1
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:967-1007.e17. [DOI: 10.1016/b978-0-443-10513-5.00033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Papakyriakopoulou P, Valsami G, Dev KK. The Effect of Donepezil Hydrochloride in the Twitcher Mouse Model of Krabbe Disease. Mol Neurobiol 2024; 61:8688-8701. [PMID: 38558359 PMCID: PMC11496341 DOI: 10.1007/s12035-024-04137-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Krabbe disease (KD) is a rare demyelinating disorder characterized by demyelination caused by mutations in the GALC gene, resulting in toxic accumulation of psychosine. Psychosine has been identified as detrimental to oligodendrocytes, leading to demyelination through diverse hypothesized pathways. Reducing demyelination is essential to maintain neurological function in KD; however, therapeutic interventions are currently limited. Acetylcholinesterase inhibitors (AChEi) are commonly used for symptomatic management of Alzheimer's Disease and are suggested to have potential disease-modifying effects, including regulating myelin state. In particular, donepezil, an AChEi, has demonstrated promising effects in cellular and animal models, including promotion of the expression of myelin-related genes and reduction of glial cell reactivity. This drug also acts as an agonist for sigma-1 receptors (Sig-1R), which are implicated in demyelination diseases. In the context of drug repurposing, here, we demonstrate that administration of donepezil has protective effects in the twitcher mouse model of KD. We provide data showing that donepezil preserves myelin and reduces glial cell reactivity in the brains of twitcher mice. Moreover, donepezil also improves behavioral phenotypes and increases lifespan in twitcher animals. These findings suggest that donepezil, with its dual activity as an AChE inhibitor and Sig-1R agonist, may hold promise as a therapeutic candidate for demyelinating diseases, including KD.
Collapse
Affiliation(s)
- Paraskevi Papakyriakopoulou
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, National and Kapodistrian University of Athens, 15784, Zografou, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, National and Kapodistrian University of Athens, 15784, Zografou, Greece.
| | - Kumlesh K Dev
- Drug Development, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
3
|
Ketata I, Ellouz E. From pathological mechanisms in Krabbe disease to cutting-edge therapy: A comprehensive review. Neuropathology 2024; 44:255-277. [PMID: 38444347 DOI: 10.1111/neup.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Since its initial documentation by Knud Krabbe in 1916, numerous studies have scrutinized the characteristics of Krabbe disease (KD) until the identification of the mutation in the GALC gene. In alignment with that, we investigated the natural history of KD spanning eight decades to gain a deeper understanding of the evolutionary trajectory of its mechanisms. Through our comprehensive analysis, we unearthed additional novel elements in molecular biology involving the micropathological mechanism of the disease. This review offers an updated perspective on the metabolic disorder that defines KD. Recently, extracellular vesicles (EVs), autophagy impairment, and α-synuclein have emerged as pivotal players in the neuropathological processes. EVs might serve as a cellular mechanism to avoid or alleviate the detrimental impacts of excessive toxic psychosine levels, and extracting EVs could contribute to synapse dysfunction. Autophagy impairment was found to be independent of psychosine and reliant on AKT and B-cell lymphoma 2. Additionally, α-synuclein has been recognized for inducing cellular death and dysfunction in common biological pathways. Our objective is to assess the effectiveness of advanced therapies in addressing this particular condition. While hematopoietic stem cells have been a primary treatment, its administration proves challenging, particularly in the presymptomatic phase. In this review, we have compiled information from over 10 therapy trials, comparing them based on their benefits and disadvantage.
Collapse
Affiliation(s)
- Imen Ketata
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| | - Emna Ellouz
- Neurology Department, University Hospital of Gabes, Gabes, Tunisia
- Sfax University, Sfax Faculty of Medicine, Sfax, Tunisia
| |
Collapse
|
4
|
Metovic J, Li Y, Gong Y, Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics 2024; 21:e00443. [PMID: 39276676 PMCID: PMC11418141 DOI: 10.1016/j.neurot.2024.e00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
Leukodystrophies are progressive single gene disorders affecting the white matter of the brain. Several gene therapy trials are in progress to address the urgent unmet need for this patient population. We performed a comprehensive literature review of all gene therapy clinical trials listed in www.clinicaltrials.gov through August 2024, and the relevant preclinical studies that enabled clinical translation. Of the approximately 50 leukodystrophies described to date, only eight have existing gene therapy clinical trials: metachromatic leukodystrophy, X-linked adrenoleukodystrophy, globoid cell leukodystrophy, Canavan disease, giant axonal neuropathy, GM2 gangliosidoses, Alexander disease and Pelizaeus-Merzbacher disease. What led to the emergence of gene therapy trials for these specific disorders? What preclinical data or disease context was enabling? For each of these eight disorders, we first describe its pathophysiology and clinical presentation. We discuss the impact of gene therapy delivery route, targeted cell type, delivery modality, dosage, and timing on therapeutic efficacy. We note that use of allogeneic hematopoietic stem cell transplantation in some leukodystrophies allowed for an accelerated path to clinic even in the absence of available animal models. In other leukodystrophies, small and large animal model studies enabled clinical translation of experimental gene therapies. Human clinical trials for the leukodystrophies include ex vivo lentiviral gene delivery, in vivo AAV-mediated gene delivery, and intrathecal antisense oligonucleotide approaches. We outline adverse events associated with each modality focusing specifically on genotoxicity and immunotoxicity. We review monitoring and management of events related to insertional mutagenesis and immune responses. The data presented in this review show that gene therapy, while promising, requires systematic monitoring to account for the precarious disease biology and the adverse events associated with new technology.
Collapse
Affiliation(s)
- Jasna Metovic
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yedda Li
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yi Gong
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Bradbury AM, Bagel J, Swain G, Miyadera K, Pesayco JP, Assenmacher CA, Brisson B, Hendricks I, Wang XH, Herbst Z, Pyne N, Odonnell P, Shelton GD, Gelb M, Hackett N, Szabolcs P, Vite CH, Escolar M. Combination HSCT and intravenous AAV-mediated gene therapy in a canine model proves pivotal for translation of Krabbe disease therapy. Mol Ther 2024; 32:44-58. [PMID: 37952085 PMCID: PMC10787152 DOI: 10.1016/j.ymthe.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only approved treatment for presymptomatic infantile globoid cell leukodystrophy (GLD [Krabbe disease]). However, correction of disease is not complete, and outcomes remain poor. Herein we evaluated HSCT, intravenous (IV) adeno-associated virus rh10 vector (AAVrh10) gene therapy, and combination HSCT + IV AAVrh10 in the canine model of GLD. While HSCT alone resulted in no increase in survival as compared with untreated GLD dogs (∼16 weeks of age), combination HSCT + IV AAVrh10 at a dose of 4E13 genome copies (gc)/kg resulted in delayed disease progression and increased survival beyond 1 year of age. A 5-fold increase in AAVrh10 dose to 2E14 gc/kg, in combination with HSCT, normalized neurological dysfunction up to 2 years of age. IV AAVrh10 alone resulted in an average survival to 41.2 weeks of age. In the peripheral nervous system, IV AAVrh10 alone or in addition to HSCT normalized nerve conduction velocity, improved ultrastructure, and normalized GALC enzyme activity and psychosine concentration. In the central nervous system, only combination therapy at the highest dose was able to restore galactosylceramidase activity and psychosine concentrations to within the normal range. These data have now guided clinical translation of systemic AAV gene therapy as an addition to HSCT (NCT04693598, NCT05739643).
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA; Abigail Wexner Research Institute, Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH 43215, USA.
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Gary Swain
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jill P Pesayco
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Becky Brisson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ian Hendricks
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Xiao H Wang
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Zachary Herbst
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Nettie Pyne
- Abigail Wexner Research Institute, Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Patricia Odonnell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Michael Gelb
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Neil Hackett
- Neil Hackett Consulting, New York, NY 10003, USA
| | - Paul Szabolcs
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92161, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Maria Escolar
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15224, USA; Forge Biologics, Grove City, OH 43123, USA
| |
Collapse
|
6
|
van der Knaap MS, Bugiani M, Abbink TEM. Vanishing white matter. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:77-94. [PMID: 39322396 DOI: 10.1016/b978-0-323-99209-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Moore TL, Pannuzzo G, Costabile G, Palange AL, Spanò R, Ferreira M, Graziano ACE, Decuzzi P, Cardile V. Nanomedicines to treat rare neurological disorders: The case of Krabbe disease. Adv Drug Deliv Rev 2023; 203:115132. [PMID: 37918668 DOI: 10.1016/j.addr.2023.115132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.
Collapse
Affiliation(s)
- Thomas Lee Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy
| | - Gabriella Costabile
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy; Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples 80131, NA, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy; Facolta di Medicina e Chirurgia, Università degli Studi di Enna "Kore", Enna 94100, EN, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy.
| |
Collapse
|
8
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
9
|
Lin DS, Huang YW, Lee TH, Chang L, Huang ZD, Wu TY, Wang TJ, Ho CS. Rapamycin Alleviates Protein Aggregates, Reduces Neuroinflammation, and Rescues Demyelination in Globoid Cell Leukodystrophy. Cells 2023; 12:cells12070993. [PMID: 37048066 PMCID: PMC10093124 DOI: 10.3390/cells12070993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of the mTOR inhibitor rapamycin in twitcher mice, a murine model of infantile GLD, in biochemical, histochemical, and clinical aspects. Administration of rapamycin to twitcher mice inhibited mTOR signaling in the brains, and significantly reduced the accumulation of insoluble ubiquitinated protein and the formation of ubiquitin aggregates. The astrocytes and microglia reactivity were attenuated in that reactive astrocytes, ameboid microglia, and globoid cells were reduced in the brains of rapamycin-treated twitcher mice. Furthermore, rapamycin improved the cortical myelination, neurite density, and rescued the network complexity in the cortex of twitcher mice. The therapeutic action of rapamycin on the pathology of the twitcher mice's brains prolonged the longevity of treated twitcher mice. Overall, these findings validate the therapeutic efficacy of rapamycin and highlight enhancing degradation of aggregates as a therapeutic strategy to modulate neuroinflammation, demyelination, and disease progression of GLD and other leukodystrophies associated with intracellular aggregates.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsung-Han Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Lung Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
| | - Zon-Darr Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tsu-Yen Wu
- Department of Medical Research, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Che-Sheng Ho
- Department of Medicine, MacKay Medical College, New Taipei 25245, Taiwan
- Department of Neurology, MacKay Children's Hospital, Taipei 10449, Taiwan
| |
Collapse
|
10
|
Heller G, Bradbury AM, Sands MS, Bongarzone ER. Preclinical studies in Krabbe disease: A model for the investigation of novel combination therapies for lysosomal storage diseases. Mol Ther 2023; 31:7-23. [PMID: 36196048 PMCID: PMC9840155 DOI: 10.1016/j.ymthe.2022.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Krabbe disease (KD) is a lysosomal storage disease (LSD) caused by mutations in the galc gene. There are over 50 monogenetic LSDs, which largely impede the normal development of children and often lead to premature death. At present, there are no cures for LSDs and the available treatments are generally insufficient, short acting, and not without co-morbidities or long-term side effects. The last 30 years have seen significant advances in our understanding of LSD pathology as well as treatment options. Two gene therapy-based clinical trials, NCT04693598 and NCT04771416, for KD were recently started based on those advances. This review will discuss how our knowledge of KD got to where it is today, focusing on preclinical investigations, and how what was discovered may prove beneficial for the treatment of other LSDs.
Collapse
Affiliation(s)
- Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Abigail Wexner Research Institute Nationwide Children's Hospital Department of Pediatrics, The Ohio State University, Wexner Medical Center, Columbus, OH 43205, USA.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, 660 South Euclid Avenue Box 8007, St. Louis, MO, USA.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, 808 S. Wood St M/C 512, Chicago, IL, USA.
| |
Collapse
|
11
|
Shen W, Liu S, Ou L. rAAV immunogenicity, toxicity, and durability in 255 clinical trials: A meta-analysis. Front Immunol 2022; 13:1001263. [PMID: 36389770 PMCID: PMC9647052 DOI: 10.3389/fimmu.2022.1001263] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recombinant Adeno-associated virus (rAAV) is one of the main delivery vectors for gene therapy. To assess immunogenicity, toxicity, and features of AAV gene therapy in clinical settings, a meta-analysis of 255 clinical trials was performed. A total of 7,289 patients are planned to be dosed. AAV2 was the most dominantly used serotype (29.8%, n=72), and 8.3% (n=20) of trials used engineered capsids. 38.7% (n=91) of trials employed neutralizing antibody assays for patient enrollment, while 15.3% (n=36) used ELISA-based total antibody assays. However, there was high variability in the eligibility criteria with cut-off tiers ranging from 1:1 to 1:1,600. To address potential immunogenicity, 46.3% (n=118) of trials applied immunosuppressants (prophylactic or reactive), while 32.7% (n=18) of CNS and 37.5% (n=24) of ocular-directed trials employed immunosuppressants, possibly due to the immune-privileged status of CNS and retina. There were a total of 11 patient deaths across 8 trials, and 18 out of 30 clinical holds were due to toxicity findings in clinical studies. 30.6% (n=78) of trials had treatment-emergent serious adverse events (TESAEs), with hepatotoxicity and thrombotic microangiopathy (systemic delivery) and neurotoxicity (CNS delivery) being the most prominent. Additionally, the durability of gene therapy may be impacted by two distinct decline mechanisms: 1) rapid decline presumably due to immune responses; or 2) gradual decline due to vector dilution. The durability varied significantly depending on disease indication, dose, serotypes, and patient individuals. Most CNS (90.0%) and muscle trials (73.3%) achieved durable transgene expression, while only 43.6% of ocular trials had sustained clinical outcomes. The rAAV production system can affect rAAV quality and thus immunogenicity and toxicity. Out of 186 trials that have disclosed production system information, 63.0% (n=126) of trials used the transient transfection of the HEK293/HEK293T system, while 18.0% (n=36) applied the baculovirus/Sf9 (rBac/Sf9) system. There were no significant differences in TESAEs and durability between AAV generated by rBac/Sf9 and HEK293/HEK293T systems. In summary, rAAV immunogenicity and toxicity poses significant challenges for clinical development of rAAV gene therapies, and it warrants collaborative efforts to standardize monitoring/measurement methods, design novel strategies to overcome immune responses, and openly share relevant information.
Collapse
Affiliation(s)
| | | | - Li Ou
- 3Genemagic Biosciences, Wallingford, PA, United States,4Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Li Ou,
| |
Collapse
|
12
|
Wu G, Li Z, Li J, Li X, Wang M, Zhang J, Liu G, Zhang P. A neglected neurodegenerative disease: Adult-onset globoid cell leukodystrophy. Front Neurosci 2022; 16:998275. [PMID: 36161165 PMCID: PMC9490374 DOI: 10.3389/fnins.2022.998275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease (KD) is a rare neurodegenerative disease, and adult-onset GLD is more even neglected by clinicians. This review provides detailed discussions of the serum enzymes, genes, clinical manifestations, neuroimaging features, and therapies of GLD, with particular emphasis on the characteristics of adult-onset GLD, in an attempt to provide clinicians with in-depth insights into this disease.
Collapse
Affiliation(s)
- Guode Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhenhua Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Manxia Wang,
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
13
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
14
|
Zaccariotto E, Cachón-González MB, Wang B, Lim S, Hirth B, Park H, Fezoui M, Sardi SP, Mason P, Barker RH, Cox TM. A novel brain-penetrant oral UGT8 inhibitor decreases in vivo galactosphingolipid biosynthesis in murine Krabbe disease. Biomed Pharmacother 2022; 149:112808. [PMID: 35290889 DOI: 10.1016/j.biopha.2022.112808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Krabbe disease is a rare, inherited neurodegenerative disease due to impaired lysosomal β-galactosylceramidase (GALC) activity and formation of neurotoxic β-galactosylsphingosine ('psychosine'). We investigated substrate reduction therapy with a novel brain-penetrant inhibitor of galactosylceramide biosynthesis, RA 5557, in twitcher mice that lack GALC activity and model Krabbe disease. This thienopyridine derivative selectively inhibits uridine diphosphate-galactose glycosyltransferase 8 (UGT8), the final step in the generation of galactosylceramides which are precursors of sulphatide and, in the pathological lysosome, the immediate source of psychosine. Administration of RA 5557, reduced pathologically elevated psychosine concentrations (72-86%) in the midbrain and cerebral cortex in twitcher mice: the inhibitor decreased galactosylceramides by about 70% in midbrain and cerebral cortex in mutant and wild type animals. Exposure to the inhibitor significantly decreased several characteristic inflammatory response markers without causing apparent toxicity to myelin-producing cells in wild type and mutant mice; transcript abundance of oligodendrocyte markers MBP (myelin basic protein) and murine UGT8 was unchanged. Administration of the inhibitor before conception and during several breeding cycles to mice did not impair fertility and gave rise to healthy offspring. Nevertheless, given the unchanged lifespan, it appears that GALC has critical functions in the nervous system beyond the hydrolysis of galactosylceramide and galactosylsphingosine. Our findings support further therapeutic exploration of orally active UGT8 inhibitors in Krabbe disease and related galactosphingolipid disorders. The potent thienopyridine derivative with effective target engagement here studied appears to have an acceptable safety profile in vivo; judicious dose optimization will be needed to ensure efficacious clinical translation.
Collapse
Affiliation(s)
- Eva Zaccariotto
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | | | - Bing Wang
- Early Development, Sanofi R&D, Waltham, MA, United States
| | - Sungtaek Lim
- Integrated Drug Discovery, Sanofi R&D, Waltham, MA, United States
| | - Bradford Hirth
- Integrated Drug Discovery, Sanofi R&D, Waltham, MA, United States
| | - Hyejung Park
- Early Development, Sanofi R&D, Waltham, MA, United States
| | - Malika Fezoui
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - S Pablo Sardi
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - Paul Mason
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - Robert H Barker
- Rare and Neurologic Disease Research, Sanofi R&D, Framingham, MA, United States
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Rafi MA. Krabbe disease: A personal perspective and hypothesis. BIOIMPACTS : BI 2022; 12:3-7. [PMID: 35087711 PMCID: PMC8783082 DOI: 10.34172/bi.2021.23931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/15/2021] [Accepted: 09/18/2021] [Indexed: 11/09/2022]
Abstract
Introduction: Krabbe disease (KD) or globoid cell leukodystrophy (GLD) is one of the lysosomal disorders affecting central and peripheral nervous systems (CNS and PNS). It is caused by mutations on the galactocerebrosidase (GALC) gene. Affected individuals accumulate undegraded substrates and suffer from neuroinflammation. Methods: Hematopoietic stem cell transplantation (HSCT) has been partially successful in treating patients with KD when accomplished prior to the onset of symptoms. The success is credited to the ability of the hematopoietic stem cells in providing some GALC enzyme to the CNS and eradicating potential neuroinflammation. Combination of the HSCT with some other GALC-providing strategies has shown synergistic effects in the treatment of the mouse model of this disease. Results: Here, the possibility of eliminating HSCT in the treatment of human patients and replacing it with a single therapy that will provide sufficient GALC enzyme to the nervous systems is suggested. Such treatment, if started during the asymptomatic stage of the disease, not only may eradicate the enzyme deficiency, but may also keep any neuroinflammation at bay. Conclusion: Successful treatment of the KD may be possible by restoring consistent and sufficient GALC expression in CNS and PNS.
Collapse
|
16
|
Del Grosso A, Parlanti G, Angella L, Giordano N, Tonazzini I, Ottalagana E, Carpi S, Pellegrino RM, Alabed HBR, Emiliani C, Caleo M, Cecchini M. Chronic lithium administration in a mouse model for Krabbe disease. JIMD Rep 2022; 63:50-65. [PMID: 35028271 PMCID: PMC8743347 DOI: 10.1002/jmd2.12258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Krabbe disease (KD; or globoid cell leukodystrophy) is an autosomal recessive lysosomal storage disorder caused by deficiency of the galactosylceramidase (GALC) enzyme. No cure is currently available for KD. Clinical applied treatments are supportive only. Recently, we demonstrated that two differently acting autophagy inducers (lithium and rapamycin) can improve some KD hallmarks in-vitro, laying the foundation for their in-vivo pre-clinical testing. Here, we test lithium carbonate in-vivo, in the spontaneous mouse model for KD, the Twitcher (TWI) mouse. The drug is administered ad libitum via drinking water (600 mg/L) starting from post natal day 20. We longitudinally monitor the mouse motor performance through the grip strength, the hanging wire and the rotarod tests, and a set of biochemical parameters related to the KD pathogenesis [i.e., GALC enzymatic activity, psychosine (PSY) accumulation and astrogliosis]. Additionally, we investigate the expression of some crucial markers related to the two pathways that could be altered by lithium: the autophagy and the β-catenin-dependent pathways. Results demonstrate that lithium has not a significant rescue effect on the TWI phenotype, although it can slightly and transiently improves muscle strength. We also show that lithium, with this administration protocol, is unable to stimulate autophagy in the TWI mice central nervous system, whereas results suggest that it can restore the β-catenin activation status in the TWI sciatic nerve. Overall, these data provide intriguing inputs for further evaluations of lithium treatment in TWI mice.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore, Piazza San SilvestroPisaItaly
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore, Piazza San SilvestroPisaItaly
| | - Lucia Angella
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore, Piazza San SilvestroPisaItaly
| | - Nadia Giordano
- Scuola Normale Superiore, Piazza dei CavalieriPisaItaly
- CNR Neuroscience InstitutePisaItaly
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore, Piazza San SilvestroPisaItaly
| | - Elisa Ottalagana
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore, Piazza San SilvestroPisaItaly
| | - Sara Carpi
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore, Piazza San SilvestroPisaItaly
| | | | - Husam B. R. Alabed
- Department of Chemistry, Biology, and BiotechnologiesUniversity of PerugiaPerugiaItaly
| | - Carla Emiliani
- Department of Chemistry, Biology, and BiotechnologiesUniversity of PerugiaPerugiaItaly
| | - Matteo Caleo
- Scuola Normale Superiore, Piazza dei CavalieriPisaItaly
- CNR Neuroscience InstitutePisaItaly
- Department of Biomedical SciencesUniversity of PaduaPadovaItaly
| | - Marco Cecchini
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale Superiore, Piazza San SilvestroPisaItaly
| |
Collapse
|
17
|
Feltri ML, Weinstock NI, Favret J, Dhimal N, Wrabetz L, Shin D. Mechanisms of demyelination and neurodegeneration in globoid cell leukodystrophy. Glia 2021; 69:2309-2331. [PMID: 33851745 PMCID: PMC8502241 DOI: 10.1002/glia.24008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe disease, is a lysosomal storage disorder causing extensive demyelination in the central and peripheral nervous systems. GLD is caused by loss-of-function mutations in the lysosomal hydrolase, galactosylceramidase (GALC), which catabolizes the myelin sphingolipid galactosylceramide. The pathophysiology of GLD is complex and reflects the expression of GALC in a number of glial and neural cell types in both the central and peripheral nervous systems (CNS and PNS), as well as leukocytes and kidney in the periphery. Over the years, GLD has garnered a wide range of scientific and medical interests, especially as a model system to study gene therapy and novel preclinical therapeutic approaches to treat the spontaneous murine model for GLD. Here, we review recent findings in the field of Krabbe disease, with particular emphasis on novel aspects of GALC physiology, GLD pathophysiology, and therapeutic strategies.
Collapse
Affiliation(s)
- M. Laura Feltri
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Nadav I. Weinstock
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Jacob Favret
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Narayan Dhimal
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Buffalo, New York
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Daesung Shin
- Hunter James Kelly Research Institute, Buffalo, New York
- Biotechnical and Clinical Lab Sciences, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
18
|
Wenger DA, Luzi P, Rafi MA. Advances in the Diagnosis and Treatment of Krabbe Disease. Int J Neonatal Screen 2021; 7:57. [PMID: 34449528 PMCID: PMC8396024 DOI: 10.3390/ijns7030057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
Krabbe disease is an autosomal recessive leukodystrophy caused by pathogenic variants in the galactocerebrosidase (GALC) gene. GALC activity is needed for the lysosomal hydrolysis of galactosylceramide, an important component of myelin. While most patients are infants, older patients are also diagnosed. Starting in 1970, a diagnosis could be made by measuring GALC activity in leukocytes and cultured cells. After the purification of GALC in 1993, the cDNA and genes were cloned. Over 260 disease-causing variants as well as activity lowering benign variants have been identified. While some pathogenic variants can be considered "severe," others can be considered "mild." The combination of alleles determines the type of Krabbe disease a person will have. To identify patients earlier, newborn screening (NBS) has been implemented in several states. Low GALC activity in this screening test may indicate a diagnosis of Krabbe disease. Second tier testing as well as neuro-diagnostic studies may be required to identify those individuals needing immediate treatment. Treatment of pre-symptomatic or mildly symptomatic patients at this time is limited to hematopoietic stem cell transplantation. Treatment studies using the mouse and dog models have shown that combining bone marrow transplantation with intra-venous gene therapy provides the best outcomes in terms of survival, behavior, and preservation of normal myelination in the central and peripheral nervous systems. With earlier diagnosis of patients through newborn screening and advances in treatment, it is hoped that more patients will have a much better quality of life.
Collapse
Affiliation(s)
- David A Wenger
- Lysosomal Diseases Testing Laboratory, Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, PA 19107, USA; (P.L.); (M.A.R.)
| | | | | |
Collapse
|
19
|
Babcock MC, Mikulka CR, Wang B, Chandriani S, Chandra S, Xu Y, Webster K, Feng Y, Nelvagal HR, Giaramita A, Yip BK, Lo M, Jiang X, Chao Q, Woloszynek JC, Shen Y, Bhagwat S, Sands MS, Crawford BE. Substrate reduction therapy for Krabbe disease and metachromatic leukodystrophy using a novel ceramide galactosyltransferase inhibitor. Sci Rep 2021; 11:14486. [PMID: 34262084 PMCID: PMC8280112 DOI: 10.1038/s41598-021-93601-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022] Open
Abstract
Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.
Collapse
Affiliation(s)
- Michael C Babcock
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Christina R Mikulka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bing Wang
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sanjay Chandriani
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Sundeep Chandra
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yue Xu
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Katherine Webster
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Ying Feng
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Hemanth R Nelvagal
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alex Giaramita
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Bryan K Yip
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Melanie Lo
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qi Chao
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Josh C Woloszynek
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Yuqiao Shen
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Shripad Bhagwat
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brett E Crawford
- BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA, 94949, USA.
| |
Collapse
|
20
|
Heller GJ, Marshall MS, Issa Y, Marshall JN, Nguyen D, Rue E, Pathmasiri KC, Domowicz MS, van Breemen RB, Tai LM, Cologna SM, Crocker SJ, Givogri MI, Sands MS, Bongarzone ER. Waning efficacy in a long-term AAV-mediated gene therapy study in the murine model of Krabbe disease. Mol Ther 2021; 29:1883-1902. [PMID: 33508430 PMCID: PMC8116612 DOI: 10.1016/j.ymthe.2021.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Neonatal AAV9-gene therapy of the lysosomal enzyme galactosylceramidase (GALC) significantly ameliorates central and peripheral neuropathology, prolongs survival, and largely normalizes motor deficits in Twitcher mice. Despite these therapeutic milestones, new observations identified the presence of multiple small focal demyelinating areas in the brain after 6-8 months. These lesions are in stark contrast to the diffuse, global demyelination that affects the brain of naive Twitcher mice. Late-onset lesions exhibited lysosomal alterations with reduced expression of GALC and increased psychosine levels. Furthermore, we found that lesions were closely associated with the extravasation of plasma fibrinogen and activation of the fibrinogen-BMP-SMAD-GFAP gliotic response. Extravasation of fibrinogen correlated with tight junction disruptions of the vasculature within the lesioned areas. The lesions were surrounded by normal appearing white matter. Our study shows that the dysregulation of therapeutic GALC was likely driven by the exhaustion of therapeutic AAV episomal DNA within the lesions, paralleling the presence of proliferating oligodendrocyte progenitors and glia. We believe that this is the first demonstration of diminishing expression in vivo from an AAV gene therapy vector with detrimental effects in the brain of a lysosomal storage disease animal model. The development of this phenotype linking localized loss of GALC activity with relapsing neuropathology in the adult brain of neonatally AAV-gene therapy-treated Twitcher mice identifies and alerts to possible late-onset reductions of AAV efficacy, with implications to other genetic leukodystrophies.
Collapse
Affiliation(s)
- Gregory J Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Michael S Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Yazan Issa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jeffrey N Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emily Rue
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | - Miriam S Domowicz
- Department of Pediatrics, University of Chicago, Chicago, IL 60612, USA
| | | | - Leon M Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Mark S Sands
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Bradbury AM, Bongarzone ER, Sands MS. Krabbe disease: New hope for an old disease. Neurosci Lett 2021; 752:135841. [PMID: 33766733 PMCID: PMC8802533 DOI: 10.1016/j.neulet.2021.135841] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022]
Abstract
Krabbe disease (globoid cell leukodystrophy) is a lysosomal storage disease (LSD) characterized by progressive and profound demyelination. Infantile, juvenile and adult-onset forms of Krabbe disease have been described, with infantile being the most common. Children with an infantile-onset generally appear normal at birth but begin to miss developmental milestones by six months of age and die by two to four years of age. Krabbe disease is caused by a deficiency of the acid hydrolase galactosylceramidase (GALC) which is responsible for the degradation of galactosylceramides and sphingolipids, which are abundant in myelin membranes. The absence of GALC leads to the toxic accumulation of galactosylsphingosine (psychosine), a lysoderivative of galactosylceramides, in oligodendrocytes and Schwann cells resulting in demyelination of the central and peripheral nervous systems, respectively. Treatment strategies such as enzyme replacement, substrate reduction, enzyme chaperones, and gene therapy have shown promise in LSDs. Unfortunately, Krabbe disease has been relatively refractory to most single-therapy interventions. Although hematopoietic stem cell transplantation can alter the course of Krabbe disease and is the current standard-of-care, it simply slows the progression, even when initiated in pre-symptomatic children. However, the recent success of combinatorial therapeutic approaches in small animal models of Krabbe disease and the identification of new pathogenic mechanisms provide hope for the development of effective treatments for this devastating disease. This review provides a brief history of Krabbe disease and the evolution of single and combination therapeutic approaches and discusses new pathogenic mechanisms and how they might impact the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Pediatrics, Nationwide Children's Hospital, Ohio State University, 700 Children's Drive, Columbus, OH, 43205, United States.
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, United States.
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States; Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
22
|
Inamura N, Go S, Watanabe T, Takase H, Takakura N, Nakayama A, Takebayashi H, Matsuda J, Enokido Y. Reduction in miR-219 expression underlies cellular pathogenesis of oligodendrocytes in a mouse model of Krabbe disease. Brain Pathol 2021; 31:e12951. [PMID: 33822434 PMCID: PMC8412087 DOI: 10.1111/bpa.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Krabbe disease (KD), also known as globoid cell leukodystrophy, is an inherited demyelinating disease caused by the deficiency of lysosomal galactosylceramidase (GALC) activity. Most of the patients are characterized by early‐onset cerebral demyelination with apoptotic oligodendrocyte (OL) death and die before 2 years of age. However, the mechanisms of molecular pathogenesis in the developing OLs before death and the exact causes of white matter degeneration remain largely unknown. We have recently reported that OLs of twitcher mouse, an authentic mouse model of KD, exhibit developmental defects and endogenous accumulation of psychosine (galactosylsphingosine), a cytotoxic lyso‐derivative of galactosylceramide. Here, we show that attenuated expression of microRNA (miR)‐219, a critical regulator of OL differentiation and myelination, mediates cellular pathogenesis of KD OLs. Expression and functional activity of miR‐219 were repressed in developing twitcher mouse OLs. By using OL precursor cells (OPCs) isolated from the twitcher mouse brain, we show that exogenously supplemented miR‐219 effectively rescued their cell‐autonomous developmental defects and apoptotic death. miR‐219 also reduced endogenous accumulation of psychosine in twitcher OLs. Collectively, these results highlight the role of the reduced miR‐219 expression in KD pathogenesis and suggest that miR‐219 has therapeutic potential for treating KD OL pathologies.
Collapse
Affiliation(s)
- Naoko Inamura
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Shinji Go
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Takashi Watanabe
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Atsuo Nakayama
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan.,Department of Neurobiochemistry, Nagoya University School of Medicine, Nagoya, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Yasushi Enokido
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| |
Collapse
|
23
|
Safary A, Moghaddas-Sani H, Akbarzadeh-Khiavi M, Khabbazzi A, Rafi MA, Omidi Y. Enzyme replacement combinational therapy: effective treatments for mucopolysaccharidoses. Expert Opin Biol Ther 2021; 21:1181-1197. [PMID: 33653197 DOI: 10.1080/14712598.2021.1895746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Mucopolysaccharidoses (MPS), as a group of inherited lysosomal storage disorders (LSDs), are clinically heterogeneous and characterized by multi-systemic manifestations, such as skeletal abnormalities and neurological dysfunctions. The currently used enzyme replacement therapy (ERT) might be associated with several limitations including the low biodistribution of the enzymes into the main targets, immunological responses against foreign enzymes, and the high cost of the treatment procedure. Therefore, a suitable combination approach can be considered for the successful treatment of each type of MPS. AREAS COVERED In this review, we provide comprehensive insights into the ERT-based combination therapies of MPS by reviewing the published literature on PubMed and Scopus. We also discuss the recent advancements in the treatment of MPS and bring up the hopes and hurdles in the futuristic treatment strategies. EXPERT OPINION Given the complex pathophysiology of MPS and its involvement in different tissues, the ERT of MPS in combination with stem cell therapy or gene therapy is deemed to provide a personalized precision treatment modality with the highest therapeutic responses and minimal side effects. By the same token, new combinational approaches need to be evaluated by using drugs that target alternative and secondary pathological pathways.
Collapse
Affiliation(s)
- Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mostafa Akbarzadeh-Khiavi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Khabbazzi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvanian USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida USA
| |
Collapse
|
24
|
Rebiai R, Givogri MI, Gowrishankar S, Cologna SM, Alford ST, Bongarzone ER. Synaptic Function and Dysfunction in Lysosomal Storage Diseases. Front Cell Neurosci 2021; 15:619777. [PMID: 33746713 PMCID: PMC7978225 DOI: 10.3389/fncel.2021.619777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) with neurological involvement are inherited genetic diseases of the metabolism characterized by lysosomal dysfunction and the accumulation of undegraded substrates altering glial and neuronal function. Often, patients with neurological manifestations present with damage to the gray and white matter and irreversible neuronal decline. The use of animal models of LSDs has greatly facilitated studying and identifying potential mechanisms of neuronal dysfunction, including alterations in availability and function of synaptic proteins, modifications of membrane structure, deficits in docking, exocytosis, recycling of synaptic vesicles, and inflammation-mediated remodeling of synapses. Although some extrapolations from findings in adult-onset conditions such as Alzheimer's disease or Parkinson's disease have been reported, the pathogenetic mechanisms underpinning cognitive deficits in LSDs are still largely unclear. Without being fully inclusive, the goal of this mini-review is to present a discussion on possible mechanisms leading to synaptic dysfunction in LSDs.
Collapse
Affiliation(s)
- Rima Rebiai
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Stephania M. Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, The University of Illinois at Chicago, Chicago, IL, United States
| | - Simon T. Alford
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
25
|
Rafi MA, Luzi P, Wenger DA. Can early treatment of twitcher mice with high dose AAVrh10-GALC eliminate the need for BMT? ACTA ACUST UNITED AC 2021; 11:135-146. [PMID: 33842284 PMCID: PMC8022232 DOI: 10.34172/bi.2021.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
![]()
Introduction: Krabbe disease (KD) is an autosomal recessive disorder caused by mutations in the galactocerebrosidase (GALC) gene resulting in neuro-inflammation and defective myelination in the central and peripheral nervous systems. Most infantile patients present with clinical features before six months of age and die before two years of age. The only treatment available for pre-symptomatic or mildly affected individuals is hematopoietic stem cell transplantation (HSCT). In the animal models, combining bone marrow transplantation (BMT) with gene therapy has shown the best results in disease outcome. In this study, we examine the outcome of gene therapy alone. Methods: Twitcher (twi) mice used in the study, have a W339X mutation in the GALC gene. Genotype identification of the mice was performed shortly after birth or post-natal day 1 (PND1), using polymerase chain reaction on the toe clips followed by restriction enzyme digestion and electrophoresis. Eight or nine-day-old affected mice were used for gene therapy treatment alone or combined with BMT. While iv injection of 4 × 1013 gc/kg of body weight of viral vector was used originally, different viral titers were also used without BMT to evaluate their outcomes. Results: When the standard viral dose was increased four- and ten-fold (4X and 10X) without BMT, the lifespans were increased significantly. Without BMT the affected mice were fertile, had the same weight and appearance as wild type mice and had normal strength and gait. The brains showed no staining for CD68, a marker for activated microglia/macrophages, and less astrogliosis than untreated twi mice. Conclusion: Our results demonstrate that, it may be possible to treat human KD patients with high dose AAVrh10 without blood stem cell transplantation which would eliminate the side effects of HSCT.
Collapse
Affiliation(s)
- Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
26
|
Li Y, Miller CA, Shea LK, Jiang X, Guzman MA, Chandler RJ, Ramakrishnan SM, Smith SN, Venditti CP, Vogler CA, Ory DS, Ley TJ, Sands MS. Enhanced Efficacy and Increased Long-Term Toxicity of CNS-Directed, AAV-Based Combination Therapy for Krabbe Disease. Mol Ther 2021; 29:691-701. [PMID: 33388420 PMCID: PMC7854295 DOI: 10.1016/j.ymthe.2020.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a demyelinating disease caused by the deficiency of the lysosomal enzyme galactosylceramidase (GALC) and the progressive accumulation of the toxic metabolite psychosine. We showed previously that central nervous system (CNS)-directed, adeno-associated virus (AAV)2/5-mediated gene therapy synergized with bone marrow transplantation and substrate reduction therapy (SRT) to greatly increase therapeutic efficacy in the murine model of Krabbe disease (Twitcher). However, motor deficits remained largely refractory to treatment. In the current study, we replaced AAV2/5 with an AAV2/9 vector. This single change significantly improved several endpoints primarily associated with motor function. However, nearly all (14/16) of the combination-treated Twitcher mice and all (19/19) of the combination-treated wild-type mice developed hepatocellular carcinoma (HCC). 10 out of 10 tumors analyzed had AAV integrations within the Rian locus. Several animals had additional integrations within or near genes that regulate cell growth or death, are known or potential tumor suppressors, or are associated with poor prognosis in human HCC. Finally, the substrate reduction drug L-cycloserine significantly decreased the level of the pro-apoptotic ceramide 18:0. These data demonstrate the value of AAV-based combination therapy for Krabbe disease. However, they also suggest that other therapies or co-morbidities must be taken into account before AAV-mediated gene therapy is considered for human therapeutic trials.
Collapse
Affiliation(s)
- Yedda Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren K Shea
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel A Guzman
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Sai M Ramakrishnan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie N Smith
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Carole A Vogler
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Ley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
LeVine SM, Tsau S. Substrate Reduction Therapy for Krabbe Disease: Exploring the Repurposing of the Antibiotic D-Cycloserine. Front Pediatr 2021; 9:807973. [PMID: 35118033 PMCID: PMC8804370 DOI: 10.3389/fped.2021.807973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Krabbe disease is a lysosomal storage disease that is caused by a deficiency in galactosylceramidase. Infantile onset disease is the most common presentation, which includes progressive neurological deterioration with corresponding demyelination, development of globoid cells, astrocyte gliosis, etc. Hemopoietic stem cell transplantation (HSCT) is a disease modifying therapy, but this intervention is insufficient with many patients still experiencing developmental delays and progressive deterioration. Preclinical studies have used animal models, e.g., twitcher mice, to test different experimental therapies resulting in developments that have led to progressive improvements in the therapeutic impact. Some recent advances have been in the areas of gene therapy and substrate reduction therapy (SRT), as well as using these in combination with HSCT. Unfortunately, new experimental approaches have encountered obstacles which have impeded the translation of novel therapies to human patients. In an effort to identify a safe adjunct therapy, D-cycloserine was tested in preliminary studies in twitcher mice. When administered as a standalone therapy, D-cycloserine was shown to lengthen the lifespan of twitcher mice in a small but significant manner. D-Cycloserine is an FDA approved antibiotic used for drug resistant tuberculosis. It also acts as a partial agonist of the NMDA receptor, which has led to numerous human studies for a range of neuropsychiatric and neurological conditions. In addition, D-cycloserine may inhibit serine palmitoyltransferase (SPT), which catalyzes the rate-limiting step in sphingolipid production. The enantiomer, L-cycloserine, is a much more potent inhibitor of SPT than D-cycloserine. Previously, L-cycloserine was found to act as an effective SRT agent in twitcher mice as both a standalone therapy and as part of combination therapies. L-Cycloserine is not approved for human use, and its potent inhibitory properties may limit its ability to maintain a level of partial inactivation of SPT that is also safe. In theory, D-cycloserine would encompass a much broader dosage range to achieve a safe degree of partial inhibition of SPT, which increases the likelihood it could advance to human studies in patients with Krabbe disease. Furthermore, additional properties of D-cycloserine raise the possibility of other therapeutic mechanisms that could be exploited for the treatment of this disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Sheila Tsau
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
28
|
Shukla A, Kaur P, Narayanan DL, do Rosario MC, Kadavigere R, Girisha KM. Genetic disorders with central nervous system white matter abnormalities: An update. Clin Genet 2021; 99:119-132. [PMID: 33047326 PMCID: PMC9951823 DOI: 10.1111/cge.13863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Several genetic disorders have variable degree of central nervous system white matter abnormalities. We retrieved and reviewed 422 genetic conditions with prominent and consistent involvement of white matter from the literature. We herein describe the current definitions, classification systems, clinical spectrum, neuroimaging findings, genomics, and molecular mechanisms of these conditions. Though diagnosis for most of these disorders relies mainly on genomic tests, specifically exome sequencing, we collate several clinical and neuroimaging findings still relevant in diagnosis of clinically recognizable disorders. We also review the current understanding of pathophysiology and therapeutics of these disorders.
Collapse
Affiliation(s)
- Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
29
|
Weinstock NI, Kreher C, Favret J, Nguyen D, Bongarzone ER, Wrabetz L, Feltri ML, Shin D. Brainstem development requires galactosylceramidase and is critical for pathogenesis in a model of Krabbe disease. Nat Commun 2020; 11:5356. [PMID: 33097716 PMCID: PMC7584660 DOI: 10.1038/s41467-020-19179-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Krabbe disease (KD) is caused by a deficiency of galactosylceramidase (GALC), which induces demyelination and neurodegeneration due to accumulation of cytotoxic psychosine. Hematopoietic stem cell transplantation (HSCT) improves clinical outcomes in KD patients only if delivered pre-symptomatically. Here, we hypothesize that the restricted temporal efficacy of HSCT reflects a requirement for GALC in early brain development. Using a novel Galc floxed allele, we induce ubiquitous GALC ablation (Galc-iKO) at various postnatal timepoints and identify a critical period of vulnerability to GALC ablation between P4-6 in mice. Early Galc-iKO induction causes a worse KD phenotype, higher psychosine levels in the rodent brainstem and spinal cord, and a significantly shorter life-span of the mice. Intriguingly, GALC expression peaks during this critical developmental period in mice. Further analysis of this mouse model reveals a cell autonomous role for GALC in the development and maturation of immature T-box-brain-1 positive brainstem neurons. These data identify a perinatal developmental period, in which neuronal GALC expression influences brainstem development that is critical for KD pathogenesis.
Collapse
Affiliation(s)
- Nadav I Weinstock
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Conlan Kreher
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Jacob Favret
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Daesung Shin
- Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
30
|
Precision Medicine for Lysosomal Disorders. Biomolecules 2020; 10:biom10081110. [PMID: 32722587 PMCID: PMC7463721 DOI: 10.3390/biom10081110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Precision medicine (PM) is an emerging approach for disease treatment and prevention that accounts for the individual variability in the genes, environment, and lifestyle of each person. Lysosomal diseases (LDs) are a group of genetic metabolic disorders that include approximately 70 monogenic conditions caused by a defect in lysosomal function. LDs may result from primary lysosomal enzyme deficiencies or impairments in membrane-associated proteins, lysosomal enzyme activators, or modifiers that affect lysosomal function. LDs are heterogeneous disorders, and the phenotype of the affected individual depends on the type of substrate and where it accumulates, which may be impacted by the type of genetic change and residual enzymatic activity. LDs are individually rare, with a combined incidence of approximately 1:4000 individuals. Specific therapies are already available for several LDs, and many more are in development. Early identification may enable disease course prediction and a specific intervention, which is very important for clinical outcome. Driven by advances in omics technology, PM aims to provide the most appropriate management for each patient based on the disease susceptibility or treatment response predictions for specific subgroups. In this review, we focused on the emerging diagnostic technologies that may help to optimize the management of each LD patient and the therapeutic options available, as well as in clinical developments that enable customized approaches to be selected for each subject, according to the principles of PM.
Collapse
|
31
|
Ricca A, Cascino F, Morena F, Martino S, Gritti A. In vitro Validation of Chimeric β-Galactosylceramidase Enzymes With Improved Enzymatic Activity and Increased Secretion. Front Mol Biosci 2020; 7:167. [PMID: 32850960 PMCID: PMC7396597 DOI: 10.3389/fmolb.2020.00167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/01/2020] [Indexed: 12/27/2022] Open
Abstract
Globoid Cell Leukodystrophy (GLD) is a lysosomal storage disease (LSD) caused by inherited defects of the β-galactosylceramidase (GALC) gene. The infantile forms display a rapid and aggressive central and peripheral nervous system (CNS and PNS) dysfunction. No treatments are available for GLD patients. Effective gene therapy (GT) strategies for GLD require a safe and widespread delivery of the functional GALC enzyme to all affected tissues/organs, and particularly to the CNS. The use of chimeric lysosomal enzymes with increased secretion and enhanced transport across the blood-brain barrier (BBB) that boost the efficacy of GT approaches in pre-clinical models of similar neurodegenerative LSDs may benefit GLD as well. Here, we tested the safety and biological efficacy of chimeric GALC enzymes engineered to express an alternative signal peptide (iduronate-2-sulfatase - IDSsp) and the low-density lipoprotein receptor (LDLr)-binding domain from the Apolipoprotein E II (ApoE II) in GLD murine neural and hematopoietic stem/progenitor cells and progeny, which are relevant cells types in the context of in vivo and ex vivo GT platforms. We show that the lentiviral vector-mediated expression of the chimeric GALC enzymes is safe and leads to supranormal enzymatic activity in both neural and hematopoietic cells. The IDSsp.GALC shows enhanced expression and secretion in comparison to the unmodified GALC. The chimeric GALC enzymes produced by LV-transduced cells reduce intracellular galactosylceramide (GalCer) storage and effectively cross-correct GLD murine neurons and glial cells, indicating that the transgenic enzymes are delivered to lysosomes, efficiently secreted, and functional. Of note, the expression of LDLr and LDLr-related proteins in GLD neurons and glial cells supports the exploitation of this system to enhance the GALC supply in affected CNS cells and tissues. These in vitro studies support the use of chimeric GALC enzymes to develop novel and more effective GT approaches for GLD.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cascino
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
32
|
Lin DS, Ho CS, Huang YW, Wu TY, Lee TH, Huang ZD, Wang TJ, Yang SJ, Chiang MF. Impairment of Proteasome and Autophagy Underlying the Pathogenesis of Leukodystrophy. Cells 2020; 9:E1124. [PMID: 32370022 PMCID: PMC7290671 DOI: 10.3390/cells9051124] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023] Open
Abstract
Impairment of the ubiquitin-proteasome-system (UPS) and autophagy causing cytoplasmic aggregation of ubiquitin andp62 have been implicated in the pathogenesis of most neurodegenerative disorders, yet, they have not been fully elucidated in leukodystrophies. The relationship among impairment of UPS, autophagy, and globoid cell leukodystrophy (GLD), one of the most common demyelinating leukodystrophies, is clarified in this study. We examined the ubiquitin and autophagy markers in the brains of twitcher mice, a murine model of infantile GLD, and in human oligodendrocytes incubated with psychosine. Immunohistochemical examinations showed spatiotemporal accumulation of ubiquitin- and p62-aggregates mainly in the white matter of brain and spinal cord at disease progression. Western blot analysis demonstrated a significant accumulation of ubiquitin, p62, and LC3-II in insoluble fraction in parallel with progressive demyelination and neuroinflammation in twitcher brains. In vitro study validated a dose- and time-dependent cytotoxicity of psychosine upon autophagy and UPS machinery. Inhibition of autophagy and UPS exacerbated the accumulation of insoluble ubiquitin, p62, and LC3-II proteins mediated by psychosine cytotoxicity as well as increased cytoplasmic deposition of ubiquitin- and p62-aggregates, and accumulation of autophagosomes and autolysosomes. Further, the subsequent accumulation of reactive oxygen species and reduction of mitochondrial respiration led to cell death. Our studies validate the impairment of proteasome and autophagy underlying the pathogenesis of GLD. These findings provide a novel insight into pathogenesis of GLD and suggest a specific pathomechanism as an ideal target for therapeutic approaches.
Collapse
Affiliation(s)
- Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine and Institute of Biomedical Sciences, Mackay Medical College, New Taipei 25245, Taiwan
| | - Che-Sheng Ho
- Department of Pediatric Neurology, Mackay Memorial Hospital, Taipei 10449, Taiwan;
| | - Yu-Wen Huang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (T.-Y.W.); (T.-H.L.); (Z.-D.H.); (S.-J.Y.)
| | - Tsu-Yen Wu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (T.-Y.W.); (T.-H.L.); (Z.-D.H.); (S.-J.Y.)
| | - Tsung-Han Lee
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (T.-Y.W.); (T.-H.L.); (Z.-D.H.); (S.-J.Y.)
| | - Zo-Darr Huang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (T.-Y.W.); (T.-H.L.); (Z.-D.H.); (S.-J.Y.)
| | - Tuan-Jen Wang
- Department of Laboratory Medicine, Mackay Memorial Hospital, Taipei 10449, Taiwan;
| | - Shun-Jie Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-W.H.); (T.-Y.W.); (T.-H.L.); (Z.-D.H.); (S.-J.Y.)
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Mackay Medicine, Nursing and Management College, Taipei 11260, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
33
|
Favret JM, Weinstock NI, Feltri ML, Shin D. Pre-clinical Mouse Models of Neurodegenerative Lysosomal Storage Diseases. Front Mol Biosci 2020; 7:57. [PMID: 32351971 PMCID: PMC7174556 DOI: 10.3389/fmolb.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
There are over 50 lysosomal hydrolase deficiencies, many of which cause neurodegeneration, cognitive decline and death. In recent years, a number of broad innovative therapies have been proposed and investigated for lysosomal storage diseases (LSDs), such as enzyme replacement, substrate reduction, pharmacologic chaperones, stem cell transplantation, and various forms of gene therapy. Murine models that accurately reflect the phenotypes observed in human LSDs are critical for the development, assessment and implementation of novel translational therapies. The goal of this review is to summarize the neurodegenerative murine LSD models available that recapitulate human disease, and the pre-clinical studies previously conducted. We also describe some limitations and difficulties in working with mouse models of neurodegenerative LSDs.
Collapse
Affiliation(s)
| | | | | | - Daesung Shin
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
34
|
Rafi MA, Luzi P, Wenger DA. Conditions for combining gene therapy with bone marrow transplantation in murine Krabbe disease. ACTA ACUST UNITED AC 2020; 10:105-115. [PMID: 32363154 PMCID: PMC7186542 DOI: 10.34172/bi.2020.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Krabbe disease (KD) is an autosomal recessive lysosomal disorder caused by mutations in the galactocerebrosidase (GALC) gene. This results in defective myelination in the peripheral and central nervous systems due to low GALC activity. Treatment at this time is limited to hematopoietic stem cell transplantation (HSCT) in pre-symptomatic individuals. While this treatment extends the lives of treated individuals, most have difficulty walking by the end of the first decade due to peripheral neuropathy. Studies in the murine model of KD, twitcher (twi) combining bone marrow transplantation (BMT) with AAVrh10-mGALC showed a great extension of life from 40 days to about 400 days, with some living a full life time. Methods: In order to find the optimum conditions for dosing and timing of this combined treatment, twi mice were injected with five doses of AAVrh10-mGALC at different times after BMT. Survival, as well as GALC expression were monitored along with studies of sciatic nerve myelination and possible liver pathology. Results: Dosing had a pronounced effect on survival and measured GALC activity. There was window of time after BMT to inject the viral vector and see similar results, however delaying both the BMT and the viral injection shortened the lifespans of the treated mice. Lowering the viral dose too much decreased the correction of the sciatic nerve myelination. There was no evidence for hepatic neoplasia. Conclusion: These studies provide the conditions optimum for successfully treating the murine model of KD. There is some flexibility in dosing and timing to obtain a satisfactory outcome. These studies are critical to the planning of a human trial combining the "standard of care", HSCT, with a single iv injection of AAVrh10-GALC.
Collapse
Affiliation(s)
- Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
35
|
Wolf NI, Breur M, Plug B, Beerepoot S, Westerveld ASR, van Rappard DF, de Vries SI, Kole MHP, Vanderver A, van der Knaap MS, Lindemans CA, van Hasselt PM, Boelens JJ, Matzner U, Gieselmann V, Bugiani M. Metachromatic leukodystrophy and transplantation: remyelination, no cross-correction. Ann Clin Transl Neurol 2020; 7:169-180. [PMID: 31967741 PMCID: PMC7034505 DOI: 10.1002/acn3.50975] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE In metachromatic leukodystrophy, a lysosomal storage disorder due to decreased arylsulfatase A activity, hematopoietic stem cell transplantation may stop brain demyelination and allow remyelination, thereby halting white matter degeneration. This is the first study to define the effects and therapeutic mechanisms of hematopoietic stem cell transplantation on brain tissue of transplanted metachromatic leukodystrophy patients. METHODS Autopsy brain tissue was obtained from eight (two transplanted and six nontransplanted) metachromatic leukodystrophy patients, and two age-matched controls. We examined the presence of donor cells by immunohistochemistry and microscopy. In addition, we assessed myelin content, oligodendrocyte numbers, and macrophage phenotypes. An unpaired t-test, linear regression or the nonparametric Mann-Whitney U-test was performed to evaluate differences between the transplanted, nontransplanted, and control group. RESULTS In brain tissue of transplanted patients, we found metabolically competent donor macrophages expressing arylsulfatase A distributed throughout the entire white matter. Compared to nontransplanted patients, these macrophages preferentially expressed markers of alternatively activated, anti-inflammatory cells that may support oligodendrocyte survival and differentiation. Additionally, transplanted patients showed higher numbers of oligodendrocytes and evidence for remyelination. Contrary to the current hypothesis on therapeutic mechanism of hematopoietic cell transplantation in metachromatic leukodystrophy, we detected no enzymatic cross-correction to resident astrocytes and oligodendrocytes. INTERPRETATION In conclusion, donor macrophages are able to digest accumulated sulfatides and may play a neuroprotective role for resident oligodendrocytes, thereby enabling remyelination, albeit without evidence of cross-correction of oligo- and astroglia. These results emphasize the importance of immunomodulation in addition to the metabolic correction, which might be exploited for improved outcomes.
Collapse
Affiliation(s)
- Nicole I. Wolf
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjolein Breur
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Bonnie Plug
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Shanice Beerepoot
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Center for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Aimee S. R. Westerveld
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Diane F. van Rappard
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Sharon I. de Vries
- Department of Axonal SignalingNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Maarten H. P. Kole
- Department of Axonal SignalingNetherlands Institute for NeuroscienceAmsterdamThe Netherlands
- Cell Biology Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Adeline Vanderver
- Division of NeurologyDepartment of PediatricsChildren’s Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaPennsylvania
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Marjo S. van der Knaap
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Functional GenomicsCenter for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Caroline A. Lindemans
- Department of PediatricsUniversity Medical Center UtrechtUtrechtThe Netherlands
- Pediatric Blood and Marrow Transplantation ProgramPrincess Maxima CenterUtrechtThe Netherlands
| | - Peter M. van Hasselt
- Department of Metabolic DiseasesWilhelmina Children’s HospitalUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jaap J. Boelens
- Department of PediatricsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ulrich Matzner
- Institute of Biochemistry and Molecular BiologyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular BiologyRheinische Friedrich‐Wilhelms UniversityBonnGermany
| | - Marianna Bugiani
- Department of Child NeurologyCenter for Childhood White Matter DiseasesEmma Children’s HospitalAmsterdam University Medical CentersVrije Universiteit Amsterdam, and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of PathologyAmsterdam NeuroscienceAmsterdam University Medical CentersVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
36
|
Thusang K, Khalil S. Progressive Cognitive Decline and Gait Instability in a Four-Year-Old Boy. Pediatr Neurol 2019; 99:92-93. [PMID: 31036425 DOI: 10.1016/j.pediatrneurol.2019.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Kabelo Thusang
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan.
| | - Suad Khalil
- Department of Neurology and Ophthalmology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
37
|
Li Y, Xu Y, Benitez BA, Nagree MS, Dearborn JT, Jiang X, Guzman MA, Woloszynek JC, Giaramita A, Yip BK, Elsbernd J, Babcock MC, Lo M, Fowler SC, Wozniak DF, Vogler CA, Medin JA, Crawford BE, Sands MS. Genetic ablation of acid ceramidase in Krabbe disease confirms the psychosine hypothesis and identifies a new therapeutic target. Proc Natl Acad Sci U S A 2019; 116:20097-20103. [PMID: 31527255 PMCID: PMC6778236 DOI: 10.1073/pnas.1912108116] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Infantile globoid cell leukodystrophy (GLD, Krabbe disease) is a fatal demyelinating disorder caused by a deficiency in the lysosomal enzyme galactosylceramidase (GALC). GALC deficiency leads to the accumulation of the cytotoxic glycolipid, galactosylsphingosine (psychosine). Complementary evidence suggested that psychosine is synthesized via an anabolic pathway. Here, we show instead that psychosine is generated catabolically through the deacylation of galactosylceramide by acid ceramidase (ACDase). This reaction uncouples GALC deficiency from psychosine accumulation, allowing us to test the long-standing "psychosine hypothesis." We demonstrate that genetic loss of ACDase activity (Farber disease) in the GALC-deficient mouse model of human GLD (twitcher) eliminates psychosine accumulation and cures GLD. These data suggest that ACDase could be a target for substrate reduction therapy (SRT) in Krabbe patients. We show that pharmacological inhibition of ACDase activity with carmofur significantly decreases psychosine accumulation in cells from a Krabbe patient and prolongs the life span of the twitcher (Twi) mouse. Previous SRT experiments in the Twi mouse utilized l-cycloserine, which inhibits an enzyme several steps upstream of psychosine synthesis, thus altering the balance of other important lipids. Drugs that directly inhibit ACDase may have a more acceptable safety profile due to their mechanistic proximity to psychosine biogenesis. In total, these data clarify our understanding of psychosine synthesis, confirm the long-held psychosine hypothesis, and provide the impetus to discover safe and effective inhibitors of ACDase to treat Krabbe disease.
Collapse
Affiliation(s)
- Yedda Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Yue Xu
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Bruno A Benitez
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Murtaza S Nagree
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
| | - Joshua T Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Miguel A Guzman
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Josh C Woloszynek
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Alex Giaramita
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Bryan K Yip
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Joseph Elsbernd
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Michael C Babcock
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Melanie Lo
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Stephen C Fowler
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Carole A Vogler
- Department of Pathology, St. Louis University School of Medicine, St. Louis, MO 63104
| | - Jeffrey A Medin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S, Canada
- Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Brett E Crawford
- Department of Research, BioMarin Pharmaceutical Inc., Novato, CA 94949
| | - Mark S Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
38
|
Diagnosis, prognosis, and treatment of leukodystrophies. Lancet Neurol 2019; 18:962-972. [DOI: 10.1016/s1474-4422(19)30143-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
|
39
|
Pan X, Sands SA, Yue Y, Zhang K, LeVine SM, Duan D. An Engineered Galactosylceramidase Construct Improves AAV Gene Therapy for Krabbe Disease in Twitcher Mice. Hum Gene Ther 2019; 30:1039-1051. [PMID: 31184217 PMCID: PMC6761594 DOI: 10.1089/hum.2019.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Krabbe disease is an inherited neurodegenerative disease caused by mutations in the galactosylceramidase gene. In the infantile form, patients die before 3 years of age. Systemic adeno-associated virus serotype 9 (AAV9) gene therapy was recently shown to reverse the disease course in human patients in another lethal infantile neurodegenerative disease. To explore AAV9 therapy for Krabbe disease, we engineered a codon-optimized AAV9 galactosylceramidase vector. We further incorporated features to allow AAV9-derived galactosylceramidase to more efficiently cross the blood-brain barrier and be secreted from transduced cells. We tested the optimized vector by a single systemic injection in the twitcher mouse, an authentic Krabbe disease model. Untreated twitcher mice showed characteristic neuropathology and motion defects. They died prematurely with a median life span of 41 days. Intravenous injection in 2-day-old twitcher mice reduced central and peripheral neuropathology and significantly improved the gait pattern and body weight. Noticeably, the median life span was extended to 150 days. Intraperitoneal injection in 6- to 12-day-old twitcher mice also significantly improved the motor function, body weight, and median life span (to 104 days). Our results far exceed the ≤70 days median life span seen in all reported stand-alone systemic AAV therapies. Our study highlights the importance of vector engineering for Krabbe disease gene therapy. The engineered vector warrants further development.
Collapse
Affiliation(s)
- Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Scott A. Sands
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Steven M. LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
40
|
Marshall MS, Issa Y, Jakubauskas B, Stoskute M, Elackattu V, Marshall JN, Bogue W, Nguyen D, Hauck Z, Rue E, Karumuthil-Melethil S, Zaric V, Bosland M, van Breemen RB, Givogri MI, Gray SJ, Crocker SJ, Bongarzone ER. Long-Term Improvement of Neurological Signs and Metabolic Dysfunction in a Mouse Model of Krabbe's Disease after Global Gene Therapy. Mol Ther 2018; 26:874-889. [PMID: 29433937 PMCID: PMC5910889 DOI: 10.1016/j.ymthe.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/06/2018] [Accepted: 01/11/2018] [Indexed: 02/04/2023] Open
Abstract
We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.
Collapse
Affiliation(s)
- Michael S Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yazan Issa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Benas Jakubauskas
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Monika Stoskute
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vince Elackattu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeffrey N Marshall
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Wil Bogue
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Duc Nguyen
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Zane Hauck
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Emily Rue
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Violeta Zaric
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maarten Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard B van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1053 Buenos Aires, Argentina.
| |
Collapse
|
41
|
Scott-Hewitt NJ, Folts CJ, Hogestyn JM, Piester G, Mayer-Pröschel M, Noble MD. Heterozygote galactocerebrosidase (GALC) mutants have reduced remyelination and impaired myelin debris clearance following demyelinating injury. Hum Mol Genet 2018; 26:2825-2837. [PMID: 28575206 DOI: 10.1093/hmg/ddx153] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies are identifying multiple genetic risk factors for several diseases, but the functional role of these changes remains mostly unknown. Variants in the galactocerebrosidase (GALC) gene, for example, were identified as a risk factor for Multiple Sclerosis (MS); however, the potential biological relevance of GALC variants to MS remains elusive. We found that heterozygote GALC mutant mice have reduced myelin debris clearance and diminished remyelination after a demyelinating insult. We found no histological or behavioral differences between adult wild-type and GALC +/- animals under normal conditions. Following exposure to the demyelinating agent cuprizone, however, GALC +/- animals had significantly reduced remyelination during recovery. In addition, the microglial phagocytic response and elevation of Trem2, both necessary for clearing damaged myelin, were markedly reduced in GALC +/- animals. These altered responses could be corrected in vitro by treatment with NKH-477, a compound discovered as protective in our previous studies on Krabbe disease, which is caused by mutations in both GALC alleles. Our data are the first to show remyelination defects in individuals with a single mutant GALC allele, suggesting such carriers may have increased vulnerability to myelin damage following injury or disease due to inefficient myelin debris clearance. We thus provide a potential functional link between GALC variants and increased MS susceptibility, particularly due to the failure of remyelination associated with progressive MS. Finally, this work demonstrates that genetic variants identified through genome-wide association studies may contribute significantly to complex diseases, not by driving initial symptoms, but by altering repair mechanisms.
Collapse
Affiliation(s)
- Nicole J Scott-Hewitt
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Christopher J Folts
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jessica M Hogestyn
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Gavin Piester
- Department of Biochemistry, University of Rochester, Rochester, NY 14642, USA
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mark D Noble
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
42
|
The spectrum of adult-onset heritable white-matter disorders. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-64076-5.00043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Elitt CM, Volpe JJ. Degenerative Disorders of the Newborn. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:823-858.e11. [DOI: 10.1016/b978-0-323-42876-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Graziano ACE, Pannuzzo G, Avola R, Cardile V. Chaperones as potential therapeutics for Krabbe disease. J Neurosci Res 2017; 94:1220-30. [PMID: 27638605 DOI: 10.1002/jnr.23755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/24/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
45
|
Nicaise AM, Bongarzone ER, Crocker SJ. A microglial hypothesis of globoid cell leukodystrophy pathology. J Neurosci Res 2017; 94:1049-61. [PMID: 27638591 DOI: 10.1002/jnr.23773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 11/09/2022]
Abstract
Globoid cell leukodystrophy (GLD), also known as Krabbe's disease, is a fatal demyelinating disease accompanied by the formation of giant, multinucleated cells called globoid cells. Previously believed to be a byproduct of inflammation, these cells can be found early in disease before evidence of any damage. The precise mechanism by which these globoid cells cause oligodendrocyte dysfunction is not completely understood, nor is their cell type defined. This Review outlines the idea that microglial cells are transformed into an unknown and undefined novel M3 phenotype in GLD, which is cytotoxic to oligodendrocytes, leading to disease progression. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut.
| |
Collapse
|
46
|
Bradbury AM, Bagel JH, Jiang X, Swain GP, Prociuk ML, Fitzgerald CA, O'Donnell PA, Braund KG, Ory DS, Vite CH. Clinical, electrophysiological, and biochemical markers of peripheral and central nervous system disease in canine globoid cell leukodystrophy (Krabbe's disease). J Neurosci Res 2017; 94:1007-17. [PMID: 27638585 DOI: 10.1002/jnr.23838] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 11/10/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a debilitating and always fatal pediatric neurodegenerative disease caused by a mutation in the gene encoding the hydrolytic enzyme galactosylceramidase (GALC). In the absence of GALC, progressive loss of myelin and accumulation of a neurotoxic substrate lead to incapacitating loss of motor and cognitive function and death, typically by 2 years of age. Currently, there is no cure. Recent convincing evidence of the therapeutic potential of combining gene and cell therapies in the murine model of GLD has accelerated the requirement for validated markers of disease to evaluate therapeutic efficacy. Here we demonstrate clinically relevant and quantifiable measures of central (CNS) and peripheral (PNS) nervous system disease progression in the naturally occurring canine model of GLD. As measured by brainstem auditory-evoked response testing, GLD dogs demonstrated a significant increase in I-V interpeak latency and hearing threshold at all time points. Motor nerve conduction velocities (NCVs) in GLD dogs were significantly lower than normal by 12-16 weeks of age, and sensory NCV was significantly lower than normal by 8-12 weeks of age, serving as a sensitive indicator of peripheral nerve dysfunction. Post-mortem histological evaluations confirmed neuroimaging and electrodiagnostic assessments and detailed loss of myelin and accumulation of storage product in the CNS and the PNS. Additionally, cerebrospinal fluid psychosine concentrations were significantly elevated in GLD dogs, demonstrating potential as a biochemical marker of disease. These data demonstrate that CNS and PNS disease progression can be quantified over time in the canine model of GLD with tools identical to those used to assess human patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Allison M Bradbury
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Jessica H Bagel
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xuntian Jiang
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Gary P Swain
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maria L Prociuk
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caitlin A Fitzgerald
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patricia A O'Donnell
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle G Braund
- Veterinary Neurological Consulting Services, Dadeville, Alabama
| | - Daniel S Ory
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri
| | - Charles H Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Ricca A, Gritti A. Perspective on innovative therapies for globoid cell leukodystrophy. J Neurosci Res 2017; 94:1304-17. [PMID: 27638612 DOI: 10.1002/jnr.23752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/24/2022]
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe's disease, is a lysosomal storage disorder resulting from deficiency of the lysosomal hydrolase galactosylceramidase. The infantile forms are characterized by a unique relentless and aggressive progression with a wide range of neurological symptoms and complications. Here we review and discuss the basic concepts and the novel mechanisms identified as key contributors to the peculiar GLD pathology, highlighting their therapeutic implications. Then, we evaluate evidence from extensive experimental studies on GLD animal models that have highlighted fundamental requirements to obtain substantial therapeutic benefit, including early and timely intervention, high levels of enzymatic reconstitution, and global targeting of affected tissues. Continuous efforts in understanding GLD pathophysiology, the interplay between various therapies, and the mechanisms of disease correction upon intervention may allow advancing research with innovative approaches and prioritizing treatment strategies to develop more efficacious treatments. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessandra Ricca
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
48
|
Wenger DA, Rafi MA, Luzi P. Krabbe disease: One Hundred years from the bedside to the bench to the bedside. J Neurosci Res 2017; 94:982-9. [PMID: 27638583 DOI: 10.1002/jnr.23743] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/24/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
This Review summarizes the progress in understanding the pathogenesis and treatment of Krabbe disease from the description of five patients in by Knud Krabbe until 2016. To determine the cause of this genetic disease, pathological and chemical analyses of tissues from the nervous systems of patients were performed. It was determined that these patients had a pathological feature known as globoid cell in the brain and that this consisted partially of galactosylceramide, a major sphingolipid component of myelin. The finding that these patients had a deficiency of galactocerebrosidase (GALC) activity opened the way to relatively simple diagnostic testing with easily obtainable tissue samples, studies leading to the purification of GALC, and cloning of the GALC cDNA and gene. The availability of the gene sequence led to the identification of mutations in patients and to the current studies involving the use of viral vectors containing the GALC cDNA to treat experimentally naturally occurring animal models, such as twitcher mice. Currently, treatment of presymptomatic human patients is limited to hematopoietic stem cell transplantation (HSCT). With recent studies showing successful treatment of animal models with a combination of HSCT and viral gene therapy, it is hoped that more effective treatments will soon be available for human patients. For this Review, it is not possible to reference all of the articles contributing to our current state of knowledge about this disease; however, we have chosen those that have influenced our studies by suggesting research paths to pursue. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David A Wenger
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Paola Luzi
- Department of Neurology, Sidney Kimmel College of Medicine at Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Hu P, Li Y, Nikolaishvili-Feinberg N, Scesa G, Bi Y, Pan D, Moore D, Bongarzone ER, Sands MS, Miller R, Kafri T. Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe's disease: Present convictions and future prospects. J Neurosci Res 2017; 94:1152-68. [PMID: 27638600 PMCID: PMC5027985 DOI: 10.1002/jnr.23847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/11/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
Abstract
Currently, presymtomatic hematopoietic stem and progenitor cell transplantation (HSPCT) is the only therapeutic modality that alleviates Krabbe's disease (KD)‐induced central nervous system damage. However, all HSPCT‐treated patients exhibit severe deterioration in peripheral nervous system function characterized by major motor and expressive language pathologies. We hypothesize that a combination of several mechanisms contribute to this phenomenon, including 1) nonoptimal conditioning protocols with consequent inefficient engraftment and biodistribution of donor‐derived cells and 2) insufficient uptake of donor cell‐secreted galactocerebrosidease (GALC) secondary to a naturally low expression level of the cation‐independent mannose 6‐phosphate‐receptor (CI‐MPR). We have characterized the effects of a busulfan (Bu) based conditioning regimen on the efficacy of HSPCT in prolonging twi mouse average life span. There was no correlation between the efficiency of bone marrow engraftment of donor cells and twi mouse average life span. HSPCT prolonged the average life span of twi mice, which directly correlated with the aggressiveness of the Bu‐mediated conditioning protocols. HSPC transduced with lentiviral vectors carrying the GALC cDNA under control of cell‐specific promoters were efficiently engrafted in twi mouse bone marrow. To facilitate HSPCT‐mediated correction of GALC deficiency in target cells expressing low levels of CI‐MPR, a novel GALC fusion protein including the ApoE1 receptor was developed. Efficient cellular uptake of the novel fusion protein was mediated by a mannose‐6‐phosphate‐independent mechanism. The novel findings described here elucidate some of the cellular mechanisms that impede the cure of KD patients by HSPCT and concomitantly open new directions to enhance the therapeutic efficacy of HSPCT protocols for KD. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yedda Li
- Department of Internal Medicine, Washington University in St. Louis, School of Medicine, St Louis, Missouri
| | - Nana Nikolaishvili-Feinberg
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giuseppe Scesa
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Yanmin Bi
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Dominic Moore
- Biostatistics Core Facility, UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Mark S Sands
- Department of Internal Medicine, Washington University in St. Louis, School of Medicine, St Louis, Missouri
| | - Ryan Miller
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Departments of Pathology and Laboratory Medicine and of Neurology, Neurosciences Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
50
|
Maher KR, Yeager AM. Cellular transplant therapies for globoid cell leukodystrophy: Preclinical and clinical observations. J Neurosci Res 2017; 94:1180-8. [PMID: 27638602 DOI: 10.1002/jnr.23782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
Globoid cell leukodystrophy (GLD) is a progressive neurodegenerative disorder caused by the deficiency of galactocerebrosidase (GALC), resulting in accumulation of toxic metabolites in neural tissues. Clinically variable based on age of onset, infantile GLD is generally a rapidly fatal syndrome of progressive neurologic and cognitive decline, whereas later-onset GLD has a more indolent, protracted clinical course. Animal models, particularly the twitcher mouse, have allowed investigation of both the pathophysiology of and the potential treatment modalities for GLD. Cellular therapy for GLD, notably hematopoietic cell transplantation (HCT; transplantation of bone marrow, peripheral blood stem cells, or umbilical cord blood cells) from a normal related or unrelated allogeneic donor provides a self-renewing source of GALC in donor-derived cells. The only currently available treatment option in human GLD, allogeneic HCT, can slow the progression of the disease and improve survival, especially when performed in presymptomatic infants. Because persistent neurologic dysfunction still occurs after HCT in GLD, preclinical studies are evaluating combinations of HCT with other treatment modalities. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Keri R Maher
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Andrew M Yeager
- University of Arizona Cancer Center, Tucson, Arizona. .,Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona. .,Department of Pediatrics, University of Arizona College of Medicine, Tucson, Arizona.
| |
Collapse
|