: 10.1038/srep29638] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022] Open
Abstract
Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the first detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.
Collapse
Affiliation(s)
- Kasper Jensen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Rima Budvytyte
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Rodrigo A. Thomas
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Tian Wang
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Annette M. Fuchs
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mikhail V. Balabas
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
- Department of Physics, St Petersburg State University, Universitetskii pr. 28, 198504 Staryi Peterhof, Russia
| | - Georgios Vasilakis
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Lars D. Mosgaard
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Hans C. Stærkind
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Jörg H. Müller
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Thomas Heimburg
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Eugene S. Polzik
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Colombo AP, Carter TR, Borna A, Jau YY, Johnson CN, Dagel AL, Schwindt PDD. Four-channel optically pumped atomic magnetometer for magnetoencephalography. OPTICS EXPRESS 2016; 24:15403-16. [PMID: 27410816 PMCID: PMC5025229 DOI: 10.1364/oe.24.015403] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We have developed a four-channel optically pumped atomic magnetometer for magnetoencephalography (MEG) that incorporates a passive diffractive optical element (DOE). The DOE allows us to achieve a long, 18-mm gradiometer baseline in a compact footprint on the head. Using gradiometry, the sensitivities of the channels are < 5 fT/Hz1/2, and the 3-dB bandwidths are approximately 90 Hz, which are both sufficient to perform MEG. Additionally, the channels are highly uniform, which offers the possibility of employing standard MEG post-processing techniques. This module will serve as a building block of an array for magnetic source localization.
Collapse
Affiliation(s)
| | - Tony R. Carter
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185,
USA
| | - Amir Borna
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185,
USA
| | - Yuan-Yu Jau
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185,
USA
| | - Cort N. Johnson
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185,
USA
- Currently with the Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139,
USA
| | - Amber L. Dagel
- Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185,
USA
| | | |
Collapse
|
26
|
Karnaushenko D, Karnaushenko DD, Makarov D, Baunack S, Schäfer R, Schmidt OG. Self-Assembled On-Chip-Integrated Giant Magneto-Impedance Sensorics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6582-9. [PMID: 26398863 DOI: 10.1002/adma.201503127] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Indexed: 05/15/2023]
Abstract
A novel method relying on strain engineering to realize arrays of on-chip-integrated giant magneto-impedance (GMI) sensors equipped with pick-up coils is put forth. The geometrical transformation of an initially planar layout into a tubular 3D architecture stabilizes favorable azimuthal magnetic domain patterns. This work creates a solid foundation for further development of CMOS compatible GMI sensorics for magnetoencephalography.
Collapse
Affiliation(s)
- Daniil Karnaushenko
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Dmitriy D Karnaushenko
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Denys Makarov
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Stefan Baunack
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Rudolf Schäfer
- Institute for Metallic Materials, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
- Institute for Materials Science, Dresden University of Technology, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
- Center for Advancing Electronics Dresden, Dresden University of Technology, 01062, Dresden, Germany
| |
Collapse
|