1
|
Peña-Ortega F. Microglial modulation of neuronal network function and plasticity. J Neurophysiol 2025; 133:661-680. [PMID: 39819084 DOI: 10.1152/jn.00458.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS), which have been classically viewed as involved in CNS responses to damage and tissue repair. However, microglia are constantly sensing neuronal network activity and changes in the CNS milieu, establishing complex state-dependent microglia-neuron interactions that impact their functions. By doing so, microglia perform a wide range of physiological roles, including brain homeostasis maintenance, control of neural connectivity, network function modulation, as well as functional and morphological plasticity regulation in health and disease. Here, the author reviews recent evidence of the modulations induced by microglia, a highly heterogeneous cell type, on synaptic and intrinsic neuronal properties, and on neuronal network patterns during perinatal development and adulthood. The reviewed evidence clearly indicates that microglia are important, if not essential, for brain function and plasticity in both health and disease.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| |
Collapse
|
2
|
Rana S, Fusco AF, Witkin JM, Radin DP, Cerne R, Lippa A, Fuller DD. Pharmacological modulation of respiratory control: Ampakines as a therapeutic strategy. Pharmacol Ther 2025; 265:108744. [PMID: 39521442 PMCID: PMC11849399 DOI: 10.1016/j.pharmthera.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Ampakines are a class of compounds that are positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and enhance glutamatergic neurotransmission. Glutamatergic synaptic transmission and AMPA receptor activation are fundamentally important to the genesis and propagation of the neural impulses driving breathing, including respiratory motoneuron depolarization. Ampakines therefore have the potential to modulate the neural control of breathing. In this paper, we describe the influence of ampakines on respiratory motor output in health and disease. We dissect the molecular mechanisms underlying ampakine action, delineate the diverse targets of ampakines along the respiratory neuraxis, survey the spectrum of respiratory disorders in which ampakines have been tested, and culminate with an examination of how ampakines modulate respiratory function after spinal cord injury. Collectively, the studies reviewed here indicate that ampakines may be a useful adjunctive strategy to pair with conventional respiratory rehabilitation approaches in conditions with impaired neural activation of the respiratory muscles.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America.
| | - Anna F Fusco
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Daniel P Radin
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, St. Vincent's Hospital, Indianapolis, IN, United States of America; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America; Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, United States of America
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, United States of America; McKnight Brain Institute, University of Florida, Gainesville, FL 32610, United States of America; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States of America
| |
Collapse
|
3
|
Percy AK, Ananth A, Neul JL. Rett Syndrome: The Emerging Landscape of Treatment Strategies. CNS Drugs 2024; 38:851-867. [PMID: 39251501 PMCID: PMC11486803 DOI: 10.1007/s40263-024-01106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 09/11/2024]
Abstract
Rett syndrome (RTT) has enjoyed remarkable progress in achieving specific therapies. RTT, a unique neurodevelopmental disorder first described in 1966, progressed slowly until the landmark paper of Hagberg and colleagues in 1983. Thereafter, rapid advances were achieved including the development of specific diagnostic criteria and the active search for a genetic etiology, resulting 16 years later in identification of variants in the methyl-CpG-binding protein (MECP2) gene located at Xq28. Shortly thereafter, the NIH Office of Rare Diseases funded the RTT Natural History Study (NHS) in 2003, initiating the acquisition of natural history data on clinical features from a large population of individuals with RTT. This information was essential for advancement of clinical trials to provide specific therapies for this disorder. In the process, the International Rett Syndrome Association (IRSA) was formed (now the International Rett Syndrome Foundation-IRSF), which participated directly in encouraging and expanding enrollment in the NHS and, subsequently, in developing the SCOUT program to facilitate testing of potential therapeutic agents in a mouse model of RTT. The overall objective was to review clinical characteristics developed from the NHS and to discuss the status of specific therapies for this progressive neurodevelopmental disorder. The NHS study provided critical information on RTT: growth, anthropometrics, longevity, key comorbidities including epilepsy, breath abnormalities, gastroesophageal dysfunction, scoliosis and other orthopedic issues, puberty, behavior and anxiety, and progressive motor deterioration including the appearance of parkinsonian features. Phenotype-genotype correlations were noted including the role of X chromosome inactivation. Development of clinical severity and quality of life measures also proved critical for subsequent clinical trials. Further, development of biochemical and neurophysiologic biomarkers offered further endpoints for clinical trials. Initial clinical trials prior to the NHS were ineffective, but advances resulting from the NHS and other studies worldwide promoted significant interest from pharmaceutical firms resulting in several clinical trials. While some of these have been unrewarding such as sarizotan, others have been quite promising including the approval of trofinetide by the FDA in 2023 as the first agent available for specific treatment of RTT. Blarcamesine has been trialed in phase 3 trials, 14 agents have been studied in phase 2 trials, and 7 agents are being evaluated in preclinical/translational studies. A landmark study in 2007 by Guy et al. demonstrated that activation of a normal MECP2 gene in a null mouse model resulted in significant improvement. Gene replacement therapy has advanced through translational studies to two current phase 1/2 clinical trials (Taysha102 and Neurogene-401). Additional genetic therapies are also under study including gene editing, RNA editing, and X-chromosome reactivation. Taken together, progress in understanding and treating RTT over the past 40 years has been remarkable. This suggests that further advances can be expected.
Collapse
Affiliation(s)
- Alan K Percy
- University of Alabama at Birmingham, Lowder Bldg 416, Birmingham, AL, 35233, USA.
| | - Amitha Ananth
- University of Alabama at Birmingham, Lowder Bldg 416, Birmingham, AL, 35233, USA
| | - Jeffrey L Neul
- Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Schmitt I, Evert BO, Sharma A, Khazneh H, Murgatroyd C, Wüllner U. The Alpha-Synuclein Gene (SNCA) is a Genomic Target of Methyl-CpG Binding Protein 2 (MeCP2)-Implications for Parkinson's Disease and Rett Syndrome. Mol Neurobiol 2024; 61:7830-7844. [PMID: 38429622 DOI: 10.1007/s12035-024-03974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
Mounting evidence suggests a prominent role for alpha-synuclein (a-syn) in neuronal cell function. Alterations in the levels of cellular a-syn have been hypothesized to play a critical role in the development of Parkinson's disease (PD); however, mechanisms that control expression of the gene for a-syn (SNCA) in cis and trans as well as turnover of a-syn are not well understood. We analyzed whether methyl-CpG binding protein 2 (MeCP2), a protein that specifically binds methylated DNA, thus regulating transcription, binds at predicted binding sites in intron 1 of the SNCA gene and regulates a-syn protein expression. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility-shift assays (EMSA) were used to confirm binding of MeCP2 to regulatory regions of SNCA. Site-specific methylation and introduction of localized mutations by CRISPR/Cas9 were used to investigate the binding properties of MeCP2 in human SK-N-SH neuroblastoma cells. The significance of MeCP2 for SNCA regulation was further investigated by overexpressing MeCP2 and mutated variants of MeCP2 in MeCP2 knockout cells. We found that methylation-dependent binding of MeCP2 at a restricted region of intron 1 of SNCA had a significant impact on the production of a-syn. A single nucleotide substitution near to CpG1 strongly increased the binding of MeCP2 to intron 1 of SNCA and decreased a-syn protein expression by 60%. In contrast, deletion of a single nucleotide closed to CpG2 led to reduced binding of MeCP2 and significantly increased a-syn levels. In accordance, knockout of MeCP2 in SK-N-SH cells resulted in a significant increase in a-syn production, demonstrating that SNCA is a genomic target for MeCP2 regulation. In addition, the expression of two mutated MeCP2 variants found in Rett syndrome (RTT) showed a loss of their ability to reduce a-syn expression. This study demonstrates that methylation of CpGs and binding of MeCP2 to intron 1 of the SNCA gene plays an important role in the control of a-syn expression. In addition, the changes in SNCA regulation found by expression of MeCP2 variants carrying mutations found in RTT patients may be of importance for the elucidation of a new molecular pathway in RTT, a rare neurological disorder caused by mutations in MECP2.
Collapse
Affiliation(s)
- Ina Schmitt
- Department of Neurology, University of Bonn, Bonn, Germany
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Neurosurgery, University of Bonn, Bonn, Germany
| | - Hassan Khazneh
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Chris Murgatroyd
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, Bonn, Germany.
- German Centre for Neurodegenerative Disease (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases, University of Bonn, Bonn, Germany.
| |
Collapse
|
5
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. eLife 2024; 12:RP88673. [PMID: 39287624 PMCID: PMC11407767 DOI: 10.7554/elife.88673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS), and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three vesicular glutamate transporters (Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA-derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Savannah Lusk
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Andersen Chang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Department of Integrative Physiology, Baylor College of MedicineHoustonUnited States
- McNair Medical InstituteHoustonUnited States
| |
Collapse
|
6
|
Chang Y, Lusk S, Chang A, Ward CS, Ray RS. Vglut2-based glutamatergic signaling in central noradrenergic neurons is dispensable for normal breathing and chemosensory reflexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.16.535729. [PMID: 37090585 PMCID: PMC10120737 DOI: 10.1101/2023.04.16.535729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Central noradrenergic (NA) neurons are key constituents of the respiratory homeostatic network. NA dysfunction is implicated in several developmental respiratory disorders including Congenital Central Hyperventilation Syndrome (CCHS), Sudden Infant Death Syndrome (SIDS) and Rett Syndrome. The current unchallenged paradigm in the field, supported by multiple studies, is that glutamate co-transmission in subsets of central NA neurons plays a role in breathing control. If true, NA-glutamate co-transmission may also be mechanistically important in respiratory disorders. However, the requirement of NA-derived glutamate in breathing has not been directly tested and the extent of glutamate co-transmission in the central NA system remains uncharacterized. Therefore, we fully characterized the cumulative fate maps and acute adult expression patterns of all three Vesicular Glutamate Transporters ( Slc17a7 (Vglut1), Slc17a6 (Vglut2), and Slc17a8 (Vglut3)) in NA neurons, identifying a novel, dynamic expression pattern for Vglut2 and an undescribed co-expression domain for Vglut3 in the NA system. In contrast to our initial hypothesis that NA derived glutamate is required to breathing, our functional studies showed that loss of Vglut2 throughout the NA system failed to alter breathing or metabolism under room air, hypercapnia, or hypoxia in unrestrained and unanesthetized mice. These data demonstrate that Vglut2-based glutamatergic signaling within the central NA system is not required for normal baseline breathing and hypercapnic, hypoxic chemosensory reflexes. These outcomes challenge the current understanding of central NA neurons in the control of breathing and suggests that glutamate may not be a critical target to understand NA neuron dysfunction in respiratory diseases.
Collapse
|
7
|
Stroh A, Schweiger S, Ramirez JM, Tüscher O. The selfish network: how the brain preserves behavioral function through shifts in neuronal network state. Trends Neurosci 2024; 47:246-258. [PMID: 38485625 DOI: 10.1016/j.tins.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuronal networks possess the ability to regulate their activity states in response to disruptions. How and when neuronal networks turn from physiological into pathological states, leading to the manifestation of neuropsychiatric disorders, remains largely unknown. Here, we propose that neuronal networks intrinsically maintain network stability even at the cost of neuronal loss. Despite the new stable state being potentially maladaptive, neural networks may not reverse back to states associated with better long-term outcomes. These maladaptive states are often associated with hyperactive neurons, marking the starting point for activity-dependent neurodegeneration. Transitions between network states may occur rapidly, and in discrete steps rather than continuously, particularly in neurodegenerative disorders. The self-stabilizing, metastable, and noncontinuous characteristics of these network states can be mathematically described as attractors. Maladaptive attractors may represent a distinct pathophysiological entity that could serve as a target for new therapies and for fostering resilience.
Collapse
Affiliation(s)
- Albrecht Stroh
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Susann Schweiger
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Human Genetics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research at the Seattle Children's Research Institute, University of Washington, Seattle, USA
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Germany; Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
8
|
Olmos-Pastoresa CA, Vázquez-Mendoza E, López-Meraz ML, Pérez-Estudillo CA, Beltran-Parrazal L, Morgado-Valle C. Transgenic rodents as dynamic models for the study of respiratory rhythm generation and modulation: a scoping review and a bibliometric analysis. Front Physiol 2023; 14:1295632. [PMID: 38179140 PMCID: PMC10764557 DOI: 10.3389/fphys.2023.1295632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The pre-Bötzinger complex, situated in the ventrolateral medulla, serves as the central generator for the inspiratory phase of the respiratory rhythm. Evidence strongly supports its pivotal role in generating, and, in conjunction with the post-inspiratory complex and the lateral parafacial nucleus, in shaping the respiratory rhythm. While there remains an ongoing debate concerning the mechanisms underlying these nuclei's ability to generate and modulate breathing, transgenic rodent models have significantly contributed to our understanding of these processes. However, there is a significant knowledge gap regarding the spectrum of transgenic rodent lines developed for studying respiratory rhythm, and the methodologies employed in these models. In this study, we conducted a scoping review to identify commonly used transgenic rodent lines and techniques for studying respiratory rhythm generation and modulation. Following PRISMA guidelines, we identified relevant papers in PubMed and EBSCO on 29 March 2023, and transgenic lines in Mouse Genome Informatics and the International Mouse Phenotyping Consortium. With strict inclusion and exclusion criteria, we identified 80 publications spanning 1997-2022 using 107 rodent lines. Our findings revealed 30 lines focusing on rhythm generation, 61 on modulation, and 16 on both. The primary in vivo method was whole-body plethysmography. The main in vitro method was hypoglossal/phrenic nerve recordings using the en bloc preparation. Additionally, we identified 119 transgenic lines with the potential for investigating the intricate mechanisms underlying respiratory rhythm. Through this review, we provide insights needed to design more effective experiments with transgenic animals to unravel the mechanisms governing respiratory rhythm. The identified transgenic rodent lines and methodological approaches compile current knowledge and guide future research towards filling knowledge gaps in respiratory rhythm generation and modulation.
Collapse
Affiliation(s)
| | | | | | | | - Luis Beltran-Parrazal
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Consuelo Morgado-Valle
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
9
|
Whitaker-Fornek JR, Jenkins PM, Levitt ES. Inhibitory synaptic transmission is impaired in the Kölliker-Fuse of male, but not female, Rett syndrome mice. J Neurophysiol 2023; 130:1578-1587. [PMID: 37965930 PMCID: PMC11068392 DOI: 10.1152/jn.00327.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder that mainly affects females due to silencing mutations in the X-linked MECP2 gene. One of the most troubling symptoms of RTT is breathing irregularity, including apneas, breath-holds, and hyperventilation. Mice with silencing mutations in Mecp2 exhibit breathing abnormalities similar to human patients and serve as useful models for studying mechanisms underlying breathing problems in RTT. Previous work implicated the pontine, respiratory-controlling Kölliker-Fuse (KF) in the breathing problems in RTT. The goal of this study was to test the hypothesis that inhibitory synaptic transmission is deficient in KF neurons from symptomatic male and female RTT mice. We performed whole cell voltage-clamp recordings from KF neurons in acute brain slices to examine spontaneous and electrically evoked inhibitory post-synaptic currents (IPSCs) in RTT mice and age- and sex-matched wild-type mice. The frequency of spontaneous IPSCs was reduced in KF neurons from male RTT mice but surprisingly not in female RTT mice. In addition, electrically evoked IPSCs were less reliable in KF neurons from male, but not female, RTT mice, which was positively correlated with paired-pulse facilitation, indicating decreased probability of release. KF neurons from male RTT mice were also more excitable and exhibited shorter-duration action potentials. Increased excitability of KF neurons from male mice was not explained by changes in axon initial segment length. These findings indicate impaired inhibitory neurotransmission and increased excitability of KF neurons in male but not female RTT mice and suggest that sex-dependent mechanisms contribute to breathing problems in RTT.NEW & NOTEWORTHY Kölliker-Fuse (KF) neurons in acute brain slices from male Rett syndrome (RTT) mice receive reduced inhibitory synaptic inputs compared with wild-type littermates. In female RTT mice, inhibitory transmission was not different in KF neurons compared with controls. The results from this study show that sex-specific alterations in synaptic transmission occur in the KF of RTT mice.
Collapse
Affiliation(s)
- Jessica R Whitaker-Fornek
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Erica S Levitt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
10
|
Ramirez JM, Carroll MS, Burgraff N, Rand CM, Weese-Mayer DE. A narrative review of the mechanisms and consequences of intermittent hypoxia and the role of advanced analytic techniques in pediatric autonomic disorders. Clin Auton Res 2023; 33:287-300. [PMID: 37326924 DOI: 10.1007/s10286-023-00958-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
Disorders of autonomic functions are typically characterized by disturbances in multiple organ systems. These disturbances are often comorbidities of common and rare diseases, such as epilepsy, sleep apnea, Rett syndrome, congenital heart disease or mitochondrial diseases. Characteristic of many autonomic disorders is the association with intermittent hypoxia and oxidative stress, which can cause or exaggerate a variety of other autonomic dysfunctions, making the treatment and management of these syndromes very complex. In this review we discuss the cellular mechanisms by which intermittent hypoxia can trigger a cascade of molecular, cellular and network events that result in the dysregulation of multiple organ systems. We also describe the importance of computational approaches, artificial intelligence and the analysis of big data to better characterize and recognize the interconnectedness of the various autonomic and non-autonomic symptoms. These techniques can lead to a better understanding of the progression of autonomic disorders, ultimately resulting in better care and management.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, 1900 Ninth Avenue, Seattle, WA, 98101, USA.
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA, 98101, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Autonomic Medicine, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Cordani R, Tobaldini E, Rodrigues GD, Giambersio D, Veneruso M, Chiarella L, Disma N, De Grandis E, Toschi-Dias E, Furlan L, Carandina A, Prato G, Nobili L, Montano N. Cardiac autonomic control in Rett syndrome: Insights from heart rate variability analysis. Front Neurosci 2023; 17:1048278. [PMID: 37021139 PMCID: PMC10067665 DOI: 10.3389/fnins.2023.1048278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/17/2023] [Indexed: 03/22/2023] Open
Abstract
Rett syndrome (RTT) is a rare and severe neurological disorder mainly affecting females, usually linked to methyl-CpG-binding protein 2 (MECP2) gene mutations. Manifestations of RTT typically include loss of purposeful hand skills, gait and motor abnormalities, loss of spoken language, stereotypic hand movements, epilepsy, and autonomic dysfunction. Patients with RTT have a higher incidence of sudden death than the general population. Literature data indicate an uncoupling between measures of breathing and heart rate control that could offer insight into the mechanisms that lead to greater vulnerability to sudden death. Understanding the neural mechanisms of autonomic dysfunction and its correlation with sudden death is essential for patient care. Experimental evidence for increased sympathetic or reduced vagal modulation to the heart has spurred efforts to develop quantitative markers of cardiac autonomic profile. Heart rate variability (HRV) has emerged as a valuable non-invasive test to estimate the modulation of sympathetic and parasympathetic branches of the autonomic nervous system (ANS) to the heart. This review aims to provide an overview of the current knowledge on autonomic dysfunction and, in particular, to assess whether HRV parameters can help unravel patterns of cardiac autonomic dysregulation in patients with RTT. Literature data show reduced global HRV (total spectral power and R-R mean) and a shifted sympatho-vagal balance toward sympathetic predominance and vagal withdrawal in patients with RTT compared to controls. In addition, correlations between HRV and genotype and phenotype features or neurochemical changes were investigated. The data reported in this review suggest an important impairment in sympatho-vagal balance, supporting possible future research scenarios, targeting ANS.
Collapse
Affiliation(s)
- Ramona Cordani
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Unit for Research & Innovation in Anesthesia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Donatella Giambersio
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy
| | - Marco Veneruso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lorenzo Chiarella
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Nicola Disma
- Unit for Research & Innovation in Anesthesia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elisa De Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Edgar Toschi-Dias
- Health Psychology Program, Methodist University of São Paulo, São Paulo, Brazil
- Psychology, Development and Public Policy Program, Catholic University of Santos, São Paulo, Brazil
| | - Ludovico Furlan
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Prato
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Lino Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Lino Nobili,
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Nicola Montano,
| |
Collapse
|
12
|
Bauer J, Devinsky O, Rothermel M, Koch H. Autonomic dysfunction in epilepsy mouse models with implications for SUDEP research. Front Neurol 2023; 13:1040648. [PMID: 36686527 PMCID: PMC9853197 DOI: 10.3389/fneur.2022.1040648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Epilepsy has a high prevalence and can severely impair quality of life and increase the risk of premature death. Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in drug-resistant epilepsy and most often results from respiratory and cardiac impairments due to brainstem dysfunction. Epileptic activity can spread widely, influencing neuronal activity in regions outside the epileptic network. The brainstem controls cardiorespiratory activity and arousal and reciprocally connects to cortical, diencephalic, and spinal cord areas. Epileptic activity can propagate trans-synaptically or via spreading depression (SD) to alter brainstem functions and cause cardiorespiratory dysfunction. The mechanisms by which seizures propagate to or otherwise impair brainstem function and trigger the cascading effects that cause SUDEP are poorly understood. We review insights from mouse models combined with new techniques to understand the pathophysiology of epilepsy and SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive methods in anesthetized and awake mice. Optogenetics combined with electrophysiological and optical manipulation and recording methods offer unique opportunities to study neuronal mechanisms under normal conditions, during and after non-fatal seizures, and in SUDEP. These combined approaches can advance our understanding of brainstem pathophysiology associated with seizures and SUDEP and may suggest strategies to prevent SUDEP.
Collapse
Affiliation(s)
- Jennifer Bauer
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Orrin Devinsky
- Departments of Neurology, Neurosurgery and Psychiatry, NYU Langone School of Medicine, New York, NY, United States
| | - Markus Rothermel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Henner Koch
- Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany,*Correspondence: Henner Koch ✉
| |
Collapse
|
13
|
Zhang X, Smits M, Curfs L, Spruyt K. Sleep Respiratory Disturbances in Girls with Rett Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013082. [PMID: 36293662 PMCID: PMC9602589 DOI: 10.3390/ijerph192013082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 05/17/2023]
Abstract
Individuals with Rett Syndrome (RTT), a rare neurodevelopmental disorder, present disordered breathing during wakefulness. Whilst findings on breathing during sleep are contradictory, the relation between sleep breathing and their clinical features, genetic characteristics, age, and sleep phase is rarely investigated, which is the objective of this study. Overnight polysomnography (PSG) was performed. Sleep macrostructure parameters were compared between the RTT subjects with and without sleep-disordered breathing (SDB). The association between the apnea-hypopnea index (AHI) with age at PSG was tested. Particularly for RTT subjects with SDB, the respiratory indexes in REM and NREM sleep were compared. Stratified analyses per clinical characteristics, genetic characteristics, and clinical features' severity were performed. Non-parametric statistics were applied. A sample of 11 female RTT subjects, aged 8.69 ± 5.29 years with ten confirmed with MECP2 mutations, were studied. The average AHI was 3.94 ± 1.19/h TST, of which eight (72.73%) had obstructive sleep apnea, i.e., six in 1/h TST ≤ AHI ≤ 5/h TST, and two in AHI > 5/h TST. The mean SpO2% was 81.00 ± 35.15%. The AHI was not significantly correlated with their age at PSG (rs = -0.15, p = 0.67). Sleep macrostructure in SDB-absent and SDB-present groups was not different. Respiratory indexes in those with obstructive sleep apnea showed no difference between REM and NREM sleep nor any of the strata. In our clinical sample, more than half of the RTT subjects with MECP2 mutations had obstructive sleep apnea in both NREM and REM sleep which was unrelated to their clinical features. Our results also indicated hypoxemia throughout nocturnal sleep in RTT. To conclude, our results suggest that disordered breathing during sleep is prevalently present in RTT as an independent clinical feature.
Collapse
Affiliation(s)
- Xinyan Zhang
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France
| | - Marcel Smits
- Department of Sleep-Wake Disorders and Chronobiology, Hospital Gelderse Vallei Ede, Governor Kremers Centre, Maastricht University Medical Centre, 6716 RP Gelderland, The Netherlands
| | - Leopold Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Karen Spruyt
- NeuroDiderot-INSERM, Université de Paris, 75019 Paris, France
- Correspondence:
| |
Collapse
|
14
|
Torres-Pérez JV, Martínez-Rodríguez E, Forte A, Blanco-Gómez C, Stork O, Lanuza E, Santos M, Agustín-Pavón C. Early life stress exacerbates behavioural and neuronal alterations in adolescent male mice lacking methyl-CpG binding protein 2 (Mecp2). Front Behav Neurosci 2022; 16:974692. [PMID: 36082308 PMCID: PMC9447412 DOI: 10.3389/fnbeh.2022.974692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
The methyl-CpG binding protein 2 gene (MECP2) encodes an epigenetic transcriptional regulator implicated in neuronal plasticity. Loss-of-function mutations in this gene are the primary cause of Rett syndrome and, to a lesser degree, of other neurodevelopmental disorders. Recently, we demonstrated that both Mecp2 haploinsuficiency and mild early life stress decrease anxiety-like behaviours and neuronal activation in brain areas controlling these responses in adolescent female mice. Here, we extend this work to males by using Mecp2-null and wild type adolescent mice subjected to maternal separation and their non-stressed controls. We assessed their behavioural responses in a battery of anxiety-provoking tests. Upon exposure to an elevated plus maze in aversive conditions, we evaluated changes in c-FOS expression in stress- and anxiety-related brain regions. In addition, we assessed the impact of maternal separation in neuronal maturation using doublecortin and reelin as surrogate markers. Mutant males showed reduced motor abilities, increased activation of the olfactory bulbs, probably due to breathing abnormalities, and decreased activation of the paraventricular thalamic nucleus, when compared to wild type mice. In addition, maternal separation increased the number of immature doublecortin-like neurons found in Mecp2-null animals. Moreover, this work shows for the first time that reelin is decreased in the mutant animals at the olfactory tubercle, piriform cortex and hippocampal dentate gyrus, an effect also associated to maternal separation. Taken together, our results suggest that maternal separation exacerbates some phenotypical alterations associated with lack of MeCP2 in adolescent males.
Collapse
Affiliation(s)
- Jose Vicente Torres-Pérez
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| | - Elena Martínez-Rodríguez
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| | - Anabel Forte
- Department of Statistics and Operational Research, Universitat de València, Valencia, Spain
| | - Carlos Blanco-Gómez
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Enrique Lanuza
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
| | - Mónica Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
- *Correspondence: Mónica Santos, ;
| | - Carmen Agustín-Pavón
- Unitat Mixta d’Investigació en Neuroanatomia Funcional, Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València, València, Spain
- Carmen Agustín-Pavón,
| |
Collapse
|
15
|
Lusk SJ, McKinney A, Hunt PJ, Fahey PG, Patel J, Chang A, Sun JJ, Martinez VK, Zhu PJ, Egbert JR, Allen G, Jiang X, Arenkiel BR, Tolias AS, Costa-Mattioli M, Ray RS. A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping. BMC Biol 2022; 20:28. [PMID: 35086530 PMCID: PMC8796356 DOI: 10.1186/s12915-022-01227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production. RESULTS Briefly, we produced 7 intersectional mouse lines using a dual recombinase system, one mouse line with a single recombinase system, and three embryonic stem (ES) cell lines that are designed to study the way functional, molecular, and anatomical features relate to each other in building circuits that underlie physiology and behavior. As a proof-of-principle, we applied three of these lines to different neuronal populations for anatomical mapping and functional in vivo investigation of respiratory control. We also generated a mouse line with a single recombinase-responsive allele that controls the expression of the calcium sensor Twitch-2B. This mouse line was applied globally to study the effects of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on calcium release in the ovarian follicle. CONCLUSIONS The lines presented here are representative examples of outcomes possible with the successful application of our genetic toolkit for the facile development of diverse, modifiable animal models. This toolkit will allow labs to create single or dual recombinase effector lines easily for any cell population or subpopulation of interest when paired with the appropriate Cre and FLP recombinase mouse lines or viral vectors. We have made our tools and derivative intersectional mouse and ES cell lines openly available for non-commercial use through publicly curated repositories for plasmid DNA, ES cells, and transgenic mouse lines.
Collapse
Affiliation(s)
- Savannah J Lusk
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andrew McKinney
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jay Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andersen Chang
- Department of Statistics, Rice University, Houston, TX, USA
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Vena K Martinez
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Ping Jun Zhu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy R Egbert
- Department of Cell Biology, University of Connecticut, Farmington, CT, USA
| | - Genevera Allen
- Department of Statistics, Computer Science, and Electrical and Computer Engineering, Rice University, Houston, TX, USA
- Neurological Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolong Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Houston, TX, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Houston, TX, USA.
| |
Collapse
|
16
|
Shovlin S, Delepine C, Swanson L, Bach S, Sahin M, Sur M, Kaufmann WE, Tropea D. Molecular Signatures of Response to Mecasermin in Children With Rett Syndrome. Front Neurosci 2022; 16:868008. [PMID: 35712450 PMCID: PMC9197456 DOI: 10.3389/fnins.2022.868008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Rett syndrome (RTT) is a devastating neurodevelopmental disorder without effective treatments. Attempts at developing targetted therapies have been relatively unsuccessful, at least in part, because the genotypical and phenotypical variability of the disorder. Therefore, identification of biomarkers of response and patients' stratification are high priorities. Administration of Insulin-like Growth Factor 1 (IGF-1) and related compounds leads to significant reversal of RTT-like symptoms in preclinical mouse models. However, improvements in corresponding clinical trials have not been consistent. A 20-weeks phase I open label trial of mecasermin (recombinant human IGF-1) in children with RTT demonstrated significant improvements in breathing phenotypes. However, a subsequent randomised controlled phase II trial did not show significant improvements in primary outcomes although two secondary clinical endpoints showed positive changes. To identify molecular biomarkers of response and surrogate endpoints, we used RNA sequencing to measure differential gene expression in whole blood samples of participants in the abovementioned phase I mecasermin trial. When all participants (n = 9) were analysed, gene expression was unchanged during the study (baseline vs. end of treatment, T0-T3). However, when participants were subclassified in terms of breathing phenotype improvement, specifically by their plethysmography-based apnoea index, individuals with moderate-severe apnoea and breathing improvement (Responder group) displayed significantly different transcript profiles compared to the other participants in the study (Mecasermin Study Reference group, MSR). Many of the differentially expressed genes are involved in the regulation of cell cycle processes and immune responses, as well as in IGF-1 signalling and breathing regulation. While the Responder group showed limited gene expression changes in response to mecasermin, the MSR group displayed marked differences in the expression of genes associated with inflammatory processes (e.g., neutrophil activation, complement activation) throughout the trial. Our analyses revealed gene expression profiles associated with severe breathing phenotype and its improvement after mecasermin administration in RTT, and suggest that inflammatory/immune pathways and IGF-1 signalling contribute to treatment response. Overall, these data support the notion that transcript profiles have potential as biomarkers of response to IGF-1 and related compounds.
Collapse
Affiliation(s)
- Stephen Shovlin
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Lindsay Swanson
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Snow Bach
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Simons Center for the Social Brain, Picower Institute for Learning and Memory, MIT, Cambridge, MA, United States
| | - Walter E Kaufmann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Daniela Tropea
- Neuropsychiatric Genetics, Trinity Center for Health Sciences, Trinity Translational Medicine Institute, St James Hospital, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland
| |
Collapse
|
17
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Huff A, Burgraff N. Breathing disturbances in Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:139-151. [PMID: 36031301 PMCID: PMC10029146 DOI: 10.1016/b978-0-323-91532-8.00018-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rett Syndrome is an X-linked neurological disorder characterized by behavioral and neurological regression, seizures, motor deficits, and dysautonomia. A particularly prominent presentation includes breathing abnormalities characterized by breathing irregularities, hyperventilation, repetitive breathholding during wakefulness, obstructive and central apneas during sleep, and abnormal responses to hypoxia and hypercapnia. The condition and pathology of the respiratory system is further complicated by dysfunctions of breathing-motor coordination, which is reflected in dysphagia. The discovery of the X-linked mutations in the MECP2 gene has transformed our understanding of the cellular and molecular mechanisms that are at the root of various clinical phenotypes. However, the genotype-phenotype relationship is complicated by various factors which include not only X-inactivation but also consequences of the intermittent hypoxia and oxidative stress associated with the breathing abnormalities.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, United States.
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nicholas Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
18
|
Musi CA, Castaldo AM, Valsecchi AE, Cimini S, Morello N, Pizzo R, Renieri A, Meloni I, Bonati M, Giustetto M, Borsello T. JNK signaling provides a novel therapeutic target for Rett syndrome. BMC Biol 2021; 19:256. [PMID: 34911542 PMCID: PMC8675514 DOI: 10.1186/s12915-021-01190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background Rett syndrome (RTT) is a monogenic X-linked neurodevelopmental disorder characterized by loss-of-function mutations in the MECP2 gene, which lead to structural and functional changes in synapse communication, and impairments of neural activity at the basis of cognitive deficits that progress from an early age. While the restoration of MECP2 in animal models has been shown to rescue some RTT symptoms, gene therapy intervention presents potential side effects, and with gene- and RNA-editing approaches still far from clinical application, strategies focusing on signaling pathways downstream of MeCP2 may provide alternatives for the development of more effective therapies in vivo. Here, we investigate the role of the c-Jun N-terminal kinase (JNK) stress pathway in the pathogenesis of RTT using different animal and cell models and evaluate JNK inhibition as a potential therapeutic approach. Results We discovered that the c-Jun N-terminal kinase (JNK) stress pathway is activated in Mecp2-knockout, Mecp2-heterozygous mice, and in human MECP2-mutated iPSC neurons. The specific JNK inhibitor, D-JNKI1, promotes recovery of body weight and locomotor impairments in two mouse models of RTT and rescues their dendritic spine alterations. Mecp2-knockout presents intermittent crises of apnea/hypopnea, one of the most invalidating RTT pathological symptoms, and D-JNKI1 powerfully reduces this breathing dysfunction. Importantly, we discovered that also neurons derived from hiPSC-MECP2 mut show JNK activation, high-phosphorylated c-Jun levels, and cell death, which is not observed in the isogenic control wt allele hiPSCs. Treatment with D-JNKI1 inhibits neuronal death induced by MECP2 mutation in hiPSCs mut neurons. Conclusions As a summary, we found altered JNK signaling in models of RTT and suggest that D-JNKI1 treatment prevents clinical symptoms, with coherent results at the cellular, molecular, and functional levels. This is the first proof of concept that JNK plays a key role in RTT and its specific inhibition offers a new and potential therapeutic tool to tackle RTT. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01190-2.
Collapse
Affiliation(s)
- Clara Alice Musi
- Department of Pharmacological and Biomolecular Sciences, Milan University, Via Balzaretti 9, 20133, Milan, Italy.,Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anna Maria Castaldo
- Department of Pharmacological and Biomolecular Sciences, Milan University, Via Balzaretti 9, 20133, Milan, Italy
| | | | - Sara Cimini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Noemi Morello
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Riccardo Pizzo
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | | | | | - Maurizio Bonati
- Department of Public Heath, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Maurizio Giustetto
- Department of Neuroscience and National Institute of Neuroscience, University of Turin, Turin, Italy
| | - Tiziana Borsello
- Department of Pharmacological and Biomolecular Sciences, Milan University, Via Balzaretti 9, 20133, Milan, Italy. .,Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
19
|
Wu Y, Cui N, Xing H, Zhong W, Arrowood C, Johnson CM, Jiang C. In vivo evidence for the cellular basis of central hypoventilation of Rett syndrome and pharmacological correction in the rat model. J Cell Physiol 2021; 236:8082-8098. [PMID: 34077559 DOI: 10.1002/jcp.30462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/13/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused mostly by mutations in the MECP2 gene. RTT patients show periodical hypoventilation attacks. The breathing disorder contributing to the high incidence of sudden death is thought to be due to depressed central inspiratory (I) activity via unknown cellular processes. Demonstration of such processes may lead to targets for pharmacological control of the RTT-type hypoventilation. We performed in vivo recordings from medullary respiratory neurons on the RTT rat model. To our surprise, both I and expiratory (E) neurons in the ventral respiratory column (VRC) increased their firing activity in Mecp2-null rats with severe hypoventilation. These I neurons including E-I phase-spanning and other I neurons remained active during apneas. Consistent with enhanced central I drive, ectopic phrenic discharges during expiration as well as apnea were observed in the Mecp2-null rats. Considering the increased I neuronal firing and ectopic phrenic activity, the RTT-type hypoventilation does not seem to be caused by depression in central I activity, neither reduced medullary I premotor output. This as well as excessive E neuronal firing as shown in our previous studies suggests inadequate synaptic inhibition for phase transition. We found that the abnormal respiratory neuronal firing, ectopic phrenic discharge as well as RTT-type hypoventilation all can be corrected by enhancing GABAergic inhibition. More strikingly, Mecp2-null rats reaching humane endpoints with severe hypoventilation can be rescued by GABAergic augmentation. Thus, defective GABAergic inhibition among respiratory neurons is likely to play a role in the RTT-type hypoventilation, which can be effectively controlled with pharmacological agents.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Hao Xing
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Colin Arrowood
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder characterized by neurodevelopmental regression between 6 and 18 months of life and associated with multi-system comorbidities. Caused mainly by pathogenic variants in the MECP2 (methyl CpG binding protein 2) gene, it is the second leading genetic cause of intellectual disability in girls after Down syndrome. RTT affects not only neurological function but also a wide array of non-neurological organs. RTT-related disorders involve abnormalities of the respiratory, cardiovascular, digestive, metabolic, skeletal, endocrine, muscular, and urinary systems and immune response. Here, we review the different aspects of RTT affecting the main peripheral groups of organs and sometimes occurring independently of nervous system defects.
Collapse
Affiliation(s)
- Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385, Marseille, France
| |
Collapse
|
21
|
Vashi N, Ackerley C, Post M, Justice MJ. Aberrant lung lipids cause respiratory impairment in a Mecp2-deficient mouse model of Rett syndrome. Hum Mol Genet 2021; 30:2161-2176. [PMID: 34230964 PMCID: PMC8561422 DOI: 10.1093/hmg/ddab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Severe respiratory impairment is a prominent feature of Rett syndrome (RTT), an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, while surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, while deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor corepressor 1/2 (NCOR1/2) transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.
Collapse
Affiliation(s)
- Neeti Vashi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Cameron Ackerley
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| | - Monica J Justice
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada.,Genetics and Genome Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5G 0A4, Canada
| |
Collapse
|
22
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
23
|
Altamirano AE, Wilson CG. An overview of developmental dysregulation of autonomic control in infants. Birth Defects Res 2021; 113:864-871. [PMID: 33421331 DOI: 10.1002/bdr2.1855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
In this short review, we provide an overview of developmental disorders causing autonomic nervous system dysregulation. We briefly discuss perinatal conditions that adversely impact developmental outcomes including apnea of prematurity, sudden infant death syndrome, and Rett syndrome. We provide a brief clinical description, an overview of known or hypothesized mechanisms for the disorder, and current standard of practice for treatment of each condition. Additionally, we consider preventative measures and complications of these disorders to provide further insight into the pathogenesis of specific autonomic dysregulation in neonates. The goal of this short review is to provide an updated understanding of the impact of autonomic dysregulation on development of brainstem circuits and to briefly highlight promising future treatment options and controversies.
Collapse
Affiliation(s)
- Adulzir E Altamirano
- Center for Health Disparities, Loma Linda University, Loma Linda, California, USA.,Lawrence D. Longo, M.D. Center for Perinatal Biology, Loma Linda, California, USA
| | - Christopher G Wilson
- Lawrence D. Longo, M.D. Center for Perinatal Biology, Loma Linda, California, USA
| |
Collapse
|
24
|
Matagne V, Borloz E, Ehinger Y, Saidi L, Villard L, Roux JC. Severe offtarget effects following intravenous delivery of AAV9-MECP2 in a female mouse model of Rett syndrome. Neurobiol Dis 2020; 149:105235. [PMID: 33383186 DOI: 10.1016/j.nbd.2020.105235] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 01/06/2023] Open
Abstract
Rett syndrome (RTT) is a severe X-linked neurodevelopmental disorder that is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). RTT is the second most prevalent genetic cause of intellectual disability in girls, and there is currently no cure for the disease. We have previously shown that gene therapy using a self-complementary AAV9 viral vector expressing a codon-optimized Mecp2 version (AAV9-MCO) significantly improved symptoms and increased survival in male Mecp2-deficient mice. Here, we pursued our studies and investigated the safety and efficacy of long-term gene therapy in the genetically relevant RTT mouse model: the heterozygous (HET) Mecp2 deficient female mouse. These mice were injected with the AAV9-MCO vector through the tail vein and an array of behavioral tests was performed. At 16- and 30-weeks post-injection, this treatment was able to rescue apneas and improved the spontaneous locomotor deficits and circadian locomotor activity in Mecp2 HET mice treated with AAV9-MCO at a dose of 5 × 1011 vg/mouse. To examine whether a higher dose of vector could result in increased improvements, we injected Mecp2 HET mice with a higher MCO vector dose (1012 vg/mouse), which resulted in some severe, sometimes lethal, side effects. In order to confirm these effects, a new cohort of Mecp2 HET mice were administered increasing doses of MCO vector (1011, 5 × 1011 and 1012 vg/mouse). Again, two weeks after vector administration, some Mecp2 HET mice were found dead while others displayed severe side effects and had to be euthanized. These deleterious effects were not observed in Mecp2 HET mice injected with a high dose of AAV9-GFP and were directly proportionate to vector dosage (0, 23 or 54% mortality at an AAV9-MCO dose of 1011, 5 × 1011, 1012 vg/mouse, respectively), and no such lethality was observed in wild-type (WT) mice. In the Mecp2 HET mice treated with the high and medium AAV9-MCO doses, blood chemistry analysis and post-mortem histology showed liver damage with drastically elevated levels of liver transaminases and disorganized liver architecture. Apoptosis was confirmed by the presence of TUNEL- and cleaved-caspase 3-positive cells in the Mecp2 HET mice treated with the higher doses of AAV9-MCO. We then studied the involvement of the unfolded protein response (UPR) in triggering apoptosis since it can be activated by AAV vectors. Increased expression of the C/EBP homologous protein (CHOP), one of UPR downstream effectors, was confirmed in Mecp2 HET mice after vector administration. The toxic reaction seen in some treated mice indicates that, although gene therapy for RTT improved breathing deficits observed in Mecp2 HET mice, further studies are needed to better understand the underlying mechanisms and caution must be exercised before similar attempts are undertaken in female Rett patients.
Collapse
Affiliation(s)
- Valerie Matagne
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Yann Ehinger
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Lydia Saidi
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France
| | - Jean-Christophe Roux
- Aix Marseille Univ, INSERM, MMG, U1251, Faculté de médecine Timone, 13385 Marseille, France.
| |
Collapse
|
25
|
Cacciatori E, Lelii M, Russo S, Alari V, Masciadri M, Guez S, Patria MF, Marchisio P, Milani D. Sleep disordered breathing and daytime hypoventilation in a male with MECP2 mutation. Am J Med Genet A 2020; 182:2982-2987. [PMID: 32954625 DOI: 10.1002/ajmg.a.61874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 01/02/2023]
Abstract
Rett syndrome (RTT, MIM * 312750) is an X-linked neurodevelopmental disorder caused by pathogenic variants at the Xq28 region involving the gene methyl-CpG-binding protein 2 (MECP2, MIM * 300005). The spectrum of MECP2-related phenotypes is wide and it ranges from asymptomatic female carriers to severe neonatal-onset encephalopathy in males. Abnormal breathing represents one of the leading features, but today little is known about polysomnographic features in RTT females; no data are available about males. We report the case of a male of Moroccan origins with a MECP2 pathogenic variant and a history of encephalopathy and severe breathing disturbances in the absence of dysmorphic features. For the first time we describe in detail the polysomnographic characteristics of a MECP2-mutated male and we show the relevance of severe central apneas, which may represent a new clinical clue to suggest the diagnosis. Moreover, we want to highlight the importance to maintain a high index of suspicion for MECP2-related disorders in the presence of severe hypotonia, apneic crises, and respiratory insufficiency in males to permit an earlier diagnosis and the consequent definition of recurrence risk of the family and to avoid other useless and invasive exams.
Collapse
Affiliation(s)
| | - Mara Lelii
- Fondazione IRCCS Ca' Granda, Milan, Italy
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Valentina Alari
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Maura Masciadri
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | | | | | - Paola Marchisio
- Fondazione IRCCS Ca' Granda, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
26
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
27
|
Ward CS, Huang TW, Herrera JA, Samaco RC, McGraw CM, Parra DE, Arvide EM, Ito-Ishida A, Meng X, Ure K, Zoghbi HY, Neul JL. Loss of MeCP2 Function Across Several Neuronal Populations Impairs Breathing Response to Acute Hypoxia. Front Neurol 2020; 11:593554. [PMID: 33193060 PMCID: PMC7662121 DOI: 10.3389/fneur.2020.593554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
Rett Syndrome (RTT) is a neurodevelopmental disorder caused by loss of function of the transcriptional regulator Methyl-CpG-Binding Protein 2 (MeCP2). In addition to the characteristic loss of hand function and spoken language after the first year of life, people with RTT also have a variety of physiological and autonomic abnormalities including disrupted breathing rhythms characterized by bouts of hyperventilation and an increased frequency of apnea. These breathing abnormalities, that likely involve alterations in both the circuitry underlying respiratory pace making and those underlying breathing response to environmental stimuli, may underlie the sudden unexpected death seen in a significant fraction of people with RTT. In fact, mice lacking MeCP2 function exhibit abnormal breathing rate response to acute hypoxia and maintain a persistently elevated breathing rate rather than showing typical hypoxic ventilatory decline that can be observed among their wild-type littermates. Using genetic and pharmacological tools to better understand the course of this abnormal hypoxic breathing rate response and the neurons driving it, we learned that the abnormal hypoxic breathing response is acquired as the animals mature, and that MeCP2 function is required within excitatory, inhibitory, and modulatory populations for a normal hypoxic breathing rate response. Furthermore, mice lacking MeCP2 exhibit decreased hypoxia-induced neuronal activity within the nucleus tractus solitarius of the dorsal medulla. Overall, these data provide insight into the neurons driving the circuit dysfunction that leads to breathing abnormalities upon loss of MeCP2. The discovery that combined dysfunction across multiple neuronal populations contributes to breathing dysfunction may provide insight into sudden unexpected death in RTT.
Collapse
Affiliation(s)
- Christopher S. Ward
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Teng-Wei Huang
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Jose A. Herrera
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Rodney C. Samaco
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Christopher M. McGraw
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Diana E. Parra
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - E. Melissa Arvide
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Aya Ito-Ishida
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Xiangling Meng
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Kerstin Ure
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Huda Y. Zoghbi
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey L. Neul
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
28
|
Sandweiss AJ, Brandt VL, Zoghbi HY. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol 2020; 19:689-698. [PMID: 32702338 DOI: 10.1016/s1474-4422(20)30217-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023]
Abstract
The X-linked gene encoding MECP2 is involved in two severe and complex neurodevelopmental disorders. Loss of function of the MeCP2 protein underlies Rett syndrome, whereas duplications of the MECP2 locus cause MECP2 duplication syndrome. Research on the mechanisms by which MeCP2 exerts effects on gene expression in neurons, studies of animal models bearing different disease-causing mutations, and more in-depth observations of clinical presentations have clarified some issues even as they have raised further questions. Yet there is enough evidence so far to suggest possible approaches to therapy for these two diseases that could go beyond attempting to address specific signs and symptoms (of which there are many) and instead target the pathophysiology underlying MECP2 disorders. Further work could bring antisense oligonucleotides, deep brain stimulation, and gene therapy into the clinic within the next decade or so.
Collapse
Affiliation(s)
- Alexander J Sandweiss
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Vicky L Brandt
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
29
|
Johnson CM, Cui N, Xing H, Wu Y, Jiang C. The antitussive cloperastine improves breathing abnormalities in a Rett Syndrome mouse model by blocking presynaptic GIRK channels and enhancing GABA release. Neuropharmacology 2020; 176:108214. [PMID: 32622786 DOI: 10.1016/j.neuropharm.2020.108214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. One of the major RTT features is breathing dysfunction characterized by periodic hypo- and hyperventilation. The breathing disorders are associated with increased brainstem neuronal excitability, which can be alleviated with GABA agonists. Since neuronal hypoexcitability occurs in the forebrain of RTT models, it is necessary to find pharmacological agents with a relative preference to brainstem neurons. Here we show evidence for the improvement of breathing disorders of Mecp2-disrupted mice with the brainstem-acting drug cloperastine (CPS) and its likely neuronal targets. CPS is an over-the-counter cough medicine that has an inhibitory effect on brainstem neuronal networks. In Mecp2-disrupted mice, CPS (30 mg/kg, i.p.) decreased the occurrence of apneas/h and breath frequency variation. GIRK currents expressed in HEK cells were inhibited by CPS with IC50 1 μM. Whole-cell patch clamp recordings in locus coeruleus (LC) and dorsal tegmental nucleus (DTN) neurons revealed an overall inhibitory effect of CPS (10 μM) on neuronal firing activity. Such an effect was reversed by the GABAA receptor antagonist bicuculline (20 μM). Voltage clamp studies showed that CPS increased GABAergic sIPSCs in LC cells, which was blocked by the GABAB receptor antagonist phaclofen. Functional GABAergic connections of DTN neurons with LC cells were shown. These results suggest that CPS improves breathing dysfunction in Mecp2-null mice by blocking GIRK channels in synaptic terminals and enhancing GABA release.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Ningren Cui
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Hao Xing
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Yang Wu
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA
| | - Chun Jiang
- Department of Biology, Georgia State University, 100 Piedmont Avenue, Atlanta, GA, 30303, USA.
| |
Collapse
|
30
|
Ehinger Y, Bruyère J, Panayotis N, Abada YS, Borloz E, Matagne V, Scaramuzzino C, Vitet H, Delatour B, Saidi L, Villard L, Saudou F, Roux JC. Huntingtin phosphorylation governs BDNF homeostasis and improves the phenotype of Mecp2 knockout mice. EMBO Mol Med 2020; 12:e10889. [PMID: 31913581 PMCID: PMC7005633 DOI: 10.15252/emmm.201910889] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 01/08/2023] Open
Abstract
Mutations in the X‐linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder for which there is no treatment. Several studies have linked the loss of MeCP2 function to alterations of brain‐derived neurotrophic factor (BDNF) levels, but non‐specific overexpression of BDNF only partially improves the phenotype of Mecp2‐deficient mice. We and others have previously shown that huntingtin (HTT) scaffolds molecular motor complexes, transports BDNF‐containing vesicles, and is under‐expressed in Mecp2 knockout brains. Here, we demonstrate that promoting HTT phosphorylation at Ser421, either by a phospho‐mimetic mutation or inhibition of the phosphatase calcineurin, restores endogenous BDNF axonal transport in vitro in the corticostriatal pathway, increases striatal BDNF availability and synaptic connectivity in vivo, and improves the phenotype and the survival of Mecp2 knockout mice—even though treatments were initiated only after the mice had already developed symptoms. Stimulation of endogenous cellular pathways may thus be a promising approach for the treatment of RTT patients.
Collapse
Affiliation(s)
- Yann Ehinger
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Julie Bruyère
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | | | - Yah-Se Abada
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Emilie Borloz
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Valérie Matagne
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Benoit Delatour
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Paris, France
| | - Lydia Saidi
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Laurent Villard
- Aix Marseille Univ, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | | |
Collapse
|
31
|
Baertsch NA, Ramirez JM. Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P. eLife 2019; 8:51350. [PMID: 31804180 PMCID: PMC6957314 DOI: 10.7554/elife.51350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022] Open
Abstract
The rhythm generating network for breathing must continuously adjust to changing metabolic and behavioral demands. Here, we examined network-based mechanisms in the mouse preBötzinger complex using substance P, a potent excitatory modulator of breathing frequency and stability, as a tool to dissect network properties that underlie dynamic breathing. We find that substance P does not alter the balance of excitation and inhibition during breaths or the duration of the resulting refractory period. Instead, mechanisms of recurrent excitation between breaths are enhanced such that the rate that excitation percolates through the network is increased. We propose a conceptual framework in which three distinct phases of inspiration, the burst phase, refractory phase, and percolation phase, can be differentially modulated to control breathing dynamics and stability. Unraveling mechanisms that support this dynamic control may improve our understanding of nervous system disorders that destabilize breathing, many of which involve changes in brainstem neuromodulatory systems.
Collapse
Affiliation(s)
- Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States.,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
32
|
O'Halloran KD. Pontine noradrenergic neurons facilitate pulmonary ventilation during hypercapnic stress: fight or flight - and breathe! Exp Physiol 2019; 105:5-6. [PMID: 31782170 DOI: 10.1113/ep088283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/26/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
33
|
Early Postnatal Treatment with Valproate Induces Gad1 Promoter Remodeling in the Brain and Reduces Apnea Episodes in Mecp2-Null Mice. Int J Mol Sci 2019; 20:ijms20205177. [PMID: 31635390 PMCID: PMC6834123 DOI: 10.3390/ijms20205177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
The deletion of Mecp2, the gene encoding methyl-CpG-binding protein 2, causes severe breathing defects and developmental anomalies in mammals. In Mecp2-null mice, impaired GABAergic neurotransmission is demonstrated at the early stage of life. GABAergic dysfunction in neurons in the rostral ventrolateral medulla (RVLM) is considered as a primary cause of breathing abnormality in Mecp2-null mice, but its molecular mechanism is unclear. Here, we report that mRNA expression levels of Gad1, which encodes glutamate decarboxylase 67 (GAD67), in the RVLM of Mecp2-null (Mecp2-/y, B6.129P2(C)-Mecp2tm1.1Bird/J) mice is closely related to the methylation status of its promoter, and valproate (VPA) can upregulate transcription from Gad1 through epigenetic mechanisms. The administration of VPA (300 mg/kg/day) together with L-carnitine (30 mg/kg/day) from day 8 to day 14 after birth increased Gad1 mRNA expression in the RVLM and reduced apnea counts in Mecp2-/y mice on postnatal day 15. Cytosine methylation levels in the Gad1 promoter were higher in the RVLM of Mecp2-/y mice compared to wild-type mice born to C57BL/6J females, while VPA treatment decreased the methylation levels in Mecp2-/y mice. Chromatin immunoprecipitation assay revealed that the VPA treatment reduced the binding of methyl-CpG binding domain protein 1 (MBD1) to the Gad1 promoter in Mecp2-/y mice. These results suggest that VPA improves breathing of Mecp2-/y mice by reducing the Gad1 promoter methylation, which potentially leads to the enhancement of GABAergic neurotransmission in the RVLM.
Collapse
|
34
|
Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients. Proc Natl Acad Sci U S A 2019; 117:23298-23303. [PMID: 31332003 DOI: 10.1073/pnas.1820847116] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental spectrum disorders like autism (ASD) are diagnosed, on average, beyond age 4 y, after multiple critical periods of brain development close and behavioral intervention becomes less effective. This raises the urgent need for quantitative, noninvasive, and translational biomarkers for their early detection and tracking. We found that both idiopathic (BTBR) and genetic (CDKL5- and MeCP2-deficient) mouse models of ASD display an early, impaired cholinergic neuromodulation as reflected in altered spontaneous pupil fluctuations. Abnormalities were already present before the onset of symptoms and were rescued by the selective expression of MeCP2 in cholinergic circuits. Hence, we trained a neural network (ConvNetACh) to recognize, with 97% accuracy, patterns of these arousal fluctuations in mice with enhanced cholinergic sensitivity (LYNX1-deficient). ConvNetACh then successfully detected impairments in all ASD mouse models tested except in MeCP2-rescued mice. By retraining only the last layers of ConvNetACh with heart rate variation data (a similar proxy of arousal) directly from Rett syndrome patients, we generated ConvNetPatients, a neural network capable of distinguishing them from typically developing subjects. Even with small cohorts of rare patients, our approach exhibited significant accuracy before (80% in the first and second year of life) and into regression (88% in stage III patients). Thus, transfer learning across species and modalities establishes spontaneous arousal fluctuations combined with deep learning as a robust noninvasive, quantitative, and sensitive translational biomarker for the rapid and early detection of neurodevelopmental disorders before major symptom onset.
Collapse
|
35
|
Golowasch J. Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. J Neurophysiol 2019; 122:300-315. [PMID: 31066614 DOI: 10.1152/jn.00784.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuromodulators play an important role in how the nervous system organizes activity that results in behavior. Disruption of the normal patterns of neuromodulatory release or production is known to be related to the onset of severe pathologies such as Parkinson's disease, Rett syndrome, Alzheimer's disease, and affective disorders. Some of these pathologies involve neuronal structures that are called central pattern generators (CPGs), which are involved in the production of rhythmic activities throughout the nervous system. Here I discuss the interplay between CPGs and neuromodulatory activity, with particular emphasis on the potential role of neuromodulators in the recovery of disrupted neuronal activity. I refer to invertebrate and vertebrate model systems and some of the lessons we have learned from research on these systems and propose a few avenues for future research. I make one suggestion that may guide future research in the field: neuromodulators restrict the parameter landscape in which CPG components operate, and the removal of neuromodulators may enable a perturbed CPG in finding a new set of parameter values that can allow it to regain normal function.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark , Newark, New Jersey
| |
Collapse
|
36
|
Lozovaya N, Nardou R, Tyzio R, Chiesa M, Pons-Bennaceur A, Eftekhari S, Bui TT, Billon-Grand M, Rasero J, Bonifazi P, Guimond D, Gaiarsa JL, Ferrari DC, Ben-Ari Y. Early alterations in a mouse model of Rett syndrome: the GABA developmental shift is abolished at birth. Sci Rep 2019; 9:9276. [PMID: 31239460 PMCID: PMC6592949 DOI: 10.1038/s41598-019-45635-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic mutations of the Methyl-CpG-binding protein-2 (MECP2) gene underlie Rett syndrome (RTT). Developmental processes are often considered to be irrelevant in RTT pathogenesis but neuronal activity at birth has not been recorded. We report that the GABA developmental shift at birth is abolished in CA3 pyramidal neurons of Mecp2-/y mice and the glutamatergic/GABAergic postsynaptic currents (PSCs) ratio is increased. Two weeks later, GABA exerts strong excitatory actions, the glutamatergic/GABAergic PSCs ratio is enhanced, hyper-synchronized activity is present and metabotropic long-term depression (LTD) is impacted. One day before delivery, maternal administration of the NKCC1 chloride importer antagonist bumetanide restored these parameters but not respiratory or weight deficits, nor the onset of mortality. Results suggest that birth is a critical period in RTT with important alterations that can be attenuated by bumetanide raising the possibility of early treatment of the disorder.
Collapse
Affiliation(s)
- N Lozovaya
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Nardou
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - R Tyzio
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Chiesa
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - A Pons-Bennaceur
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - S Eftekhari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - T-T Bui
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.,Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - M Billon-Grand
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J Rasero
- Biocruces Health Research Institute, 48903, Barakaldo, Spain
| | - P Bonifazi
- Biocruces Health Research Institute, 48903, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, 48013, Bilbao, Spain
| | - D Guimond
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - J-L Gaiarsa
- Mediterranean Institute of Neurobiology (INMED), Department of Neurobiology, Aix-Marseille University, INSERM U1249, 13273, Marseille, France
| | - D C Ferrari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France
| | - Y Ben-Ari
- Neurochlore, Ben-Ari Institute of Neuroarcheology (IBEN), Bâtiment Beret-Delaage, Parc scientifique et technologique de Luminy, 13288, Marseille, cedex 09, France.
| |
Collapse
|
37
|
Cosentino L, Vigli D, Franchi F, Laviola G, De Filippis B. Rett syndrome before regression: A time window of overlooked opportunities for diagnosis and intervention. Neurosci Biobehav Rev 2019; 107:115-135. [PMID: 31108160 DOI: 10.1016/j.neubiorev.2019.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022]
Abstract
Rett syndrome (RTT) is a rare neurological disorder primarily affecting females, causing severe cognitive, social, motor and physiological impairments for which no cure currently exists. RTT clinical diagnosis is based on the peculiar progression of the disease, since patients show an apparently normal initial development with a subsequent sudden regression at around 2 years of age. Accumulating evidences are rising doubts regarding the absence of early impairments, hence questioning the concept of regression. We reviewed the published literature addressing the pre-symptomatic stage of the disease in both patients and animal models with a particular focus on behavioral, physiological and brain abnormalities. The emerging picture delineates subtle, but reliable impairments that precede the onset of overt symptoms whose bases are likely set up already during embryogenesis. Some of the outlined alterations appear transient, suggesting compensatory mechanisms to occur in the course of development. There is urgent need for more systematic developmental analyses able to detect early pathological markers to be used as diagnostic tools and precocious targets of time-specific interventions.
Collapse
Affiliation(s)
- Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Francesca Franchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
38
|
Wittman S, Abdala AP, Rubin JE. Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome. J Physiol 2019; 597:2651-2672. [PMID: 30908648 DOI: 10.1113/jp277592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Reduced computational models are used to test effects of loss of inhibition to the Kölliker-Fuse nucleus (KFn). Three reduced computational models that simulate eupnoeic and vagotomized respiratory rhythms are considered. All models exhibit the emergence of respiratory perturbations associated with Rett syndrome as inhibition to the KFn is diminished. Simulations suggest that application of 5-HT1A agonists can mitigate the respiratory pathology. The three models can be distinguished and tested based on their predictions about connections and dynamics within the respiratory circuit and about effects of perturbations on certain respiratory neuron populations. ABSTRACT Rett syndrome (RTT) is a developmental disorder that can lead to respiratory disturbances featuring prolonged apnoeas of variable durations. Determining the mechanisms underlying these effects at the level of respiratory neural circuits would have significant implications for treatment efforts and would also enhance our understanding of respiratory rhythm generation and control. While experimental studies have suggested possible factors contributing to the respiratory patterns of RTT, we take a novel computational approach to the investigation of RTT, which allows for direct manipulation of selected system parameters and testing of specific hypotheses. Specifically, we present three reduced computational models, developed using an established framework, all of which successfully simulate respiratory outputs across eupnoeic and vagotomized conditions. All three models show that loss of inhibition to the Kölliker-Fuse nucleus reproduces the key respiratory alterations associated with RTT and, as suggested experimentally, that effects of 5-HT1A agonists on the respiratory neural circuit suffice to alleviate this respiratory pathology. Each of the models makes distinct predictions regarding the neuronal populations and interactions underlying these effects, suggesting natural directions for future experimental testing.
Collapse
Affiliation(s)
- Samuel Wittman
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, 15260, USA
| | - Ana Paula Abdala
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, PA, 15260, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
39
|
Treating Rett syndrome: from mouse models to human therapies. Mamm Genome 2019; 30:90-110. [PMID: 30820643 PMCID: PMC6606665 DOI: 10.1007/s00335-019-09793-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Rare diseases are very difficult to study mechanistically and to develop therapies for because of the scarcity of patients. Here, the rare neuro-metabolic disorder Rett syndrome (RTT) is discussed as a prototype for precision medicine, demonstrating how mouse models have led to an understanding of the development of symptoms. RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Mecp2-mutant mice are being used in preclinical studies that target the MECP2 gene directly, or its downstream pathways. Importantly, this work may improve the health of RTT patients. Clinical presentation may vary widely among individuals based on their mutation, but also because of the degree of X chromosome inactivation and the presence of modifier genes. Because it is a complex disorder involving many organ systems, it is likely that recovery of RTT patients will involve a combination of treatments. Precision medicine is warranted to provide the best efficacy to individually treat RTT patients.
Collapse
|
40
|
Amaddeo A, De Sanctis L, Arroyo JO, Khirani S, Bahi-Buisson N, Fauroux B. Polysomnographic findings in Rett syndrome. Eur J Paediatr Neurol 2019; 23:214-221. [PMID: 30262236 DOI: 10.1016/j.ejpn.2018.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Rett syndrome (RS) is a severe neurodevelopment disorder associated with abnormal breathing during wakefulness and disturbed nocturnal behaviour. Breathing abnormalities during daytime have been extensively reported but polysomnographic (PSG) findings have been poorly studied. MATERIALS AND METHODS Consecutive patients with RS carrying distinct mutations in MECP2 gene, who underwent a PSG between October 2014 and January 2018, were included in the study. Clinical and PSG data were collected. RESULTS Seventeen RS girls, mean age 9.5 ± 2.8 years, were included in the study. Mean total sleep time was 366 ± 102 min. Mean sleep efficiency was reduced (66 ± 19%) with only 3 girls presenting a sleep efficiency above 80%. Wake after sleep onset was increased (33 ± 20%) with an arousal index of 7 ± 6 events/hour. Sleep stages were altered with a normal N1 (2 ± 3%), a decreased N2 (34 ± 20%), an increase of N3 (51 ± 23%) and a decrease of REM sleep (12 ± 9%). Mean apnea hypopnea index (AHI) was increased at 19 ± 37 events/hour, with a predominance of obstructive events. Thirteen patients had an AHI > 1.5 event/hour. Four patients had an obstructive AHI >10 events/hour with one patient having associated tonsillar hypertrophy. Two patients had predominant severe central apneas (central AHI 53 and 132 events/hour) which resolved with noninvasive ventilation and nocturnal oxygen therapy respectively. CONCLUSION Girls with RS have poor sleep quality with alterations in slow wave and REM sleep stages. Obstructive respiratory events are uncommon in patients without adenotonsillar hypertrophy. Central respiratory events are rare. Longitudinal studies should help understanding the natural history of sleep disturbances in RS and their relationship with the neurocognitive decline.
Collapse
Affiliation(s)
- Alessandro Amaddeo
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants Malades, Paris, France; Paris Descartes University, Paris, France; Research Unit INSERM U 955, Team 13, Créteil, France.
| | - Livio De Sanctis
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Jorge Olmo Arroyo
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Sonia Khirani
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants Malades, Paris, France; ASV Santé, Gennevilliers, France
| | - Nadia Bahi-Buisson
- Paris Descartes University, Paris, France; Pediatric Neurology Departement, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Brigitte Fauroux
- Pediatric Noninvasive Ventilation and Sleep Unit, AP-HP, Hôpital Necker-Enfants Malades, Paris, France; Paris Descartes University, Paris, France; Research Unit INSERM U 955, Team 13, Créteil, France
| |
Collapse
|
41
|
Wu Y, Cui N, Xing H, Zhong W, Arrowood C, Johnson CM, Jiang C. Mecp2 Disruption in Rats Causes Reshaping in Firing Activity and Patterns of Brainstem Respiratory Neurons. Neuroscience 2018; 397:107-115. [PMID: 30458221 DOI: 10.1016/j.neuroscience.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
People with Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in the MECP2 gene, have breathing abnormalities manifested as periodical hypoventilation with compensatory hyperventilation, which are attributable to a high incidence of sudden death. Similar breathing abnormalities have been found in animal models with Mecp2 disruptions. Although RTT-type hypoventilation is believed to be due to depressed central inspiratory activity, whether this is true remains unknown. Here we show evidence for reshaping in firing activity and patterns of medullary respiratory neurons in RTT-type hypoventilation without evident depression in inspiratory neuronal activity. Experiments were performed in decerebrate rats in vivo. In Mecp2-null rats, abnormalities in breathing patterns were apparent in both decerebrate rats and awake animals, suggesting that RTT-type breathing abnormalities take place in the brainstem without forebrain input. In comparison to their wild-type counterparts, both inspiratory and expiratory neurons in Mecp2-null rats extended their firing duration, and fired more action potentials during each burst. No changes in inspiratory or expiratory neuronal distributions were found. Most inspiratory neurons started firing in the middle of expiration and changed their firing pattern to a phase-spanning type. The proportion of post-inspiratory neurons was reduced in the Mecp2-null rats. With the increased firing activity of both inspiratory and expiratory neurons in null rats, phrenic discharges shifted to a slow and deep breathing pattern. Thus, the RTT-type hypoventilation appears to result from reshaping of firing activity of both inspiratory and expiratory neurons without evident depression in central inspiratory activity.
Collapse
Affiliation(s)
- Yang Wu
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Hao Xing
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Weiwei Zhong
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Colin Arrowood
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Christopher M Johnson
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, GA 30302, United States.
| |
Collapse
|
42
|
Ramirez JM, Severs LJ, Ramirez SC, Agosto‐Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018; 596:3043-3065. [PMID: 29742297 PMCID: PMC6068258 DOI: 10.1113/jp275890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022] Open
Abstract
Mammals must continuously regulate the levels of O2 and CO2 , which is particularly important for the brain. Failure to maintain adequate O2 /CO2 homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O2 /CO2 homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O2 demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O2 -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O2 in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O2 , CO2 and the changes in pH.
Collapse
Affiliation(s)
- Jan Marino Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Liza J. Severs
- Department of Physiology and BiophysicsUniversity of WashingtonSeattleWAUSA
| | - Sanja C. Ramirez
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| | - Ibis M. Agosto‐Marlin
- Center for Integrative Brain ResearchSeattle Children's Research InstituteDepartment of Neurological SurgeryUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
43
|
Abstract
Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington 98101, USA;
| |
Collapse
|
44
|
Marina N, Turovsky E, Christie IN, Hosford PS, Hadjihambi A, Korsak A, Ang R, Mastitskaya S, Sheikhbahaei S, Theparambil SM, Gourine AV. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 2018; 66:1185-1199. [PMID: 29274121 PMCID: PMC5947829 DOI: 10.1002/glia.23283] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
Abstract
Astrocytes support neuronal function by providing essential structural and nutritional support, neurotransmitter trafficking and recycling and may also contribute to brain information processing. In this article we review published results and report new data suggesting that astrocytes function as versatile metabolic sensors of central nervous system (CNS) milieu and play an important role in the maintenance of brain metabolic homeostasis. We discuss anatomical and functional features of astrocytes that allow them to detect and respond to changes in the brain parenchymal levels of metabolic substrates (oxygen and glucose), and metabolic waste products (carbon dioxide). We report data suggesting that astrocytes are also sensitive to circulating endocrine signals-hormones like ghrelin, glucagon-like peptide-1 and leptin, that have a major impact on the CNS mechanisms controlling food intake and energy balance. We discuss signaling mechanisms that mediate communication between astrocytes and neurons and consider how these mechanisms are recruited by astrocytes activated in response to various metabolic challenges. We review experimental data suggesting that astrocytes modulate the activities of the respiratory and autonomic neuronal networks that ensure adaptive changes in breathing and sympathetic drive in order to support the physiological and behavioral demands of the organism in ever-changing environmental conditions. Finally, we discuss evidence suggesting that altered astroglial function may contribute to the pathogenesis of disparate neurological, respiratory and cardiovascular disorders such as Rett syndrome and systemic arterial hypertension.
Collapse
Affiliation(s)
- Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
- Research Department of Metabolism and Experimental Therapeutics, Division of MedicineUniversity College LondonLondonWC1E 6JJUnited Kingdom
| | - Egor Turovsky
- Laboratory of Intracellular SignallingInstitute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia
| | - Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Richard Ang
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Shahriar Sheikhbahaei
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & PharmacologyUniversity College LondonLondonWC1E 6BTUnited Kingdom
| |
Collapse
|
45
|
Are dopamine receptor and transporter changes in Rett syndrome reflected in Mecp2-deficient mice? Exp Neurol 2018; 307:74-81. [PMID: 29782864 DOI: 10.1016/j.expneurol.2018.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 11/20/2022]
Abstract
We tested the claim that the dopaminergic dysfunction of Rett Syndrome (RTT) also occurs in Mecp2-deficient mice that serve as a model of the syndrome. We used positron emission tomography (PET) to image dopamine D2 receptors (D2R) and transporters (DAT) in women with RTT and in Mecp2-deficient mice, and D1R and D2R density was measured in postmortem human tissue by autoradiography. Results showed 1) significantly reduced D2R density in the striatum of women with RTT compared to control subjects. 2) PET imaging of mouse striatum similarly demonstrated significant reductions in D2R density of 7-10 week-old hemizygous (Mecp2-null) and heterozygous (HET) mice compared to wild type (WT) mice. With age, the density of D2R declined in WT mice but not HET mice. 3) In contrast, postmortem autoradiography revealed no group differences in the density of D1R and D2R in the caudate and putamen of RTT versus normal control subjects. 4) In humans and in the mouse model, PET revealed only marginal group differences in DAT. The results confirm that dopaminergic dysfunction in RTT is also present in Mecp2-deficient mice and that reductions in D2R more likely explain the impaired ambulation and progressive rigidity observed rather than alterations in DAT.
Collapse
|
46
|
Gogliotti RG, Senter RK, Fisher NM, Adams J, Zamorano R, Walker AG, Blobaum AL, Engers DW, Hopkins CR, Daniels JS, Jones CK, Lindsley CW, Xiang Z, Conn PJ, Niswender CM. mGlu 7 potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Sci Transl Med 2018; 9:9/403/eaai7459. [PMID: 28814546 DOI: 10.1126/scitranslmed.aai7459] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl-CpG binding protein 2 (MECP2) gene. The cognitive impairments seen in mouse models of RTT correlate with deficits in long-term potentiation (LTP) at Schaffer collateral (SC)-CA1 synapses in the hippocampus. Metabotropic glutamate receptor 7 (mGlu7) is the predominant mGlu receptor expressed presynaptically at SC-CA1 synapses in adult mice, and its activation on GABAergic interneurons is necessary for induction of LTP. We demonstrate that pathogenic mutations in MECP2 reduce mGlu7 protein expression in brain tissue from RTT patients and in MECP2-deficient mouse models. In rodents, this reduction impairs mGlu7-mediated control of synaptic transmission. We show that positive allosteric modulation of mGlu7 activity restores LTP and improves contextual fear learning, novel object recognition, and social memory. Furthermore, mGlu7 positive allosteric modulation decreases apneas in Mecp2+/- mice, suggesting that mGlu7 may be a potential therapeutic target for multiple aspects of the RTT phenotype.
Collapse
Affiliation(s)
- Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Rebecca K Senter
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey Adams
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Rocio Zamorano
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Adam G Walker
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Darren W Engers
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Corey R Hopkins
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - J Scott Daniels
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Zixiu Xiang
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA. .,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Ross PD, Guy J, Selfridge J, Kamal B, Bahey N, Tanner KE, Gillingwater TH, Jones RA, Loughrey CM, McCarroll CS, Bailey MES, Bird A, Cobb S. Exclusive expression of MeCP2 in the nervous system distinguishes between brain and peripheral Rett syndrome-like phenotypes. Hum Mol Genet 2018; 25:4389-4404. [PMID: 28173151 PMCID: PMC5886038 DOI: 10.1093/hmg/ddw269] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022] Open
Abstract
Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked MECP2 gene. MeCP2 protein is highly expressed in the nervous system and deficiency in the mouse central nervous system alone recapitulates many features of the disorder. This suggests that RTT is primarily a neurological disorder, although the protein is reportedly widely expressed throughout the body. To determine whether aspects of the RTT phenotype that originate in non-neuronal tissues might have been overlooked, we generated mice in which Mecp2 remains at near normal levels in the nervous system, but is severely depleted elsewhere. Comparison of these mice with wild type and globally MeCP2-deficient mice showed that the majority of RTT-associated behavioural, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes are absent. Specific peripheral phenotypes were observed, however, most notably hypo-activity, exercise fatigue and bone abnormalities. Our results confirm that the brain should be the primary target for potential RTT therapies, but also strongly suggest that some less extreme but clinically significant aspects of the disorder arise independently of defects in the nervous system.
Collapse
Affiliation(s)
- Paul D Ross
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Jim Selfridge
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Bushra Kamal
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Noha Bahey
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, UK
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK and
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Edinburgh, UK
| | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
48
|
Vogelgesang S, Niebert M, Bischoff AM, Hülsmann S, Manzke T. Persistent Expression of Serotonin Receptor 5b Alters Breathing Behavior in Male MeCP2 Knockout Mice. Front Mol Neurosci 2018. [PMID: 29515365 PMCID: PMC5826236 DOI: 10.3389/fnmol.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mutations in the transcription factor methyl-CpG-binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). Besides many other neurological problems, RTT patients show irregular breathing with recurrent apneas or breath-holdings. MeCP2-deficient mice, which recapitulate this breathing phenotype, show a dysregulated, persistent expression of G-protein-coupled serotonin receptor 5-ht5b (Htr5b) in the brainstem. To investigate whether the persistence of 5-ht5b expression is contributing to the respiratory phenotype, we crossbred MeCP2-deficient mice with 5-ht5b-deficient mice to generate double knockout mice (Mecp2−/y;Htr5b−/−). To compare respiration between wild type (WT), Mecp2−/y and Mecp2−/y;Htr5b−/− mice, we used unrestrained whole-body plethysmography. While the breathing of MeCP2-deficient male mice (Mecp2−/y) at postnatal day 40 is characterized by a slow breathing rate and the occurrence of prolonged respiratory pauses, we found that in MeCP2-deficient mice, which also lacked the 5-ht5b receptor, the breathing rate and the number of pauses were indistinguishable from WT mice. To test for a potential mechanism, we also analyzed if the known coupling of 5-ht5b receptors to Gi proteins is altering second messenger signaling. Tissue cAMP levels in the medulla of Mecp2−/y mice were decreased as compared to WT mice. In contrast, cAMP levels in Mecp2−/y;Htr5b−/− mice were indistinguishable from WT mice. Taken together, our data points towards a role of 5-ht5b receptors within the complex breathing phenotype of MeCP2-deficient mice.
Collapse
Affiliation(s)
- Steffen Vogelgesang
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Marcus Niebert
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Anne M Bischoff
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Clinic for Anesthesiology, University Medical Göttingen, Göttingen, Germany
| | - Swen Hülsmann
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Clinic for Anesthesiology, University Medical Göttingen, Göttingen, Germany
| | - Till Manzke
- DFG-Research Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Institute of Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
49
|
Mesuret G, Dannenberg J, Arnoldt M, Grützner AA, Niebert M, Hülsmann S. Breathing disturbances in a model of Rett syndrome: A potential involvement of the glycine receptor α3 subunit? Respir Physiol Neurobiol 2018; 248:43-47. [DOI: 10.1016/j.resp.2017.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 11/30/2022]
|
50
|
Mancini J, Dubus JC, Jouve E, Roux JC, Franco P, Lagrue E, Castelnau P, Cances C, Chaix Y, Rougeot-Jung C, Cornu C, Desportes V, Vallée L, Bahi-Buisson N, Truillet R, Attolini L, Villard L, Blin O, Micallef J. Effect of desipramine on patients with breathing disorders in RETT syndrome. Ann Clin Transl Neurol 2017; 5:118-127. [PMID: 29468173 PMCID: PMC5817841 DOI: 10.1002/acn3.468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Rett Syndrome (RTT) is a severe neurodevelopmental condition with breathing disorders, affecting around one in 10,000 female births. Desipramine, a noradrenaline reuptake inhibitor, reduced the number of apneas in Mecp2-deficient mice, a model of RTT. We planned a phase 2 trial to test its efficacy and its safety on breathing patterns in 36 girls with RTT. Methods The trial was a 6-month, multicenter, randomized, double-blind, placebo-controlled study registered with ClinicalTrials.gov, number NCT00990691. Girls diagnosed according to clinical examination and confirmed by genotyping were randomly assigned in a 1:1:1 ratio to receive 2-3 mg/kg Desipramine per day (high Desipramine), 1-2 mg/kg Desipramine per day (low Desipramine), or a placebo. The primary outcome was the change of apnea hypopnea index (AHI), defined by the number of apnea and hypopnea events per hour, assessed at 6 months from baseline. Intention-to-treat analysis was applied. Results The median change in AHI from baseline to 6 months was -31 (IQR: -37 to -11) for the high Desipramine, -17.5 (IQR: -31 to 13) for the low Desipramine, and -13 (IQR:-31 to 0) for the placebo group. We did not find any significant difference in these changes between the groups (P = 0.781). A significant inverse correlation between Desipramine plasma concentration and AHI (r = -0.44; P = 0.0002) was underlined. Interpretation This first clinical trial of desipramine did not show clinical efficacy. Although required further studies, the significant correlation between Desipramine concentrations and improvement of AHI provided additional and relevant reasons to test the noradrenergic pathway in RTT.
Collapse
Affiliation(s)
- Josette Mancini
- Neuropediatric Unit Aix Marseille University Children Hospital APHM, Timone, Neurosciences Institute Marseille France
| | - Jean-Christophe Dubus
- Pneumology Pediatric Unit Aix Marseille University Children Hospital CNRS URMITE 6236A PHM Marseille France
| | - Elisabeth Jouve
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | | | - Patricia Franco
- Neuropediatric Ward Hypnology Unit Lyon University Civil Hospices of Lyon INSERM U628 Lyon France
| | - Emmanuelle Lagrue
- Neuropediatrics and Handicap Department Tours University INSERM, UMR U930 Imaging and Brain, CHRU Tours Tours France
| | - Pierre Castelnau
- Neuropediatrics and Handicap Department Tours University INSERM, UMR U930 Imaging and Brain, CHRU Tours Tours France
| | - Claude Cances
- Neuropediatric Unit Neuro Imaging Center Toulouse University Children Hospital CHU PURPANUMR 1214 Toulouse France
| | - Yves Chaix
- Neuropediatric Unit Neuro Imaging Center Toulouse University Children Hospital CHU PURPANUMR 1214 Toulouse France
| | - Christelle Rougeot-Jung
- Lyon University National Reference Center for Rare Diseases with Intellectual Disability HFME Hospices Civils de Lyon Lyon France.,CNRS UMR 5304 ISC Lyon France
| | - Catherine Cornu
- Department of Pharmacotoxicology Clinical Investigation Center Hospices Civils de Lyon INSERM 1407 Lyon France.,Lyon University CNRS UMR 5558 Lyon France
| | - Vincent Desportes
- Lyon University National Reference Center for Rare Diseases with Intellectual Disability HFME Hospices Civils de Lyon Lyon France.,CNRS UMR 5304 ISC Lyon France
| | - Louis Vallée
- Department of Neuropediatrics Lille North 2 University CHRU Hôpital Roger Salengro Lille France
| | - Nadia Bahi-Buisson
- Imagine Institute and INSERM UMR-1163 Embryology and Genetics of Congenital Malformations Pediatric Neurology Paris Descartes - Sorbonne Paris Cité University Necker Enfants Malades University Hospital AP-HP Paris France
| | - Romain Truillet
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Laurence Attolini
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Laurent Villard
- Aix Marseille University INSERM, GMGF UMR_S 910 Marseille France
| | - Olivier Blin
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| | - Joëlle Micallef
- Department of Pharmacology F-CRIN Orphan DEV Timone Neurosciences Institute Aix Marseille University CNRS INTAPHM, CIC CPCET CHU Timone Marseille France
| |
Collapse
|