1
|
Liu Z, Gao C, Liu C, Liu W, Xu X, Ma T, Du X, Shen J. Supplementation With Dexmedetomidine for Transsphenoidal Resection of Pituitary Adenoma: A Meta-Analysis of Randomized Controlled Trials. Clin Neuropharmacol 2021; 44:17-20. [PMID: 33449475 DOI: 10.1097/wnf.0000000000000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The effect of dexmedetomidine supplementation on hemodynamic stability for transsphenoidal resection of pituitary adenoma remains controversial. We conduct a systematic review and meta-analysis to explore the influence of dexmedetomidine supplementation on hemodynamic stability for transsphenoidal resection of pituitary adenoma. METHODS We have searched PubMed, EMbase, Web of science, EBSCO, and Cochrane library databases through August 2020 for randomized controlled trials assessing the effect of dexmedetomidine supplementation on transsphenoidal resection of pituitary adenoma. RESULTS Four randomized controlled trials involving 160 patients were included in the meta-analysis. Overall, compared with the control group for transsphenoidal resection of pituitary adenoma, dexmedetomidine supplementation resulted in significantly reduced mean arterial pressure at 30 minutes [mean difference (MD), -26.62; 95% confidence interval (CI), -36.71 to -16.53; P < 0.00001], heart rate at 30 minutes (MD, -16.50; 95% CI, -32.48 to -0.53; P = 0.04), blood loss (MD, -112.57; 95% CI, -165.12 to -60.01; P < 0.0001), and fentanyl (MD, -154.13; 95% CI, -303.97 to -4.29; P = 0.04), but demonstrated similar incidence of nausea and vomiting (odds ratio, 0.37; 95% CI, 0.13-1.03; P = 0.06), and hypotension (odds ratio, 2.11; 95% CI, 0.49-9.22; P = 0.32). CONCLUSIONS Dexmedetomidine supplementation was effective in improving hemodynamic stability for transsphenoidal resection of pituitary adenoma.
Collapse
Affiliation(s)
- Zhongtao Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan
| | - Caibin Gao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan
| | - Chunhong Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan
| | - Wenqing Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan
| | - Xingguo Xu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan
| | - Tongshan Ma
- Department of Neurosurgery, People's Hospital of Tongxin County, Wuzhong, Ningxia
| | - Xiaoxia Du
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan
| | - Jianbo Shen
- Department of Neurosurgery, Jincheng People's Hospital, Jincheng, Shanxi, China
| |
Collapse
|
2
|
Inagaki RT, Raghuraman S, Chase K, Steele T, Zornik E, Olivera B, Yamaguchi A. Molecular characterization of frog vocal neurons using constellation pharmacology. J Neurophysiol 2020; 123:2297-2310. [PMID: 32374212 DOI: 10.1152/jn.00105.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Identification and characterization of neuronal cell classes in motor circuits are essential for understanding the neural basis of behavior. It is a challenging task, especially in a non-genetic-model organism, to identify cell-specific expression of functional macromolecules. Here, we performed constellation pharmacology, calcium imaging of dissociated neurons to pharmacologically identify functional receptors expressed by vocal neurons in adult male and female African clawed frogs, Xenopus laevis. Previously we identified a population of vocal neurons called fast trill neurons (FTNs) in the amphibian parabrachial nucleus (PB) that express N-methyl-d-aspartate (NMDA) receptors and GABA and/or glycine receptors. Using constellation pharmacology, we identified four cell classes of putative fast trill neurons (pFTNs, responsive to both NMDA and GABA/glycine applications). We discovered that some pFTNs responded to the application of substance P (SP), acetylcholine (ACh), or both. Electrophysiological recordings obtained from FTNs using an ex vivo preparation verified that SP and/or ACh depolarize FTNs. Bilateral injection of ACh, SP, or their antagonists into PBs showed that ACh receptors are not sufficient but necessary for vocal production, and SP receptors play a role in shaping the morphology of vocalizations. Additionally, we discovered that the PB of adult female X. laevis also contains all the subclasses of neurons at a similar frequency as in males, despite their sexually distinct vocalizations. These results reveal novel neuromodulators that regulate X. laevis vocal production and demonstrate the power of constellation pharmacology in identifying the neuronal subtypes marked by functional expression of cell-specific receptors in non-genetic-model organisms.NEW & NOTEWORTHY Molecular profiles of neurons are critical for understanding the neuronal functions, but their identification is challenging especially in non-genetic-model organisms. Here, we characterized the functional expression of membrane macromolecules in vocal neurons of African clawed frogs, Xenopus laevis, using a technique called constellation pharmacology. We discovered that receptors for acetylcholine and/or substance P are expressed by some classes of vocal neurons, and their activation plays a role in the production of normal vocalizations.
Collapse
Affiliation(s)
- Ryota T Inagaki
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | | | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | | | - Erik Zornik
- Biology Department, Reed College, Portland, Oregon
| | - Baldomero Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| | - Ayako Yamaguchi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
3
|
Antagonism of the Neurokinin-1 Receptor Improves Survival in a Mouse Model of Sepsis by Decreasing Inflammation and Increasing Early Cardiovascular Function. Crit Care Med 2017; 45:e213-e221. [PMID: 27632670 DOI: 10.1097/ccm.0000000000002075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Sepsis remains a serious clinical problem despite intensive research efforts and numerous attempts to improve outcome by modifying the inflammatory response. Substance P, the principal ligand for the neurokinin-1 receptor, is a potent proinflammatory mediator that exacerbates inflammatory responses and cardiovascular variables in sepsis. DESIGN The current study examined whether inhibition of the neurokinin-1 receptor with a specific antagonist (CJ-12,255) would improve survival in the cecal ligation and puncture model of sepsis in adult female outbred mice. SETTING University basic science research laboratory. MEASUREMENTS AND MAIN RESULTS Neurokinin-1 receptor treatment at the initiation of sepsis improved survival in cecal ligation and puncture sepsis (neurokinin-1 receptor antagonist survival = 79% vs vehicle = 54%). Delaying therapy for as little as 8 hours postcecal ligation and puncture failed to provide a survival benefit. Neurokinin-1 receptor antagonist treatment did not prevent the sepsis-induced decrease in circulating WBCs, augment the early (6 hr postcecal ligation and puncture) recruitment of inflammatory cells to the peritoneum, or improve phagocytic cell killing of pathogens. However, the neurokinin-1 receptor antagonist significantly reduced both circulating and peritoneal cytokine concentrations. In addition, the cardiovascular variable, pulse distension (a surrogate for stroke volume) was improved in the neurokinin-1 receptor antagonist group during the first 6 hours of sepsis, and there was a significant reduction in loss of fluid into the intestine. CONCLUSION These data show that early activation of the neurokinin-1 receptor by substance P decreases sepsis survival through multiple mechanisms including depressing stroke volume, increasing fluid loss into the intestine, and increasing inflammatory cytokine production.
Collapse
|
4
|
Bochorishvili G, Stornetta RL, Coates MB, Guyenet PG. Pre-Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. J Comp Neurol 2012; 520:1047-61. [PMID: 21935944 PMCID: PMC3925347 DOI: 10.1002/cne.22769] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The retrotrapezoid nucleus (RTN) contains CO(2) -responsive neurons that regulate breathing frequency and amplitude. These neurons (RTN-Phox2b neurons) contain the transcription factor Phox2b, vesicular glutamate transporter 2 (VGLUT2) mRNA, and a subset contains preprogalanin mRNA. We wished to determine whether the terminals of RTN-Phox2b neurons contain galanin and VGLUT2 proteins, to identify the specific projections of the galaninergic subset, to test whether RTN-Phox2b neurons contact neurons in the pre-Bötzinger complex, and to identify the ultrastructure of these synapses. The axonal projections of RTN-Phox2b neurons were traced by using biotinylated dextran amine (BDA), and many BDA-ir boutons were found to contain galanin immunoreactivity. RTN galaninergic neurons had ipsilateral projections that were identical with those of this nucleus at large: the ventral respiratory column, the caudolateral nucleus of the solitary tract, and the pontine Kölliker-Fuse, intertrigeminal region, and lateral parabrachial nucleus. For ultrastructural studies, RTN-Phox2b neurons (galaninergic and others) were transfected with a lentiviral vector that expresses mCherry almost exclusively in Phox2b-ir neurons. After spinal cord injections of a catecholamine neuron-selective toxin, there was a depletion of C1 neurons in the RTN area; thus it was determined that the mCherry-positive terminals located in the pre-Bötzinger complex originated almost exclusively from the RTN-Phox2b (non-C1) neurons. These terminals were generally VGLUT2-immunoreactive and formed numerous close appositions with neurokinin-1 receptor-ir pre-Bötzinger complex neurons. Their boutons (n = 48) formed asymmetric synapses filled with small clear vesicles. In summary, RTN-Phox2b neurons, including the galaninergic subset, selectively innervate the respiratory pattern generator plus a portion of the dorsolateral pons. RTN-Phox2b neurons establish classic excitatory glutamatergic synapses with pre-Bötzinger complex neurons presumed to generate the respiratory rhythm.
Collapse
Affiliation(s)
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Melissa B. Coates
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
5
|
Inhibition of cardiac baroreflex by noxious thermal stimuli: A key role for lateral paragigantocellular serotonergic cells. Pain 2009; 146:315-324. [DOI: 10.1016/j.pain.2009.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 08/21/2009] [Accepted: 09/17/2009] [Indexed: 11/23/2022]
|
6
|
Panguluri S, Saggu S, Lundy R. Comparison of somatostatin and corticotrophin-releasing hormone immunoreactivity in forebrain neurons projecting to taste-responsive and non-responsive regions of the parabrachial nucleus in rat. Brain Res 2009; 1298:57-69. [PMID: 19699720 PMCID: PMC2769563 DOI: 10.1016/j.brainres.2009.08.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 02/06/2023]
Abstract
Several forebrain areas have been shown to project to the parabrachial nucleus (PBN) and exert inhibitory and excitatory influences on taste processing. The neurochemicals by which descending forebrain inputs modulate neural taste-evoked responses remain to be established. This study investigated the existence of somatostatin (SS) and corticotrophin-releasing factor (CRF) in forebrain neurons that project to caudal regions of the PBN responsive to chemical stimulation of the anterior tongue as well as more rostral unresponsive regions. Retrograde tracer was iontophoretically or pressure ejected from glass micropipettes, and 7 days later the animals were euthanized for subsequent immunohistochemical processing for co-localization of tracer with SS and CRF in tissue sections containing the lateral hypothalamus (LH), central nucleus of the amygdala (CeA), bed nucleus of the stria terminalis (BNST), and insular cortex (IC). In each forebrain site, robust labeling of cells with distinguishable nuclei and short processes was observed for SS and CRF. The results indicate that CRF neurons in each forebrain site send projections throughout the rostral caudal extent of the PBN with a greater percentage terminating in regions rostral to the anterior tongue-responsive area. For SS, the percentage of double-labeled neurons was more forebrain site specific in that only BNST and CeA exhibited significant numbers of double-labeled neurons. Few retrogradely labeled cells in LH co-expressed SS, while no double-labeled cells were observed in IC. Again, tracer injections into rostral PBN resulted in a greater percentage of double-labeled neurons in BNST and CeA compared to caudal injections. The present results suggest that some sources of descending forebrain input might utilize somatostatin and/or CRF to exert a broad influence on sensory information processing in the PBN.
Collapse
Affiliation(s)
- Siva Panguluri
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Shalini Saggu
- Department of Pharmaceutical Sciences, Medical University of South Carolina, College of Pharmacy, Charleston, South Carolina 29425
| | - Robert Lundy
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
7
|
Díaz-Casares A, López-González MV, Peinado-Aragonés CA, Lara JP, González-Barón S, Dawid-Milner MS. Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat. Brain Res 2009; 1279:58-70. [DOI: 10.1016/j.brainres.2009.02.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 11/25/2022]
|
8
|
Pozza ME, Stella JL, Chappuis-Gagnon AC, Wagner SO, Buffington CT. Pinch-induced behavioral inhibition ('clipnosis') in domestic cats. J Feline Med Surg 2008; 10:82-7. [PMID: 18222719 PMCID: PMC10911153 DOI: 10.1016/j.jfms.2007.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2007] [Indexed: 11/28/2022]
Abstract
Research has documented immobilization of rodents, rabbits, guinea pigs and dogs by mechanical means, typically using neck clips or inversion ('animal hypnosis'). In contrast, only a few studies of mechanical immobilization of cats are available, although some success has been reported in the literature. Domestic cats may be effectively immobilized by clips placed along the animal's dorsum. We use the term 'pinch-induced behavioral inhibition' (PIBI) for this behavior because it describes both the method and the response, while avoiding the more anthropomorphic term 'hypnosis'. We investigated the effectiveness of PIBI and its neurological and habituation effects in healthy cats and cats with idiopathic cystitis (IC). Although not all cats were susceptible to PIBI and effectiveness varied among individuals, PIBI was useful for gentle restraint in most cats.
Collapse
Affiliation(s)
- Megan E. Pozza
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Judi L. Stella
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | - Susan O. Wagner
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - C.A. Tony Buffington
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Fong AY, Potts JT. Neurokinin-1 receptors modulate the excitability of expiratory neurons in the ventral respiratory group. J Neurophysiol 2007; 99:900-14. [PMID: 18057111 DOI: 10.1152/jn.00864.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the role of neurokinin-1 receptors (NK1-R) on the excitability of expiratory (E) neurons (tonic discharge, E(TONIC); augmenting, E(AUG); decrementing, E(DEC)) throughout the ventral respiratory group, including Bötzinger Complex (BötC) using extracellular single-unit recording combined with pressurized picoejection in decerebrate, arterially perfused juvenile rats. Responses evoked by picoejection of the NK1-R agonist, [Sar9-Met(O2)11]-substance P (SSP) were determined before and after the selective NK1-R antagonist, CP99,994. SSP excited 20 of 35 expiratory neurons by increasing the number of action potentials per burst (+33.7 +/- 6.5% of control), burst duration (+20.6 +/- 7.9% of control), and peak firing frequency (+16.2 +/- 4.8% of control; means +/- SE). Pretreatment with CP99,994 completely blocked SSP-evoked excitation in a subset of neurons tested, supporting the notion that SSP excitation was mediated through NK1-R activation. Because we had previously shown that E(AUG) neurons were crucial to locomotor-respiratory coupling (LRC), we reasoned that blockade of NK1-R would alter LRC by preventing somatic-evoked excitation of E(AUG) neurons. Blockade of NK1-Rs by CP99,994 in the BötC severely disrupted LRC and prevented somatic-evoked excitation of E(AUG) neurons. These findings demonstrate that LRC is dependent on endogenous SP release acting via NK1-Rs on E(AUG) neurons of the BötC. Taken together with our earlier finding that inspiratory off-switching by the Hering-Breuer Reflex requires endogenous activation of NK1-Rs through activation of NK1-Rs on E(DEC) neurons, we suggest that endogenous release of substance P in the BötC provides a reflex pathway-dependent mechanism to selectively modulate respiratory rhythm.
Collapse
Affiliation(s)
- Angelina Y Fong
- Dalton Cardiovascular Research Center , University of Missouri, Columbia, Missouri, USA
| | | |
Collapse
|
10
|
Abstract
Neuropeptides and kinins are important messengers in the nervous system and--on the basis of their anatomical localisation and the effects produced when the substances themselves are administered, to animals or to human subjects-a significant number of them have been suggested to have a role in pain and inflammation. Experiments in gene deletion (knock-out or null mutant) mice and parallel experiments with pharmacological receptor antagonists in a variety of species have strengthened the evidence that a number of peptides, notably substance P and calcitonin gene-related peptide (CGRP), and the kinins have a pathophysiological role in nociception. Clinical studies with non-peptide pharmacological antagonists are now in progress to determine if blocking the action of these peptides might have utility in the treatment of pain.
Collapse
Affiliation(s)
- R G Hill
- Merck, Sharp and Dohme Research Laboratories, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
11
|
Song G, Yu Y, Poon CS. Cytoarchitecture of pneumotaxic integration of respiratory and nonrespiratory information in the rat. J Neurosci 2006; 26:300-10. [PMID: 16399700 PMCID: PMC6674322 DOI: 10.1523/jneurosci.3029-05.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The "pneumotaxic center" in the Kölliker-Fuse and medial parabrachial nuclei of dorsolateral pons (dl-pons) plays an important role in respiratory phase switching, modulation of respiratory reflex, and rhythmogenesis. Recent electrophysiological and neural tracing data implicate additional pneumotaxic nuclei in (and a broader role for) the dl-pons in integrating respiratory and nonrespiratory information. Here, we examined the cytoarchitecture of the greater pneumotaxic center and its integrating function by using combined extracellular recording and juxtacellular labeling of unit respiratory rhythmic neurons in dl-pons in urethane-anesthetized, vagotomized, paralyzed, and servo-ventilated adult Sprague Dawley rats. Perievent histogram analysis identified four major types of neuronal discharge patterns: inspiratory, expiratory (with three subdivisions), inspiratory-expiratory, and expiratory-inspiratory phase spanning, sometimes with mild tonic background activity. Most recorded neurons were localized in the Kölliker-Fuse and medial parabrachial nuclei, but some were also found in lateral parabrachial nucleus, intertrigeminal nucleus, principal trigeminal sensory nucleus, and supratrigeminal nucleus. The majority of labeled neurons had large and spatially extended dendritic trees that spanned several of these dl-pons subnuclei, often with terminal dendrites ending in the ventral spinocerebellar tract. The distal sections of the primary and higher-order dendrites exhibited rich varicosities, sometimes with dendritic spines. Axons of some labeled neurons were traced all the way to the ventrolateral pons (vl-pons). These findings extend and generalize the classical definition of the pneumotaxic center to include extensive somatic-axonal-dendritic integration of complex descending and ascending respiratory information as well as nociceptive and possibly musculoskeletal and trigeminal information in multiple dl-pons and vl-pons structures in the rat.
Collapse
Affiliation(s)
- Gang Song
- Harvard University-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|