1
|
Saunders SE, Santin JM. Hibernation reduces GABA signaling in the brainstem to enhance motor activity of breathing at cool temperatures. BMC Biol 2024; 22:251. [PMID: 39497096 PMCID: PMC11533357 DOI: 10.1186/s12915-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Neural circuits produce reliable activity patterns despite disturbances in the environment. For this to occur, neurons elicit synaptic plasticity during perturbations. However, recent work suggests that plasticity not only regulates circuit activity during disturbances, but these modifications may also linger to stabilize circuits during future perturbations. The implementation of such a regulation scheme for real-life environmental challenges of animals remains unclear. Amphibians provide insight into this problem in a rather extreme way, as circuits that generate breathing are inactive for several months during underwater hibernation and use compensatory plasticity to promote ventilation upon emergence. RESULTS Using ex vivo brainstem preparations and electrophysiology, we find that hibernation in American bullfrogs reduces GABAA receptor (GABAAR) inhibition in respiratory rhythm generating circuits and motor neurons, consistent with a compensatory response to chronic inactivity. Although GABAARs are normally critical for breathing, baseline network output at warm temperatures was not affected. However, when assessed across a range of temperatures, hibernators with reduced GABAAR signaling had greater activity at cooler temperatures, enhancing respiratory motor output under conditions that otherwise strongly depress breathing. CONCLUSIONS Hibernation reduces GABAAR signaling to promote robust respiratory output only at cooler temperatures. Although frogs do not ventilate lungs during underwater hibernation, we suggest this would be beneficial for stabilizing breathing when the animal passes through a large temperature range during emergence in the spring. More broadly, these results demonstrate that compensatory synaptic plasticity can increase the operating range of circuits in harsh environments, thereby promoting adaptive behavior in conditions that suppress activity.
Collapse
Affiliation(s)
- Sandy E Saunders
- Division of Biological Sciences, University of Missouri-Columbia, MO, USA
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, MO, USA.
| |
Collapse
|
2
|
Piazza MK, Kavalali ET, Monteggia LM. Ketamine induced synaptic plasticity operates independently of long-term potentiation. Neuropsychopharmacology 2024; 49:1758-1766. [PMID: 38898206 PMCID: PMC11399243 DOI: 10.1038/s41386-024-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Synaptic plasticity occurs via multiple mechanisms to regulate synaptic efficacy. Homeostatic and Hebbian plasticity are two such mechanisms by which neuronal synapses can be altered. Although these two processes are mechanistically distinct, they converge on downstream regulation of AMPA receptor activity to modify glutamatergic neurotransmission. However, much remains to be explored regarding how these two prominent forms of plasticity interact. Ketamine, a rapidly acting antidepressant, increases glutamatergic transmission via pharmacologically-induced homeostatic plasticity. Here, we demonstrate that Hebbian plasticity mechanisms are still intact in synapses that have undergone homeostatic scaling by ketamine after either systemic injection or perfusion onto hippocampal brain slices. We also investigated this relationship in the context of stress induced by chronic exposure to corticosterone (CORT) to better model the circumstances under which ketamine may be used as an antidepressant. We found that CORT induced an anhedonia-like behavioral phenotype in mice but did not impair long-term potentiation (LTP) induction. Furthermore, corticosterone exposure does not impact the intersection of homeostatic and Hebbian plasticity mechanisms, as synapses from CORT-exposed mice also demonstrated intact ketamine-induced plasticity and LTP in succession. These results provide a mechanistic explanation for how ketamine used for the treatment of depression does not impair the integrity of learning and memory processes encoded by mechanisms such as LTP.
Collapse
Affiliation(s)
- Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
3
|
Caya-Bissonnette L, Béïque JC. Half a century legacy of long-term potentiation. Curr Biol 2024; 34:R640-R662. [PMID: 38981433 DOI: 10.1016/j.cub.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.
Collapse
Affiliation(s)
- Léa Caya-Bissonnette
- Graduate Program in Neuroscience, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
4
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
5
|
Chronic neuronal excitation leads to dual metaplasticity in the signaling for structural long-term potentiation. Cell Rep 2022; 38:110153. [PMID: 34986356 DOI: 10.1016/j.celrep.2021.110153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Synaptic plasticity is long-lasting changes in synaptic currents and structure. When neurons are exposed to signals that induce aberrant neuronal excitation, they increase the threshold for the induction of long-term potentiation (LTP), known as metaplasticity. However, the metaplastic regulation of structural LTP (sLTP) remains unclear. We investigate glutamate uncaging/photoactivatable (pa)CaMKII-dependent sLTP induction in hippocampal CA1 neurons after chronic neuronal excitation by GABAA receptor antagonists. We find that the neuronal excitation decreases the glutamate uncaging-evoked Ca2+ influx mediated by GluN2B-containing NMDA receptors and suppresses sLTP induction. In addition, single-spine optogenetic stimulation using paCaMKII indicates the suppression of CaMKII signaling. While the inhibition of Ca2+ influx is protein synthesis independent, the paCaMKII-induced sLTP suppression depends on it. Our findings demonstrate that chronic neuronal excitation suppresses sLTP in two independent ways (i.e., dual inhibition of Ca2+ influx and CaMKII signaling). This dual inhibition mechanism may contribute to robust neuronal protection in excitable environments.
Collapse
|
6
|
Moulin TC, Rayêe D, Schiöth HB. Dendritic spine density changes and homeostatic synaptic scaling: a meta-analysis of animal studies. Neural Regen Res 2022; 17:20-24. [PMID: 34100421 PMCID: PMC8451564 DOI: 10.4103/1673-5374.314283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mechanisms of homeostatic plasticity promote compensatory changes of cellular excitability in response to chronic changes in the network activity. This type of plasticity is essential for the maintenance of brain circuits and is involved in the regulation of neural regeneration and the progress of neurodegenerative disorders. One of the most studied homeostatic processes is synaptic scaling, where global synaptic adjustments take place to restore the neuronal firing rate to a physiological range by the modulation of synaptic receptors, neurotransmitters, and morphology. However, despite the comprehensive literature on the electrophysiological properties of homeostatic scaling, less is known about the structural adjustments that occur in the synapses and dendritic tree. In this study, we performed a meta-analysis of articles investigating the effects of chronic network excitation (synaptic downscaling) or inhibition (synaptic upscaling) on the dendritic spine density of neurons. Our results indicate that spine density is consistently reduced after protocols that induce synaptic scaling, independent of the intervention type. Then, we discuss the implication of our findings to the current knowledge on the morphological changes induced by homeostatic plasticity.
Collapse
Affiliation(s)
- Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Rayêe
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY, USA
| | - Helgi B Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
7
|
Silent Synapses in Cocaine-Associated Memory and Beyond. J Neurosci 2021; 41:9275-9285. [PMID: 34759051 DOI: 10.1523/jneurosci.1559-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic synapses are key cellular sites where cocaine experience creates memory traces that subsequently promote cocaine craving and seeking. In addition to making across-the-board synaptic adaptations, cocaine experience also generates a discrete population of new synapses that selectively encode cocaine memories. These new synapses are glutamatergic synapses that lack functionally stable AMPARs, often referred to as AMPAR-silent synapses or, simply, silent synapses. They are generated de novo in the NAc by cocaine experience. After drug withdrawal, some of these synapses mature by recruiting AMPARs, contributing to the consolidation of cocaine-associated memory. After cue-induced retrieval of cocaine memories, matured silent synapses alternate between two dynamic states (AMPAR-absent vs AMPAR-containing) that correspond with the behavioral manifestations of destabilization and reconsolidation of these memories. Here, we review the molecular mechanisms underlying silent synapse dynamics during behavior, discuss their contributions to circuit remodeling, and analyze their role in cocaine-memory-driven behaviors. We also propose several mechanisms through which silent synapses can form neuronal ensembles as well as cross-region circuit engrams for cocaine-specific behaviors. These perspectives lead to our hypothesis that cocaine-generated silent synapses stand as a distinct set of synaptic substrates encoding key aspects of cocaine memory that drive cocaine relapse.
Collapse
|
8
|
Albarran E, Raissi A, Jáidar O, Shatz CJ, Ding JB. Enhancing motor learning by increasing the stability of newly formed dendritic spines in the motor cortex. Neuron 2021; 109:3298-3311.e4. [PMID: 34437845 DOI: 10.1016/j.neuron.2021.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Dendritic spine dynamics are thought to be substrates for motor learning and memory, and altered spine dynamics often lead to impaired performance. Here, we describe an exception to this rule by studying mice lacking paired immunoglobulin receptor B (PirB-/-). Pyramidal neuron dendrites in PirB-/- mice have increased spine formation rates and density. Surprisingly, PirB-/- mice learn a skilled reaching task faster than wild-type (WT) littermates. Furthermore, stabilization of learning-induced spines is elevated in PirB-/- mice. Mechanistically, single-spine uncaging experiments suggest that PirB is required for NMDA receptor (NMDAR)-dependent spine shrinkage. The degree of survival of newly formed spines correlates with performance, suggesting that increased spine stability is advantageous for learning. Acute inhibition of PirB function in M1 of adult WT mice increases the survival of learning-induced spines and enhances motor learning. These results demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.
Collapse
Affiliation(s)
- Eddy Albarran
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Aram Raissi
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Omar Jáidar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Carla J Shatz
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Park E, Lau AG, Arendt KL, Chen L. FMRP Interacts with RARα in Synaptic Retinoic Acid Signaling and Homeostatic Synaptic Plasticity. Int J Mol Sci 2021; 22:ijms22126579. [PMID: 34205274 PMCID: PMC8235556 DOI: 10.3390/ijms22126579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
The fragile X syndrome (FXS) is an X-chromosome-linked neurodevelopmental disorder with severe intellectual disability caused by inactivation of the fragile X mental retardation 1 (FMR1) gene and subsequent loss of the fragile X mental retardation protein (FMRP). Among the various types of abnormal synaptic function and synaptic plasticity phenotypes reported in FXS animal models, defective synaptic retinoic acid (RA) signaling and subsequent defective homeostatic plasticity have emerged as a major synaptic dysfunction. However, the mechanism underlying the defective synaptic RA signaling in the absence of FMRP is unknown. Here, we show that RARα, the RA receptor critically involved in synaptic RA signaling, directly interacts with FMRP. This interaction is enhanced in the presence of RA. Blocking the interaction between FMRP and RARα with a small peptide corresponding to the critical binding site in RARα abolishes RA-induced increases in excitatory synaptic transmission, recapitulating the phenotype seen in the Fmr1 knockout mouse. Taken together, these data suggest that not only are functional FMRP and RARα necessary for RA-dependent homeostatic synaptic plasticity, but that the interaction between these two proteins is essential for proper transcription-independent RA signaling. Our results may provide further mechanistic understanding into FXS synaptic pathophysiology.
Collapse
|
10
|
Reyes-García SE, Escobar ML. Calcineurin Participation in Hebbian and Homeostatic Plasticity Associated With Extinction. Front Cell Neurosci 2021; 15:685838. [PMID: 34220454 PMCID: PMC8242195 DOI: 10.3389/fncel.2021.685838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
In nature, animals need to adapt to constant changes in their environment. Learning and memory are cognitive capabilities that allow this to happen. Extinction, the reduction of a certain behavior or learning previously established, refers to a very particular and interesting type of learning that has been the basis of a series of therapies to diminish non-adaptive behaviors. In recent years, the exploration of the cellular and molecular mechanisms underlying this type of learning has received increasing attention. Hebbian plasticity (the activity-dependent modification of the strength or efficacy of synaptic transmission), and homeostatic plasticity (the homeostatic regulation of plasticity) constitute processes intimately associated with memory formation and maintenance. Particularly, long-term depression (LTD) has been proposed as the underlying mechanism of extinction, while the protein phosphatase calcineurin (CaN) has been widely related to both the extinction process and LTD. In this review, we focus on the available evidence that sustains CaN modulation of LTD and its association with extinction. Beyond the classic view, we also examine the interconnection among extinction, Hebbian and homeostatic plasticity, as well as emergent evidence of the participation of kinases and long-term potentiation (LTP) on extinction learning, highlighting the importance of the balance between kinases and phosphatases in the expression of extinction. Finally, we also integrate data that shows the association between extinction and less-studied phenomena, such as synaptic silencing and engram formation that open new perspectives in the field.
Collapse
Affiliation(s)
- Salma E Reyes-García
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martha L Escobar
- Laboratorio de Neurobiología del Aprendizaje y la Memoria, División de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
11
|
Kyrke-Smith M, Volk LJ, Cooke SF, Bear MF, Huganir RL, Shepherd JD. The Immediate Early Gene Arc Is Not Required for Hippocampal Long-Term Potentiation. J Neurosci 2021; 41:4202-4211. [PMID: 33833081 PMCID: PMC8143205 DOI: 10.1523/jneurosci.0008-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
Memory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory. Key plasticity genes, such as the immediate early gene Arc, are induced by learning and by LTP induction. Mice that lack Arc have severe deficits in memory consolidation, and Arc has been implicated in numerous other forms of synaptic plasticity, including long-term depression and cell-to-cell signaling. Here, we take a comprehensive approach to determine if Arc is necessary for hippocampal LTP in male and female mice. Using a variety of Arc knock-out (KO) lines, we found that germline Arc KO mice show no deficits in CA1 LTP induced by high-frequency stimulation and enhanced LTP induced by theta-burst stimulation. Temporally restricting the removal of Arc to adult animals and spatially restricting it to the CA1 using Arc conditional KO mice did not have an effect on any form of LTP. Similarly, acute application of Arc antisense oligodeoxynucleotides had no effect on hippocampal CA1 LTP. Finally, the maintenance of in vivo LTP in the dentate gyrus of Arc KO mice was normal. We conclude that Arc is not necessary for hippocampal LTP and may mediate memory consolidation through alternative mechanisms.SIGNIFICANCE STATEMENT The immediate early gene Arc is critical for maintenance of long-term memory. How Arc mediates this process remains unclear, but it has been proposed to sustain Hebbian synaptic potentiation, which is a key component of memory encoding. This form of plasticity is modeled experimentally by induction of LTP, which increases Arc mRNA and protein expression. However, mechanistic data implicates Arc in the endocytosis of AMPA-type glutamate receptors and the weakening of synapses. Here, we took a comprehensive approach to determine if Arc is necessary for hippocampal LTP. We find that Arc is not required for LTP maintenance and may regulate memory storage through alternative mechanisms.
Collapse
Affiliation(s)
| | - Lenora J Volk
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Samuel F Cooke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Basic and Clinical Neurosciences, King's College London, London, WC2R 2LS, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Richard L Huganir
- Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Jason D Shepherd
- Department of Neurobiology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
12
|
Bissen D, Kracht MK, Foss F, Hofmann J, Acker-Palmer A. EphrinB2 and GRIP1 stabilize mushroom spines during denervation-induced homeostatic plasticity. Cell Rep 2021; 34:108923. [PMID: 33789115 PMCID: PMC8028307 DOI: 10.1016/j.celrep.2021.108923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/20/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Despite decades of work, much remains elusive about molecular events at the interplay between physiological and structural changes underlying neuronal plasticity. Here, we combined repetitive live imaging and expansion microscopy in organotypic brain slice cultures to quantitatively characterize the dynamic changes of the intracellular versus surface pools of GluA2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) across the different dendritic spine types and the shaft during hippocampal homeostatic plasticity. Mechanistically, we identify ephrinB2 and glutamate receptor interacting protein (GRIP) 1 as mediating AMPAR relocation to the mushroom spine surface following lesion-induced denervation. Moreover, stimulation with the ephrinB2 specific receptor EphB4 not only prevents the lesion-induced disappearance of mushroom spines but is also sufficient to shift AMPARs to the surface and rescue spine recovery in a GRIP1 dominant-negative background. Thus, our results unravel a crucial role for ephrinB2 during homeostatic plasticity and identify a potential pharmacological target to improve dendritic spine plasticity upon injury.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Maximilian Ken Kracht
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jan Hofmann
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Hu J, Liu PL, Hua Y, Gao BY, Wang YY, Bai YL, Chen C. Constraint-induced movement therapy enhances AMPA receptor-dependent synaptic plasticity in the ipsilateral hemisphere following ischemic stroke. Neural Regen Res 2021; 16:319-324. [PMID: 32859791 PMCID: PMC7896237 DOI: 10.4103/1673-5374.290900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Constraint-induced movement therapy (CIMT) can promote the recovery of motor function in injured upper limbs following stroke, which may be associated with upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) at synapses in the ipsilateral sensorimotor cortex in our previous study. However, AMPAR distribution is tightly regulated, and only AMPARs on the postsynaptic membrane can mediate synaptic transmission. We speculated that synaptic remodeling induced by movement-associated synaptic activity can promote functional recovery from stroke. To test this hypothesis, we compared AMPAR expression on the postsynaptic membrane surface in a rat model of ischemic stroke induced by middle cerebral artery occlusion (MCAO) with versus without CIMT, which consisted of daily running wheel training for 2 weeks starting on day 7 after MCAO. The results showed that CIMT increased the number of glutamate receptor (GluR)2-containing functional synapses in the ipsilateral sensorimotor cortex, and reduced non-GluR2 AMPARs in the ipsilateral sensorimotor cortex and hippocampal CA3 region. In addition, CIMT enhanced AMPAR expression on the surface of post-synaptic membrane in the ipsilateral sensorimotor cortex and hippocampus. Thus, CIMT promotes the recovery of motor function of injured upper limbs following stroke by enhancing AMPAR-mediated synaptic transmission in the ischemic hemisphere. These findings provide supporting evidence for the clinical value of CIMT for restoring limb movement in stroke patients. All experimental procedures and protocols were approved by the Department of Laboratory Animal Science of Fudan University, China (approval No. 201802173S) on March 3, 2018.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei-Le Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Bei-Yao Gao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Long Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chan Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Xu C, Liu HJ, Qi L, Tao CL, Wang YJ, Shen Z, Tian CL, Lau PM, Bi GQ. Structure and plasticity of silent synapses in developing hippocampal neurons visualized by super-resolution imaging. Cell Discov 2020; 6:8. [PMID: 32133151 PMCID: PMC7039918 DOI: 10.1038/s41421-019-0139-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/09/2019] [Indexed: 01/26/2023] Open
Abstract
Excitatory synapses in the mammalian brain exhibit diverse functional properties in transmission and plasticity. Directly visualizing the structural correlates of such functional heterogeneity is often hindered by the diffraction-limited resolution of conventional optical imaging techniques. Here, we used super-resolution stochastic optical reconstruction microscopy (STORM) to resolve structurally distinct excitatory synapses formed on dendritic shafts and spines. The majority of these shaft synapses contained N-methyl-d-aspartate receptors (NMDARs) but not α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), suggesting that they were functionally silent. During development, as more spine synapses formed with increasing sizes and expression of AMPARs and NMDARs, shaft synapses exhibited moderate reduction in density with largely unchanged sizes and receptor expression. Furthermore, upon glycine stimulation to induce chemical long-term potentiation (cLTP), the previously silent shaft synapses became functional shaft synapses by recruiting more AMPARs than did spine synapses. Thus, silent shaft synapse may represent a synaptic state in developing neurons with enhanced capacity of activity-dependent potentiation.
Collapse
Affiliation(s)
- Cheng Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Hui-Jing Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Lei Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Chang-Lu Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Yu-Jian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Zeyu Shen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Chong-Li Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Pak-Ming Lau
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, and Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230027 China
| |
Collapse
|
15
|
Disruption of NMDAR Function Prevents Normal Experience-Dependent Homeostatic Synaptic Plasticity in Mouse Primary Visual Cortex. J Neurosci 2019; 39:7664-7673. [PMID: 31413075 DOI: 10.1523/jneurosci.2117-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Homeostatic regulation of synaptic strength allows for maintenance of neural activity within a dynamic range for proper circuit function. There are largely two distinct modes of synaptic plasticity that allow for homeostatic adaptation of cortical circuits: synaptic scaling and sliding threshold (BCM theory). Previous findings suggest that the induction of synaptic scaling is not prevented by blocking NMDARs, whereas the sliding threshold model posits that the synaptic modification threshold of LTP and LTD readjusts with activity and thus the outcome of synaptic plasticity is NMDAR dependent. Although synaptic scaling and sliding threshold have been considered two distinct mechanisms, there are indications from recent studies that these two modes of homeostatic plasticity may interact or that they may operate under two distinct activity regimes. Here, we report using both sexes of mouse that acute genetic knock-out of the obligatory subunit of NMDAR or acute pharmacological block of NMDAR prevents experience-dependent homeostatic regulation of AMPAR-mediated miniature EPSCs in layer 2/3 of visual cortex. This was not due to gross changes in postsynaptic neuronal activity with inhibiting NMDAR function as determine by c-Fos expression and two-photon Ca2+ imaging in awake mice. Our results suggest that experience-dependent homeostatic regulation of intact cortical circuits is mediated by NMDAR-dependent plasticity mechanisms, which supports a sliding threshold model of homeostatic adaptation.SIGNIFICANCE STATEMENT Prolonged changes in sensory experience lead to homeostatic adaptation of excitatory synaptic strength in sensory cortices. Both sliding threshold and synaptic scaling models can account for the observed homeostatic synaptic plasticity. Here we report that visual experience-dependent homeostatic plasticity of excitatory synapses observed in superficial layers of visual cortex is dependent on NMDAR function. In particular, both strengthening of synapses induced by visual deprivation and the subsequent weakening by reinstatement of visual experience were prevented in the absence of functional NMDARs. Our results suggest that sensory experience-dependent homeostatic adaptation depends on NMDARs, which supports the sliding threshold model of plasticity and input-specific homeostatic control observed in vivo.
Collapse
|
16
|
Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning. Proc Natl Acad Sci U S A 2019; 116:7113-7122. [PMID: 30782829 DOI: 10.1073/pnas.1820690116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Homeostatic synaptic plasticity is a stabilizing mechanism engaged by neural circuits in response to prolonged perturbation of network activity. The non-Hebbian nature of homeostatic synaptic plasticity is thought to contribute to network stability by preventing "runaway" Hebbian plasticity at individual synapses. However, whether blocking homeostatic synaptic plasticity indeed induces runaway Hebbian plasticity in an intact neural circuit has not been explored. Furthermore, how compromised homeostatic synaptic plasticity impacts animal learning remains unclear. Here, we show in mice that the experience of an enriched environment (EE) engaged homeostatic synaptic plasticity in hippocampal circuits, thereby reducing excitatory synaptic transmission. This process required RARα, a nuclear retinoic acid receptor that doubles as a cytoplasmic retinoic acid-induced postsynaptic regulator of protein synthesis. Blocking RARα-dependent homeostatic synaptic plasticity during an EE experience by ablating RARα signaling induced runaway Hebbian plasticity, as evidenced by greatly enhanced long-term potentiation (LTP). As a consequence, RARα deletion in hippocampal circuits during an EE experience resulted in enhanced spatial learning but suppressed learning flexibility. In the absence of RARα, moreover, EE experience superactivated mammalian target of rapamycin (mTOR) signaling, causing a shift in protein translation that enhanced the expression levels of AMPA-type glutamate receptors. Treatment of mice with the mTOR inhibitor rapamycin during an EE experience not only restored normal AMPA-receptor expression levels but also reversed the increases in runaway Hebbian plasticity and learning after hippocampal RARα deletion. Thus, our findings reveal an RARα- and mTOR-dependent mechanism by which homeostatic plasticity controls Hebbian plasticity and learning.
Collapse
|
17
|
Moulin TC, Petiz LL, Rayêe D, Winne J, Maia RG, Lima da Cruz RV, Amaral OB, Leão RN. Chronic in vivo optogenetic stimulation modulates neuronal excitability, spine morphology, and Hebbian plasticity in the mouse hippocampus. Hippocampus 2019; 29:755-761. [DOI: 10.1002/hipo.23080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/19/2018] [Accepted: 01/26/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Thiago C. Moulin
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Brain Institute, Federal University of Rio Grande do Norte; Rio Grande do Norte Brazil
| | - Lyvia L. Petiz
- Brain Institute, Federal University of Rio Grande do Norte; Rio Grande do Norte Brazil
| | - Danielle Rayêe
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Jessica Winne
- Brain Institute, Federal University of Rio Grande do Norte; Rio Grande do Norte Brazil
| | - Roberto G. Maia
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | | | - Olavo B. Amaral
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Richardson N. Leão
- Brain Institute, Federal University of Rio Grande do Norte; Rio Grande do Norte Brazil
| |
Collapse
|
18
|
Delvendahl I, Müller M. Homeostatic plasticity—a presynaptic perspective. Curr Opin Neurobiol 2019; 54:155-162. [DOI: 10.1016/j.conb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 01/05/2023]
|
19
|
Li J, Park E, Zhong LR, Chen L. Homeostatic synaptic plasticity as a metaplasticity mechanism - a molecular and cellular perspective. Curr Opin Neurobiol 2019; 54:44-53. [PMID: 30212714 PMCID: PMC6361678 DOI: 10.1016/j.conb.2018.08.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
The molecular mechanisms underlying various types of synaptic plasticity are historically regarded as separate processes involved in independent cellular events. However, recent progress in our molecular understanding of Hebbian and homeostatic synaptic plasticity supports the observation that these two types of plasticity share common cellular events, and are often altered together in neurological diseases. Here, we discuss the emerging concept of homeostatic synaptic plasticity as a metaplasticity mechanism with a focus on cellular signaling processes that enable a direct interaction between Hebbian and homeostatic plasticity. We also identify distinct and shared molecular players involved in these cellular processes that may be explored experimentally in future studies to test the hypothesis that homeostatic synaptic plasticity serves as a metaplasticity mechanism to integrate changes in neuronal activity and support optimal Hebbian learning.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Esther Park
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lei R Zhong
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA.
| |
Collapse
|
20
|
Kyrke-Smith M, Williams JM. Bridging Synaptic and Epigenetic Maintenance Mechanisms of the Engram. Front Mol Neurosci 2018; 11:369. [PMID: 30344478 PMCID: PMC6182070 DOI: 10.3389/fnmol.2018.00369] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
How memories are maintained, and how memories are lost during aging or disease, are intensely investigated issues. Arguably, the reigning theory is that synaptic modifications allow for the formation of engrams during learning, and sustaining engrams sustains memory. Activity-regulated gene expression profiles have been shown to be critical to these processes, and their control by the epigenome has begun to be investigated in earnest. Here, we propose a novel theory as to how engrams are sustained. We propose that many of the genes that are currently believed to underlie long-term memory are actually part of a “plasticity transcriptome” that underpins structural and functional modifications to neuronal connectivity during the hours to days following learning. Further, we hypothesize that a “maintenance transcriptome” is subsequently induced that includes epigenetic negative regulators of gene expression, particularly histone deacetylases. The maintenance transcriptome negatively regulates the plasticity transcriptome, and thus the plastic capability of a neuron, after learning. In this way, the maintenance transcriptome would act as a metaplasticity mechanism that raises the threshold for change in neurons within an engram, helping to ensure the connectivity is stabilized and memory is maintained.
Collapse
Affiliation(s)
- Madeleine Kyrke-Smith
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Psychology, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Joanna M Williams
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Hobbiss AF, Ramiro-Cortés Y, Israely I. Homeostatic Plasticity Scales Dendritic Spine Volumes and Changes the Threshold and Specificity of Hebbian Plasticity. iScience 2018; 8:161-174. [PMID: 30317078 PMCID: PMC6187013 DOI: 10.1016/j.isci.2018.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 09/17/2018] [Indexed: 11/27/2022] Open
Abstract
Information is encoded in neural networks through changes in synaptic weights. Synaptic learning rules involve a combination of rapid Hebbian plasticity and slower homeostatic synaptic plasticity that regulates neuronal activity through global synaptic scaling. Hebbian and homeostatic plasticity have been extensively investigated, whereas much less is known about their interaction. Here we investigated structural and functional consequences of homeostatic plasticity at dendritic spines of mouse hippocampal neurons. We found that prolonged activity blockade induced spine growth, paralleling synaptic strength increases. Following activity blockade, glutamate uncaging-mediated stimulation at single spines led to size-dependent structural potentiation: smaller spines underwent robust growth, whereas larger spines remained unchanged. Moreover, spines near the stimulated spine exhibited volume changes following homeostatic plasticity, indicating that there was a breakdown of input specificity following homeostatic plasticity. Overall, these findings demonstrate that Hebbian and homeostatic plasticity interact to shape neural connectivity through non-uniform structural plasticity at inputs. Chronic activity blockade leads to enlarged hippocampal spines and structural scaling Homeostatic plasticity affects subsequent Hebbian plasticity according to size of spines Neighbors also grow after potentiation of single spines, compromising input specificity
Collapse
Affiliation(s)
| | - Yazmin Ramiro-Cortés
- Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito exterior s/n, Ciudad de México 04510, México
| | - Inbal Israely
- Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal; Department of Pathology and Cell Biology in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neuroscience, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Bie B, Wu J, Foss JF, Naguib M. Amyloid fibrils induce dysfunction of hippocampal glutamatergic silent synapses. Hippocampus 2018; 28:549-556. [PMID: 29704282 PMCID: PMC6133714 DOI: 10.1002/hipo.22955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/14/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022]
Abstract
Silent glutamatergic synapses lacking functional AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors exist in several brain regions including the hippocampus. Their involvement in the dysfunction of hippocampal glutamatergic transmission in the setting of Alzheimer's disease (AD) is unknown. This study demonstrated a decrease in the percentage of silent synapses in rats microinjected with amyloid fibrils (Aβ1-40 ) into the hippocampal CA1. Also, pairing low-frequency electric stimuli failed to induce activation of the hippocampal silent synapses in the modeled rats. Immunoblotting studies revealed a decreased expression of GluR1 subunits in the hippocampal CA1 synaptosomal preparation, indicating a potential reduction in the GluR1 subunits anchoring in postsynaptic density in the modeled rats. We also noted a decreased expression of phosphorylated cofilin, which regulates the function of actin cytoskeleton and receptor trafficking, and reduced expression of the scaffolding protein PSD95 in the hippocampal CA1 synaptosome in rats injected with Aβ1-40 . Taken together, this study illustrates dysfunction of hippocampal silent synapse in the rodent model of AD, which might result from the impairments of actin cytoskeleton and postsynaptic scaffolding proteins induced by amyloid fibrils.
Collapse
Affiliation(s)
- Bihua Bie
- Anesthesiology Institute, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave. – NB3-78, Cleveland, OH 44195
| | - Jiang Wu
- Anesthesiology Institute, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave. – NB3-78, Cleveland, OH 44195
| | - Joseph F. Foss
- Anesthesiology Institute, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave. – NB3-78, Cleveland, OH 44195
| | - Mohamed Naguib
- Anesthesiology Institute, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, 9500 Euclid Ave. – NB3-78, Cleveland, OH 44195
| |
Collapse
|
23
|
Dias RB, Rodrigues TM, Rombo DM, Ribeiro FF, Rodrigues J, McGarvey J, Orcinha C, Henley JM, Sebastião AM. Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cereb Cortex 2018; 28:2795-2809. [PMID: 29053799 PMCID: PMC6117472 DOI: 10.1093/cercor/bhx159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/30/2023] Open
Abstract
The cytokine erythropoietin (EPO) is the master regulator of erythropoiesis. Intriguingly, many studies have shown that the cognitive performance of patients receiving EPO for its hematopoietic effects is enhanced, which prompted the growing interest in the use of EPO-based strategies to treat neuropsychiatric disorders. EPO plays key roles in brain development and maturation, but also modulates synaptic transmission. However, the mechanisms underlying the latter have remained elusive. Here, we show that acute (40-60 min) exposure to EPO presynaptically downregulates spontaneous and afferent-evoked excitatory transmission, without affecting basal firing of action potentials. Conversely, prolonged (3 h) exposure to EPO, if followed by a recovery period (1 h), is able to elicit a homeostatic increase in excitatory spontaneous, but not in evoked, synaptic transmission. These data lend support to the emerging view that segregated pathways underlie spontaneous and evoked neurotransmitter release. Furthermore, we show that prolonged exposure to EPO facilitates a form of hippocampal long-term potentiation that requires noncanonical recruitment of calcium-permeable AMPA receptors for its maintenance. These findings provide important new insight into the mechanisms by which EPO enhances neuronal function, learning, and memory.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Tiago M Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Diogo M Rombo
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Joana Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Jennifer McGarvey
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Catarina Orcinha
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| |
Collapse
|
24
|
Hilal ML, Moreau MM, Racca C, Pinheiro VL, Piguel NH, Santoni MJ, Dos Santos Carvalho S, Blanc JM, Abada YSK, Peyroutou R, Medina C, Doat H, Papouin T, Vuillard L, Borg JP, Rachel R, Panatier A, Montcouquiol M, Oliet SHR, Sans N. Activity-Dependent Neuroplasticity Induced by an Enriched Environment Reverses Cognitive Deficits in Scribble Deficient Mouse. Cereb Cortex 2018; 27:5635-5651. [PMID: 28968740 DOI: 10.1093/cercor/bhw333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
Planar cell polarity (PCP) signaling is well known to play a critical role during prenatal brain development; whether it plays specific roles at postnatal stages remains rather unknown. Here, we investigated the role of a key PCP-associated gene scrib in CA1 hippocampal structure and function at postnatal stages. We found that Scrib is required for learning and memory consolidation in the Morris water maze as well as synaptic maturation and NMDAR-dependent bidirectional plasticity. Furthermore, we unveiled a direct molecular interaction between Scrib and PP1/PP2A phosphatases whose levels were decreased in postsynaptic density of conditional knock-out mice. Remarkably, exposure to enriched environment (EE) preserved memory formation in CaMK-Scrib-/- mice by recovering synaptic plasticity and maturation. Thus, Scrib is required for synaptic function involved in memory formation and EE has beneficiary therapeutic effects. Our results demonstrate a distinct new role for a PCP-associated protein, beyond embryonic development, in cognitive functions during adulthood.
Collapse
Affiliation(s)
- Muna L Hilal
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Maité M Moreau
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Claudia Racca
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vera L Pinheiro
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Nicolas H Piguel
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Marie-Josée Santoni
- CRCM, INSERM U1068, F-13009 Marseille, France.,CRCM, CNRS UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13007 Marseille, France
| | - Steve Dos Santos Carvalho
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Jean-Michel Blanc
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,BioXtal Structural Biology Unit, Campus de Luminy, F-13288 Marseille, France.,University of Bordeaux, Plateforme de Biochimie et de Biophysique des protéines, FR Bordeaux Neurocampus, F-33000 Bordeaux, France
| | - Yah-Se K Abada
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Ronan Peyroutou
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Chantal Medina
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Hélène Doat
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Thomas Papouin
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Laurent Vuillard
- BioXtal Structural Biology Unit, Campus de Luminy, F-13288 Marseille, France
| | - Jean-Paul Borg
- CRCM, INSERM U1068, F-13009 Marseille, France.,CRCM, CNRS UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille Université, F-13007 Marseille, France
| | - Rivka Rachel
- Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | - Aude Panatier
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Stéphane H R Oliet
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, Unité U1215, F-33000 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| |
Collapse
|
25
|
Soares C, Lee KFH, Béïque JC. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics. Cell Rep 2018; 21:1293-1303. [PMID: 29091767 DOI: 10.1016/j.celrep.2017.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
Hebbian and homeostatic forms of plasticity operate on different timescales to regulate synaptic strength. The degree of mechanistic overlap between these processes and their mutual influence are still incompletely understood. Here, we report that homeostatic synaptic strengthening induced by prolonged network inactivity compromised the ability of CA1 synapses to exhibit LTP. This effect could not be accounted for by an obvious deficit in the postsynaptic capacity for LTP expression, since neither the fraction of silent synapses nor the ability to induce LTP by two-photon glutamate uncaging were reduced by the homeostatic process. Rather, optical quantal analysis reveals that homeostatically strengthened synapses display a reduced capacity to maintain glutamate release fidelity during repetitive stimulation, ultimately impeding the induction, and thus expression, of LTP. By regulating the short-term dynamics of glutamate release, the homeostatic process thus influences key aspects of dynamic network function and exhibits features of metaplasticity.
Collapse
Affiliation(s)
- Cary Soares
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin F H Lee
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute's Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
26
|
Tao CL, Liu YT, Zhou ZH, Lau PM, Bi GQ. Accumulation of Dense Core Vesicles in Hippocampal Synapses Following Chronic Inactivity. Front Neuroanat 2018; 12:48. [PMID: 29942253 PMCID: PMC6004418 DOI: 10.3389/fnana.2018.00048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023] Open
Abstract
The morphology and function of neuronal synapses are regulated by neural activity, as manifested in activity-dependent synapse maturation and various forms of synaptic plasticity. Here we employed cryo-electron tomography (cryo-ET) to visualize synaptic ultrastructure in cultured hippocampal neurons and investigated changes in subcellular features in response to chronic inactivity, a paradigm often used for the induction of homeostatic synaptic plasticity. We observed a more than 2-fold increase in the mean number of dense core vesicles (DCVs) in the presynaptic compartment of excitatory synapses and an almost 20-fold increase in the number of DCVs in the presynaptic compartment of inhibitory synapses after 2 days treatment with the voltage-gated sodium channel blocker tetrodotoxin (TTX). Short-term treatment with TTX and the N-methyl-D-aspartate receptor (NMDAR) antagonist amino-5-phosphonovaleric acid (AP5) caused a 3-fold increase in the number of DCVs within 100 nm of the active zone area in excitatory synapses but had no significant effects on the overall number of DCVs. In contrast, there were very few DCVs in the postsynaptic compartments of both synapse types under all conditions. These results are consistent with a role for presynaptic DCVs in activity-dependent synapse maturation. We speculate that these accumulated DCVs can be released upon reactivation and may contribute to homeostatic metaplasticity.
Collapse
Affiliation(s)
- Chang-Lu Tao
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Yun-Tao Liu
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Z Hong Zhou
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pak-Ming Lau
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Guo-Qiang Bi
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
27
|
Chowdhury D, Hell JW. Homeostatic synaptic scaling: molecular regulators of synaptic AMPA-type glutamate receptors. F1000Res 2018; 7:234. [PMID: 29560257 PMCID: PMC5832907 DOI: 10.12688/f1000research.13561.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
The ability of neurons and circuits to maintain their excitability and activity levels within the appropriate dynamic range by homeostatic mechanisms is fundamental for brain function. Neuronal hyperactivity, for instance, could cause seizures. One such homeostatic process is synaptic scaling, also known as synaptic homeostasis. It involves a negative feedback process by which neurons adjust (scale) their postsynaptic strength over their whole synapse population to compensate for increased or decreased overall input thereby preventing neuronal hyper- or hypoactivity that could otherwise result in neuronal network dysfunction. While synaptic scaling is well-established and critical, our understanding of the underlying molecular mechanisms is still in its infancy. Homeostatic adaptation of synaptic strength is achieved through upregulation (upscaling) or downregulation (downscaling) of the functional availability of AMPA-type glutamate receptors (AMPARs) at postsynaptic sites. Understanding how synaptic AMPARs are modulated in response to alterations in overall neuronal activity is essential to gain valuable insights into how neuronal networks adapt to changes in their environment, as well as the genesis of an array of neurological disorders. Here we discuss the key molecular mechanisms that have been implicated in tuning the synaptic abundance of postsynaptic AMPARs in order to maintain synaptic homeostasis.
Collapse
Affiliation(s)
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
28
|
Yee AX, Hsu YT, Chen L. A metaplasticity view of the interaction between homeostatic and Hebbian plasticity. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0155. [PMID: 28093549 DOI: 10.1098/rstb.2016.0155] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 01/25/2023] Open
Abstract
Hebbian and homeostatic plasticity are two major forms of plasticity in the nervous system: Hebbian plasticity provides a synaptic basis for associative learning, whereas homeostatic plasticity serves to stabilize network activity. While achieving seemingly very different goals, these two types of plasticity interact functionally through overlapping elements in their respective mechanisms. Here, we review studies conducted in the mammalian central nervous system, summarize known circuit and molecular mechanisms of homeostatic plasticity, and compare these mechanisms with those that mediate Hebbian plasticity. We end with a discussion of 'local' homeostatic plasticity and the potential role of local homeostatic plasticity as a form of metaplasticity that modulates a neuron's future capacity for Hebbian plasticity.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Ada X Yee
- Departments of Neurosurgery, Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Yu-Tien Hsu
- Departments of Neurosurgery, Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Departments of Neurosurgery, Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| |
Collapse
|
29
|
Levin SG, Godukhin OV. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:264-274. [PMID: 28320267 DOI: 10.1134/s000629791703004x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After accumulation of data showing that resident brain cells (neurons, astrocytes, and microglia) produce mediators of the immune system, such as cytokines and their receptors under normal physiological conditions, a critical need emerged for investigating the role of these mediators in cognitive processes. The major problem for understanding the functional role of cytokines in the mechanisms of synaptic plasticity, de novo neurogenesis, and learning and memory is the small number of investigated cytokines. Existing concepts are based on data from just three proinflammatory cytokines: interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha. The amount of information in the literature on the functional role of antiinflammatory cytokines in the mechanisms of synaptic plasticity and cognitive functions of mature mammalian brain is dismally low. However, they are of principle importance for understanding the mechanisms of local information processing in the brain, since they modulate the activity of individual cells and local neural networks, being able to reconstruct the processes of synaptic plasticity and intercellular communication, in general, depending on the local ratio of the levels of different cytokines in certain areas of the brain. Understanding the functional role of cytokines in cellular mechanisms of information processing and storage in the brain would allow developing preventive and therapeutic means for the treatment of neuropathologies related to impairment of these mechanisms.
Collapse
Affiliation(s)
- S G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
30
|
Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas. Proc Natl Acad Sci U S A 2016; 113:14139-14144. [PMID: 27856748 DOI: 10.1073/pnas.1613279113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A half-century of research on the consequences of monocular deprivation (MD) in animals has revealed a great deal about the pathophysiology of amblyopia. MD initiates synaptic changes in the visual cortex that reduce acuity and binocular vision by causing neurons to lose responsiveness to the deprived eye. However, much less is known about how deprivation-induced synaptic modifications can be reversed to restore normal visual function. One theoretically motivated hypothesis is that a period of inactivity can reduce the threshold for synaptic potentiation such that subsequent visual experience promotes synaptic strengthening and increased responsiveness in the visual cortex. Here we have reduced this idea to practice in two species. In young mice, we show that the otherwise stable loss of cortical responsiveness caused by MD is reversed when binocular visual experience follows temporary anesthetic inactivation of the retinas. In 3-mo-old kittens, we show that a severe impairment of visual acuity is also fully reversed by binocular experience following treatment and, further, that prolonged retinal inactivation alone can erase anatomical consequences of MD. We conclude that temporary retinal inactivation represents a highly efficacious means to promote recovery of function.
Collapse
|
31
|
Martinelli DC, Chew KS, Rohlmann A, Lum MY, Ressl S, Hattar S, Brunger AT, Missler M, Südhof TC. Expression of C1ql3 in Discrete Neuronal Populations Controls Efferent Synapse Numbers and Diverse Behaviors. Neuron 2016; 91:1034-1051. [PMID: 27478018 PMCID: PMC5017910 DOI: 10.1016/j.neuron.2016.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 04/21/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
Abstract
C1ql3 is a secreted neuronal protein that binds to BAI3, an adhesion-class GPCR. C1ql3 is homologous to other gC1q-domain proteins that control synapse numbers, but a role for C1ql3 in regulating synapse density has not been demonstrated. We show in cultured neurons that C1ql3 expression is activity dependent and supports excitatory synapse density. Using newly generated conditional and constitutive C1ql3 knockout mice, we found that C1ql3-deficient mice exhibited fewer excitatory synapses and diverse behavioral abnormalities, including marked impairments in fear memories. Using circuit-tracing tools and conditional ablation of C1ql3 targeted to specific brain regions, we demonstrate that C1ql3-expressing neurons in the basolateral amygdala project to the medial prefrontal cortex, that these efferents contribute to fear memory behavior, and that C1ql3 is required for formation and/or maintenance of these synapses. Our results suggest that C1ql3 is a signaling protein essential for subsets of synaptic projections and the behaviors controlled by these projections.
Collapse
Affiliation(s)
- David C Martinelli
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Kylie S Chew
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Astrid Rohlmann
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms Universität, 48149 Münster, Germany
| | - Matthew Y Lum
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susanne Ressl
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Missler
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms Universität, 48149 Münster, Germany
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Zhang TT, Shen FY, Ma LQ, Wen W, Wang B, Peng YZ, Wang ZR, Zhao X. Potentiation of synaptic transmission in Rat anterior cingulate cortex by chronic itch. Mol Brain 2016; 9:73. [PMID: 27472923 PMCID: PMC4966729 DOI: 10.1186/s13041-016-0251-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/19/2016] [Indexed: 12/26/2022] Open
Abstract
Itch and pain share similar mechanisms. It has been well documented that the anterior cingulate cortex (ACC) is important for pain-related perception. ACC has also been approved to be a potential pruritus-associated brain region. However, the mechanism of sensitization in pruriceptive neurons in the ACC is not clear. In current study, a chronic itch model was established by diphenylcyclopropenone (DCP) application. We found that both the frequency and amplitude of miniature excitatory postsynaptic currents in the ACC were enhanced after the formation of chronic itch. The paired-pulse ratio in ACC neurons recorded from the DCP group were smaller than those recorded in control group at the 50-ms interval. We also observe a significant increase in the AMPA/NMDA ratio in the DCP group. Moreover, an increased inward rectification of AMPARs in ACC pyramidal neurons was observed in the DCP group. Interestingly, the calculated ratio of silent synapses was significantly reduced in the DCP group compared with controls. Taken together, we conclude that a potentiation of synaptic transmission in the ACC can be induced by chronic itch, and unsilencing silent synapses, which probably involved recruitment of AMPARS, contributed to the potentiation of postsynaptic transmission.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Feng-Yan Shen
- Department of Anesthesiology, Huashan Hosptital, Fudan University, Shanghai, 200040, China
| | - Li-Qing Ma
- Department of Anesthesiology, Huashan Hosptital, Fudan University, Shanghai, 200040, China
| | - Wen Wen
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Bin Wang
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Yuan-Zhi Peng
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Zhi-Ru Wang
- Institute of Brain Functional Genomics, East China Normal University, Shanghai, 200062, China
| | - Xuan Zhao
- Department of Anesthesiology and Intensive Care Medicine, Xinhua Hospital, College of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
| |
Collapse
|
33
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
34
|
Sanz-García A, Knafo S, Pereda-Pérez I, Esteban JA, Venero C, Armario A. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity. Hippocampus 2016; 26:1179-88. [PMID: 27068341 DOI: 10.1002/hipo.22599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/18/2023]
Abstract
Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ancor Sanz-García
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| | - Shira Knafo
- IkerBasque Research Professor, Biophysics Unit (Unidad De Biofísica CSIC-UPV/EHU), Leioa, Bizkaia, Spain
| | | | - José A Esteban
- Deparment of Molecular Neurobiology, Centro De Biología Molecular "Severo Ochoa," Consejo Superior De Investigaciones Científicas (CSIC)/Universidad Autónoma De Madrid, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional De Educación a Distancia, Juan Del Rosal 10, Madrid, 28040, Spain
| | - Antonio Armario
- Unitat De Fisiologia Animal (Facultat De Biociències), Universitat Autònoma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Institut De Neurociències, Universitat Autonòma De Barcelona, 08193 Bellaterra, Barcelona, Spain.,Red De Trastornos Adictivos (RTA), Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Astrocyte-mediated metaplasticity in the hippocampus: Help or hindrance? Neuroscience 2015; 309:113-24. [DOI: 10.1016/j.neuroscience.2015.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
36
|
Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis. Proc Natl Acad Sci U S A 2015; 112:E5744-52. [PMID: 26443861 DOI: 10.1073/pnas.1510239112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.
Collapse
|
37
|
Time-dependent modulation of glutamate synapses onto 5-HT neurons by antidepressant treatment. Neuropharmacology 2015; 95:130-43. [DOI: 10.1016/j.neuropharm.2015.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 11/23/2022]
|
38
|
Chistiakova M, Bannon NM, Chen JY, Bazhenov M, Volgushev M. Homeostatic role of heterosynaptic plasticity: models and experiments. Front Comput Neurosci 2015; 9:89. [PMID: 26217218 PMCID: PMC4500102 DOI: 10.3389/fncom.2015.00089] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022] Open
Abstract
Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity-heterosynaptic plasticity-represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s) should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule) have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days) changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve a homeostatic role during on-going synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Jen-Yung Chen
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, USA
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California, RiversideRiverside, CA, USA
| | - Maxim Volgushev
- Department of Psychology, University of ConnecticutStorrs, CT, USA
| |
Collapse
|
39
|
Meadows JP, Guzman-Karlsson MC, Phillips S, Holleman C, Posey JL, Day JJ, Hablitz JJ, Sweatt JD. DNA methylation regulates neuronal glutamatergic synaptic scaling. Sci Signal 2015; 8:ra61. [PMID: 26106219 DOI: 10.1126/scisignal.aab0715] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enhanced receptiveness at all synapses on a neuron that receive glutamatergic input is called cell-wide synaptic upscaling. We hypothesize that this type of synaptic plasticity may be critical for long-term memory storage within cortical circuits, a process that may also depend on epigenetic mechanisms, such as covalent chemical modification of DNA. We found that DNA cytosine demethylation mediates multiplicative synaptic upscaling of glutamatergic synaptic strength in cultured cortical neurons. Inhibiting neuronal activity with tetrodotoxin (TTX) decreased the cytosine methylation of and increased the expression of genes encoding glutamate receptors and trafficking proteins, in turn increasing the amplitude but not frequency of miniature excitatory postsynaptic currents (mEPSCs), indicating synaptic upscaling rather than increased spontaneous activity. Inhibiting DNA methyltransferase (DNMT) activity, either by using the small-molecule inhibitor RG108 or by knocking down Dnmt1 and Dnmt3a, induced synaptic upscaling to a similar magnitude as exposure to TTX. Moreover, upscaling induced by DNMT inhibition required transcription; the RNA polymerase inhibitor actinomycin D blocked upscaling induced by DNMT inhibition. Knocking down the cytosine demethylase TET1 also blocked the upscaling effects of RG108. DNMT inhibition induced a multiplicative increase in mEPSC amplitude, indicating that the alterations in glutamate receptor abundance occurred in a coordinated manner throughout a neuron and were not limited to individual active synapses. Our data suggest that DNA methylation status controls transcription-dependent regulation of glutamatergic synaptic homeostasis. Furthermore, covalent DNA modifications may contribute to synaptic plasticity events that underlie the formation and stabilization of memories.
Collapse
Affiliation(s)
- Jarrod P Meadows
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mikael C Guzman-Karlsson
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Phillips
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cassie Holleman
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica L Posey
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John J Hablitz
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - J David Sweatt
- Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Arendt KL, Zhang Y, Jurado S, Malenka RC, Südhof TC, Chen L. Retinoic Acid and LTP Recruit Postsynaptic AMPA Receptors Using Distinct SNARE-Dependent Mechanisms. Neuron 2015; 86:442-56. [PMID: 25843403 DOI: 10.1016/j.neuron.2015.03.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 11/28/2022]
Abstract
Retinoic acid (RA)-dependent homeostatic plasticity and NMDA receptor-dependent long-term potentiation (LTP), a form of Hebbian plasticity, both enhance synaptic strength by increasing the abundance of postsynaptic AMPA receptors (AMPARs). However, it is unclear whether the molecular mechanisms mediating AMPAR trafficking during homeostatic and Hebbian plasticity differ, and it is unknown how RA signaling impacts Hebbian plasticity. Here, we show that RA increases postsynaptic AMPAR abundance using an activity-dependent mechanism that requires a unique SNARE (soluble NSF-attachment protein receptor)-dependent fusion machinery different from that mediating LTP. Specifically, RA-induced AMPAR trafficking did not involve complexin, which activates SNARE complexes containing syntaxin-1 or -3, but not complexes containing syntaxin-4, whereas LTP required complexin. Moreover, RA-induced AMPAR trafficking utilized the Q-SNARE syntaxin-4, whereas LTP utilized syntaxin-3; both additionally required the Q-SNARE SNAP-47 and the R-SNARE synatobrevin-2. Finally, acute RA treatment blocked subsequent LTP expression, probably by increasing AMPAR trafficking. Thus, RA-induced homeostatic plasticity involves a novel, activity-dependent postsynaptic AMPAR-trafficking pathway mediated by a unique SNARE-dependent fusion machinery.
Collapse
Affiliation(s)
- Kristin L Arendt
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Yingsha Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Sandra Jurado
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA
| | - Lu Chen
- Department of Neurosurgery, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305-5453, USA.
| |
Collapse
|
41
|
Chater TE, Goda Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci 2014; 8:401. [PMID: 25505875 PMCID: PMC4245900 DOI: 10.3389/fncel.2014.00401] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/06/2014] [Indexed: 11/21/2022] Open
Abstract
In the mammalian central nervous system, excitatory glutamatergic synapses harness neurotransmission that is mediated by ion flow through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). AMPARs, which are enriched in the postsynaptic membrane on dendritic spines, are highly dynamic, and shuttle in and out of synapses in an activity-dependent manner. Changes in their number, subunit composition, phosphorylation state, and accessory proteins can all regulate AMPARs and thus modify synaptic strength and support cellular forms of learning. Furthermore, dysregulation of AMPAR plasticity has been implicated in various pathological states and has important consequences for mental health. Here we focus on the mechanisms that control AMPAR plasticity, drawing particularly from the extensive studies on hippocampal synapses, and highlight recent advances in the field along with considerations for future directions.
Collapse
Affiliation(s)
| | - Yukiko Goda
- RIKEN, Brain Science Institute Wako-shi, Japan
| |
Collapse
|
42
|
How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol 2014; 20:35-9. [PMID: 25462290 DOI: 10.1016/j.coph.2014.11.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/22/2022]
Abstract
A single sub-psychotomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-D-aspartate (NMDA) receptor antagonist, produces a fast-acting antidepressant response in patients suffering from major depressive disorder. Depressed patients report alleviation of core symptoms within 2 h of a single low-dose intravenous infusion of ketamine with effects lasting up to 2 weeks. The rapidity of ketamine action implies that major symptoms of depression can be alleviated without substantial structural plasticity or circuit rewiring. Therefore, the ability of ketamine to exert a rapid effect provides a unique opportunity to elucidate the types of acute synaptic plasticity changes that can be recruited to counter depression symptoms.
Collapse
|
43
|
Diering GH, Gustina AS, Huganir RL. PKA-GluA1 coupling via AKAP5 controls AMPA receptor phosphorylation and cell-surface targeting during bidirectional homeostatic plasticity. Neuron 2014; 84:790-805. [PMID: 25451194 PMCID: PMC4254581 DOI: 10.1016/j.neuron.2014.09.024] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 11/29/2022]
Abstract
Bidirectional synaptic plasticity occurs locally at individual synapses during long-term potentiation (LTP) or long-term depression (LTD), or globally during homeostatic scaling. LTP, LTD, and homeostatic scaling alter synaptic strength through changes in postsynaptic AMPA-type glutamate receptors (AMPARs), suggesting the existence of overlapping molecular mechanisms. Phosphorylation controls AMPAR trafficking during LTP/LTD. We addressed the role of AMPAR phosphorylation during homeostatic scaling. We observed bidirectional changes of the levels of phosphorylated GluA1 S845 during scaling, resulting from a loss of protein kinase A (PKA) from synapses during scaling down and enhanced activity of PKA in synapses during scaling up. Increased phosphorylation of S845 drove scaling up, while a knockin mutation of S845, or knockdown of the scaffold AKAP5, blocked scaling up. Finally, we show that AMPARs scale differentially based on their phosphorylation status at S845. These results show that rearrangement in PKA signaling controls AMPAR phosphorylation and surface targeting during homeostatic plasticity.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Ahleah S Gustina
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Hunterian 1001, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Gollwitzer H, Opitz G, Gerdesmeyer L, Hauschild M. [Greater trochanteric pain syndrome]. DER ORTHOPADE 2014; 43:105-16; quiz 117-8. [PMID: 24414233 DOI: 10.1007/s00132-013-2208-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Greater trochanteric pain is one of the common complaints in orthopedics. Frequent diagnoses include myofascial pain, trochanteric bursitis, tendinosis and rupture of the gluteus medius and minimus tendon, and external snapping hip. Furthermore, nerve entrapment like the piriformis syndrome must be considered in the differential diagnosis. This article summarizes essential diagnostic and therapeutic steps in greater trochanteric pain syndrome. Careful clinical evaluation, complemented with specific imaging studies and diagnostic infiltrations allows determination of the underlying pathology in most cases. Thereafter, specific nonsurgical treatment is indicated, with success rates of more than 90 %. Resistant cases and tendon ruptures may require surgical intervention, which can provide significant pain relief and functional improvement in most cases.
Collapse
Affiliation(s)
- H Gollwitzer
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, Ismaningerstraße 22, 81675, München, Deutschland,
| | | | | | | |
Collapse
|
45
|
Maggio N, Vlachos A. Synaptic plasticity at the interface of health and disease: New insights on the role of endoplasmic reticulum intracellular calcium stores. Neuroscience 2014; 281:135-46. [PMID: 25264032 DOI: 10.1016/j.neuroscience.2014.09.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
Abstract
Work from the past 40years has unraveled a wealth of information on the cellular and molecular mechanisms underlying synaptic plasticity and their relevance in physiological brain function. At the same time, it has been recognized that a broad range of neurological diseases may be accompanied by severe alterations in synaptic plasticity, i.e., 'maladaptive synaptic plasticity', which could initiate and sustain the remodeling of neuronal networks under pathological conditions. Nonetheless, our current knowledge on the specific contribution and interaction of distinct forms of synaptic plasticity (including metaplasticity and homeostatic plasticity) in the context of pathological brain states remains limited. This review focuses on recent experimental evidence, which highlights the fundamental role of endoplasmic reticulum-mediated Ca(2+) signals in modulating the duration, direction, extent and type of synaptic plasticity. We discuss the possibility that intracellular Ca(2+) stores may regulate synaptic plasticity and hence behavioral and cognitive functions at the interface between physiology and pathology.
Collapse
Affiliation(s)
- N Maggio
- Talpiot Medical Leadership Program, Department of Neurology, The Chaim Sheba Medical Center, 52621 Tel HaShomer, Israel
| | - A Vlachos
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
46
|
Félix-Oliveira A, Dias RB, Colino-Oliveira M, Rombo DM, Sebastião AM. Homeostatic plasticity induced by brief activity deprivation enhances long-term potentiation in the mature rat hippocampus. J Neurophysiol 2014; 112:3012-22. [PMID: 25210161 DOI: 10.1152/jn.00058.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Different forms of plasticity occur concomitantly in the nervous system. Whereas homeostatic plasticity monitors and maintains neuronal activity within a functional range, Hebbian changes such as long-term potentiation (LTP) modify the relative strength of specific synapses after discrete changes in activity and are thought to provide the cellular basis for learning and memory. Here, we assessed whether homeostatic plasticity could influence subsequent LTP in acute hippocampal slices that had been briefly deprived of activity by blocking action potential generation and N-methyl-D-aspartate (NMDA) receptor activation for 3 h. Activity deprivation enhanced the frequency and the amplitude of spontaneous miniature excitatory postsynaptic currents and enhanced basal synaptic transmission in the absence of significant changes in intrinsic excitability. Changes in the threshold for Hebbian plasticity were evaluated by inducing LTP with stimulation protocols of increasing strength. We found that activity-deprived slices consistently showed higher LTP magnitude compared with control conditions even when using subthreshold theta-burst stimulation. Enhanced LTP in activity-deprived slices was also observed when picrotoxin was used to prevent the modulation of GABAergic transmission. Finally, we observed that consecutive LTP inductions attained a higher magnitude of facilitation in activity-deprived slices, suggesting that the homeostatic plasticity mechanisms triggered by a brief period of neuronal silencing can both lower the threshold and raise the ceiling for Hebbian modifications. We conclude that even brief periods of altered activity are able to shape subsequent synaptic transmission and Hebbian plasticity in fully developed hippocampal circuits.
Collapse
Affiliation(s)
- A Félix-Oliveira
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and
| | - R B Dias
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - M Colino-Oliveira
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - D M Rombo
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - A M Sebastião
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
47
|
Louros SR, Hooks BM, Litvina L, Carvalho AL, Chen C. A role for stargazin in experience-dependent plasticity. Cell Rep 2014; 7:1614-1625. [PMID: 24882000 DOI: 10.1016/j.celrep.2014.04.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/19/2014] [Accepted: 04/24/2014] [Indexed: 01/08/2023] Open
Abstract
During development, neurons are constantly refining their connections in response to changes in activity. Experience-dependent plasticity is a key form of synaptic plasticity, involving changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) accumulation at synapses. Here, we report a critical role for the AMPAR auxiliary subunit stargazin in this plasticity. We show that stargazin is functional at the retinogeniculate synapse and that in the absence of stargazin, the refinement of the retinogeniculate synapse is specifically disrupted during the experience-dependent phase. Importantly, we found that stargazin expression and phosphorylation increased with visual deprivation and led to reduced AMPAR rectification at the retinogeniculate synapse. To test whether stargazin plays a role in homeostatic plasticity, we turned to cultured neurons and found that stargazin phosphorylation is essential for synaptic scaling. Overall, our data reveal an important role for stargazin in regulating AMPAR abundance and composition at glutamatergic synapses during homeostatic and experience-dependent plasticity.
Collapse
Affiliation(s)
- Susana R Louros
- PhD Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; F.M. Kirby Neurobiology Center, Children's Hospital, Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Bryan M Hooks
- F.M. Kirby Neurobiology Center, Children's Hospital, Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Liza Litvina
- F.M. Kirby Neurobiology Center, Children's Hospital, Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Ana Luisa Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3001-401 Coimbra, Portugal.
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Children's Hospital, Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Schacher S, Hu JY. The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learn Mem 2014; 21:128-34. [PMID: 24532836 PMCID: PMC3929853 DOI: 10.1101/lm.027326.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An important cellular mechanism contributing to the strength and duration of memories is activity-dependent alterations in the strength of synaptic connections within the neural circuit encoding the memory. Reversal of the memory is typically correlated with a reversal of the cellular changes to levels expressed prior to the stimulation. Thus, for stimulus-induced changes in synapse strength and their reversals to be functionally relevant, cellular mechanisms must regulate and maintain synapse strength both prior to and after the stimuli inducing learning and memory. The strengths of synapses within a neural circuit at any given moment are determined by cellular and molecular processes initiated during development and those subsequently regulated by the history of direct activation of the neural circuit and system-wide stimuli such as stress or motivational state. The cumulative actions of stimuli and other factors on an already modified neural circuit are attenuated by homeostatic mechanisms that prevent changes in overall synaptic inputs and excitability above or below specific set points (synaptic scaling). The mechanisms mediating synaptic scaling prevent potential excitotoxic alterations in the circuit but also may attenuate additional cellular changes required for learning and memory, thereby apparently limiting information storage. What cellular and molecular processes control synaptic strengths before and after experience/activity and its reversals? In this review we will explore the synapse-, whole cell-, and circuit level-specific processes that contribute to an overall zero sum-like set of changes and long-term maintenance of synapse strengths as a consequence of the accommodative interactions between long-term synaptic plasticity and homeostasis.
Collapse
Affiliation(s)
- Samuel Schacher
- Department of Neuroscience, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
49
|
Guzman-Karlsson MC, Meadows JP, Gavin CF, Hablitz JJ, Sweatt JD. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology 2014; 80:3-17. [PMID: 24418102 DOI: 10.1016/j.neuropharm.2014.01.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/30/2013] [Accepted: 01/01/2014] [Indexed: 01/02/2023]
Abstract
The epigenome is uniquely positioned as a point of convergence, integrating multiple intracellular signaling cascades into a cohesive gene expression profile necessary for long-term behavioral change. The last decade of neuroepigenetic research has primarily focused on learning-induced changes in DNA methylation and chromatin modifications. Numerous studies have independently demonstrated the importance of epigenetic modifications in memory formation and retention as well as Hebbian plasticity. However, how these mechanisms operate in the context of other forms of plasticity is largely unknown. In this review, we examine evidence for epigenetic regulation of Hebbian plasticity. We then discuss how non-Hebbian forms of plasticity, such as intrinsic plasticity and synaptic scaling, may also be involved in producing the cellular adaptations necessary for learning-related behavioral change. Furthermore, we consider the likely roles for transcriptional and epigenetic mechanisms in the regulation of these plasticities. In doing so, we aim to expand upon the idea that epigenetic mechanisms are critical regulators of both Hebbian and non-Hebbian forms of plasticity that ultimately drive learning and memory.
Collapse
Affiliation(s)
| | - Jarrod P Meadows
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristin F Gavin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Sweatt
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
50
|
Vitureira N, Goda Y. Cell biology in neuroscience: the interplay between Hebbian and homeostatic synaptic plasticity. ACTA ACUST UNITED AC 2013; 203:175-86. [PMID: 24165934 PMCID: PMC3812972 DOI: 10.1083/jcb.201306030] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Synaptic plasticity, a change in the efficacy of synaptic signaling, is a key property of synaptic communication that is vital to many brain functions. Hebbian forms of long-lasting synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-have been well studied and are considered to be the cellular basis for particular types of memory. Recently, homeostatic synaptic plasticity, a compensatory form of synaptic strength change, has attracted attention as a cellular mechanism that counteracts changes brought about by LTP and LTD to help stabilize neuronal network activity. New findings on the cellular mechanisms and molecular players of the two forms of plasticity are uncovering the interplay between them in individual neurons.
Collapse
Affiliation(s)
- Nathalia Vitureira
- Departmento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo 11100, Uruguay
| | | |
Collapse
|