1
|
Sinopoulou E, Spejo AB, Roopnarine N, Burnside ER, Bartus K, De Winter F, McMahon SB, Bradbury EJ. Chronic muscle recordings reveal recovery of forelimb function in spinal injured female rats after cortical epidural stimulation combined with rehabilitation and chondroitinase ABC. J Neurosci Res 2022; 100:2055-2076. [PMID: 35916483 PMCID: PMC9544922 DOI: 10.1002/jnr.25111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 11/11/2022]
Abstract
Cervical level spinal cord injury (SCI) can severely impact upper limb muscle function, which is typically assessed in the clinic using electromyography (EMG). Here, we established novel preclinical methodology for EMG assessments of muscle function after SCI in awake freely moving animals. Adult female rats were implanted with EMG recording electrodes in bicep muscles and received bilateral cervical (C7) contusion injuries. Forelimb muscle activity was assessed by recording maximum voluntary contractions during a grip strength task and cortical motor evoked potentials in the biceps. We demonstrate that longitudinal recordings of muscle activity in the same animal are feasible over a chronic post-injury time course and provide a sensitive method for revealing post-injury changes in muscle activity. This methodology was utilized to investigate recovery of muscle function after a novel combination therapy. Cervical contused animals received intraspinal injections of a neuroplasticity-promoting agent (lentiviral-chondroitinase ABC) plus 11 weeks of cortical epidural electrical stimulation (3 h daily, 5 days/week) and behavioral rehabilitation (15 min daily, 5 days/week). Longitudinal monitoring of voluntary and evoked muscle activity revealed significantly increased muscle activity and upper limb dexterity with the combination treatment, compared to a single treatment or no treatment. Retrograde mapping of motor neurons innervating the biceps showed a predominant distribution across spinal segments C5-C8, indicating that treatment effects were likely due to neuroplastic changes in a mixture of intact and injured motor neurons. Thus, longitudinal assessments of muscle function after SCI correlate with skilled reach and grasp performance and reveal functional benefits of a novel combination therapy.
Collapse
Affiliation(s)
- Eleni Sinopoulou
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, London, UK.,Department of Neuroscience, The Center for Neural Repair, University of California, San Diego, California, USA
| | - Aline Barroso Spejo
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, London, UK
| | - Naomi Roopnarine
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, London, UK
| | - Emily R Burnside
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, London, UK
| | - Katalin Bartus
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, London, UK
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Stephen B McMahon
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, London, UK
| | - Elizabeth J Bradbury
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, Regeneration Group, The Wolfson Centre for Age-Related Diseases, London, UK
| |
Collapse
|
2
|
Ohno T, Fukuda S, Murabe N, Niido M, Sakurai M. Temporal Course of Transient Direct Corticomotoneuronal Connections during Development in Rodents. Neuroscience 2021; 478:89-99. [PMID: 34534634 DOI: 10.1016/j.neuroscience.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
We previously observed in rodents that during the 2nd postnatal week corticospinal axons make monosynaptic connections with motoneurons. Prior to that finding, it had been believed that such contacts only occur in higher primates. Although an in vitro electrophysiological study is prerequisite for studying the developmental time course of synaptic connections, the technical difficulty of reliably recording synaptic responses from spinal motoneurons in animals over 2 weeks old hampered the study. Instead, we used retrograde transsynaptic labeling with a genetically modified rabies virus to confirm the presence of direct corticomotoneuronal connections at an early developmental stage and to show that these connections were subsequently eliminated. However, determination of an accurate elimination time course and quantitative evaluation of synaptic connectivity cannot be achieved through viral-tracing experiments. For the present study, we improved the slice preparation procedure and maintenance of slice viability, which enabled us to record postsynaptic responses using the whole cell patch-clamp technique from retrogradely labeled forearm motoneurons up until postnatal week 7. We examined the extent of corticomotoneuronal monosynaptic connections and studied the time course of their accumulation and loss. Positive ratios of monosynaptic corticomotoneuronal EPSCs increased from P6 to P8 and then plateaued (P8-P13: 65%). Thereafter, the monosynaptic connections declined until P21, at which time they were no longer detected. The time course of the falling phase and elimination was confirmed by experiments using optogenetic stimulation. The timing of the elimination fell within the same range (P18-22) estimated in our earlier study using retrograde transsynaptic labeling.
Collapse
Affiliation(s)
- Takae Ohno
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Satoshi Fukuda
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Naoyuki Murabe
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Mizuho Niido
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| | - Masaki Sakurai
- Department of Physiology, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
3
|
Sharif H, Alexander H, Azam A, Martin JH. Dual motor cortex and spinal cord neuromodulation improves rehabilitation efficacy and restores skilled locomotor function in a rat cervical contusion injury model. Exp Neurol 2021; 341:113715. [PMID: 33819448 PMCID: PMC10150584 DOI: 10.1016/j.expneurol.2021.113715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/14/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023]
Abstract
Motor recovery after spinal cord injury is limited due to sparse descending pathway axons caudal to the injury. Rehabilitation is the primary treatment for paralysis in humans with SCI, but only produces modest functional recovery. Here, we determined if dual epidural motor cortex (M1) intermittent theta burst stimulation (iTBS) and cathodal transcutaneous spinal direct stimulation (tsDCS) enhances the efficacy of rehabilitation in improving motor function after cervical SCI. iTBS produces CST axon sprouting and tsDCS enhances M1-evoked spinal activity and muscle contractions after SCI. Rats were trained to perform the horizontal ladder task. Animals received a moderate midline C4 contusion, producing bilateral forelimb impairments. After 2 weeks, animals either received 10 days of iTBS+tsDCS or no stimulation; subsequently, all animals received 6 weeks of daily rehabilitation on the horizontal ladder task. Lesion size was not different in the two animal groups. Rehabilitation alone improved performance by a 22% reduction in skilled locomotion error rate, whereas stimulation+rehabilitation was markedly more effective (52%), and restored error rate to pre-injury levels. Stimulation+rehabilitation significantly increased CST axon length caudal to the injury and the amount of ventral horn label was positively correlated with functional improvement. The stimulation+rehabilitation group had significantly less proprioceptive afferent terminal labelling in the intermediate zone and fewer synapses on motoneurons . Afferent fiber terminal labeling was negatively correlated with motor recovery. Thus, the dual neuromodulation protocol promotes adaptive plasticity in corticospinal and proprioceptive afferents networks after contusion SCI, leading to enhanced rehabilitation efficacy and recovery of skilled locomotion.
Collapse
Affiliation(s)
- Hisham Sharif
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Heather Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Anika Azam
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
4
|
Jack AS, Hurd C, Martin J, Fouad K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 2020; 37:1933-1953. [PMID: 32438858 DOI: 10.1089/neu.2020.7033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One of the few such therapies that has been successfully translated from basic science to clinical applications is electrical stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge gaps, to highlight the direction of future studies for this therapeutic modality.
Collapse
Affiliation(s)
- Andrew S Jack
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Caitlin Hurd
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, and City University of New York Graduate Center, New York, New York, USA
| | - Karim Fouad
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Murabe N, Mori T, Fukuda S, Isoo N, Ohno T, Mizukami H, Ozawa K, Yoshimura Y, Sakurai M. Higher primate-like direct corticomotoneuronal connections are transiently formed in a juvenile subprimate mammal. Sci Rep 2018; 8:16536. [PMID: 30410053 PMCID: PMC6224497 DOI: 10.1038/s41598-018-34961-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022] Open
Abstract
The corticospinal (CS) tract emerged and evolved in mammals, and is essentially involved in voluntary movement. Over its phylogenesis, CS innervation gradually invaded to the ventral spinal cord, eventually making direct connections with spinal motoneurons (MNs) in higher primates. Despite its importance, our knowledge of the origin of the direct CS-MN connections is limited; in fact, there is controversy as to whether these connections occur in subprimate mammals, such as rodents. Here we studied the retrograde transsynaptic connection between cortical neurons and MNs in mice by labeling the cells with recombinant rabies virus. On postnatal day 14 (P14), we found that CS neurons make direct connections with cervical MNs innervating the forearm muscles. Direct connections were also detected electrophysiologically in whole cell recordings from identified MNs retrogradely-labeled from their target muscles and optogenetic CS stimulation. In contrast, few, if any, lumbar MNs innervating hindlimbs showed direct connections on P18. Moreover, the direct CS-MN connections observed on P14 were later eliminated. The transient CS-MN cells were distributed predominantly in the M1 and S1 areas. These findings provide insight into the ontogeny and phylogeny of the CS projection and appear to settle the controversy about direct CS-MN connections in subprimate mammals.
Collapse
Affiliation(s)
- Naoyuki Murabe
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Takuma Mori
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, 444-8585, Japan.,Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, 390-8621, Japan
| | - Satoshi Fukuda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Noriko Isoo
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Takae Ohno
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan.,Research Hospital, Institute of Medical Science, Tokyo University, Tokyo, 108-8639, Japan
| | - Yumiko Yoshimura
- Division of Visual Information Processing, National Institute for Physiological Sciences, National Institutes for Natural Sciences, Okazaki, 444-8585, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, 444-8585, Japan
| | - Masaki Sakurai
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan.
| |
Collapse
|
6
|
Zareen N, Dodson S, Armada K, Awad R, Sultana N, Hara E, Alexander H, Martin JH. Stimulation-dependent remodeling of the corticospinal tract requires reactivation of growth-promoting developmental signaling pathways. Exp Neurol 2018; 307:133-144. [PMID: 29729248 DOI: 10.1016/j.expneurol.2018.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/18/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022]
Abstract
The corticospinal tract (CST) can become damaged after spinal cord injury or stroke, resulting in weakness or paralysis. Repair of the damaged CST is limited because mature CST axons fail to regenerate, which is partly because the intrinsic axon growth capacity is downregulated in maturity. Whereas CST axons sprout after injury, this is insufficient to recover lost functions. Chronic motor cortex (MCX) electrical stimulation is a neuromodulatory strategy to promote CST axon sprouting, leading to functional recovery after CST lesion. Here we examine the molecular mechanisms of stimulation-dependent CST axonal sprouting and synapse formation. MCX stimulation rapidly upregulates mTOR and Jak/Stat signaling in the corticospinal system. Chronic stimulation, which leads to CST sprouting and increased CST presynaptic sites, further enhances mTOR and Jak/Stat activity. Importantly, chronic stimulation shifts the equilibrium of the mTOR repressor PTEN to the inactive phosphorylated form suggesting a molecular transition to an axon growth state. We blocked each signaling pathway selectively to determine potential differential contributions to axonal outgrowth and synapse formation. mTOR blockade prevented stimulation-dependent axon sprouting. Surprisingly, Jak/Stat blockade did not abrogate sprouting, but instead prevented the increase in CST presynaptic sites produced by chronic MCX stimulation. Chronic stimulation increased the number of spinal neurons expressing the neural activity marker cFos. Jak/Stat blockade prevented the increase in cFos-expressing neurons after chronic stimulation, confirming an important role for Jak/Stat signaling in activity-dependent CST synapse formation. MCX stimulation is a neuromodulatory repair strategy that reactivates distinct developmentally-regulated signaling pathways for axonal outgrowth and synapse formation.
Collapse
Affiliation(s)
- Neela Zareen
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Shahid Dodson
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Kristine Armada
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Rahma Awad
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Nadia Sultana
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Erina Hara
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - Heather Alexander
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA
| | - John H Martin
- Department of Molecular, Cellular, and Basic Medical Sciences, Center for Discovery and Innovation, City University of New York School of Medicine, New York, NY, USA; Neuroscience Program, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
7
|
Zareen N, Shinozaki M, Ryan D, Alexander H, Amer A, Truong DQ, Khadka N, Sarkar A, Naeem S, Bikson M, Martin JH. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Exp Neurol 2017; 297:179-189. [PMID: 28803750 DOI: 10.1016/j.expneurol.2017.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 01/15/2023]
Abstract
Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury.
Collapse
Affiliation(s)
- N Zareen
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - M Shinozaki
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - D Ryan
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - H Alexander
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - A Amer
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA; CUNY Graduate Center, New York, NY 10031, USA
| | - D Q Truong
- Department of Biomedical Engineering, City College of NY, 10031, USA
| | - N Khadka
- Department of Biomedical Engineering, City College of NY, 10031, USA
| | - A Sarkar
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - S Naeem
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA
| | - M Bikson
- Department of Biomedical Engineering, City College of NY, 10031, USA
| | - J H Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of NY School of Medicine, New York, NY 10031, USA; CUNY Graduate Center, New York, NY 10031, USA.
| |
Collapse
|
8
|
Models of progressive neurological dysfunction originating early in life. Prog Neurobiol 2017; 155:2-20. [DOI: 10.1016/j.pneurobio.2015.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 01/01/2023]
|
9
|
Kwon YM, Kwon HG, Rose J, Son SM. The Change of Intra-cerebral CST Location during Childhood and Adolescence; Diffusion Tensor Tractography Study. Front Hum Neurosci 2016; 10:638. [PMID: 28066209 PMCID: PMC5167720 DOI: 10.3389/fnhum.2016.00638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/30/2016] [Indexed: 11/13/2022] Open
Abstract
Objectives: Corticospinal tract (CST) is the most important tract in motor control. However, there was no study about the change of CST location with aging. In this study, using diffusion tensor tractography (DTT), we attempted to investigate the change of CST location at cortex, corona radiata (CR) and posterior limb of internal capsule (IC) level with aging in typically developing children. Methods: We recruited 76 healthy pediatric subjects (range; 0-19 years). According to the result of DTT, the location of CST at cortex level was classified as follows; prefrontal cortex (PFC), PFC with Premotor cortex (PMC), PMC, PMC with primary motor cortex (M1), M1, M1 with Primary sensory cortex (S1). Anterior-posterior location (%) of CSTs at CR and IC level was also assessed. Results: DTT results about CSTs of 152 hemispheres from 76 subjects were obtained. The most common location of CST projection was M1 area (58.6%) including PMC with M1 (25.7%), M1 (17.8%), and M1 with S1 (15.1%). The mean age of the projection of CST showed considerably younger at anterior cortex than posterior; (PFC; 4.12 years, PFC with PMC; 6.41 years, PMC; 6.72 years, PMC with M1; 9.75 years, M1; 9.85 years, M1 with S1; 12.99 years, S1; 13.75 years). Spearman correlation showed positive correlation between age and the location of CST from anterior to posterior brain cortex (r = 0.368). Conclusion: We demonstrated that the location of CST projection is different with aging. The result of this study can provide the scientific insight to the maturation study in human brain.
Collapse
Affiliation(s)
- Yong M Kwon
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Taegu, South Korea
| | - Hyeok G Kwon
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Taegu, South Korea
| | - Jessica Rose
- Department of Orthopaedic Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Su M Son
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Taegu, South Korea
| |
Collapse
|
10
|
Abstract
The corticospinal system is the principal motor system for controlling movements that require the greatest skill and flexibility. It is the last motor system to develop. The pattern of termination of corticospinal axons, as they grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. Refinement of corticospinal terminations occurs during a protracted postnatal period and includes both elimination of transient terminations and growth to new targets. This refinement is driven by neural activity in the motor cortical areas and by limb motor experience. Developing corticospinal terminals compete with each other for synaptic space on spinal neurons. More active terminals are more competitive and are able to secure more synaptic space than their less active counterparts. Corticospinal terminals can activate spinal neurons from very early in development. The importance of this early synaptic activity appears to be more for refining corticospinal connections than for transmitting signals to spinal motor circuits for movement control. The motor control functions of the corticospinal system are not expressed until development of connectional specificity with spinal cord neurons, a strong capacity for corticospinal synapses to facilitate spinal motor circuits, and the formation of the cortical motor map.
Collapse
Affiliation(s)
- John H Martin
- Center for Neurology and Behavior, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
11
|
Watson GDR, Smith JB, Alloway KD. Interhemispheric connections between the infralimbic and entorhinal cortices: The endopiriform nucleus has limbic connections that parallel the sensory and motor connections of the claustrum. J Comp Neurol 2016; 525:1363-1380. [PMID: 26860547 DOI: 10.1002/cne.23981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
We have previously shown that the claustrum is part of an interhemispheric circuit that interconnects somesthetic-motor and visual-motor cortical regions. The role of the claustrum in processing limbic information, however, is poorly understood. Some evidence suggests that the dorsal endopiriform nucleus (DEn), which lies immediately ventral to the claustrum, has connections with limbic cortical areas and should be considered part of a claustrum-DEn complex. To determine whether DEn has similar patterns of cortical connections as the claustrum, we used anterograde and retrograde tracing techniques to elucidate the connectivity of DEn. Following injections of retrograde tracers into DEn, labeled neurons appeared bilaterally in the infralimbic (IL) cortex and ipsilaterally in the entorhinal and piriform cortices. Anterograde tracer injections in DEn revealed labeled terminals in the same cortical regions, but only in the ipsilateral hemisphere. These tracer injections also revealed extensive longitudinal projections throughout the rostrocaudal extent of the nucleus. Dual retrograde tracer injections into IL and lateral entorhinal cortex (LEnt) revealed intermingling of labeled neurons in ipsilateral DEn, including many double-labeled neurons. In other experiments, anterograde and retrograde tracers were separately injected into IL of each hemisphere of the same animal. This revealed an interhemispheric circuit in which IL projects bilaterally to DEn, with the densest terminal labeling appearing in the contralateral hemisphere around retrogradely labeled neurons that project to IL in that hemisphere. By showing that DEn and claustrum have parallel sets of connections, these results suggest that DEn and claustrum perform similar functions in processing limbic and sensorimotor information, respectively. J. Comp. Neurol. 525:1363-1380, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Glenn D R Watson
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802
| | - Jared B Smith
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802.,Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
| | - Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
12
|
Abstract
The corticospinal and rubrospinal systems function in skilled movement control. A key question is how do these systems develop the capacity to coordinate their motor functions and, in turn, if the red nucleus/rubrospinal tract (RN/RST) compensates for developmental corticospinal injury? We used the cat to investigate whether the developing rubrospinal system is shaped by activity-dependent interactions with the developing corticospinal system. We unilaterally inactivated M1 by muscimol microinfusion between postnatal weeks 5 and 7 to examine activity-dependent interactions and whether the RN/RST compensates for corticospinal tract (CST) developmental motor impairments and CST misprojections after M1 inactivation. We examined the RN motor map and RST cervical projections at 7 weeks of age, while the corticospinal system was inactivated, and at 14 weeks, after activity returned. During M1 inactivation, the RN on the same side showed normal RST projections and reduced motor thresholds, suggestive of precocious development. By contrast, the RN on the untreated/active M1 side showed sparse RST projections and an immature motor map. After M1 activity returned later in adolescent cat development, RN on the active M1/CST side continued to show a substantial loss of spinal terminations and an impaired motor map. RN/RST on the inactivated side regressed to a smaller map and fewer axons. Our findings suggest that the developing rubrospinal system is under activity-dependent regulation by the corticospinal system for establishing mature RST connections and RN motor map. The lack of RS compensation on the non-inactivated side can be explained by development of ipsilateral misprojections from the active M1 that outcompete the RST. Significance statement: Skilled movements reflect the activity of multiple descending motor systems and their interactions with spinal motor circuits. Currently, there is little insight into whether motor systems interact during development to coordinate their emerging functions and, if so, the mechanisms underlying this process. This study examined activity-dependent interactions between the developing corticospinal and rubrospinal systems, two key systems for skilled limb movements. We show that the developing rubrospinal system competes with the corticospinal system in establishing the red nucleus motor map and rubrospinal tract connections. This is the first demonstration of one motor system steering development, and ultimately function, of another. Knowledge of activity-dependent competition between these two systems helps predict the response of the rubrospinal system following corticospinal system developmental injury.
Collapse
|
13
|
Maeda H, Fukuda S, Kameda H, Murabe N, Isoo N, Mizukami H, Ozawa K, Sakurai M. Corticospinal axons make direct synaptic connections with spinal motoneurons innervating forearm muscles early during postnatal development in the rat. J Physiol 2015; 594:189-205. [PMID: 26503304 DOI: 10.1113/jp270885] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 10/21/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Direct connections between corticospinal (CS) axons and motoneurons (MNs) appear to be present only in higher primates, where they are essential for discrete movement of the digits. Their presence in adult rodents was once claimed but is now questioned. We report that MNs innervating forearm muscles in infant rats receive monosynaptic input from CS axons, but MNs innervating proximal muscles do not, which is a pattern similar to that in primates. Our experiments were carefully designed to show monosynaptic connections. This entailed selective electrical and optogenetic stimulation of CS axons and recording from MNs identified by retrograde labelling from innervated muscles. Morphological evidence was also obtained for rigorous identification of CS axons and MNs. These connections would be transient and would regress later during development. These results shed light on the development and evolution of direct CS-MN connections, which serve as the basis for dexterity in humans. Recent evidence suggests there is no direct connection between corticospinal (CS) axons and spinal motoneurons (MNs) in adult rodents. We previously showed that CS synapses are present throughout the spinal cord for a time, but are eliminated from the ventral horn during development in rodents. This raises the possibility that CS axons transiently make direct connections with MNs located in the ventral horn of the spinal cord. This was tested in the present study. Using cervical cord slices prepared from rats on postnatal days (P) 7-9, CS axons were stimulated and whole cell recordings were made from MNs retrogradely labelled with fluorescent cholera toxin B subunit (CTB) injected into selected groups of muscles. To selectively activate CS axons, electrical stimulation was carefully limited to the CS tract. In addition we employed optogenetic stimulation after injecting an adeno-associated virus vector encoding channelrhodopsin-2 (ChR2) into the sensorimotor cortex on P0. We were then able to record monosynaptic excitatory postsynaptic currents from MNs innervating forearm muscles, but not from those innervating proximal muscles. We also showed close contacts between CTB-labelled MNs and CS axons labelled through introduction of fluorescent protein-conjugated synaptophysin or the ChR2 expression system. We confirmed that some of these contacts colocalized with postsynaptic density protein 95 in their partner dendrites. It is intriguing from both phylogenetic and ontogenetic viewpoints that direct and putatively transient CS-MN connections were found only on MNs innervating the forearm muscles in infant rats, as this is analogous to the connection pattern seen in adult primates.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Satoshi Fukuda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Hiroshi Kameda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Naoyuki Murabe
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Noriko Isoo
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, 329-0498, Japan.,Research Hospital, Institute of Medical Science, Tokyo University, Tokyo, 108-8639, Japan
| | - Masaki Sakurai
- Department of Physiology, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| |
Collapse
|
14
|
Smith JB, Watson GDR, Alloway KD, Schwarz C, Chakrabarti S. Corticofugal projection patterns of whisker sensorimotor cortex to the sensory trigeminal nuclei. Front Neural Circuits 2015; 9:53. [PMID: 26483640 PMCID: PMC4588702 DOI: 10.3389/fncir.2015.00053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/14/2015] [Indexed: 11/29/2022] Open
Abstract
The primary (S1) and secondary (S2) somatosensory cortices project to several trigeminal sensory nuclei. One putative function of these corticofugal projections is the gating of sensory transmission through the trigeminal principal nucleus (Pr5), and some have proposed that S1 and S2 project differentially to the spinal trigeminal subnuclei, which have inhibitory circuits that could inhibit or disinhibit the output projections of Pr5. Very little, however, is known about the origin of sensorimotor corticofugal projections and their patterns of termination in the various trigeminal nuclei. We addressed this issue by injecting anterograde tracers in S1, S2 and primary motor (M1) cortices, and quantitatively characterizing the distribution of labeled terminals within the entire rostro-caudal chain of trigeminal sub-nuclei. We confirmed our anterograde tracing results by injecting retrograde tracers at various rostro-caudal levels within the trigeminal sensory nuclei to determine the position of retrogradely labeled cortical cells with respect to S1 barrel cortex. Our results demonstrate that S1 and S2 projections terminate in largely overlapping regions but show some significant differences. Whereas S1 projection terminals tend to cluster within the principal trigeminal (Pr5), caudal spinal trigeminal interpolaris (Sp5ic), and the dorsal spinal trigeminal caudalis (Sp5c), S2 projection terminals are distributed in a continuum across all trigeminal nuclei. Contrary to the view that sensory gating could be mediated by differential activation of inhibitory interconnections between the spinal trigeminal subnuclei, we observed that projections from S1 and S2 are largely overlapping in these subnuclei despite the differences noted earlier.
Collapse
Affiliation(s)
- Jared B Smith
- Department of Engineering Science and Mechanics, Pennsylvania State University University Park, PA, USA ; Center for Neural Engineering, Huck Institute of Life Sciences, Pennsylvania State University University Park, PA, USA
| | - Glenn D R Watson
- Center for Neural Engineering, Huck Institute of Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Kevin D Alloway
- Center for Neural Engineering, Huck Institute of Life Sciences, Pennsylvania State University University Park, PA, USA ; Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Cornelius Schwarz
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen Tübingen, Germany ; Systems Neurophysiology, Werner Reichardt Center for Integrative Neurosciences, Eberhard Karls University of Tübingen Tübingen, Germany
| | - Shubhodeep Chakrabarti
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen Tübingen, Germany ; Systems Neurophysiology, Werner Reichardt Center for Integrative Neurosciences, Eberhard Karls University of Tübingen Tübingen, Germany
| |
Collapse
|
15
|
Watson GDR, Smith JB, Alloway KD. The Zona Incerta Regulates Communication between the Superior Colliculus and the Posteromedial Thalamus: Implications for Thalamic Interactions with the Dorsolateral Striatum. J Neurosci 2015; 35:9463-76. [PMID: 26109669 PMCID: PMC4478257 DOI: 10.1523/jneurosci.1606-15.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 12/27/2022] Open
Abstract
There is uncertainty concerning the circuit connections by which the superior colliculus interacts with the basal ganglia. To address this issue, anterograde and retrograde tracers were placed, respectively, into the superior colliculus and globus pallidus of Sprague-Dawley rats. In this two-tracer experiment, the projections from the superior colliculus terminated densely in the ventral zona incerta (ZIv), but did not overlap the labeled neurons observed in the subthalamic nucleus. In cases in which anterograde and retrograde tracers were placed, respectively, in sensory-responsive sites in the superior colliculus and posteromedial (POm) thalamus, the labeled projections from superior colliculus innervated the ZIv regions that contained the labeled neurons that project to POm. We also confirmed this colliculo-incertal-POm pathway by depositing a mixture of retrograde and anterograde tracers at focal sites in ZIv to reveal retrogradely labeled neurons in superior colliculus and anterogradely labeled terminals in POm. When combined with retrograde tracer injections in POm, immunohistochemical processing proved that most ZIv projections to POm are GABAergic. Consistent with these findings, direct stimulation of superior colliculus evoked neuronal excitation in ZIv and caused inhibition of spontaneous activity in POm. Collectively, these results indicate that superior colliculus can activate the inhibitory projections from ZIv to the POm. This is significant because it suggests that the superior colliculus could suppress the interactions between POm and the dorsolateral striatum, presumably to halt ongoing behaviors so that more adaptive motor actions are selected in response to unexpected sensory events. SIGNIFICANCE STATEMENT By demonstrating that the zona incerta regulates communication between the superior colliculus and the posteromedial thalamus, we have uncovered a circuit that partly explains the behavioral changes that occur in response to unexpected sensory stimuli. Furthermore, this circuit could explain why deep brain stimulation of the zona incerta is beneficial to patients who suffer from Parkinson's disease.
Collapse
Affiliation(s)
- Glenn D R Watson
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, and Center for Neural Engineering and
| | - Jared B Smith
- Center for Neural Engineering and Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, and Center for Neural Engineering and
| |
Collapse
|
16
|
Corticospinal tract development and spinal cord innervation differ between cervical and lumbar targets. J Neurosci 2015; 35:1181-91. [PMID: 25609632 DOI: 10.1523/jneurosci.2842-13.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The corticospinal (CS) tract is essential for voluntary movement, but what we know about the organization and development of the CS tract remains limited. To determine the total cortical area innervating the seventh cervical spinal cord segment (C7), which controls forelimb movement, we injected a retrograde tracer (fluorescent microspheres) into C7 such that it would spread widely within the unilateral gray matter (to >80%), but not to the CS tract. Subsequent detection of the tracer showed that, in both juvenile and adult mice, neurons distributed over an unexpectedly broad portion of the rostral two-thirds of the cerebral cortex converge to C7. This even included cortical areas controlling the hindlimbs (the fourth lumbar segment, L4). With aging, cell densities greatly declined, mainly due to axon branch elimination. Whole-cell recordings from spinal cord cells upon selective optogenetic stimulation of CS axons, and labeling of axons (DsRed) and presynaptic structures (synaptophysin) through cotransfection using exo utero electroporation, showed that overgrowing CS axons make synaptic connections with spinal cells in juveniles. This suggests that neuronal circuits involved in the CS tract to C7 are largely reorganized during development. By contrast, the cortical areas innervating L4 are limited to the conventional hindlimb area, and the cell distribution and density do not change during development. These findings call for an update of the traditional notion of somatotopic CS projection and imply that there are substantial developmental differences in the cortical control of forelimb and hindlimb movements, at least in rodents.
Collapse
|
17
|
Biane JS, Scanziani M, Tuszynski MH, Conner JM. Motor cortex maturation is associated with reductions in recurrent connectivity among functional subpopulations and increases in intrinsic excitability. J Neurosci 2015; 35:4719-28. [PMID: 25788688 PMCID: PMC4363396 DOI: 10.1523/jneurosci.2792-14.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 11/21/2022] Open
Abstract
Behavior is derived from the configuration of synaptic connectivity among functionally diverse neurons. Fine motor behavior is absent at birth in most mammals but gradually emerges during subsequent postnatal corticospinal system maturation; the nature of circuit development and reorganization during this period has been largely unexplored. We investigated connectivity and synaptic signaling among functionally distinct corticospinal populations in Fischer 344 rats from postnatal day 18 through 75 using retrograde tracer injections into specific spinal cord segments associated with distinct aspects of forelimb function. Primary motor cortex slices were prepared enabling simultaneous patch-clamp recordings of up to four labeled corticospinal neurons and testing of 3489 potential synaptic connections. We find that, in immature animals, local connectivity is biased toward corticospinal neurons projecting to the same spinal cord segment; this within-population connectivity significantly decreases through maturation until connection frequency is similar between neurons projecting to the same (within-population) or different (across-population) spinal segments. Concomitantly, postnatal maturation is associated with a significant reduction in synaptic efficacy over time and an increase in intrinsic neuronal excitability, altering how excitation is effectively transmitted across recurrent corticospinal networks. Collectively, the postnatal emergence of fine motor control is associated with a relative broadening of connectivity between functionally diverse cortical motor neurons and changes in synaptic properties that could enable the emergence of smaller independent networks, enabling fine motor movement. These changes in synaptic patterning and physiological function provide a basis for the increased capabilities of the mature versus developing brain.
Collapse
Affiliation(s)
| | - Massimo Scanziani
- Departments of Neurosciences and Neurobiology, University of California San Diego, La Jolla, California 92093, Howard Hughes Medical Institute, San Diego, California 92093, and
| | - Mark H Tuszynski
- Departments of Neurosciences and Veterans Administration Medical Center, San Diego, California 92161
| | | |
Collapse
|
18
|
Short- and long-term consequences of perinatal asphyxia: looking for neuroprotective strategies. ADVANCES IN NEUROBIOLOGY 2015; 10:169-98. [PMID: 25287541 DOI: 10.1007/978-1-4939-1372-5_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. A primary insult is first produced by the length of the time without oxygenation, leading to hypoxia/ischemia and death if oxygenation is not promptly established. A second insult is produced by re-oxygenation, eliciting a cascade of biochemical events for restoring function, implying, however, improper homeostasis. The effects observed long after perinatal asphyxia can be explained by over-expression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for oxidised nicotinamide adenine dinucleotide (NAD(+)) during re-oxygenation. Asphyxia also induces transcriptional activation of pro-inflammatory factors, including nuclear factor κB (NFκB) and its subunit p65, whose translocation to the nucleus is significantly increased in brain tissue from asphyxia-exposed animals, in tandem with PARP-1 overactivation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. It is proposed that PARP-1 inhibition also down-regulates the expression of pro-inflammatory cytokines.Nicotinamide is a suitable PARP-1 inhibitor, whose effects have been studied in an experimental model of global perinatal asphyxia in rats, inducing the insult by immersing rat foetuses into a water bath for various periods of time. Following asphyxia, the pups are delivered, immediately treated, or given to surrogate dams for nursing, pending further experiments. Systemic administration of nicotinamide 1 h after the insult inhibited PARP-1 overactivity in peripheral and brain tissue, preventing several of the long-term consequences elicited by perinatal asphyxia, supporting the idea that it constitutes a lead for exploring compounds with similar or better pharmacological profiles.
Collapse
|
19
|
Postnatal maturation of the red nucleus motor map depends on rubrospinal connections with forelimb motor pools. J Neurosci 2014; 34:4432-41. [PMID: 24647962 DOI: 10.1523/jneurosci.5332-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The red nucleus (RN) and rubrospinal tract (RST) are important for forelimb motor control. Although the RST is present postnatally in cats, nothing is known about when rubrospinal projections could support motor functions or the relation between the development of the motor functions of the rubrospinal system and the corticospinal system, the other major system for limb control. Our hypothesis is that the RN motor map is present earlier in development than the motor cortex (M1) map, to support early forelimb control. We investigated RN motor map maturation with microstimulation and RST cervical enlargement projections using anterograde tracers between postnatal week 3 (PW3) and PW16. Microstimulation and tracer injection sites were verified histologically to be located within the RN. Microstimulation at PW4 evoked contralateral wrist, elbow, and shoulder movements. The number of sites producing limb movement increased and response thresholds decreased progressively through PW16. From the outset, all forelimb joints were represented. At PW3, RST projections were present within the cervical intermediate zone, with a mature density of putative synapses. In contrast, beginning at PW5 there was delayed and age-dependent development of forelimb motor pool projections and putative rubromotoneuronal synapses. The RN has a more complete forelimb map early in development than previous studies showed for M1, supporting our hypothesis of preferential rubrospinal rather than corticospinal control for early movements. Remarkably, development of the motor pool, not intermediate zone, RST projections paralleled RN motor map development. The RST may be critical for establishing the rudiments of motor skills that subsequently become refined with further CST development.
Collapse
|
20
|
Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Muñoz V, Gutierrez-Hernandez M, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ. Perinatal asphyxia: CNS development and deficits with delayed onset. Front Neurosci 2014; 8:47. [PMID: 24723845 PMCID: PMC3972459 DOI: 10.3389/fnins.2014.00047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/22/2014] [Indexed: 12/21/2022] Open
Abstract
Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified. In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by overexpression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat fetus into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that nicotinamide constitutes a lead for exploring compounds with similar or better pharmacological profiles.
Collapse
Affiliation(s)
- Mario Herrera-Marschitz
- Millenium Institute BNI-Chile Santiago, Chile ; Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Tanya Neira-Pena
- Millenium Institute BNI-Chile Santiago, Chile ; Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile ; Department of Chemical-Biological Science, University Bernardo O'Higgins Santiago, Chile
| | | | | | - Daniela Esmar
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Ronald Perez
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Valentina Muñoz
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | | | - Benjamin Rivera
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University Cagliari, Italy
| | - Diego Bustamante
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Paola Morales
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile
| | - Peter J Gebicke-Haerter
- Department of Molecular and Clinical Pharmacology, ICBM, Medical Faculty, University of Chile Santiago, Chile ; Department of Psychopharmacology, Central Institute of Mental Health J5 Mannheim, Germany
| |
Collapse
|
21
|
Alloway KD, Smith JB, Watson GDR. Thalamostriatal projections from the medial posterior and parafascicular nuclei have distinct topographic and physiologic properties. J Neurophysiol 2013; 111:36-50. [PMID: 24108793 DOI: 10.1152/jn.00399.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The dorsolateral striatum (DLS) is critical for executing sensorimotor behaviors that depend on stimulus-response (S-R) associations. In rats, the DLS receives it densest inputs from primary somatosensory (SI) cortex, but it also receives substantial input from the thalamus. Much of rat DLS is devoted to processing whisker-related information, and thalamic projections to these whisker-responsive DLS regions originate from the parafascicular (Pf) and medial posterior (POm) nuclei. To determine which thalamic nucleus is better suited for mediating S-R associations in the DLS, we compared their input-output connections and neuronal responses to repetitive whisker stimulation. Tracing experiments demonstrate that POm projects specifically to the DLS, but the Pf innervates both dorsolateral and dorsomedial parts of the striatum. The Pf nucleus is innervated by whisker-sensitive sites in the superior colliculus, and these sites also send dense projections to the zona incerta, a thalamic region that sends inhibitory projections to the POm. These data suggest that projections from POm to the DLS are suppressed by incertal inputs when the superior colliculus is activated by unexpected sensory stimuli. Simultaneous recordings with two electrodes indicate that POm neurons are more responsive and habituate significantly less than Pf neurons during repetitive whisker stimulation. Response latencies are also shorter in POm than in Pf, which is consistent with the fact that Pf receives its whisker information via synaptic relays in the superior colliculus. These findings indicate that, compared with the Pf nucleus, POm transmits somatosensory information to the DLS with a higher degree of sensory fidelity.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | | | | |
Collapse
|
22
|
The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance. J Neurosci 2013; 33:9039-49. [PMID: 23699515 DOI: 10.1523/jneurosci.4094-12.2013] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Since GABAA-mediated intracortical inhibition has been shown to underlie plastic changes throughout the lifespan from development to aging, here, the aging motor system was used as a model to analyze the interdependence of plastic alterations within the inhibitory motorcortical network and level of behavioral performance. Double-pulse transcranial magnetic stimulation (dpTMS) was used to examine inhibition by means of short-interval intracortical inhibition (SICI) of the contralateral primary motor cortex in a sample of 64 healthy right-handed human subjects covering a wide range of the adult lifespan (age range 20-88 years, mean 47.6 ± 20.7, 34 female). SICI was evaluated during resting state and in an event-related condition during movement preparation in a visually triggered simple reaction time task. In a subgroup (N = 23), manual motor performance was tested with tasks of graded dexterous demand. Weak resting-state inhibition was associated with an overall lower manual motor performance. Better event-related modulation of inhibition correlated with better performance in more demanding tasks, in which fast alternating activation of cortical representations are necessary. Declining resting-state inhibition was associated with weakened event-related modulation of inhibition. Therefore, reduced resting-state inhibition might lead to a subsequent loss of modulatory capacity, possibly reflecting malfunctioning precision in GABAAergic neurotransmission; the consequence is an inevitable decline in motor function.
Collapse
|
23
|
Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior. J Neurosci 2013; 33:8866-90. [PMID: 23678129 DOI: 10.1523/jneurosci.4614-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Humans and animals take actions quickly when they expect that the actions lead to reward, reflecting their motivation. Injection of dopamine receptor antagonists into the striatum has been shown to slow such reward-seeking behavior, suggesting that dopamine is involved in the control of motivational processes. Meanwhile, neurophysiological studies have revealed that phasic response of dopamine neurons appears to represent reward prediction error, indicating that dopamine plays central roles in reinforcement learning. However, previous attempts to elucidate the mechanisms of these dopaminergic controls have not fully explained how the motivational and learning aspects are related and whether they can be understood by the way the activity of dopamine neurons itself is controlled by their upstream circuitries. To address this issue, we constructed a closed-circuit model of the corticobasal ganglia system based on recent findings regarding intracortical and corticostriatal circuit architectures. Simulations show that the model could reproduce the observed distinct motivational effects of D1- and D2-type dopamine receptor antagonists. Simultaneously, our model successfully explains the dopaminergic representation of reward prediction error as observed in behaving animals during learning tasks and could also explain distinct choice biases induced by optogenetic stimulation of the D1 and D2 receptor-expressing striatal neurons. These results indicate that the suggested roles of dopamine in motivational control and reinforcement learning can be understood in a unified manner through a notion that the indirect pathway of the basal ganglia represents the value of states/actions at a previous time point, an empirically driven key assumption of our model.
Collapse
|
24
|
Li X, Morita K, Robinson HPC, Small M. Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. J Neurophysiol 2013; 109:2739-56. [PMID: 23486202 DOI: 10.1152/jn.00397.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal apical dendrites of layer 5 pyramidal neurons receive cortico-cortical and thalamocortical top-down and feedback inputs, as well as local recurrent inputs. A prominent source of recurrent inhibition in the neocortical circuit is somatostatin-positive Martinotti cells, which preferentially target distal apical dendrites of pyramidal cells. These electrically coupled cells can fire synchronously at various frequencies, including over a relatively slow range (5∼30 Hz), thereby imposing oscillatory inhibition on the pyramidal apical tuft dendrites. We examined how such distal oscillatory inhibition influences the firing of a biophysically detailed layer 5 pyramidal neuron model, which reproduced the spatiotemporal properties of sodium, calcium, and N-methyl-D-aspartate receptor spikes found experimentally. We found that oscillatory synchronization strongly influences the impact of distal inhibition on the pyramidal cell firing. Whereas asynchronous inhibition largely cancels out the facilitatory effects of distal excitatory inputs, inhibition oscillating synchronously at around 10∼20 Hz allows distal excitation to drive axosomatic firing, as if distal inhibition were absent. Underlying this is a switch from relatively infrequent burst firing to single spike firing at every period of the inhibitory oscillation. This phenomenon depends on hyperpolarization-activated cation current-dependent membrane potential resonance in the dendrite, but also, in a novel manner, on a cooperative amplification of this resonance by N-methyl-D-aspartate-receptor-driven dendritic action potentials. Our results point to a surprising dependence of the effect of recurrent inhibition by Martinotti cells on their oscillatory synchronization, which may control not only the local circuit activity, but also how it is transmitted to and decoded by downstream circuits.
Collapse
Affiliation(s)
- Xiumin Li
- College of Automation, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
25
|
Smith JB, Alloway KD. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas. Front Neural Circuits 2013; 7:4. [PMID: 23372545 PMCID: PMC3556600 DOI: 10.3389/fncir.2013.00004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/08/2013] [Indexed: 11/13/2022] Open
Abstract
Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper.
Collapse
Affiliation(s)
- Jared B Smith
- Department of Neural and Behavioral Sciences, Penn State University Hershey, PA, USA ; Center for Neural Engineering, Penn State University University Park, PA, USA
| | | |
Collapse
|
26
|
Using motor behavior during an early critical period to restore skilled limb movement after damage to the corticospinal system during development. J Neurosci 2012; 32:9265-76. [PMID: 22764234 DOI: 10.1523/jneurosci.1198-12.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study investigated the requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CSTs) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period [postnatal week 5 (PW5) to PW7] produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired limb, for the month after M1 inactivation (PW8-PW13; "restraint alone"). A second group wore the restraint during PW8-PW13 and was also trained for 1 h/d in a reaching task with the contralateral forelimb ("early training"). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20-PW24 ("delayed training"). Early training restored CST connections and the M1 motor map, increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side, and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury.
Collapse
|
27
|
Erythropoietin effect on sensorimotor recovery after contusive spinal cord injury: an electrophysiological study in rats. Neuroscience 2012; 219:290-301. [PMID: 22659566 DOI: 10.1016/j.neuroscience.2012.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) is a debilitating clinical condition, characterized by a complex of neurological dysfunctions. It has been shown in rats that the acute administration of recombinant human erythropoietin (rhEPO) following a contusive SCI improves the recovery of hindlimb motor function, as measured with the locomotor BBB (Basso, Beattie, Bresnahan) scale. This scale evaluates overall locomotor activity, without testing whether the rhEPO-induced motor recovery is due to a parallel recovery of sensory and/or motor pathways. Aim of the present study was to utilize an electrophysiological test to evaluate, in a rat model of contusive SCI, the transmission of both ascending and descending pathways across the damaged cord at 2, 5, 7, 11, and 30 days after lesion, in animals treated with rhEPO (n=25) vs saline solution (n=25). Motor potentials evoked by epicortical stimulation were recorded in the spinal cord, and sensory-evoked potentials evoked by spinal stimulation were recorded at the cortical level. In the same animals BBB score and immunocytochemical evaluation of the spinal segments caudal to the lesion were performed. In rhEPO-treated animals results show a better general improvement both in sensory and motor transmission through spared spinal pathways, supposedly via the reticulo-spinal system, with respect to saline controls. This improvement is most prominent at relatively early times. Overall these features show a parallel time course to the changes observed in BBB score, suggesting that EPO-mediated spared spinal cord pathways might contribute to the improvement in transmission which, in turn, might be responsible for the recovery of locomotor function.
Collapse
|
28
|
Smith JB, Mowery TM, Alloway KD. Thalamic POm projections to the dorsolateral striatum of rats: potential pathway for mediating stimulus-response associations for sensorimotor habits. J Neurophysiol 2012; 108:160-74. [PMID: 22496533 DOI: 10.1152/jn.00142.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dorsolateral part of the striatum (DLS) represents the initial stage for processing sensorimotor information in the basal ganglia. Although the DLS receives much of its input from the primary somatosensory (SI) cortex, peripheral somesthetic stimulation activates the DLS at latencies that are shorter than the response latencies recorded in the SI cortex. To identify the subcortical regions that transmit somesthetic information directly to the DLS, we deposited small quantities of retrograde tracers at DLS sites that displayed consistent time-locked responses to controlled whisker stimulation. The neurons that were retrogradely labeled by these injections were located mainly in the sensorimotor cortex and, to a lesser degree, in the amygdala and thalamus. Quantitative analysis of neuronal labeling in the thalamus indicated that the strongest thalamic input to the whisker-sensitive part of the DLS originates from the medial posterior nucleus (POm), a somesthetic-related region that receives inputs from the spinal trigeminal nucleus. Anterograde tracer injections in POm confirmed that this thalamic region projects to the DLS neuropil. In subsequent experiments, simultaneous recordings from POm and the DLS during whisker stimulation showed that POm consistently responds before the DLS. These results suggest that POm could transmit somesthetic information to the DLS, and this modality-specific thalamostriatal pathway may cooperate with the thalamostriatal projections that originate from the intralaminar nuclei.
Collapse
Affiliation(s)
- Jared B Smith
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | | | | |
Collapse
|
29
|
Chakrabarty S, Martin JH. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord. Eur J Neurosci 2011; 34:682-94. [PMID: 21896059 DOI: 10.1111/j.1460-9568.2011.07798.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In maturity, skilled movements depend on coordination of control signals by descending pathways, such as the corticospinal tract (CST), and proprioceptive afferents (PAs). An important locus for this coordination is the spinal cord intermediate zone. Convergence of CST and PA terminations onto common regions leads to interactions that may underlie afferent gating and modulation of descending control signals during movements. We determined establishment of CST and PA terminations within common spinal cord regions and development of synaptic interactions in 4-week-old cats, which is before major spinal motor circuit refinement, and two ages after refinement (weeks 8, 11). We examined the influence of one or the other system on monosynaptic responses, on the spinal cord surface and locally in the intermediate zone, evoked by either CST or deep radial nerve (DRN) stimulation. DRN stimulation suppressed CST monosynaptic responses at 4 weeks, but this converted to facilitation by 8 weeks. This may reflect a strategy to limit CST movement control when it has aberrant immature connections, and could produce errant movements. CST stimulation showed delayed development of mixed suppression and facilitation of DRN responses. We found development of age-dependent overlap of PA and CST terminations where interactions were recorded in the intermediate zone. Our findings reveal a novel co-development of different inputs onto common spinal circuits and suggest a logic to CST-PA interactions at an age before the CST has established connectional specificity with spinal circuits.
Collapse
Affiliation(s)
- Samit Chakrabarty
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, NY, USA.
| | | |
Collapse
|
30
|
Chakrabarty S, Martin J. Postnatal refinement of proprioceptive afferents in the cat cervical spinal cord. Eur J Neurosci 2011; 33:1656-66. [PMID: 21501251 DOI: 10.1111/j.1460-9568.2011.07662.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proprioceptive afferent (PA) information is integrated with signals from descending pathways, including the corticospinal tract (CST), by spinal interneurons in the dorsal horn and intermediate zone for controlling movements. PA spinal projections, and the reflexes that they evoke, develop prenatally. The CST projects to the spinal cord postnatally, and its connections are subsequently refined. Consequently, the tract becomes effective in transmitting control signals from motor cortex to muscle. This suggests sequential development of PAs and the CST rather than co-development. In this study we determined if there was also late postnatal refinement of PA spinal connections, which would support PA-CST co-development. We examined changes in PA spinal connections at 4 weeks of age, when CST terminations are immature, at 8 weeks, after CST refinement, and at 11 weeks, when CST terminations are mature. We electrically stimulated PA afferents in the deep radial nerve. Evoked PA responses were small and not localized at 4 weeks. By 8 and 11 weeks, responses were substantially larger and maximal in laminae VI and dorsal VII. We used intramuscular injection of cholera toxin β subunit to determine the distribution of PAs from the extensor carpii radialis muscle in the cervical enlargement at the same ages as in the electrophysiological studies. We found a reduction of the distribution of PAs with age that paralleled the physiological changes. This age-related sharpening of PA spinal connections also paralleled CST development, suggesting coordinated PA-CST co-development rather than sequential development. This is likely to be important for the development of adaptive motor control.
Collapse
Affiliation(s)
- Samit Chakrabarty
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
31
|
Alloway KD, Smith JB, Beauchemin KJ. Quantitative analysis of the bilateral brainstem projections from the whisker and forepaw regions in rat primary motor cortex. J Comp Neurol 2011; 518:4546-66. [PMID: 20886621 DOI: 10.1002/cne.22477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The whisker region in rat primary motor (MI) cortex projects to several brainstem regions, but the relative strength of these projections has not been characterized. We recently quantified the MI projections to bilateral targets in the forebrain (Alloway et al. [2009] J Comp Neurol 515:548-564), and the present study extends those findings by quantifying the MI projections to bilateral targets in the brainstem. We found that both the whisker and forepaw regions in MI project most strongly to the basal pons and superior colliculus. While the MI forepaw region projects mainly to the ipsilateral basilar pons, the MI whisker region has significantly more connections with the contralateral side. This bilateral difference suggests that corticopontine projections from the MI whisker region may have a role in coordinating bilateral whisker movements. Anterograde tracer injections in MI did not reveal any direct projections to the facial nucleus, but retrograde tracer injections in the facial nucleus revealed some labeled neurons in MI cortex. The number of retrogradely labeled neurons in MI, however, was dwarfed by a much larger number of labeled neurons in the superior colliculus and other brainstem regions. Together, our anterograde and retrograde tracing results indicate that the superior colliculus provides the most effective route for transmitting information from MI to the facial nucleus.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural & Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, USA.
| | | | | |
Collapse
|
32
|
Smith JB, Alloway KD. Functional specificity of claustrum connections in the rat: interhemispheric communication between specific parts of motor cortex. J Neurosci 2010; 30:16832-44. [PMID: 21159954 PMCID: PMC3010244 DOI: 10.1523/jneurosci.4438-10.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/05/2010] [Accepted: 10/18/2010] [Indexed: 12/23/2022] Open
Abstract
Recent evidence indicates that the rat claustrum interconnects the motor cortical areas in both hemispheres. To elucidate the functional specificity of the interhemispheric connections between the claustrum and primary motor (MI) cortex, anterograde tracer injections in specific parts of MI were paired with retrograde tracer injections in homotopic sites of the opposite hemisphere. In addition to injecting the MI forepaw (Fp) region in both hemispheres, we injected the region associated with whisker retractions (Re) and the more caudal rhythmic whisking (RW) region. While the MI-Fp region has few connections with the claustrum of either hemisphere, both whisker regions project to the contralateral claustrum, with those from the MI-RW region being denser and more extensive than those originating from the MI-Re region. Retrograde tracer injections in the MI-RW region produced more labeled neurons in the ipsilateral claustrum than retrograde tracer injections in the MI-Re. Consistent with these patterns, the overlap of labeled terminals and soma in the claustrum was greatest when both tracers were injected into the MI-RW region. When retrograde tracers were injected into the claustrum, the highest density of labeled neurons in MI appeared in the contralateral RW region. Tracer injections in the claustrum also revealed hundreds of labeled neurons throughout its rostrocaudal extent, thereby establishing the presence of long-range intraclaustral connections. These results indicate that the intrinsic and extrinsic connections of the rat claustrum are structured for rapid, interhemispheric transmission of information needed for bilateral coordination of the MI regions that regulate whisker movements.
Collapse
Affiliation(s)
- Jared B. Smith
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255
| | - Kevin D. Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255
| |
Collapse
|
33
|
Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res 2010; 19:603-27. [PMID: 20645042 PMCID: PMC3291837 DOI: 10.1007/s12640-010-9208-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/19/2010] [Accepted: 06/30/2010] [Indexed: 12/19/2022]
Abstract
Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase β, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care.
Collapse
|
34
|
Sala F, Manganotti P, Grossauer S, Tramontanto V, Mazza C, Gerosa M. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 2010; 26:473-90. [PMID: 20145936 DOI: 10.1007/s00381-009-1081-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 12/30/2009] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Intraoperative neurophysiology has moved giant steps forward over the past 15 years thanks to the advent of techniques aimed to reliably assess the functional integrity of motor areas and pathways. INTRAOPERATIVE NEUROPHYSIOLOGICAL TECHNIQUES Motor evoked potentials recorded from the muscles and/or the spinal cord (D-wave) after transcranial electrical stimulation allow to preserve the integrity of descending pathways, especially the corticospinal tract (CT), during brain and spinal cord surgery. Mapping techniques allow to identify the motor cortex through direct cortical stimulation and to localize the CT at subcortical levels during brain and brainstem surgery. These techniques are extensively used in adult neurosurgery and, in their principles, can be applied to children. However, especially in younger children, the motor system is still under development, making both mapping and monitoring techniques more challenging. In this paper, we review intraoperative neurophysiological techniques commonly used in adult neurosurgery and discuss their application to pediatric neurosurgery, in the light of preliminary experience from our and other centers. The principles of development and maturation of the motor system, and especially of the CT, are reviewed focusing on clinical studies with transcranial magnetical stimulation.
Collapse
Affiliation(s)
- Francesco Sala
- Section of Neurosurgery, Department of Neurological and Visual Sciences, University Hospital, Piazzale Stefani 1, 37124 Verona, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits. J Neurosci 2010; 30:2277-88. [PMID: 20147554 DOI: 10.1523/jneurosci.5286-09.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of skilled movements and the corticospinal tract (CST) begin prenatally and continue postnatally. Because the CST is required for skilled movements in maturity, it is accepted that motor skills cannot occur until the CST develops a mature organization. We recently showed that the CST plays an essential role in postnatal development of interneurons comprising the spinal circuits it engages. We proposed that CST signals are more effectively transmitted to ventral motor circuits after interneuron maturation, thereby enabling expression of CST motor functions, suggesting development of a segmental switch promoting transmission. We tested this by recording CST-evoked focal synaptic potentials, extracellularly, in the cervical enlargement of cats before and after interneuron maturation [postnatal week 5 (PW5) to PW7]. We compared monosynaptic CST amplitude input to segmental circuits with oligosynaptic ventral horn responses, as a measure of CST-evoked segmental response transmission from input to output. The M1 primary motor cortex was unilaterally inactivated between PW5 and PW7 to determine activity dependence. CST interneuron contacts were identified using confocal microscopy. CST terminals contact diverse interneuron classes. CST stimulation strongly activated ventral motor circuits at the ages when both interneurons and CST spinal terminations have developed a mature phenotype, supporting development of segmental transmission of CST signals. CST activity blockade impeded development of effective segmental transmission by the inactivated CST and created a novel path for transmission from the ipsilateral, unaffected, CST. Our findings show that development of segmental CST signal transmission regulates nascent CST motor control functions and provide insight into systems-level mechanisms for protracted motor skill development.
Collapse
|
36
|
Alloway KD, Smith JB, Beauchemin KJ, Olson ML. Bilateral projections from rat MI whisker cortex to the neostriatum, thalamus, and claustrum: forebrain circuits for modulating whisking behavior. J Comp Neurol 2009; 515:548-64. [PMID: 19479997 DOI: 10.1002/cne.22073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats, whisking behavior is characterized by high-frequency synchronous movements and other stereotyped patterns of bilateral coordination that are rarely seen in the bilateral movements of the limbs. This suggests that the motor systems controlling whisker and limb movements must have qualitative or quantitative differences in their interhemispheric connections. To test this hypothesis, anterograde tracing methods were used to characterize the bilateral distribution of projections from the whisker and forepaw regions in the primary motor (MI) cortex. Unilateral tracer injections in the MI whisker or forepaw regions revealed robust projections to the corresponding MI cortical area in the contralateral hemisphere. Both MI regions project bilaterally to the neostriatum, but the corticostriatal projections from the whisker region are denser and more evenly distributed across both hemispheres than those from the MI forepaw region. The MI whisker region projects bilaterally to several nuclei in the thalamus, whereas the MI forepaw region projects almost exclusively to the ipsilateral thalamus. The MI whisker region sends dense projections to the contralateral claustrum, but those to the ipsilateral claustrum are less numerous. By contrast, the MI forepaw region sends few projections to the claustrum of either hemisphere. Bilateral deposits of different tracers in MI revealed overlapping projections to the neostriatum, thalamus, and claustrum when the whisker regions were injected, but not when the forepaw regions were injected. These results suggest that the bilateral coordination of the whiskers depends, in part, on MI projections to the contralateral neostriatum, thalamus, and claustrum.
Collapse
Affiliation(s)
- Kevin D Alloway
- Department of Neural & Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-2255, USA.
| | | | | | | |
Collapse
|
37
|
Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord. J Neurosci 2009; 29:8816-27. [PMID: 19587289 DOI: 10.1523/jneurosci.0735-09.2009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Corticospinal tract (CST) connections to spinal interneurons are conserved across species. We identified spinal interneuronal populations targeted by the CST in the cervical enlargement of the cat during development. We focused on the periods before and after laminar refinement of the CST terminations, between weeks 5 and 7. We used immunohistochemistry of choline acetyltransferase (ChAT), calbindin, calretinin, and parvalbumin to mark interneurons. We first compared interneuron marker distribution before and after CST refinement. ChAT interneurons increased, while calbindin interneurons decreased during this period. No significant changes were noted in parvalbumin and calretinin. We next used anterograde labeling to determine whether the CST targets different interneuron populations before and after the refinement period. Before refinement, the CST terminated sparsely where calbindin interneurons were located and spared ChAT interneurons. After refinement, the CST no longer terminated in calbindin-expressing areas but did so where ChAT interneurons were located. Remarkably, early CST terminations were dense where ChAT interneurons later increased in numbers. Finally, we determined whether corticospinal system activity was necessary for the ChAT and calbindin changes. We unilaterally inactivated M1 between weeks 5 and 7 by muscimol infusion. Inactivation resulted in a distribution of calbindin and ChAT in spinal gray matter regions where the CST terminates that resembled the immature more than mature pattern. Our results show that the CST plays a crucial role in restructuring spinal motor circuits during development, possibly through trophic support, and provide strong evidence for the importance of connections with key spinal interneuron populations in development of motor control functions.
Collapse
|
38
|
Chakrabarty S, Friel KM, Martin JH. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity. J Neurophysiol 2008; 101:1283-93. [PMID: 19091920 DOI: 10.1152/jn.91026.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor cortex (M1) activity between postnatal weeks 5 and 7 is essential for normal development of the corticospinal tract (CST) and visually guided movements. Unilateral reversible inactivation of M1, by intracortical muscimol infusion, during this period permanently impairs development of the normal dorsoventral distribution of CST terminations and visually guided motor skills. These impairments are abrogated if this M1 inactivation is followed by inactivation of the contralateral, initially active M1, from weeks 7 to 11 (termed alternate inactivation). This later period is when the M1 motor representation normally develops. The purpose of this study was to determine the effects of alternate inactivation on the motor representation of the initially inactivated M1. We used intracortical microstimulation to map the left M1 1 to 2 mo after the end of left M1 muscimol infusion. We compared representations in the unilateral inactivation and alternate inactivation groups. Alternate inactivation converted the sparse proximal M1 motor representation produced by unilateral inactivation to a complete and high-resolution proximal-distal representation. The motor map was restored by week 11, the same age that our present and prior studies demonstrated that alternate inactivation restored CST spinal connectivity. Thus M1 motor map developmental plasticity closely parallels plasticity of CST spinal terminations. After alternate inactivation reestablished CST connections and the motor map, an additional 3 wk was required for motor skill recovery. Since motor map recovery preceded behavioral recovery, our findings suggest that the representation is necessary for recovering motor skills, but additional time, or experience, is needed to learn to take advantage of the restored CST connections and motor map.
Collapse
Affiliation(s)
- S Chakrabarty
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
39
|
Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neurosci 2008; 28:7426-34. [PMID: 18632946 DOI: 10.1523/jneurosci.1078-08.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Motor development depends on forming specific connections between the corticospinal tract (CST) and the spinal cord. Blocking CST activity in kittens during the critical period for establishing connections with spinal motor circuits results in permanent impairments in connectivity and function. The changes in connections are consistent with the hypothesis that the inactive tract is less competitive in developing spinal connections than the active tract. In this study, we tested the competition hypothesis by determining whether activating CST axons, after previous silencing during the critical period, abrogated development of aberrant corticospinal connections and motor impairments. In kittens, we inactivated motor cortex by muscimol infusion between postnatal weeks 5 and 7. Next, we electrically stimulated CST axons in the medullary pyramid 2.5 h daily, between weeks 7 and 10. In controls (n = 3), CST terminations were densest within the contralateral deeper, premotor, spinal layers. After previous inactivation (n = 3), CST terminations were densest within the dorsal, somatic sensory, layers. There were more ipsilateral terminations from the active tract. During visually guided locomotion, there was a movement endpoint impairment. Stimulation after inactivation (n = 6) resulted in significantly fewer terminations in the sensory layers and more in the premotor layers, and fewer ipsilateral connections from active cortex. Chronic stimulation reduced the current threshold for evoking contralateral movements by pyramidal stimulation, suggesting strengthening of connections. Importantly, stimulation significantly improved stepping accuracy. These findings show the importance of activity-dependent processes in specifying CST connections. They also provide a strategy for harnessing activity to rescue CST axons at risk of developing aberrant connections after CNS injury.
Collapse
|
40
|
Brus-Ramer M, Carmel JB, Chakrabarty S, Martin JH. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. J Neurosci 2007; 27:13793-801. [PMID: 18077691 PMCID: PMC6673617 DOI: 10.1523/jneurosci.3489-07.2007] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 08/30/2007] [Accepted: 09/25/2007] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent competition shapes corticospinal (CS) axon outgrowth in the spinal cord during development. An important question in neural repair is whether activity can be used to promote outgrowth of CS axons in maturity. After injury, spared CS axons sprout and make new connections, but often not enough to restore function. We propose that electrically stimulating spared axons after injury will enhance sprouting and strengthen connections with spinal motor circuits. To study the effects of activity, we electrically stimulated CS tract axons in the medullary pyramid. To study the effects of injury, one pyramid was lesioned. We studied sparse ipsilateral CS projections of the intact pyramid as a model of the sparse connections preserved after CNS injury. We determined the capacity of CS axons to activate ipsilateral spinal motor circuits and traced their spinal projections. To understand the separate and combined contributions of injury and activity, we examined animals receiving stimulation only, injury only, and injury plus stimulation. Both stimulation and injury alone strengthened CS connectivity and increased outgrowth into the ipsilateral gray matter. Stimulation of spared axons after injury promoted outgrowth that reflected the sum of effects attributable to activity and injury alone. CS terminations were densest within the ventral motor territories of the cord, and connections in these animals were significantly stronger than after injury alone, indicating that activity augments injury-induced plasticity. We demonstrate that activity promotes plasticity in the mature CS system and that the interplay between activity and injury preferentially promotes connections with ventral spinal motor circuits.
Collapse
Affiliation(s)
| | | | | | - John H. Martin
- Departments of Neuroscience
- Neurological Surgery, and
- Psychiatry, Columbia University and New York State Psychiatric Institute, New York, New York 10032
| |
Collapse
|
41
|
Abstract
Activity-dependent competition between the corticospinal (CS) systems in each hemisphere drives postnatal development of motor skills and stable CS tract connections with contralateral spinal motor circuits. Unilateral restriction of motor cortex (M1) activity during an early postnatal critical period impairs contralateral visually guided movements later in development and in maturity. Silenced M1 develops aberrant connections with the contralateral spinal cord whereas the initially active M1, in the other hemisphere, develops bilateral connections. In this study, we determined whether the aberrant pattern of CS tract terminations and motor impairments produced by early postnatal M1 activity restriction could be abrogated by reducing activity-dependent synaptic competition from the initially active M1 later in development. We first inactivated M1 unilaterally between postnatal weeks 5-7. We next inactivated M1 on the other side from weeks 7-11 (alternate inactivation), to reduce the competitive advantage that this side may have over the initially inactivated side. Alternate inactivation redirected aberrant contralateral CS tract terminations from the initially silenced M1 to their normal spinal territories and reduced the density of aberrant ipsilateral terminations from the initially active side. Normal movement endpoint control during visually guided locomotion was fully restored. This reorganization of CS terminals reveals an unsuspected late plasticity after the critical period for establishing the pattern of CS terminations in the spinal cord. Our findings show that robust bilateral interactions between the developing CS systems on each side are important for achieving balance between contralateral and ipsilateral CS tract connections and visuomotor control.
Collapse
|
42
|
Chen XY, Pillai S, Chen Y, Wang Y, Chen L, Carp JS, Wolpaw JR. Spinal and Supraspinal Effects of Long-Term Stimulation of Sensorimotor Cortex in Rats. J Neurophysiol 2007; 98:878-87. [PMID: 17522179 DOI: 10.1152/jn.00283.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor cortex (SMC) modifies spinal cord reflex function throughout life and is essential for operant conditioning of the H-reflex. To further explore this long-term SMC influence over spinal cord function and its possible clinical uses, we assessed the effect of long-term SMC stimulation on the soleus H-reflex. In freely moving rats, the soleus H-reflex was measured 24 h/day for 12 wk. The soleus background EMG and M response associated with H-reflex elicitation were kept stable throughout. SMC stimulation was delivered in a 20-day-on/20-day-off/20-day-on protocol in which a train of biphasic 1-ms pulses at 25 Hz for 1 s was delivered every 10 s for the on-days. The SMC stimulus was automatically adjusted to maintain a constant descending volley. H-reflex size gradually increased during the 20 on-days, stayed high during the 20 off-days, and rose further during the next 20 on-days. In addition, the SMC stimulus needed to maintain a stable descending volley rose steadily over days. It fell during the 20 off-days and rose again when stimulation resumed. These results suggest that SMC stimulation, like H-reflex operant conditioning, induces activity-dependent plasticity in both the brain and the spinal cord and that the plasticity responsible for the H-reflex increase persists longer after the end of SMC stimulation than that underlying the change in the SMC response to stimulation.
Collapse
Affiliation(s)
- Xiang Yang Chen
- Laboratory of Nervous System Disorders, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Martin JH, Friel KM, Salimi I, Chakrabarty S. Activity- and use-dependent plasticity of the developing corticospinal system. Neurosci Biobehav Rev 2007; 31:1125-35. [PMID: 17599407 PMCID: PMC2769920 DOI: 10.1016/j.neubiorev.2007.04.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 01/15/2023]
Abstract
The corticospinal (CS) system, critical for controlling skilled movements, develops during the late prenatal and early postnatal periods in all species examined. In the cat, there is a sequence of development of the mature pattern of terminations of CS tract axons in the spinal gray matter, followed by motor map development of the primary motor cortex. Skilled limb movements begin to be expressed as the map develops. Development of the proper connections between CS axons and spinal neurons in cats depends on CS neural activity and motor behavioral experience during a critical postnatal period. Reversible CS inactivation or preventing limb use produces an aberrant distribution of CS axon terminations and impairs visually guided movements. This altered pattern of CS connections after inactivation in cats resembles the aberrant pattern of motor responses evoked by transcranial magnetic stimulation in hemiplegic cerebral palsy patients. Left untreated in the cat, these impairments do not resolve. We have found that activity-dependent processes can be harnessed in cats to reestablish normal CS connections and function. This finding suggests that aspects of normal CS connectivity and function might some day be restored in hemiplegic cerebral palsy.
Collapse
Affiliation(s)
- John H Martin
- Center for Neurobiology and Behavior, Columbia University, N.Y.S. Psychiatric Institute, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
44
|
Liu Z, Li Y, Qu R, Shen L, Gao Q, Zhang X, Lu M, Savant-Bhonsale S, Borneman J, Chopp M. Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Res 2007; 1149:172-80. [PMID: 17362881 PMCID: PMC1950288 DOI: 10.1016/j.brainres.2007.02.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/15/2007] [Accepted: 02/18/2007] [Indexed: 10/23/2022]
Abstract
We investigated whether compensatory reinnervation in the corticospinal tract (CST) and the corticorubral tract (CRT) is enhanced by the administration of bone marrow stromal cells (BMSCs) after experimental stroke. Adult male Wistar rats were subjected to permanent right middle cerebral artery occlusion (MCAo). Phosphate-buffered saline (PBS, control, n=7) or 3x10(6) BMSCs in PBS (n=8) were injected into a tail vein at 1 day postischemia. The CST of the left sensorimotor cortices was labeled with DiI 2 days prior to MCAo. Functional recovery was measured. Rats were sacrificed at 28 days after MCAo. The brain and spinal cord were removed and processed for vibratome sections for laser-scanning confocal analysis and paraffin sections for immunohistochemistry. Normal rats (n=4) exhibited a predominantly unilateral pattern of innervation of CST and CRT axons. After stroke, bilateral innervation occurred through axonal sprouting of the uninjured CRT and CST. Administration of BMSCs significantly increased the axonal restructuring on the de-afferented red nucleus and the denervated spinal motoneurons (p<0.05). BMSC treatment also significantly increased synaptic proteins in the denervated motoneurons. These results were highly correlated with improved functional outcome after stroke (r>0.81, p<0.01). We conclude that the transplantation of BMSCs enhances axonal sprouting and rewiring into the denervated spinal cord which may facilitate functional recovery after focal cerebral ischemia.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, Michigan, USA
| | - Yi Li
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, Michigan, USA
| | - Runjiang Qu
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, Michigan, USA
| | - Lihong Shen
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, Michigan, USA
| | - Qi Gao
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, Michigan, USA
| | - Xueguo Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, Michigan, USA
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Health Sciences Center, Detroit, Michigan, USA
| | | | | | - Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- *Correspondence to Michael Chopp, PhD, Neurology Research, E&R Bldg., Room 3056, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, MI 48202, Tel: (313)916-3936 Fax: (313)916-1318, E-mail:
| |
Collapse
|
45
|
Campos LW, Chakrabarty S, Haque R, Martin JH. Regenerating motor bridge axons refine connections and synapse on lumbar motoneurons to bypass chronic spinal cord injury. J Comp Neurol 2007; 506:838-50. [DOI: 10.1002/cne.21579] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Martin JH. Chapter 3 Development of the corticospinal system and spinal motor circuits. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:39-56. [PMID: 18808888 DOI: 10.1016/s0072-9752(07)80006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Kamiyama T, Yoshioka N, Sakurai M. Synapse elimination in the corticospinal projection during the early postnatal period. J Neurophysiol 2005; 95:2304-13. [PMID: 16267122 DOI: 10.1152/jn.00295.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In corticospinal synapses reconstructed in vitro by slice co-culture, we previously showed that the synapses were distributed across the gray matter at 6-7 days in vitro (DIV). Thereafter, they began to be eliminated from the ventral side, and dorsal-dominant distribution was nearly complete at 11-12 DIV. The synapse elimination is associated with retraction of the corticospinal (CS) terminals. We studied whether this specific type of synapse elimination is a physiological phenomenon rather than in vitro artifact. The rat corticospinal tract was stimulated at the medullary pyramid, and field potentials were recorded at the cervical cord along an 200-microm interval lattice on the axial plane. Clearly defined negative field potential were identified as field excitatory postsynaptic potentials (fEPSPs) generated by corticospinal synapses. They were recorded from the entire spinal gray matter at postnatal day 7 (P7). These negative fEPSPs reversed to positive in the most ventrolateral part at P8. Reversal extended to the more mediodorsal area at P10, indicative of progressive synapse elimination in the ventrolateral area. To verify that regression of the axons in vivo paralleled the changes in spatial distribution of fEPSPs as observed in vitro, corticospinal axons were anterogradely labeled. Redistribution of the labeled terminals closely paralleled the fEPSP distribution, being present in the ventrolateral spinal cord at P7, decreased at P8, further deceased at P10, but unchanged at P11. Furthermore, double immunostaining for labeled terminals and synaptophysin observed under a confocal microscope suggests that corticospinal fibers at P7 possess presynaptic structures in the ventrolateral area as well as the dorsomedial area. These findings suggest that corticospinal synapses are widely formed in the spinal gray matter at P7, are rapidly eliminated from the ventrolateral side from P8 to P10, a time-course very similar to that observed in vitro, and are associated with axonal regression.
Collapse
Affiliation(s)
- Tsutomu Kamiyama
- Department of Physiology, Teikyo University, School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
48
|
Martin JH, Engber D, Meng Z. Effect of Forelimb Use on Postnatal Development of the Forelimb Motor Representation in Primary Motor Cortex of the Cat. J Neurophysiol 2005; 93:2822-31. [PMID: 15574795 DOI: 10.1152/jn.01060.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the cat, the motor representation in motor cortex develops between wk 8 and wk 13. Motor map development is accompanied by a decrease in the current thresholds for evoking movements with a concomitant increase in the number of effective sites, an increase in the distal representation, and the representation of multijoint synergies. In this study we used intracortical microstimulation in anesthetized cats to examine how forelimb motor experiences influence development of map characteristics. To promote skilled movements during wks 8–13, animals were engaged in daily performance of a prehension task. Forelimb movements were prevented by intramuscular botulinum toxin injection or restraint. To determine whether experience-dependent changes were permanent, we examined the map in different animals between 1 wk and 1 yr after cessation of testing. Promoting forelimb use resulted in an increase in the number of sites from which multiple joint effects were produced by stimulation and the number of joints represented at those sites. The effect was maximal at 1 wk after cessation of testing, and became progressively less at 1 mo and at 4 mo. Preventing limb use resulted in a decreased number of effective sites, an increase in current thresholds for evoking responses, and a decreased representation of joints at multijoint sites. Our findings show that the motor map can respond to novel motor demands as it is forming during development but that it reverts back to one with the properties of a map in a control animal if those demands are not maintained in the animal's behavioral repertoire.
Collapse
Affiliation(s)
- John H Martin
- Center for Neurobiology and Behavior, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| | | | | |
Collapse
|
49
|
Salimi I, Martin JH. Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens. J Neurosci 2005; 24:4952-61. [PMID: 15163687 PMCID: PMC6729378 DOI: 10.1523/jneurosci.0004-04.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of corticospinal (CS) terminations is activity dependent. In the cat, activity-dependent refinement of termination topography occurs between weeks 3 and 6. Initially, sparse terminals are present in the gray matter bilaterally, including the motor nuclei. By week 6, virtually all motor nuclear terminations are eliminated, as are most ipsilateral terminations. In this study, we determined whether electrical stimulation of CS axons could be used to rescue transient terminations and promote their growth. We implanted microwires in the pyramid or spinal white matter to stimulate CS axons (2 hr/d, 330 Hz, 45 msec burst, 2 sec intervals) for 2-3 weeks during the refinement period. CS terminations were traced using wheat germ agglutinin conjugated to horseradish peroxidase. Animals were killed after week 6. Stimulation produced dense terminations bilaterally, including within the motor nuclei. Termination density was least in lamina 1 and ventral lamina 9. Reticular formation stimulation produced a control (i.e., nonstimulated) termination pattern. To determine whether CS stimulation affected development of the nonstimulated CS system, we traced terminations from the contralateral cortex using biotinylated dextran amine. Compared with controls or after reticular formation stimulation, there was a shift in the distribution of terminations of the nonstimulated side to more dorsal laminas, which is where the stimulated CS system had fewer terminals. This distribution shift is consistent with competition for termination space between the CS systems on both sides. Our findings indicate that activity can be harnessed to bias CS axon terminal development. This has important implications for using activity to modify motor system organization after perinatal CNS trauma.
Collapse
Affiliation(s)
- Iran Salimi
- Center for Neurobiology and Behavior, Columbia University, New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
50
|
Friel KM, Martin JH. Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat. J Comp Neurol 2005; 485:43-56. [PMID: 15776437 DOI: 10.1002/cne.20483] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The initial pattern of corticospinal (CS) terminations, as axons grow into the spinal gray matter, bears little resemblance to the pattern later in development and in maturity. This is because of extensive axon pruning and local axon terminal growth during early postnatal development. Pruning is driven by activity-dependent competition between the CS systems on each side during postnatal weeks (PW) 3-7. It is not known whether CS axon terminal growth and final topography are activity dependent. We examined the activity dependence of CS axon terminal growth and topography at different postnatal times. We inactivated sensory-motor cortex by infusion of the gamma-aminobutyric acid type A (GABA(A)) agonist muscimol and traced CS axons from the inactivated side. Inactivation between PW5 and PW7 produced permanent changes in projection topography, reduced local axon branching, and prevented development of dense clusters of presynaptic sites, which are normally characteristic of CS terminals. Inactivation at younger (PW3-5) and older (PW8-12) ages did not affect projection topography but impeded development of local axon branching and presynaptic site clusters. These effects were not due to increased cortical cell death during inactivation. Neural activity plays an important role in determining the morphology of CS terminals during the entire period of development, but, for the projection topography, the role of activity is exercised during a very brief period. This points to a complex, and possibly independent, regulation of termination topography and terminal morphology. Surprisingly, when a CS neuron's activity is blocked during early development, it does not recover lost connections later in development once activity resumes.
Collapse
Affiliation(s)
- Kathleen M Friel
- Center for Neurobiology and Behavior, Columbia University, New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|