1
|
Liampas A, Tseriotis VS, Artemiadis A, Zis P, Argyropoulou C, Grigoriadis N, Hadjigeorgiou GM, Vavougyios G. Adult Neoneurogenesis and Oligodendrogenesis in Multiple Sclerosis: A Systematic Review of Human and Animal Studies. Brain Connect 2024; 14:209-225. [PMID: 38534961 DOI: 10.1089/brain.2023.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Introduction: The subventricular zone promotes remyelination through activation differentiation of oligodendroglial precursor cells (OPCs) and neural stem cells (NSCs) into mature oligodendrocytes and thus in the adult brain. In multiple sclerosis (MS) this regenerative capability is halted resulting in neurodegeneration. We aimed to systematically search and synthesize evidence on mechanisms and phenomena associated with subventricular zone (SVZ) dysfunction in MS. Materials and Methods: Our systematic review was reported according to the PRISMA-ScR statement. MEDLINE, SCOPUS, ProQuest, and Google Scholar were searched using the terms "subventricular zone" and "multiple sclerosis," including English-written in vivo and postmortem studies. Results: Twenty studies were included. Thirteen studies on models of experimental autoimmune encephalomyelitis (EAE) reported among others strong stathmin immunoreactivity in the SVZ of EAE models, the role of MOG immunization in neurogenesis impairment, the effect of parenchymal OPCs and NSCs in myelin repair, and the importance of ependymal cells (E1/E2) and ciliated B1 cells in SVZ stem cell signaling. CXCR4 signaling and transcriptional profiles of SVZ microglia, Gli1 pathway, and galactin-3 were also explored. Studies in humans demonstrated microstructural SVZ damage in progressive MS and the persistence of black holes near the SVZ, whereas postmortem confirmed the generation of polysialic acid-neural cell adhesion molecule and NG2-positive progenitors through SVZ activation, SVZ stathmin immunoreactivity, Shh pathway, and Gal-3 upregulation. Discussion: Oligodendrogenesis defects translate to reduced remyelination, a hallmark of MS that determines its end-phenotype and disease course. Conclusion: The role of inflammation and subsequent SVZ microenvironment disruption is evident in MS pathology.
Collapse
Affiliation(s)
- Andreas Liampas
- Department of Neurology, Nicosia General Hospital, Nicosia, Cyprus
| | | | | | | | | | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Vavougyios
- Medical School, University of Cyprus, Nicosia, Cyprus
- University of Thessaly School of Health Sciences, Thessaloniki, Greece
| |
Collapse
|
2
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
3
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
4
|
He CQ, Mao L, Yao J, Zhao WC, Huang B, Hu N, Long DX. The Threshold Effects of Low-Dose-Rate Radiation on miRNA-Mediated Neurodevelopment of Zebrafish. Radiat Res 2021; 196:633-646. [PMID: 34399425 DOI: 10.1667/rade-20-00265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022]
Abstract
The biological effects and regulatory mechanisms of low-dose and low-dose-rate radiation are still rather controversial. Therefore, in this study we investigated the effects of low-dose-rate radiation on zebrafish neurodevelopment and the role of miRNAs in radiation-induced neurodevelopment. Zebrafish embryos received prolonged gamma-ray irradiation (0 mGy/h, 0.1 mGy/h, 0.2 mGy/h, 0.4 mGy/h) during development. Neurodevelopmental indicators included mortality, malformation rate, swimming speed, as well as the morphology changes of the lateral line system and brain tissue. Additionally, spatiotemporal expression of development-related miRNAs (dre-miR-196a-5p, dre-miR-210-3p, dre-miR-338) and miRNA processing enzymes genes (Dicer and Drosha) were assessed by qRT-PCR and whole mount in situ hybridization (WISH). The results revealed a decline in mortality, malformation and swimming speed, with normal histological and morphological appearance, in zebrafish that received 0.1 mGy/h; however, increased mortality, malformation and swimming speed were observed, with pathological changes, in zebrafish that received 0.2 mGy/h and 0.4 mGy/h. The expression of miRNA processing enzyme genes was altered after irradiation, and miRNAs expression was downregulated in the 0.1 mGy/h group, and upregulated in the 0.2 mGy/h and 0.4 mGy/h groups. Furthermore, ectopic expression of dre-miR-210-3p, Dicer and Drosha was also observed in the 0.4 mGy/h group. In conclusion, the effect of low-dose and low-dose-rate radiation on neurodevelopment follows the threshold model, under the regulation of miRNAs, excitatory effects occurred at a dose rate of 0.1 mGy/h and toxic effects occurred at a dose rate of 0.2 mGy/h and 0.4 mGy/h.
Collapse
Affiliation(s)
- Chu-Qi He
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Liang Mao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Jin Yao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Wei-Chao Zhao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Ding-Xin Long
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| |
Collapse
|
5
|
TLR3 agonists induce fibronectin aggregation by activated astrocytes: a role of pro-inflammatory cytokines and fibronectin splice variants. Sci Rep 2020; 10:532. [PMID: 31953424 PMCID: PMC6969115 DOI: 10.1038/s41598-019-57069-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/21/2019] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system which eventually results in axonal loss mainly due to failure of remyelination. Previously we have shown that the persistent presence of stable astrocyte-derived fibronectin aggregates in MS lesions impairs OPC differentiation, and thereby remyelination. Here we set out to discern whether and, if so, how inflammatory mediators as present in MS lesions trigger astrocytes to form fibronectin aggregates. Our findings revealed that in slice cultures only upon demyelination, the TLR3 agonist Poly(I:C) evoked astrocytes to form fibronectin aggregates. Consistently, pro-inflammatory cytokine-pretreated astrocytes were more susceptible to Poly(I:C)-induced fibronectin aggregation, indicating that astrocytes form fibronectin aggregates upon a double hit by inflammatory mediators. The underlying mechanism involves disrupted fibronectin fibrillogenesis at the cell surface as a result of a cytokine-induced increase in relative mRNA levels of EIIIApos-Fn over EIIIBpos-Fn and a Poly(I:C)-mediated decrease in integrin affinity. Remarkably, fibronectin aggregation is exacerbated by white matter astrocytes compared to grey matter astrocytes, which may be a reflection of higher expression levels of EIIIApos-fibronectin in white matter astrocytes. Hence, interfering with alternative fibronectin splicing and/or TLR3-mediated signaling may prevent fibronectin aggregation and overcome remyelination failure in MS lesions.
Collapse
|
6
|
Dysregulation of long non-coding RNA profile in peripheral blood of multiple sclerosis patients. Mult Scler Relat Disord 2018; 25:219-226. [PMID: 30114626 DOI: 10.1016/j.msard.2018.07.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/22/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder in which dysregulation or aberrant expressions of several immune-related genes have been noted. More recently, the participation of long non-coding RNAs (lncRNAs) in regulation of immune responses has been highlighted. In the present study, we evaluated expression levels of three lncRNAs named Nuclear Paraspeckle Assembly Transcript 1 (NEAT1), P21 associated ncRNA DNA damage activated (PANDA) and Taurine-up-regulated gene 1 (TUG1) in peripheral blood of 50 relapsing-remitting MS patients and 50 matched healthy subjects. All three lncRNAs have been significantly over-expressed in MS patients compared with healthy subjects. In addition, significant correlations were found between expression levels of these three lncRNAs in the patients group. NEAT1 expression was inversely correlated with age at onset and disease duration in female patients. Moreover, TUG1 expression was inversely correlated with disease duration in female patients. The present study provides further evidences for the role of lncRNAs in pathogenesis of MS.
Collapse
|
7
|
Chauvin S, Sobel A. Neuronal stathmins: A family of phosphoproteins cooperating for neuronal development, plasticity and regeneration. Prog Neurobiol 2015; 126:1-18. [DOI: 10.1016/j.pneurobio.2014.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
|
8
|
Guptarak J, Wiktorowicz JE, Sadygov RG, Zivadinovic D, Paulucci-Holthauzen AA, Vergara L, Nesic O. The cancer drug tamoxifen: a potential therapeutic treatment for spinal cord injury. J Neurotrauma 2013; 31:268-83. [PMID: 24004276 DOI: 10.1089/neu.2013.3108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tamoxifen (TMX) is a selective estrogen receptor modulator that can mimic the neuroprotective effects of estrogen but lacks its systemic adverse effects. We found that TMX (1 mg/day) significantly improved the motor recovery of partially paralyzed hind limbs of male adult rats with thoracic spinal cord injury (SCI), thus indicating a translational potential for this cancer medication given its clinical safety and applicability and the lack of currently available treatments for SCI. To shed light on the mechanisms underlying the beneficial effects of TMX for SCI, we used proteomic analyses, Western blots and histological assays, which showed that TMX treatment spared mature oligodendrocytes/increased myelin levels and altered reactive astrocytes, including the upregulation of the water channels aquaporin 4 (AQP4), a novel finding. AQP4 increases in TMX-treated SCI rats were associated with smaller fluid-filled cavities with borders consisting of densely packed AQP4-expressing astrocytes that closely resemble the organization of normal glia limitans externa (in contrast to large cavities in control SCI rats that lacked glia limitans-like borders and contained reactive glial cells). Based on our findings, we propose that TMX is a promising candidate for the therapeutic treatment of SCI and a possible intervention for other neuropathological conditions associated with demyelination and AQP4 dysfunction.
Collapse
Affiliation(s)
- Jutatip Guptarak
- 1 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch , Galveston, Texas
| | | | | | | | | | | | | |
Collapse
|
9
|
Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy. Neurobiol Dis 2013; 52:94-103. [DOI: 10.1016/j.nbd.2012.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 02/02/2023] Open
|
10
|
Matsui T, Motoki Y, Yoshida Y. Hypothermia reduces toll-like receptor 3-activated microglial interferon-β and nitric oxide production. Mediators Inflamm 2013; 2013:436263. [PMID: 23589665 PMCID: PMC3621171 DOI: 10.1155/2013/436263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia protects neurons after injury to the central nervous system (CNS). Microglia express toll-like receptors (TLRs) that play significant roles in the pathogenesis of sterile CNS injury. To elucidate the possible mechanisms involved in the neuroprotective effect of therapeutic hypothermia, we examined the effects of hypothermic culture on TLR3-activated microglial release of interferon (IFN)- β and nitric oxide (NO), which are known to be associated with neuronal cell death. When rat or mouse microglia were cultured under conditions of hypothermia (33°C) and normothermia (37°C) with a TLR3 agonist, polyinosinic-polycytidylic acid, the production of IFN- β and NO in TLR3-activated microglia at 48 h was decreased by hypothermia compared with that by normothermia. In addition, exposure to recombinant IFN- β and sodium nitroprusside, an NO donor, caused death of rat neuronal pheochromocytoma PC12 cells in a concentration-dependent manner after 24 h. Taken together, these results suggest that the attenuation of microglial production of IFN- β and NO by therapeutic hypothermia leads to the inhibition of neuronal cell death.
Collapse
Affiliation(s)
- Tomohiro Matsui
- Department of Laboratory Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yukari Motoki
- Department of Laboratory Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yusuke Yoshida
- ACEL, Inc., SIC1 1201, 5-4-21 Nishihashimoto, Midori-ku, Sagamihara, Kanagawa 252-0131, Japan
| |
Collapse
|
11
|
Vidaurre OG, Liu J, Haines J, Sandoval J, Nowakowski R, Casaccia P. An integrated approach to design novel therapeutic interventions for demyelinating disorders. Eur J Neurosci 2012; 35:1879-86. [PMID: 22708599 DOI: 10.1111/j.1460-9568.2012.08118.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are often based on two general principles: interference with the pathogenic process and repair of the damaged tissues. Recent studies, however, have suggested that several pathological conditions may result from the interplay between genetic susceptibility traits and environmental influences that, by modulating the epigenome, also affect disease onset and progression. Based on lessons from neural development, it is conceivable that new lines of preventive and possibly therapeutic intervention might be developed to modulate disease onset or decrease the severity of the symptoms. This review will discuss these concepts within the context of multiple sclerosis, the most common demyelinating disease of the central nervous system, and the leading cause of progressive neurological disability in young adults.
Collapse
Affiliation(s)
- Oscar G Vidaurre
- Department of Neuroscience and Genetics and Genomics, Mount Sinai School of Medicine, One Gustave Levy Place, Box 1065, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
12
|
Thirant C, Galan-Moya EM, Dubois LG, Pinte S, Chafey P, Broussard C, Varlet P, Devaux B, Soncin F, Gavard J, Junier MP, Chneiweiss H. Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor. Stem Cells 2012; 30:845-53. [PMID: 22331796 DOI: 10.1002/stem.1062] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Presence in glioblastomas of cancer cells with normal neural stem cell (NSC) properties, tumor initiating capacity, and resistance to current therapies suggests that glioblastoma stem-like cells (GSCs) play central roles in glioblastoma development. We cultured human GSCs endowed with all features of tumor stem cells, including tumor initiation after xenograft and radio-chemoresistance. We established proteomes from four GSC cultures and their corresponding whole tumor tissues (TTs) and from human NSCs. Two-dimensional difference gel electrophoresis and tandem mass spectrometry revealed a twofold increase of hepatoma-derived growth factor (HDGF) in GSCs as compared to TTs and NSCs. Western blot analysis confirmed HDGF overexpression in GSCs as well as its presence in GSC-conditioned medium, while, in contrast, no HDGF was detected in NSC secretome. At the functional level, GSC-conditioned medium induced migration of human cerebral endothelial cells that can be blocked by anti-HDGF antibodies. In vivo, GSC-conditioned medium induced neoangiogenesis, whereas HDGF-targeting siRNAs abrogated this effect. Altogether, our results identify a novel candidate, by which GSCs can support neoangiogenesis, a high-grade glioma hallmark. Our strategy illustrates the usefulness of comparative proteomic analysis to decipher molecular pathways, which underlie GSC properties.
Collapse
Affiliation(s)
- Cécile Thirant
- INSERM U894, Psychiatry and Neuroscience Center, Glial Plasticity Team, Cochin Institute, Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhao F, Hu Y, Zhang Y, Zhu Q, Zhang X, Luo J, Xu Y, Wang X. Abnormal expression of stathmin 1 in brain tissue of patients with intractable temporal lobe epilepsy and a rat model. Synapse 2012; 66:781-91. [PMID: 22535533 DOI: 10.1002/syn.21567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/17/2012] [Indexed: 01/17/2023]
Abstract
Microtubule dynamics have been shown to contribute to neurite outgrowth, branching, and guidance. Stathmin 1 is a potent microtubule-destabilizing factor that is involved in the regulation of microtubule dynamics and plays an essential role in neurite elongation and synaptic plasticity. Here, we investigate the expression of stathmin 1 in the brain tissues of patients with intractable temporal lobe epilepsy (TLE) and experimental animals using immunohistochemistry, immunofluorescence and western blotting. We obtained 32 temporal neocortex tissue samples from patients with intractable TLE and 12 histologically normal temporal lobe tissues as controls. In addition, 48 Sprague Dawley rats were randomly divided into six groups, including one control group and five groups with epilepsy induced by lithium chloride-pilocarpine. Hippocampal and temporal lobe tissues were obtained from control and epileptic rats on Days 1, 7, 14, 30, and 60 after kindling. Stathmin 1 was mainly expressed in the neuronal membrane and cytoplasm in the human controls, and its expression levels were significantly higher in patients with intractable TLE. Moreover, stathmin 1 was also expressed in the neurons of both the control and the experimental rats. Stathmin 1 expression was decreased in the experimental animals from 1 to 14 days postseizure and then significantly increased at Days 30 and 60 compared with the control group. Many protruding neuronal processes were observed in the TLE patients and in the chronic stage epileptic rats. These data suggest that stathmin 1 may participate in the abnormal network reorganization of synapses and contribute to the pathogenesis of TLE.
Collapse
Affiliation(s)
- Fenghua Zhao
- Department of Neurology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Buttmann M, Nowak E, Kroner A, Hemmer B, Lesch KP, Rieckmann P. Analysis of the stathmin rs182455 single nucleotide promoter polymorphism in patients with multiple sclerosis. J Neurogenet 2011; 22:181-6. [PMID: 19012073 DOI: 10.1080/01677060802179287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Stathmin, a steroid-responsive regulatory protein of oligodendrocyte migration and survival, is highly expressed in active brain lesions of patients with multiple sclerosis (MS) and probably involved in myelin degeneration and repair. Here, we analyzed a single nucleotide polymorphism (rs182455) within the stathmin promoter that is close to a putative steroid-responsive element and has a high minor allelic frequency, in 647 clinically well characterized MS patients and 519 healthy controls. Allelic frequencies were comparable between MS patients and healthy controls. Furthermore, disease course (relapsing-remitting versus secondary progressive versus primary progressive), age of onset or progression index did not convincingly differ between genotypes. We conclude that despite potential importance of stathmin in the pathogenesis of MS, the rs182455 polymorphism does not influence MS susceptibility or clinical disease course.
Collapse
Affiliation(s)
- Mathias Buttmann
- Neurologische Klinik, Julius-Maximilians-Universität, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Fazeli AS, Nasrabadi D, Sanati MH, Pouya A, Ibrahim SM, Baharvand H, Salekdeh GH. Proteome analysis of brain in murine experimental autoimmune encephalomyelitis. Proteomics 2010; 10:2822-32. [PMID: 20540118 DOI: 10.1002/pmic.200900507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis is considered a prototype inflammatory autoimmune disorder of the CNS. Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein is one of the best-characterized animal models of multiple sclerosis. Comprehensive understanding of gene expression in EAE can help identify genes that are important in drug response and pathogenesis. We applied a 2-DE-based proteomics approach to analyze the protein expression pattern of the brain in healthy and EAE samples. Of more than 1000 protein spots we analyzed, 70 showed reproducible and significant changes in EAE compared to controls. Of these, 42 protein spots could be identified using MALDI TOF-TOF-MS. They included mitochondrial and structural proteins as well as proteins involved in ionic and neurotransmitter release, blood barriers, apoptosis, and signal transduction. The possible role of these proteins in the responses of mice to animal models of multiple sclerosis is discussed.
Collapse
Affiliation(s)
- Abolhassan Shahzadeh Fazeli
- Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
16
|
Dejda A, Chan P, Seaborn T, Coquet L, Jouenne T, Fournier A, Vaudry H, Vaudry D. Involvement of stathmin 1 in the neurotrophic effects of PACAP in PC12 cells. J Neurochem 2010; 114:1498-510. [PMID: 20569302 DOI: 10.1111/j.1471-4159.2010.06873.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rat pheochromocytoma PC12 cells have been widely used to investigate the neurotrophic activities of pituitary adenylate cyclase-activating polypeptide (PACAP). In particular, PACAP has been shown to promote differentiation and to inhibit apoptosis of PC12 cells. In order to identify the mechanisms mediating these effects, we sought for proteins that are phosphorylated upon PACAP treatment. High-performance liquid chromatography and 2D gel electrophoresis analysis, coupled with mass spectrometry, revealed that stathmin 1 is strongly phosphorylated within only 5 min of exposure to PACAP. Western blot experiments confirmed that PACAP induced a robust phosphorylation of stathmin 1 in a time-dependent manner. On the other hand, PACAP decreased stathmin 1 gene expression. Investigations of the signaling mechanisms known to be activated by PACAP revealed that phosphorylation of stathmin 1 was mainly mediated through the protein kinase A and mitogen-activated protein kinase pathways. Blockage of stathmin 1 expression with small interfering RNA did not affect PC12 cell differentiation induced by PACAP but reduced the ability of the peptide to inhibit caspase 3 activity and significantly decreased its neuroprotective action. Taken together, these data demonstrate that stathmin 1 is involved in the neurotrophic effect of PACAP in PC12 cells.
Collapse
Affiliation(s)
- Agnieszka Dejda
- INSERM U982, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides (IFRMP 23), Université de Rouen, Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bsibsi M, Bajramovic JJ, Vogt MHJ, van Duijvenvoorden E, Baghat A, Persoon-Deen C, Tielen F, Verbeek R, Huitinga I, Ryffel B, Kros A, Gerritsen WH, Amor S, van Noort JM. The microtubule regulator stathmin is an endogenous protein agonist for TLR3. THE JOURNAL OF IMMUNOLOGY 2010; 184:6929-37. [PMID: 20483774 DOI: 10.4049/jimmunol.0902419] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TLR3 recognizes dsRNAs and is considered of key importance to antiviral host-defense responses. TLR3 also triggers neuroprotective responses in astrocytes and controls the growth of axons and neuronal progenitor cells, suggesting additional roles for TLR3-mediated signaling in the CNS. This prompted us to search for alternative, CNS-borne protein agonists for TLR3. A genome-scale functional screening of a transcript library from brain tumors revealed that the microtubule regulator stathmin is an activator of TLR3-dependent signaling in astrocytes, inducing the same set of neuroprotective factors as the known TLR3 agonist polyinosinic:polycytidylic acid. This activity of stathmin crucially depends on a long, negatively charged alpha helix in the protein. Colocalization of stathmin with TLR3 on astrocytes, microglia, and neurons in multiple sclerosis-affected human brain indicates that as an endogenous TLR3 agonist, stathmin may fulfill previously unsuspected regulatory roles during inflammation and repair in the adult CNS.
Collapse
Affiliation(s)
- Malika Bsibsi
- Department of Biomedical Research, TNO Quality of Life, Delta Crystallon, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Increased stathmin1 expression in the dentate gyrus of mice causes abnormal axonal arborizations. PLoS One 2010; 5:e8596. [PMID: 20062533 PMCID: PMC2797614 DOI: 10.1371/journal.pone.0008596] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 12/02/2009] [Indexed: 12/29/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in multiple brain functions. To clarify the cause of abnormal behavior in PACAP deficient-mice, we attempted the identification of genes whose expression was altered in the dentate gyrus of PACAP-deficient mice using the differential display method. Expression of stathmin1 was up-regulated in the dentate gyrus at both the mRNA and protein levels. PACAP stimulation inhibited stathmin1 expression in PC12 cells, while increased stathmin1expression in neurons of the subgranular zone and in primary cultured hippocampal neurons induced abnormal arborization of axons. We also investigated the pathways involved in PACAP deficiency. Ascl1 binds to E10 box of the stathmin1 promoter and increases stathmin1 expression. Inhibitory bHLH proteins (Hes1 and Id3) were rapidly up-regulated by PACAP stimulation, and Hes1 could suppress Ascl1 expression and Id3 could inhibit Ascl1 signaling. We also detected an increase of stathmin1 expression in the brains of schizophrenic patients. These results suggest that up-regulation of stathmin1 in the dentate gyrus, secondary to PACAP deficiency, may create abnormal neuronal circuits that cause abnormal behavior.
Collapse
|
19
|
Bauer NG, Richter-Landsberg C, Ffrench-Constant C. Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 2010; 57:1691-705. [PMID: 19455583 DOI: 10.1002/glia.20885] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system, are in culture characterized by an elaborate process network, terminating in flat membranous sheets that are rich in myelin-specific proteins and lipids, and spirally wrap axons forming a compact insulating layer in vivo. By analogy with other cell types, maintenance and stability of these processes, as well as the formation of the myelin sheath, likely rely on a pronounced cytoskeleton consisting of microtubules and microfilaments. While the specialized process of wrapping and compaction forming the myelin sheath is not well understood, considerably more is known about how cytoskeletal organization is mediated by extracellular and intracellular signals and other interaction partners during oligodendrocyte differentiation and myelination. Here, we review the current state of knowledge on the role of the oligodendrocyte cytoskeleton in differentiation with an emphasis on signal transduction mechanisms and will attempt to draw out implications for its significance in myelination.
Collapse
Affiliation(s)
- Nina G Bauer
- MRC Centre for Regenerative Medicine, Centre for Multiple Sclerosis Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom.
| | | | | |
Collapse
|
20
|
Regulation of proteins mediating neurodegeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Proteomics Clin Appl 2009; 3:1273-87. [DOI: 10.1002/prca.200800155] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 05/13/2009] [Accepted: 07/19/2009] [Indexed: 12/28/2022]
|
21
|
Fissolo N, Haag S, de Graaf KL, Drews O, Stevanovic S, Rammensee HG, Weissert R. Naturally presented peptides on major histocompatibility complex I and II molecules eluted from central nervous system of multiple sclerosis patients. Mol Cell Proteomics 2009; 8:2090-101. [PMID: 19531498 DOI: 10.1074/mcp.m900001-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tandem mass spectrometry was used to identify naturally processed peptides bound to major histocompatibility complex (MHC) I and MHC II molecules in central nervous system (CNS) of eight patients with multiple sclerosis (MS). MHC molecules were purified from autopsy CNS material by immunoaffinity chromatography with monoclonal antibody directed against HLA-A, -B, -C, and -DR. Subsequently peptides were separated by reversed-phase HPLC and analyzed by mass spectrometry. Database searches revealed 118 amino acid sequences from self-proteins eluted from MHC I molecules and 191 from MHC II molecules, corresponding to 174 identified source proteins. These sequences define previously known and potentially novel autoantigens in MS possibly involved in disease induction and antigen spreading. Taken together, we have initiated the characterization of the CNS-expressed MHC ligandome in CNS diseases and were able to demonstrate the presentation of naturally processed myelin basic protein peptides in the brain of MS patients.
Collapse
Affiliation(s)
- Nicolas Fissolo
- Hertie Institute for Clinical Brain Research, Experimental Neuroimmunology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Hussein S, Michael P, Brabant D, Omri A, Narain R, Passi K, Ramana CV, Parrillo JE, Kumar A, Parissenti A, Kumar A. Characterization of human septic sera induced gene expression modulation in human myocytes. Int J Clin Exp Med 2009; 2:131-148. [PMID: 19684886 PMCID: PMC2719703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/31/2009] [Indexed: 05/28/2023]
Abstract
To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Paul Michael
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Danielle Brabant
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Ravin Narain
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Kalpdrum Passi
- Department of Mathematics and Computer Science, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | | | - Joseph E. Parrillo
- Division of Cardiovascular Disease and Critical Care Medicine, Cooper University Hospital, Robert Wood Johnson Medical SchoolCamden, New Jersey, USA, 08103
| | - Anand Kumar
- Division of Cardiovascular Disease and Critical Care Medicine, Cooper University Hospital, Robert Wood Johnson Medical SchoolCamden, New Jersey, USA, 08103
- Section of Critical Care Medicine, University of ManitobaWinnipeg, MB, Canada, R3A 1R9
| | - Amadeo Parissenti
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| | - Aseem Kumar
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Programme, Laurentian UniversitySudbury, ON, Canada, P3E 2C6
| |
Collapse
|
23
|
Yan X, Liu T, Yang S, Ding Q, Liu Y, Zhang X, Que H, Wei K, Luo Z, Liu S. Proteomic Profiling of the Insoluble Pellets of the Transected Rat Spinal Cord. J Neurotrauma 2009; 26:179-93. [DOI: 10.1089/neu.2008.0533] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaodong Yan
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
- Department of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Tao Liu
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
| | - Shuguang Yang
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
| | - Qinxue Ding
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
| | - Yong Liu
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
| | - Xiaojun Zhang
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
| | - Haiping Que
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
| | - Kaihua Wei
- National Center of Biomedical Analysis, Beijing, P. R. China
| | - Zhuojing Luo
- Department of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, P. R. China
| | - Shaojun Liu
- Department of Neurobiology, Institute of Basic Medical Sciences, State Key Laboratory of Proteomics, Beijing, P. R. China
| |
Collapse
|
24
|
Musse AA, Li Z, Ackerley CA, Bienzle D, Lei H, Poma R, Harauz G, Moscarello MA, Mastronardi FG. Peptidylarginine deiminase 2 (PAD2) overexpression in transgenic mice leads to myelin loss in the central nervous system. Dis Model Mech 2008; 1:229-40. [PMID: 19093029 DOI: 10.1242/dmm.000729] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 08/12/2008] [Indexed: 11/20/2022] Open
Abstract
Demyelination in the central nervous system is the hallmark feature in multiple sclerosis (MS). The mechanism resulting in destabilization of myelin is a complex multi-faceted process, part of which involves deimination of myelin basic protein (MBP). Deimination, the conversion of protein-bound arginine to citrulline, is mediated by the peptidylarginine deiminase (PAD) family of enzymes, of which the PAD2 and PAD4 isoforms are present in myelin. To test the hypothesis that PAD contributes to destabilization of myelin in MS, we developed a transgenic mouse line (PD2) containing multiple copies of the cDNA encoding PAD2, under the control of the MBP promoter. Using previously established criteria, clinical signs were more severe in PD2 mice than in their normal littermates. The increase in PAD2 expression and activity in white matter was demonstrated by immunohistochemistry, reverse transcriptase-PCR, enzyme activity assays, and increased deimination of MBP. Light and electron microscopy revealed more severe focal demyelination and thinner myelin in the PD2 homozygous mice compared with heterozygous PD2 mice. Quantitation of the disease-associated molecules GFAP and CD68, as measured by immunoslot blots, were indicative of astrocytosis and macrophage activation. Concurrently, elevated levels of the pro-inflammatory cytokine TNF-alpha and nuclear histone deimination support initiation of demyelination by increased PAD activity. These data support the hypothesis that elevated PAD levels in white matter represents an early change that precedes demyelination.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Casaccia-Bonnefil P, Pandozy G, Mastronardi F. Evaluating epigenetic landmarks in the brain of multiple sclerosis patients: a contribution to the current debate on disease pathogenesis. Prog Neurobiol 2008; 86:368-78. [PMID: 18930111 DOI: 10.1016/j.pneurobio.2008.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
The evidence suggesting a role of epigenetics in the definition of complex trait diseases is rapidly increasing. The gender prevalence of multiple sclerosis, the low level concordance in homozygous twins and the linkage to several genetic loci, suggest an epigenetic component to the definition of this demyelinating disorder. While the immune etio-pathogenetic mechanism of disease progression has been well characterized, still relatively little is known about the initial events contributing to onset and progression of the demyelinating lesion. This article addresses the challenging question of whether loss of the mechanisms of epigenetic regulation of gene expression in the myelinating cells may contribute to the pathogenesis of multiple sclerosis, by affecting the repair process and by modulating the levels of enzymes involved in neo-epitope formation. The role of altered post-translational modifications of nucleosomal histones and DNA methylation in white matter oligodendroglial cells are presented in terms of pathogenetic concepts and the relevance to therapeutic intervention is then discussed.
Collapse
Affiliation(s)
- Patrizia Casaccia-Bonnefil
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY10029, USA.
| | | | | |
Collapse
|
26
|
Differential proteome of bone marrow mesenchymal stem cells from osteoarthritis patients. Osteoarthritis Cartilage 2008; 16:929-35. [PMID: 18222713 DOI: 10.1016/j.joca.2007.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 12/11/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Adult mesenchymal stem cells (MSCs) are multipotent cells whose primary reservoir is bone marrow (BM). Following situations of extensive tissue damage, MSCs are mobilized and migrate to the site of injury. Osteoarthritis (OA) is a condition that involves extensive cartilage and bone damage. To gain insight into the pathogenesis of OA, we have analyzed the differential BM-MSCs proteome of OA patients. METHODS MSCs protein extracts were prepared from BM aspirates from six patients with OA and from six hip fracture subjects without OA, and analyzed by Two-dimensional gels, using the differential in-gel electrophoresis approach. Differentially expressed proteins were identified by mass spectrometry. In addition, the chemotactic responses of OA and control MSCs were assessed. RESULTS The majority of proteins that changed at least 1.5-fold (P<0.05) belonged to the following three categories: metabolic enzymes (14 proteins, 36%), cytoskeleton/motility (12 proteins, 32%), and transporters (three proteins, 8%). In OA MSCs, a high percentage of metabolic enzymes (n=8, 57%) were up-regulated and most of the proteins related to cytoskeleton/motility (n=9, 75%) were down-regulated. There was a significant increase in the migration response of OA MSCs to platelet-derived growth factor-BB (chemotaxis index CI: 5.13+/-1.19 vs 3.35+/-0.42, P=0.043). CONCLUSIONS In this study, we have described the differential proteome of BM-MSCs from OA patients together with an increased chemotactic response of these cells in the context of OA. These results could indicate an activation of OA BM-MSCs in response to chemotactic signals sent by the altered subchondral bone in an attempt to heal damaged tissue.
Collapse
|
27
|
Shen S, Casaccia-Bonnefil P. Post-translational modifications of nucleosomal histones in oligodendrocyte lineage cells in development and disease. J Mol Neurosci 2008; 35:13-22. [PMID: 17999198 DOI: 10.1007/s12031-007-9014-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed.
Collapse
Affiliation(s)
- Siming Shen
- Department Neuroscience and Cell Biology, Robert Wood Johnson Medical School, R-304 Research Tower 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
28
|
Richter-Landsberg C. The cytoskeleton in oligodendrocytes. Microtubule dynamics in health and disease. J Mol Neurosci 2007; 35:55-63. [PMID: 18058074 DOI: 10.1007/s12031-007-9017-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 09/20/2007] [Indexed: 01/05/2023]
Abstract
Oligodendrocytes have a complex cytoarchitecture and are characterized by an elaborate network of microtubules. They provide the tracks for organelle trafficking and the intracellular translocation of myelin-specific gene products. The integrity of the cytoskeleton is an essential determinant of the function and survival of oligodendrocytes. Microtubule growth and stability are regulated by microtubule-associated proteins. Oligodendrocytes contain a number of microtubule-associated proteins, including the tau proteins, which are developmentally regulated and especially prominent in the branching points of the cellular processes. Process outgrowth is regulated by the interaction of Fyn kinase with the cytoskeleton and by microtubule-severing proteins, such as stathmin. Alterations or disruption of the cytoskeleton and abundant abnormal aggregates of cytoskeletal proteins often accompany neurodegenerative diseases, and inclusion bodies, resembling protein aggregates found in neurons, are prominent in oligodendroglial lesions in white matter pathology. This review emphasizes the role of the cytoskeleton, particularly of microtubules and their associated proteins, in oligodendrocytes during developmental processes. Furthermore, recent data on protein aggregate formation in oligodendroglial cells, which might occur during aging and disease processes, are summarized.
Collapse
|
29
|
Wang J, Gu Y, Wang L, Hang X, Gao Y, Wang H, Zhang C. HUPO BPP pilot study: A proteomics analysis of the mouse brain of different developmental stages. Proteomics 2007; 7:4008-15. [DOI: 10.1002/pmic.200700341] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Herrero-Herranz E, Pardo LA, Bunt G, Gold R, Stühmer W, Linker RA. Re-expression of a developmentally restricted potassium channel in autoimmune demyelination: Kv1.4 is implicated in oligodendroglial proliferation. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:589-98. [PMID: 17600124 PMCID: PMC1934532 DOI: 10.2353/ajpath.2007.061241] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2007] [Indexed: 12/20/2022]
Abstract
Mechanisms of lesion repair in multiple sclerosis are incompletely understood. To some degree, remyelination can occur, associated with an increase of proliferating oligodendroglial cells. Recently, the expression of potassium channels has been implicated in the control of oligodendrocyte precursor cell proliferation in vitro. We investigated the expression of Kv1.4 potassium channels in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Confocal microscopy revealed expression of Kv1.4 in AN2-positive oligodendrocyte precursor cells and premyelinating oligodendrocytes in vitro but neither in mature oligodendrocytes nor in the spinal cords of healthy adult mice. After induction of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, Kv1.4 immunoreactivity was detected in or around lesions already during disease onset with a peak early and a subsequent decrease in the late phase of the disease. Kv1.4 expression was confined to 2',3'-cyclic nucleotide 3'-phosphodiesterase-positive oligodendroglial cells, which were actively proliferating and ensheathed naked axons. After a demyelinating episode, the number of Kv1.4 and 2',3'-cyclic nucleotide 3'-phosphodiesterase double-positive cells was greatly reduced in ciliary neurotrophic factor knockout mice, a model with impaired lesion repair. In summary, the re-expression of an oligodendroglial potassium channel may have a functional implication on oligodendroglial cell cycle progression, thus influencing tissue repair in experimental autoimmune encephalomyelitis and multiple sclerosis.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism
- Animals
- Axons/chemistry
- Axons/metabolism
- Axons/pathology
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Ciliary Neurotrophic Factor/genetics
- Ciliary Neurotrophic Factor/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression
- Immunohistochemistry
- Kv1.4 Potassium Channel/genetics
- Kv1.4 Potassium Channel/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Oligodendroglia/cytology
- Oligodendroglia/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
Collapse
|
31
|
Baik SY, Yun HS, Lee HJ, Lee MH, Jung SE, Kim JW, Jeon JP, Shin YK, Rhee HS, Kimm KC, Han BG. Identification of stathmin 1 expression induced by Epstein-Barr virus in human B lymphocytes. Cell Prolif 2007; 40:268-81. [PMID: 17472732 PMCID: PMC6496458 DOI: 10.1111/j.1365-2184.2007.00429.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The Epstein-Barr virus transforms resting B cells into proliferating lymphoblastoid cells, the origin of cell lines. METHOD AND RESULTS Our cDNA microarray analyses led to the identification of 232 up-regulated and 112 down-regulated genes with more than a 3-fold difference in lymphoblastoid cell lines compared to resting B cells. The functional classification of these genes exhibited the distinct expression signature for cell proliferation, cell cycle and an immune response. Among them, we verified the differential expression of several oncogenes such as stathmin 1 (STMN1), RAB27A, RAB9A, BACH1 and BACH2 using quantitative real-time reverse transcriptase-polymerase chain reactions or Western blot analysis. Expression of STMN1 (which is involved in regulation of the microtubule filament system, cell growth and S-phase of cell cycle) was increased in lymphoblastoid cell line as well as in 7-day post-Epstein-Barr virus infection B cells, compared to resting B cells. CONCLUSION Thus, this study suggests that Epstein-Barr virus infection induces STMN1 expression, which play a role in cell cycle progression and proliferation in the human B lymphocyte.
Collapse
Affiliation(s)
- S. Y. Baik
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - H. S. Yun
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - H. J. Lee
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - M. H. Lee
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - S. E. Jung
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - J. W. Kim
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - J. P. Jeon
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - Y. K. Shin
- Chungbuk Bio Industry Foundation Health Industry Center, Chungbuk, South Korea
| | - H. S. Rhee
- Department of Clinical Genetics, Yonsei University College of Medicine, Seoul, South Korea
| | - K. C. Kimm
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| | - B. G. Han
- Biobank for Health Sciences, Center for Genome Sciences, National Institute of Health, Korea Center for Disease Control and Prevention, Seoul, South Korea
| |
Collapse
|
32
|
Ohkawa N, Fujitani K, Tokunaga E, Furuya S, Inokuchi K. The microtubule destabilizer stathmin mediates the development of dendritic arbors in neuronal cells. J Cell Sci 2007; 120:1447-56. [PMID: 17389683 DOI: 10.1242/jcs.001461] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of microtubule dynamics is important for the appropriate arborization of neuronal dendrites during development, which in turn is critical for the formation of functional neural networks. Here we show that stathmin, a microtubule destabilizing factor, is downregulated at both the expression and activity levels during cerebellar development, and this down-regulation contributes to dendritic arborization. Stathmin overexpression drastically limited the dendritic growth of cultured Purkinje cells. The stathmin activity was suppressed by neural activity and CaMKII-dependent phosphorylation at Ser16, which led to dendritic arborization. Stathmin phosphorylation at Ser16 was mediated by the activation of voltage-gated calcium channels and metabotropic glutamate receptor 1. Although overexpression of SCG10, a member of the stathmin family, also limited the dendritic arborization, SCG10 did not mediate the CaMKII regulation of dendritic development. These results suggest that calcium elevation activates CaMKII, which in turn phosphorylates stathmin at Ser16 to stabilize dendritic microtubules. siRNA knockdown of endogenous stathmin significantly reduced dendritic growth in Purkinje cells. Thus, these data suggest that proper regulation of stathmin activity is a key factor for controlling the dendritic microtubule dynamics that are important for neuronal development.
Collapse
Affiliation(s)
- Noriaki Ohkawa
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | | | |
Collapse
|
33
|
Tamura K, Yoshie M, Hara T, Isaka K, Kogo H. Involvement of stathmin in proliferation and differentiation of immortalized human endometrial stromal cells. J Reprod Dev 2007; 53:525-33. [PMID: 17272923 DOI: 10.1262/jrd.18129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uterine endometrial stromal cells differentiate into decidual cells during the late secretory phase of the menstrual cycle and pregnancy. However, the biochemical mechanisms of decidualization have yet to be definitively elucidated. In the present study, we transfected primary human endometrial stromal cell with a temperature-sensitive mutant of simian virus 40 large T antigen and thereby established an immortalized stromal cell line (EtsT) in order to examine the role of stathmin, a cytosolic phosphoprotein that regulates microtubule dynamics, in stromal cell differentiation. When treated with the decidual stimulus dibutyryl-cAMP (db-cAMP) or forskolin, the fibroblastic cell-shaped EtsT cells transformed into large- and round-shaped cells and secreted large amounts of the decidual markers prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1). Analysis of the stathmin protein levels in the db-cAMP- and forskolin-treated EtsT cells revealed that the total and phosphorylated protein levels dropped as decidualization progressed. Suppression of stathmin expression by transfection with small interfering RNA (siRNA) suppressed EtsT cell proliferation. It also abolished db-cAMP-induced PRL and IGFBP-1 mRNA expression and protein secretion. Thus, stathmin expression can be considered an integral factor regulating the initial stage of the process of human endometrial stromal cell differentiation.
Collapse
Affiliation(s)
- Kazuhiro Tamura
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Science, Japan.
| | | | | | | | | |
Collapse
|
34
|
Shen S, Liu A, Li J, Wolubah C, Casaccia-Bonnefil P. Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiol Aging 2006; 29:452-63. [PMID: 17182153 PMCID: PMC2323437 DOI: 10.1016/j.neurobiolaging.2006.10.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/18/2006] [Accepted: 10/25/2006] [Indexed: 11/24/2022]
Abstract
In this study, we address the hypothesis that aging modifies the intrinsic properties of oligodendrocytes, the myelin-forming cells of the brain. According to our model, an "epigenetic memory" is stored in the chromatin of the oligodendrocyte lineage cells and is responsible for the maintenance of a mature phenotype, characterized by low levels of expression of transcriptional inhibitors. We report here an age-related decline of histone deacetylation and methylation, the molecular mechanisms responsible for the establishment and maintenance of this "epigenetic memory" of the differentiated state. We further show that lack of histone methylation and increased acetylation in mature oligodendrocytes are associated with global changes in gene expression, that include the re-expression of bHLH inhibitors (i.e. Hes5 and Id4) and precursor markers (i.e. Sox2). These changes characteristic of the "aging" oligodendrocytes can be recapitulated in vitro, by treating primary oligodendrocyte cultures with histone deacetylase inhibitors. Thus, we conclude that the "epigenetic memory loss" detected in white matter tracts of older mice induces global changes of gene expression that modify the intrinsic properties of aged oligodendrocytes and may functionally modulate the responsiveness of these cells to external stimuli.
Collapse
Affiliation(s)
- Siming Shen
- Department Neuroscience and Cell Biology, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
35
|
Mastronardi FG, Wood DD, Mei J, Raijmakers R, Tseveleki V, Dosch HM, Probert L, Casaccia-Bonnefil P, Moscarello MA. Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J Neurosci 2006; 26:11387-96. [PMID: 17079667 PMCID: PMC6674531 DOI: 10.1523/jneurosci.3349-06.2006] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modification of arginine residues by citrullination is catalyzed by peptidylarginine deiminases (PADs), of which five are known, generating irreversible protein structural modifications. We have shown previously that enhanced citrullination of myelin basic protein contributed to destabilization of the myelin membrane in the CNS of multiple sclerosis (MS) patients. We now report increased citrullination of nucleosomal histones by PAD4 in normal-appearing white matter (NAWM) of MS patients and in animal models of demyelination. Histone citrullination was attributable to increased levels and activity of nuclear PAD4. PAD4 translocation into the nucleus was attributable to elevated tumor necrosis factor-alpha (TNF-alpha) protein. The elevated TNF-alpha in MS NAWM was not associated with CD3+ or CD8+ lymphocytes, nor was it associated with CD68+ microglia/macrophages. GFAP, a measure of astrocytosis, was the only cytological marker that was consistently elevated in the MS NAWM, suggesting that TNF-alpha may have been derived from astrocytes. In cell cultures of mouse and human oligodendroglial cell lines, PAD4 was predominantly cytosolic but TNF-alpha treatment induced its nuclear translocation. To address the involvement of TNF-alpha in targeting PAD4 to the nucleus, we found that transgenic mice overexpressing TNF-alpha also had increased levels of citrullinated histones and elevated nuclear PAD4 before demyelination. In conclusion, high citrullination of histones consequent to PAD4 nuclear translocation is part of the process that leads to irreversible changes in oligodendrocytes and may contribute to apoptosis of oligodendrocytes in MS.
Collapse
Affiliation(s)
- Fabrizio G Mastronardi
- Department of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marin-Husstege M, He Y, Li J, Kondo T, Sablitzky F, Casaccia-Bonnefil P. Multiple roles of Id4 in developmental myelination: predicted outcomes and unexpected findings. Glia 2006; 54:285-96. [PMID: 16862533 DOI: 10.1002/glia.20385] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myelination in the central nervous system is a complex process requiring the integration of oligodendrocyte progenitor differentiation and the coordinate expression of myelin genes. This study addresses the role of the helix-loop-helix protein Id4 in these two events. Overexpression of Id4 in oligodendrocyte progenitors prevents differentiation and consequently decreases the endogenous expression of all myelin genes. Conversely, progenitors lacking Id4 display precocious differentiation both in vitro and in vivo, and this phenotype is partially compensated by increased apoptosis. Besides this role, Id4 also has the ability to decrease the activity of specific myelin promoters, since Id4 overexpression decreases the activity of luciferase reporter genes driven by the ceramide galactosyltransferase (CGT) or myelin basic protein (MBP) promoter, but not by a myelin proteolipid protein (PLP) promoter. Consistent with these results, the expression levels of MBP and CGT are greater in neonatal Id4 null mice when compared with wild-type siblings and correlate with the early detection of MBP immunoreactive myelinated fibers. In contrast, the levels of other myelin proteins, such as PLP and myelin associated glycoprotein (MAG) are decreased in the Id4 null mice. MAG expression is localized to the soma rather than the fibers of immunoreactive cells in the neonatal brain and compensated at later developmental stages. These data support the role of Id4 as oligodendrocyte differentiation inhibitor with the ability to differentially regulate the expression and subcellular distribution of myelin gene products.
Collapse
Affiliation(s)
- Mireya Marin-Husstege
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
37
|
Dennis J, Nogaroli L, Fuss B. Phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX): a multifunctional protein involved in central nervous system development and disease. J Neurosci Res 2006; 82:737-42. [PMID: 16267828 DOI: 10.1002/jnr.20686] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX) was originally identified as a cell-motility-stimulating factor secreted by a variety of tumor cells. Thus, studies related to its potential functional roles have traditionally focused on tumorigenesis. PD-Ialpha/ATX's catalytic activity, initially defined as nucleotide pyrophosphatase/phosphodiesterase, was soon recognized as being necessary for its tumor cell-motility-stimulating activity. However, only the discovery of PD-Ialpha/ATX's identity with lysophospholipase D, an extracellular enzyme that converts lysophosphatidylcholine into lysophosphatidic acid (LPA) and potentially sphingosylphosphoryl choline into sphingosine 1-phosphate (S1P), revealed the actual effectors responsible for PD-Ialpha/ATX's ascribed motogenic functions, i.e., its catalytic products. PD-Ialpha/ATX has also been detected during normal development in a number of tissues, in particular, the central nervous system (CNS), where expression levels are high. Similar to tumor cells, PD-Ialpha/ATX-expressing CNS cells secrete catalytically active PD-Ialpha/ATX into the extracellular environment. Thus, it appears reasonable to assume that PD-Ialpha/ATX's CNS-related functions are mediated via lysophospholipid, LPA and potentially S1P, signaling. However, recent studies identified PD-Ialpha/ATX as a matricellular protein involved in the modulation of oligodendrocyte-extracellular matrix interactions and oligodendrocyte remodeling. This property of PD-Ialpha/ATX was found to be independent of its catalytic activity and to be mediated by a novel functionally active domain. These findings, therefore, uncover PD-Ialpha/ATX, at least in the CNS, as a multifunctional protein able to induce complex signaling cascades via distinct structure-function domains. This Mini-Review describes PD-Ialpha/ATX's multifunctional roles in the CNS and discusses their potential contributions to CNS development and pathology.
Collapse
Affiliation(s)
- Jameel Dennis
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, 23298, USA
| | | | | |
Collapse
|
38
|
Gokhan S, Marin-Husstege M, Yung SY, Fontanez D, Casaccia-Bonnefil P, Mehler MF. Combinatorial profiles of oligodendrocyte-selective classes of transcriptional regulators differentially modulate myelin basic protein gene expression. J Neurosci 2006; 25:8311-21. [PMID: 16148239 PMCID: PMC6725536 DOI: 10.1523/jneurosci.1850-05.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that specific neural basic helix-loop-helix (HLH; i.e., Olig1 and Olig2, Mash1), associated inhibitory HLH (i.e., Id2 and Id4), high-mobility group domain (i.e., Sox10), and homeodomain (i.e., Nkx2.2) transcription factors are involved in oligodendrocyte (OL) lineage specification and progressive stages of maturation including myelination. However, the developmental interplay among these lineage-selective determinants, in a cell- and maturational stage-specific context, has not yet been defined. We show here in vivo and in vitro developmental expression profiles for these distinct classes of transcriptional regulators of OLs. We show that progressive stages of OL lineage maturation are characterized by dynamic changes in the subcellular distribution of these transcription factors and by different permutations of combinatorial transcriptional codes. Transient transfections of these precise combinatorial codes with a luciferase reporter gene driven by the myelin basic protein promoter define how changes in the molecular composition of these transcriptional complexes modulate myelin gene expression. Our overall findings suggest that the dynamic interplay between developmental stage-specific classes of transcriptional activators and associated inhibitory factors orchestrate myelin gene expression during terminal maturation of the mammalian CNS.
Collapse
Affiliation(s)
- Solen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mastronardi FG, Moscarello MA. Molecules affecting myelin stability: a novel hypothesis regarding the pathogenesis of multiple sclerosis. J Neurosci Res 2005; 80:301-8. [PMID: 15704220 DOI: 10.1002/jnr.20420] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this Mini-Review we present a new hypothesis in support of the neurodegenerative theory as a mechanism for the pathogenesis of multiple sclerosis (MS). The pathogenesis of MS results from changes in two distinct CNS compartments. These are the "myelin" and "nonmyelin" compartments. The myelin compartment is where primary demyelination, amidst attempts at remyelination, is superseded in the CNS by ongoing disease. Recent evidence obtained via magnetic resonance imaging and spectroscopy techniques supports the view that the normal-appearing white matter (NAWM) in the MS brain is altered. Several biochemical changes in NAWM have been determined. These include the cationicity of myelin basic protein (MBP) as a result of the action of peptidyl argininedeiminase (PAD) activity converting arginyl residues to citrulline. The accompanying loss of positive charge makes myelin susceptible to vesiculation and MBP more susceptible to proteolytic activity. An increase of MBP autocatalysis in the MS brain might also contribute to the generation of immunodominant epitopes. Accompanying the destruction of myelin in the myelin compartment is the activation of astrocytes and microglia. These contribute to the inflammatory response and T-cell activation leading to autoimmunity. The complex environment that exists in the demyelinating brain also affects the "nonmyelin" compartment. The inappropriate up-regulation of molecules, including those of the Jagged-1-Notch-1 signal transduction pathway, affects oligodendrocyte precursor cell (OPC) differentiation. Other effectors of oligodendrocyte maturation include stathmin, a microtubule-destabilizing protein, which prevents healing in the demyelinating brain. The hypothesis we present suggests a therapeutic strategy that should 1) target the effectors within the myelin compartment and 2) enable resident OPC maturation in the nonmyelin compartment, allowing for effective repair of myelin loss. The net effect of this new therapeutic strategy is the modification of the disease environment and the stimulation of healing and repair.
Collapse
Affiliation(s)
- Fabrizio G Mastronardi
- Structural Biochemistry and Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | |
Collapse
|