1
|
Liu J, Mouradian MM. Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2364. [PMID: 38397040 PMCID: PMC10888553 DOI: 10.3390/ijms25042364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
2
|
O’Day DH. The Complex Interplay between Toxic Hallmark Proteins, Calmodulin-Binding Proteins, Ion Channels, and Receptors Involved in Calcium Dyshomeostasis in Neurodegeneration. Biomolecules 2024; 14:173. [PMID: 38397410 PMCID: PMC10886625 DOI: 10.3390/biom14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium dyshomeostasis is an early critical event in neurodegeneration as exemplified by Alzheimer's (AD), Huntington's (HD) and Parkinson's (PD) diseases. Neuronal calcium homeostasis is maintained by a diversity of ion channels, buffers, calcium-binding protein effectors, and intracellular storage in the endoplasmic reticulum, mitochondria, and lysosomes. The function of these components and compartments is impacted by the toxic hallmark proteins of AD (amyloid beta and Tau), HD (huntingtin) and PD (alpha-synuclein) as well as by interactions with downstream calcium-binding proteins, especially calmodulin. Each of the toxic hallmark proteins (amyloid beta, Tau, huntingtin, and alpha-synuclein) binds to calmodulin. Multiple channels and receptors involved in calcium homeostasis and dysregulation also bind to and are regulated by calmodulin. The primary goal of this review is to show the complexity of these interactions and how they can impact research and the search for therapies. A secondary goal is to suggest that therapeutic targets downstream from calcium dyshomeostasis may offer greater opportunities for success.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
3
|
Ahamad S, Bano N, Khan S, Hussain MK, Bhat SA. Unraveling the Puzzle of Therapeutic Peptides: A Promising Frontier in Huntington's Disease Treatment. J Med Chem 2024; 67:783-815. [PMID: 38207096 DOI: 10.1021/acs.jmedchem.3c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder characterized by a mutation in the huntingtin (HTT) gene, resulting in the production of a mutant huntingtin protein (mHTT). The accumulation of mHTT leads to the development of toxic aggregates in neurons, causing cell dysfunction and, eventually, cell death. Peptide therapeutics target various aspects of HD pathology, including mHTT reduction and aggregation inhibition, extended CAG mRNA degradation, and modulation of dysregulated signaling pathways, such as BDNF/TrkB signaling. In addition, these peptide therapeutics also target the detrimental interactions of mHTT with InsP3R1, CaM, or Caspase-6 proteins to mitigate HD. This Perspective provides a detailed perspective on anti-HD therapeutic peptides, highlighting their design, structural characteristics, neuroprotective effects, and specific mechanisms of action. Peptide therapeutics for HD exhibit promise in preclinical models, but further investigation is required to confirm their effectiveness as viable therapeutic strategies, recognizing that no approved peptide therapy for HD currently exists.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
5
|
O’Day DH. Protein Biomarkers Shared by Multiple Neurodegenerative Diseases Are Calmodulin-Binding Proteins Offering Novel and Potentially Universal Therapeutic Targets. J Clin Med 2023; 12:7045. [PMID: 38002659 PMCID: PMC10672630 DOI: 10.3390/jcm12227045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Seven major neurodegenerative diseases and their variants share many overlapping biomarkers that are calmodulin-binding proteins: Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal lobar dementia (FTD), Huntington's disease (HD), Lewy body disease (LBD), multiple sclerosis (MS), and Parkinson's disease (PD). Calcium dysregulation is an early and persistent event in each of these diseases, with calmodulin serving as an initial and primary target of increased cytosolic calcium. Considering the central role of calcium dysregulation and its downstream impact on calcium signaling, calmodulin has gained interest as a major regulator of neurodegenerative events. Here, we show that calmodulin serves a critical role in neurodegenerative diseases via binding to and regulating an abundance of biomarkers, many of which are involved in multiple neurodegenerative diseases. Of special interest are the shared functions of calmodulin in the generation of protein biomarker aggregates in AD, HD, LBD, and PD, where calmodulin not only binds to amyloid beta, pTau, alpha-synuclein, and mutant huntingtin but also, via its regulation of transglutaminase 2, converts them into toxic protein aggregates. It is suggested that several calmodulin binding proteins could immediately serve as primary drug targets, while combinations of calmodulin binding proteins could provide simultaneous insight into the onset and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
6
|
Díaz Casas A, Cordoba JJ, Ferrer BJ, Balakrishnan S, Wurm JE, Pastrana‐Ríos B, Chazin WJ. Binding by calmodulin is coupled to transient unfolding of the third FF domain of Prp40A. Protein Sci 2023; 32:e4606. [PMID: 36810829 PMCID: PMC10022492 DOI: 10.1002/pro.4606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Human pre-mRNA processing protein 40 homolog A (hPrp40A) is a splicing factor that interacts with the Huntington's disease protein huntingtin (Htt). Evidence has accumulated that both Htt and hPrp40A are modulated by the intracellular Ca2+ sensor calmodulin (CaM). Here we report characterization of the interaction of human CM with the third FF domain (FF3 ) of hPrp40A using calorimetric, fluorescence and structural approaches. Homology modeling, differential scanning calorimetry and small angle X-ray scattering (SAXS) data show FF3 forms a folded globular domain. CaM was found to bind FF3 in a Ca2+ -dependent manner with a 1:1 stoichiometry and a dissociation constant (Kd ) of 25 ± 3 μM at 25°C. NMR studies showed that both domains of CaM are engaged in binding and SAXS analysis of the FF3 -CaM complex revealed CaM occupies an extended configuration. Analysis of the FF3 sequence showed that the anchors for CaM binding must be buried in its hydrophobic core, suggesting that binding to CaM requires unfolding of FF3 . Trp anchors were proposed based on sequence analysis and confirmed by intrinsic Trp fluorescence of FF3 upon binding of CaM and substantial reductions in affinity for Trp-Ala FF3 mutants. The consensus model of the complex showed that binding to CaM binding occurs to an extended, non-globular state of the FF3 , consistent with coupling to transient unfolding of the domain. The implications of these results are discussed in the context of the complex interplay of Ca2+ signaling and Ca2+ sensor proteins in modulating Prp40A-Htt function.
Collapse
Affiliation(s)
- A. Díaz Casas
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Present address:
Department of Natural SciencesPontifical Catholic University of Puerto RicoPoncePuerto RicoUSA
| | - J. J. Cordoba
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. J. Ferrer
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - S. Balakrishnan
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - J. E. Wurm
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
| | - B. Pastrana‐Ríos
- Department of ChemistryUniversity of Puerto Rico, Mayagüez CampusMayagüezPuerto RicoUSA
| | - W. J. Chazin
- Department of BiochemistryVanderbilt UniversityNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt UniversityNashvilleTennesseeUSA
- Chemical and Physical Biology Graduate ProgramVanderbilt UniversityNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
7
|
Sapp E, Boudi A, Reid SJ, Trombetta BA, Kivisäkk P, Taghian T, Arnold SE, Howland D, Gray-Edwards H, Kegel-Gleason KB, DiFiglia M. Levels of Synaptic Proteins in Brain and Neurofilament Light Chain in Cerebrospinal Fluid and Plasma of OVT73 Huntington's Disease Sheep Support a Prodromal Disease State. J Huntingtons Dis 2023; 12:201-213. [PMID: 37661892 DOI: 10.3233/jhd-230590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
BACKGROUND Synaptic changes occur early in patients with Huntington's disease (HD) and in mouse models of HD. An analysis of synaptic changes in HD transgenic sheep (OVT73) is fitting since they have been shown to have some phenotypes. They also have larger brains, longer lifespan, and greater motor and cognitive capacities more aligned with humans, and can provide abundant biofluids for in vivo monitoring of therapeutic interventions. OBJECTIVE The objective of this study was to determine if there were differences between 5- and 10-year-old OVT73 and wild-type (WT) sheep in levels of synaptic proteins in brain and in neurofilament light chain (NfL) in cerebrospinal fluid (CSF) and plasma. METHODS Mutant huntingtin (mHTT) and other proteins were measured by western blot assay in synaptosomes prepared from caudate, motor, and piriform cortex in 5-year-old and caudate, putamen, motor; and piriform cortex in 10-year-old WT and OVT73 sheep. Levels of NfL, a biomarker for neuronal damage increased in many neurological disorders including HD, were examined in CSF and plasma samples from 10-year-old WT and OVT73 sheep using the Simoa NfL Advantage kit. RESULTS Western blot analysis showed mHTT protein expression in synaptosomes from OVT73 sheep was 23% of endogenous sheep HTT levels at both ages. Significant changes were detected in brain levels of PDE10A, SCN4B, DARPP32, calmodulin, SNAP25, PSD95, VGLUT 1, VAMP1, and Na+/K+-ATPase, which depended on age and brain region. There was no difference in NfL levels in CSF and plasma in OVT73 sheep compared to age-matched WT sheep. CONCLUSIONS These results show that synaptic changes occur in brain of 5- and 10-year-old OVT73 sheep, but levels of NfL in biofluids are unaffected. Altogether, the data support a prodromal disease state in OVT73 sheep that involves the caudate, putamen and cortex.
Collapse
Affiliation(s)
- Ellen Sapp
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adel Boudi
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Suzanne J Reid
- Centre for Brain Research, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Pia Kivisäkk
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Toloo Taghian
- Department of Radiology and Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical and Translational Research Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Heather Gray-Edwards
- Department of Radiology and Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kimberly B Kegel-Gleason
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Currò CT, Nicocia G, Ziccone V, Ciacciarelli A, Russo G, Toscano A, Terranova C, Girlanda P. Pimozide and pancreatic cancer in diabetic chorea: a case report. Int J Neurosci 2022; 132:1217-1220. [PMID: 33491547 DOI: 10.1080/00207454.2021.1879063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/19/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE/AIM Diabetic chorea is a rare movement disorder associated with diabetes mellitus. We report the case of a patient that benefited from pimozide and died of pancreatic cancer. CASE REPORT A 70-year-old woman presented with pollakiuria and involuntary movements of left limbs since three months. Laboratory tests revealed high serum levels of glycemia and glycated haemoglobin. She was admitted to internal medicine department and discharged one week later: insulin was administered with normalization of blood glucose levels and the involuntary movements gradually disappeared. Three weeks later she was admitted to neurological department due to the recurrence of the involuntary movements. Glycemia and other routine laboratory tests were normal. Neurological examination showed choreic movements involving left limbs. MRI showed a hyperintensity on T1- and T2-weighted sequences of right putamen and caudate nucleus head. Haloperidol was administered without improvement, it was successively substituted with tetrabenazine and the patient was discharged with an unvaried clinical picture. Two months later tetrabenazine was discontinued because of inefficacy and pimozide was started. The choreic movements considerably diminished after few days. Four months later, a pancreatic cancer was diagnosed and the patient died in the same month. CONCLUSION Clinical and radiological features were suggestive of diabetic chorea. Our patient benefited exclusively from pimozide, it could be reasonable to use pimozide in resistant form and also propose it as first choice treatment. Another important element is the diagnosis of pancreatic cancer some months after chorea onset: a causal link could exist.
Collapse
Affiliation(s)
- Carmelo Tiberio Currò
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giulia Nicocia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vanessa Ziccone
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Ciacciarelli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giuseppina Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
9
|
O’Day DH. Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration. Curr Issues Mol Biol 2022; 44:5802-5814. [PMID: 36421678 PMCID: PMC9689381 DOI: 10.3390/cimb44110394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 08/26/2023] Open
Abstract
Neurodegeneration leads to multiple early changes in cognitive, emotional, and social behaviours and ultimately progresses to dementia. The dysregulation of calcium is one of the earliest potentially initiating events in the development of neurodegenerative diseases. A primary neuronal target of calcium is the small sensor and effector protein calmodulin that, in response to calcium levels, binds to and regulates hundreds of calmodulin binding proteins. The intimate and entangled relationship between calmodulin binding proteins and all phases of Alzheimer's disease has been established, but the relationship to other neurodegenerative diseases is just beginning to be evaluated. Risk factors and hallmark proteins from Parkinson's disease (PD; SNCA, Parkin, PINK1, LRRK2, PARK7), Huntington's disease (HD; Htt, TGM1, TGM2), Lewy Body disease (LBD; TMEM175, GBA), and amyotrophic lateral sclerosis/frontotemporal disease (ALS/FTD; VCP, FUS, TDP-43, TBK1, C90rf72, SQSTM1, CHCHD10, SOD1) were scanned for the presence of calmodulin binding domains and, within them, appropriate binding motifs. Binding domains and motifs were identified in multiple risk proteins, some of which are involved in multiple neurodegenerative diseases. The potential calmodulin binding profiles for risk proteins involved in HD, PD, LBD, and ALS/FTD coupled with other studies on proven binding proteins supports the central and potentially critical role for calmodulin in neurodegenerative events.
Collapse
Affiliation(s)
- Danton H. O’Day
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada;
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
10
|
Kapadia K, Trojniak AE, Guzmán Rodríguez KB, Klus NJ, Huntley C, McDonald P, Roy A, Frankowski KJ, Aubé J, Muma NA. Small-Molecule Disruptors of Mutant Huntingtin-Calmodulin Protein-Protein Interaction Attenuate Deleterious Effects of Mutant Huntingtin. ACS Chem Neurosci 2022; 13:2315-2337. [PMID: 35833925 PMCID: PMC11005818 DOI: 10.1021/acschemneuro.2c00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Huntington's disease is a progressive and lethal neurodegenerative disease caused by an increased CAG repeat mutation in exon 1 of the huntingtin gene (mutant huntingtin). Current drug treatments provide only limited symptomatic relief without impacting disease progression. Previous studies in our lab and others identified the abnormal binding of mutant huntingtin protein with calmodulin, a key regulator of calcium signaling. Disrupting the abnormal binding of mutant huntingtin to calmodulin reduces perturbations caused by mutant huntingtin in cell and mouse models of Huntington's disease and importantly normalizes receptor-stimulated calcium release. Using a series of high-throughput in vitro and cell-based screening assays, we identified numerous small-molecule hits that disrupt the binding of mutant huntingtin to calmodulin and demonstrate protective effects. Iterative optimization of one hit resulted in nontoxic, selective compounds that are protective against mutant huntingtin cytotoxicity and normalized receptor-stimulated intracellular calcium release in PC12 cell models of Huntington's disease. Importantly, the compounds do not work by reducing the levels of mutant huntingtin, allowing this strategy to complement future molecular approaches to reduce mutant huntingtin expression. Our novel scaffold will serve as a prototype for further drug development in Huntington's disease. These studies indicate that the development of small-molecule compounds that disrupt the binding of mutant huntingtin to calmodulin is a promising approach for the advancement of therapeutics to treat Huntington's disease.
Collapse
Affiliation(s)
- Khushboo Kapadia
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Ashley E Trojniak
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Kenneth B Guzmán Rodríguez
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Nicholas J Klus
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Coral Huntley
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Peter McDonald
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Anuradha Roy
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Kevin J Frankowski
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, and the Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Nancy A Muma
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
11
|
Podvin S, Rosenthal SB, Poon W, Wei E, Fisch KM, Hook V. Mutant Huntingtin Protein Interaction Map Implicates Dysregulation of Multiple Cellular Pathways in Neurodegeneration of Huntington's Disease. J Huntingtons Dis 2022; 11:243-267. [PMID: 35871359 PMCID: PMC9484122 DOI: 10.3233/jhd-220538] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a genetic neurodegenerative disease caused by trinucleotide repeat (CAG) expansions in the human HTT gene encoding the huntingtin protein (Htt) with an expanded polyglutamine tract. OBJECTIVE HD models from yeast to transgenic mice have investigated proteins interacting with mutant Htt that may initiate molecular pathways of cell death. There is a paucity of datasets of published Htt protein interactions that include the criteria of 1) defining fragments or full-length Htt forms, 2) indicating the number of poly-glutamines of the mutant and wild-type Htt forms, and 3) evaluating native Htt interaction complexes. This research evaluated such interactor data to gain understanding of Htt dysregulation of cellular pathways. METHODS Htt interacting proteins were compiled from the literature that meet our criteria and were subjected to network analysis via clustering, gene ontology, and KEGG pathways using rigorous statistical methods. RESULTS The compiled data of Htt interactors found that both mutant and wild-type Htt interact with more than 2,971 proteins. Application of a community detection algorithm to all known Htt interactors identified significant signal transduction, membrane trafficking, chromatin, and mitochondrial clusters, among others. Binomial analyses of a subset of reported protein interactor information determined that chromatin organization, signal transduction and endocytosis were diminished, while mitochondria, translation and membrane trafficking had enriched overall edge effects. CONCLUSION The data support the hypothesis that mutant Htt disrupts multiple cellular processes causing toxicity. This dataset is an open resource to aid researchers in formulating hypotheses of HD mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA
| | - William Poon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enlin Wei
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics, University of California, San Diego, La Jolla, CA, USA.,Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Department of Neuroscience and Dept of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Decreased Interactions between Calmodulin and a Mutant Huntingtin Model Might Reduce the Cytotoxic Level of Intracellular Ca 2+: A Molecular Dynamics Study. Int J Mol Sci 2021; 22:ijms22169025. [PMID: 34445734 PMCID: PMC8396531 DOI: 10.3390/ijms22169025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022] Open
Abstract
Mutant huntingtin (m-HTT) proteins and calmodulin (CaM) co-localize in the cerebral cortex with significant effects on the intracellular calcium levels by altering the specific calcium-mediated signals. Furthermore, the mutant huntingtin proteins show great affinity for CaM that can lead to a further stabilization of the mutant huntingtin aggregates. In this context, the present study focuses on describing the interactions between CaM and two huntingtin mutants from a biophysical point of view, by using classical Molecular Dynamics techniques. The huntingtin models consist of a wild-type structure, one mutant with 45 glutamine residues and the second mutant with nine additional key-point mutations from glutamine residues into proline residues (9P(EM) model). Our docking scores and binding free energy calculations show higher binding affinities of all HTT models for the C-lobe end of the CaM protein. In terms of dynamic evolution, the 9P(EM) model triggered great structural changes into the CaM protein’s structure and shows the highest fluctuation rates due to its structural transitions at the helical level from α-helices to turns and random coils. Moreover, our proposed 9P(EM) model suggests much lower interaction energies when compared to the 45Qs-HTT mutant model, this finding being in good agreement with the 9P(EM)’s antagonistic effect hypothesis on highly toxic protein–protein interactions.
Collapse
|
13
|
Rroji O, Kumar A, Karuppagounder SS, Ratan RR. Epigenetic regulators of neuronal ferroptosis identify novel therapeutics for neurological diseases: HDACs, transglutaminases, and HIF prolyl hydroxylases. Neurobiol Dis 2020; 147:105145. [PMID: 33127469 DOI: 10.1016/j.nbd.2020.105145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
A major thrust of our laboratory has been to identify how physiological stress is transduced into transcriptional responses that feed back to overcome the inciting stress or its consequences, thereby fostering survival and repair. To this end, we have adopted the use of an in vitro model of ferroptosis, a caspase-independent, but iron-dependent form of cell death (Dixon et al., 2012; Ratan, 2020). In this review, we highlight three distinct epigenetic targets that have evolved from our studies and which have been validated in vivo studies. In the first section, we discuss our studies of broad, pan-selective histone deacetylase (HDAC) inhibitors in ferroptosis and how these studies led to the validation of HDAC inhibitors as candidate therapeutics in a host of disease models. In the second section, we discuss our studies that revealed a role for transglutaminase as an epigenetic modulator of proferroptotic pathways and how these studies set the stage for recent elucidation of monoamines as post-translation modifiers of histone function. In the final section, we discuss our studies of iron-, 2-oxoglutarate-, and oxygen-dependent dioxygenases and the role of one family of these enzymes, the HIF prolyl hydroxylases, in mediating transcriptional events necessary for ferroptosis in vitro and for dysfunction in a host of neurological conditions. Overall, our studies highlight the importance of epigenetic proteins in mediating prodeath and prosurvival responses to ferroptosis. Pharmacological agents that target these epigenetic proteins are showing robust beneficial effects in diverse rodent models of stroke, Parkinson's disease, Huntington's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Orjon Rroji
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Amit Kumar
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Saravanan S Karuppagounder
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA
| | - Rajiv R Ratan
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E 61st Street, New York, NY 10065, USA.
| |
Collapse
|
14
|
Klus NJ, Kapadia K, McDonald P, Roy A, Frankowski KJ, Muma NA, Aubé J. Discovery of sultam-containing small-molecule disruptors of the huntingtin-calmodulin protein-protein interaction. Med Chem Res 2020; 29:1187-1198. [PMID: 33642842 PMCID: PMC7906539 DOI: 10.1007/s00044-020-02583-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 11/26/2022]
Abstract
The aberrant protein-protein interaction between calmodulin and mutant huntingtin protein in Huntington's disease patients has been found to contribute to Huntington's disease progression. A high-throughput screen for small molecules capable of disrupting this interaction revealed a sultam series as potent small-molecule disruptors. Diversification of the sultam scaffold afforded a set of 24 analogs or further evaluation. Several structure-activity trends within the analog set were found, most notably a negligible effect of absolute stereochemistry and a strong beneficial correlation with electron-withdrawing aromatic substituents. The most promising analogs were profiled for off-target effects at relevant kinases and, ultimately, one candidate molecule was evaluated for neuroprotection in a neuronal cell model of Huntington's disease.
Collapse
Affiliation(s)
- Nicholas J. Klus
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Khushboo Kapadia
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | - Peter McDonald
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Anuradha Roy
- University of Kansas High-Throughput Screening Laboratory, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Kevin J. Frankowski
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, NC 27599, USA
| |
Collapse
|
15
|
|
16
|
Min B, Chung KC. New insight into transglutaminase 2 and link to neurodegenerative diseases. BMB Rep 2018; 51:5-13. [PMID: 29187283 PMCID: PMC5796628 DOI: 10.5483/bmbrep.2018.51.1.227] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affects the formation of insoluble and toxic amyloid aggregates that mainly consisted of NDD-related proteins. So far, many important and NDD-related substrates of TG2 have been identified, including amlyoid-β, tau, α-synuclein, mutant huntingtin, and ALS-linked trans-activation response (TAR) DNA-binding protein 43. Recently, the formation of toxic inclusions mediated by several TG2 substrates were efficiently inhibited by TG2 inhibitors. Therefore, the development of highly specific TG2 inhibitors would be an important tool in alleviating the progression of TG2-related brain disorders. In this review, the authors discuss recent advances in TG2 biochemistry, several mechanisms of molecular regulation and pleotropic signaling functions, and the presumed role of TG2 in the progression of many NDDs.
Collapse
Affiliation(s)
- Boram Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
17
|
Singh V, Deepak RNVK, Sengupta B, Joshi AS, Fan H, Sen P, Thakur AK. Calmidazolium Chloride and Its Complex with Serum Albumin Prevent Huntingtin Exon1 Aggregation. Mol Pharm 2018; 15:3356-3368. [PMID: 29979597 DOI: 10.1021/acs.molpharmaceut.8b00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Huntington's disease (HD) is a genetic disorder caused by a CAG expansion mutation in Huntingtin gene leading to polyglutamine (polyQ) expansion in the N-terminus side of Huntingtin (Httex1) protein. Neurodegeneration in HD is linked to aggregates formed by Httex1 bearing an expanded polyQ. Initiation and elongation steps of Httex1 aggregation are potential target steps for the discovery of therapeutic molecules for HD, which is currently untreatable. Here we report Httex1 aggregation inhibition by calmidazolium chloride (CLC) by acting on the initial aggregation event. Because it is hydrophobic, CLC was adsorbed to the vial surface and could not sustain an inhibition effect for a longer duration. The use of bovine serum albumin (BSA) prevented CLC adsorption by forming a BSA-CLC complex. This complex showed improved Httex1 aggregation inhibition by interacting with the aggregation initiator, the NT17 part of Httex1. Furthermore, biocompatible CLC-loaded BSA nanoparticles were made which reduced the polyQ aggregates in HD-150Q cells.
Collapse
Affiliation(s)
- Virender Singh
- Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | | | - Bhaswati Sengupta
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Abhayraj S Joshi
- Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Hao Fan
- Bioinformatics Institute , 30 Biopolis Street, Matrix #07-01 , Singapore 138671.,Department of Biological Sciences , National University of Singapore , Singapore 117545
| | - Pratik Sen
- Department of Chemistry , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| | - Ashwani Kumar Thakur
- Biological Sciences and Bioengineering , Indian Institute of Technology Kanpur , Kanpur 208016 , India
| |
Collapse
|
18
|
André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner G, Djian P. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis 2017; 101:40-58. [DOI: 10.1016/j.nbd.2017.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
|
19
|
Kanchan K, Fuxreiter M, Fésüs L. Physiological, pathological, and structural implications of non-enzymatic protein-protein interactions of the multifunctional human transglutaminase 2. Cell Mol Life Sci 2015; 72:3009-35. [PMID: 25943306 PMCID: PMC11113818 DOI: 10.1007/s00018-015-1909-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed member of an enzyme family catalyzing Ca(2+)-dependent transamidation of proteins. It is a multifunctional protein having several well-defined enzymatic (GTP binding and hydrolysis, protein disulfide isomerase, and protein kinase activities) and non-enzymatic (multiple interactions in protein scaffolds) functions. Unlike its enzymatic interactions, the significance of TG2's non-enzymatic regulation of its activities has recently gained importance. In this review, we summarize all the partners that directly interact with TG2 in a non-enzymatic manner and analyze how these interactions could modulate the crosslinking activity and cellular functions of TG2 in different cell compartments. We have found that TG2 mostly acts as a scaffold to bridge various proteins, leading to different functional outcomes. We have also studied how specific structural features, such as intrinsically disordered regions and embedded short linear motifs contribute to multifunctionality of TG2. Conformational diversity of intrinsically disordered regions enables them to interact with multiple partners, which can result in different biological outcomes. Indeed, ID regions in TG2 were identified in functionally relevant locations, indicating that they could facilitate conformational transitions towards the catalytically competent form. We reason that these structural features contribute to modulating the physiological and pathological functions of TG2 and could provide a new direction for detecting unique regulatory partners. Additionally, we have assembled all known anti-TG2 antibodies and have discussed their significance as a toolbox for identifying and confirming novel TG2 regulatory functions.
Collapse
Affiliation(s)
- Kajal Kanchan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Mónika Fuxreiter
- MTA-DE Momentum Laboratory of Protein Dynamics, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4010 Hungary
- MTA-DE Apoptosis, Genomics and Stem Cell Research Group of the Hungarian Academy of Sciences, Debrecen, Hungary
| |
Collapse
|
20
|
Juenemann K, Wiemhoefer A, Reits EA. Detection of ubiquitinated huntingtin species in intracellular aggregates. Front Mol Neurosci 2015; 8:1. [PMID: 25674046 PMCID: PMC4309157 DOI: 10.3389/fnmol.2015.00001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
Protein conformation diseases, including polyglutamine (polyQ) diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease (HD) is one of nine diseases caused by an expanded polyQ repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin (Htt) fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated Htt such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated Htt fragments offers an important possibility to understand Htt degradation and aggregation processes within the cell. For the identification of aggregated Htt and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant Htt. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.
Collapse
Affiliation(s)
- Katrin Juenemann
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Anne Wiemhoefer
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Eric A Reits
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
21
|
Valencia A, Sapp E, Kimm JS, McClory H, Ansong KA, Yohrling G, Kwak S, Kegel KB, Green KM, Shaffer SA, Aronin N, DiFiglia M. Striatal synaptosomes from Hdh140Q/140Q knock-in mice have altered protein levels, novel sites of methionine oxidation, and excess glutamate release after stimulation. J Huntingtons Dis 2014; 2:459-75. [PMID: 24696705 DOI: 10.3233/jhd-130080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Synaptic connections are disrupted in patients with Huntington's disease (HD). Synaptosomes from postmortem brain are ideal for synaptic function studies because they are enriched in pre- and post-synaptic proteins important in vesicle fusion, vesicle release, and neurotransmitter receptor activation. OBJECTIVE To examine striatal synaptosomes from 3, 6 and 12 month old WT and Hdh140Q/140Q knock-in mice for levels of synaptic proteins, methionine oxidation, and glutamate release. METHODS We used Western blot analysis, glutamate release assays, and liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS Striatal synaptosomes of 6 month old Hdh140Q/140Q mice had less DARPP32, syntaxin 1 and calmodulin compared to WT. Striatal synaptosomes of 12 month old Hdh140Q/140Q mice had lower levels of DARPP32, alpha actinin, HAP40, Na+/K+-ATPase, PSD95, SNAP-25, TrkA and VAMP1, VGlut1 and VGlut2, increased levels of VAMP2, and modifications in actin and calmodulin compared to WT. More glutamate released from vesicles of depolarized striatal synaptosomes of 6 month old Hdh140Q/140Q than from age matched WT mice but there was no difference in glutamate release in synaptosomes of 3 and 12 month old WT and Hdh140Q/140Q mice. LC-MS/MS of 6 month old Hdh140Q/140Q mice striatal synaptosomes revealed that about 4% of total proteins detected (>600 detected) had novel sites of methionine oxidation including proteins involved with vesicle fusion, trafficking, and neurotransmitter function (synaptophysin, synapsin 2, syntaxin 1, calmodulin, cytoplasmic actin 2, neurofilament, and tubulin). Altered protein levels and novel methionine oxidations were also seen in cortical synaptosomes of 12 month old Hdh140Q/140Q mice. CONCLUSIONS Findings provide support for early synaptic dysfunction in Hdh140Q/140Q knock-in mice arising from altered protein levels, oxidative damage, and impaired glutamate neurotransmission and suggest that study of synaptosomes could be of value for evaluating HD therapies.
Collapse
|
22
|
Beyond the glutamine expansion: influence of posttranslational modifications of ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1. Mol Neurobiol 2014; 50:866-874. [PMID: 24752589 DOI: 10.1007/s12035-014-8703-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/31/2014] [Indexed: 01/05/2023]
Abstract
Posttranslational modifications are crucial mechanisms that modulate various cellular signaling pathways, and their dysregulation is associated with many human diseases. Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia, mild cognitive impairments, difficulty with speaking and swallowing, and respiratory failure. It is caused by the expansion of an unstable CAG trinucleotide repeat encoding a glutamine tract in Ataxin-1 (ATXN1). Although the expansion of the polyglutamine tract is the key determinant of the disease, protein domains outside of the polyglutamine tract and posttranslational modifications of ATXN1 significantly alter the neurotoxicity of SCA1. ATXN1 undergoes several posttranslational modifications, including phosphorylation, ubiquitination, sumoylation, and transglutamination. Such modifications can alter the stability of ATXN1 or its activity in the regulation of target gene expression and therefore contribute to SCA1 toxicity. This review outlines different types of posttranslational modifications in ATXN1 and discusses their potential regulatory mechanisms and effects on SCA1 pathogenesis. Finally, the manipulation of posttranslational modifications as a potential therapeutic approach will be discussed.
Collapse
|
23
|
Sun J, Tian X, Feng P, Gong S, Yuan Y. Preparation of low-allergen natural rubber latex by transglutaminase catalysis. J Appl Polym Sci 2013. [DOI: 10.1002/app.38963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Hoffner G, Vanhoutteghem A, André W, Djian P. Transglutaminase in epidermis and neurological disease or what makes a good cross-linking substrate. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:97-160. [PMID: 22220473 DOI: 10.1002/9781118105771.ch3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guylaine Hoffner
- Unité Propre de Recherche 2228 du Centre National de la Recherche Scientifique, Régulation de la Transcription et Maladies Génétiques, Université Paris Descartes, Paris, France
| | | | | | | |
Collapse
|
25
|
Nemes Z. Effects and Analysis of Transglutamination on Protein Aggregation and Clearance in Neurodegenerative Diseases. ADVANCES IN ENZYMOLOGY - AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:347-83. [DOI: 10.1002/9781118105771.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Phospholipase C, Ca2+, and calmodulin signaling are required for 5-HT2A receptor-mediated transamidation of Rac1 by transglutaminase. Psychopharmacology (Berl) 2011; 213:403-12. [PMID: 20717650 PMCID: PMC3033764 DOI: 10.1007/s00213-010-1984-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/28/2010] [Indexed: 01/12/2023]
Abstract
RATIONALE Serotonin and especially serotonin 2A (5-HT(2A)) receptor signaling are important in the etiology and treatment of schizophrenia and affective disorders. We previously reported a novel 5-HT(2A) receptor effector, increased transglutaminase (TGase)-catalyzed transamidation, and activation of the small G protein Rac1 in A1A1v cells, a rat embryonic cortical cell line. OBJECTIVES In this study, we explore the signaling pathway involved in 5-HT(2A) receptor-mediated Rac1 transamidation. METHODS A1A1v cells were pretreated with pharmacological inhibitors of phospholipase C (PLC) or calmodulin (CaM), and then stimulated by the 5-HT(2A) receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). Intracellular Ca(2+) concentration and TGase-modified Rac1 transamidation were monitored. The effect of manipulation of intracellular Ca(2+) by a Ca(2+) ionophore or a chelating agent on Rac1 transamidation was also evaluated. RESULTS In cells pretreated with a PLC inhibitor U73122, DOI-stimulated increases in the intracellular Ca(2+) concentration and TGase-modified Rac1 were significantly attenuated as compared to those pretreated with U73343, an inactive analog. The membrane-permeant Ca(2+) chelator, BAPTA-AM strongly reduced TGase-catalyzed Rac1 transamidation upon DOI stimulation. Conversely, the Ca(2+) ionophore ionomycin, at a concentration that induced an elevation of cytosolic Ca(2+) to a level comparable to cells treated with DOI, produced an increase in TGase-modified Rac1 without 5-HT(2A) receptor activation. Moreover, the CaM inhibitor W-7, significantly decreased Rac1 transamidation in a dose-dependent manner in DOI-treated cells. CONCLUSIONS These results indicate that 5-HT(2A) receptor-coupled PLC activation and subsequent Ca(2+) and CaM signaling are necessary for TGase-catalyzed Rac1 transamidation, and an increase in intracellular Ca(2+) is sufficient to induce Rac1 transamidation.
Collapse
|
27
|
Striatal expression of a calmodulin fragment improved motor function, weight loss, and neuropathology in the R6/2 mouse model of Huntington's disease. J Neurosci 2009; 29:11550-9. [PMID: 19759302 DOI: 10.1523/jneurosci.3307-09.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, caused by a polyglutamine expansion in the huntingtin protein (htt). Increasing evidence suggests that transglutaminase (TGase) plays a critical role in the pathophysiology of HD possibly by stabilizing monomeric, polymeric and aggregated htt. We previously reported that in HEK293 and SH-SY5Y cells expression of a calmodulin (CaM)-fragment, consisting of amino acids 76-121 of CaM, decreased binding of CaM to mutant htt, TGase-modified htt and cytotoxicity associated with mutant htt and normalized intracellular calcium release. In this study, an adeno-associated virus (AAV) that expresses the CaM-fragment was injected into the striatum of HD transgenic R6/2 mice. The CaM-fragment significantly reduced body weight loss and improved motor function as indicated by improved rotarod performance, longer stride length, lower stride frequency, fewer low mobility bouts and longer travel distance than HD controls. A small but insignificant increase in survival was observed in R6/2 mice with CaM-fragment expression. Immunoprecipitation studies show that expression of the CaM-fragment reduced TGase-modified htt in the striatum of R6/2 mice. The percentage of htt-positive nuclei and the size of intranuclear htt aggregates were reduced by the CaM-fragment without striatal volume changes. The effects of CaM-fragment appear to be selective, as activity of another CaM-dependent enzyme, CaM-dependent kinase II, was not altered. Moreover, inhibition of TGase-modified htt was substrate-specific since overall TGase activity in the striatum was not altered by treatment with the CaM-fragment. Together, these results suggest that disrupting CaM-htt interaction may provide a new therapeutic strategy for HD.
Collapse
|
28
|
Xifró X, Giralt A, Saavedra A, García-Martínez JM, Díaz-Hernández M, Lucas JJ, Alberch J, Pérez-Navarro E. Reduced calcineurin protein levels and activity in exon-1 mouse models of Huntington's disease: role in excitotoxicity. Neurobiol Dis 2009; 36:461-9. [PMID: 19733666 DOI: 10.1016/j.nbd.2009.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 08/03/2009] [Accepted: 08/28/2009] [Indexed: 11/28/2022] Open
Abstract
Calcineurin is a serine/threonine phosphatase involved in the regulation of glutamate receptors signaling. Here, we analyzed whether the regulation of calcineurin protein levels and activity modulates the susceptibility of striatal neurons to excitotoxicity in R6/1 and R6/1:BDNF+/- mouse models of Huntington's disease. We show that calcineurin inhibition in wild-type mice drastically reduced quinolinic acid-induced striatal cell death. Moreover, calcineurin A and B were differentially regulated during disease progression with a specific reduction of calcineurin A protein levels and calcineurin activity at the onset of the disease in R6/1:BDNF+/- mice. Analysis of the conditional mouse model Tet/HD94 showed that mutant huntingtin specifically controls calcineurin A protein levels. Finally, calcineurin activation induced by intrastriatal quinolinic acid injection in R6/1 mouse was lower than in wild-type mice. Therefore, reduction of calcineurin activity by alteration of calcineurin A expression participates in the pathophysiology of Huntington's disease and contributes to the excitotoxic resistance observed in exon-1 mouse models.
Collapse
Affiliation(s)
- Xavier Xifró
- Departament de Biologia Cel.lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, IDIBAPS, Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Jeitner TM, Muma NA, Battaile KP, Cooper AJ. Transglutaminase activation in neurodegenerative diseases. FUTURE NEUROLOGY 2009; 4:449-467. [PMID: 20161049 DOI: 10.2217/fnl.09.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Applied Bench Core, Winthrop University Hospital, 222 Station Plaza North, Suite 502, Mineola, NY 11501, USA Tel.: +1 516 663 3455
| | | | | | | |
Collapse
|
30
|
Dudek NL, Dai Y, Muma NA. Neuroprotective effects of calmodulin peptide 76-121aa: disruption of calmodulin binding to mutant huntingtin. Brain Pathol 2009; 20:176-89. [PMID: 19338577 PMCID: PMC2805873 DOI: 10.1111/j.1750-3639.2008.00258.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by mutant huntingtin protein containing an expanded polyglutamine tract, which may cause abnormal protein–protein interactions such as increased association with calmodulin (CaM). We previously demonstrated in HEK293 cells that a peptide containing amino acids 76‐121 of CaM (CaM‐peptide) interrupted the interaction between CaM and mutant huntingtin, reduced mutant huntingtin‐induced cytotoxicity and reduced transglutaminase (TG)‐modified mutant huntingtin. We now report that adeno‐associated virus (AAV)‐mediated expression of CaM‐peptide in differentiated neuroblastoma SH‐SY5Y cells, stably expressing an N‐terminal fragment of huntingtin containing 148 glutamine repeats, significantly decreases the amount of TG‐modified huntingtin and attenuates cytotoxicity. Importantly, the effect of the CaM‐peptide shows selectivity, such that total TG activity is not significantly altered by expression of CaM‐peptide nor is the activity of another CaM‐dependent enzyme, CaM kinase II. In vitro, recombinant exon 1 of huntingtin with 44 glutamines (htt‐exon1‐44Q) binds to CaM‐agarose; the addition of 10 µM of CaM‐peptide significantly decreases the interaction of htt‐exon1‐44Q and CaM but not the binding between CaM and calcineurin, another CaM‐binding protein. These data support the hypothesis that CaM regulates TG‐catalyzed modifications of mutant huntingtin and that specific and selective disruption of the CaM‐huntingtin interaction is potentially a new target for therapeutic intervention in HD.
Collapse
Affiliation(s)
- Nichole L Dudek
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago School of Medicine, Maywood, IL, USA
| | | | | |
Collapse
|
31
|
Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 2008; 36:599-614. [DOI: 10.1007/s00726-008-0124-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/15/2008] [Indexed: 12/19/2022]
|
32
|
Protective effects of interrupting the binding of calmodulin to mutant huntingtin. J Neuropathol Exp Neurol 2008; 67:355-65. [PMID: 18379433 DOI: 10.1097/nen.0b013e31816a9e60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
There is evidence suggesting that transglutaminase (TG) 2 plays a role in stabilizing monomeric and aggregated huntingtin, thereby contributing to the pathophysiology of Huntington disease. Calmodulin (CaM) regulates TG2 cross-linking of N-terminal mutant huntingtin in cells and colocalizes with TG and huntingtin in inclusions in Huntington disease cortex. The current study examined the effects of small fragments of CaM in human embryonic kidney 293T cells expressing N-terminal mutant huntingtin and transglutaminase 2. Four CaM fragments were developed: first 76 amino acids, last 72 amino acids, 77 amino acids in the center (CaM-center), and the overlapping region of last 72 amino acids and CaM-center (CaM-overlap). The last 72 amino acids, CaM-center, and CaM-overlap significantly decreased amounts of TG-modified huntingtin by 40% to 60%, and cytotoxicity decreased up to 40% compared with cells not expressing any CaM construct. Carbachol-stimulated release of intracellular calcium is significantly higher in cells expressing N-terminal mutant huntingtin and TG2 compared with vector-transfected cells; expression of either CaM-center or CaM-overlap in these cells returned the levels of carbachol-stimulated intracellular calcium release to control values. Furthermore, CaM-overlap expression significantly decreased huntingtin binding to CaM. These data further suggest that CaM regulates TG2 activity, plays a role in the disease-related modifications to mutant huntingtin, and that disruption of CaM-huntingtin interaction is potentially a new target for therapeutic intervention in Huntington disease.
Collapse
|
33
|
Abstract
Transglutaminase catalyzes a covalent bond between peptide-bound glutamine residues and either lysine-bound peptide residues or mono- or polyamines. Multiple lines of evidence suggest that transglutaminase is involved in neurodegenerative diseases including Alzheimer disease, progressive supranuclear palsy, Huntington disease (HD), and Parkinson disease. In all of the neurodegenerative diseases examined to date, transglutaminase enzyme activity is upregulated in selectively vulnerable brain regions, transglutaminase proteins are associated with inclusion bodies characteristic of the diseases, and prominent proteins in the inclusion bodies are modified by transglutaminase enzymes. These prominent proteins in the inclusion bodies, including tau, alpha-synuclein, and huntingtin protein, are modified by transglutaminase in vitro and alpha-synuclein and huntingtin protein are modified in cells in culture. Similar changes in transglutaminase and transglutaminase-modified proteins are replicated in transgenic mouse models of the neurodegenerative diseases, including Huntington disease and progressive supranuclear palsy. Lastly, inhibition of transglutaminase either via drug treatments or molecular approaches is beneficial for the treatment of HD transgenic mice but has yet to be explored for the other neurodegenerative diseases. Further research is needed to determine the specific role(s) that transglutaminase plays in the pathophysiology of neurodegenerative diseases with possible implications for transglutaminase as a therapeutic target.
Collapse
Affiliation(s)
- Nancy A Muma
- Department of Pharmacology, Loyola University Medical Center, Maywood, Illinois, USA.
| |
Collapse
|
34
|
Wanderer J, Morton AJ. Differential morphology and composition of inclusions in the R6/2 mouse and PC12 cell models of Huntington’s disease. Histochem Cell Biol 2007; 127:473-84. [PMID: 17285342 DOI: 10.1007/s00418-007-0272-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 11/26/2022]
Abstract
The histological hallmark feature of Huntington's disease (HD) and other polyglutamine repeat diseases is the presence of intracellular inclusions. Much work has been devoted to trying to determine the relationship between inclusion formation and neuronal injury. However, little attention has been paid to the variability and characteristics of inclusions themselves. Here, we characterize the morphological and biochemical composition of inclusions in both a transgenic mouse model (R6/2 line) and an inducible cell culture model of HD (iPC12Q74). We identified several morphologically distinct kinds of inclusions in different locations (nuclei, cytoplasm and cellular processes). Ubiquitin colocalized completely with all of these inclusions in both the iPC12Q72 and R6/2 models. In the inclusions in iPC12Q74 cells, the 20S and 11S proteasome subunits colocalized variably, and the 19S subunit did not colocalize at all. In inclusions in R6/2 mouse neurons, the 20S subunit colocalized completely, but neither the 11S nor the 19S subunits colocalized at all. While the role of inclusions in the pathogenesis of HD continues to be debated, we suggest that the content and structure of inclusions vary considerably, not only from cell to cell but even within individual cells. Their role in the pathogenesis of HD is likely to depend on their location as well as their composition.
Collapse
Affiliation(s)
- Jonathan Wanderer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | |
Collapse
|
35
|
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder characterized by the progressive development of involuntary choreiform movements, cognitive impairment, neuropsychiatric symptoms, and premature death. These phenotypes reflect neuronal dysfunction and ultimately death in selected brain regions, the striatum and cerebral cortex being principal targets. The genetic mutation responsible for the HD phenotype is known, and its protein product, mutant huntingtin (mhtt), identified. HD is one of several "triplet repeat" diseases, in which abnormal expansions in trinucleotide repeat domains lead to elongated polyglutamine stretches in the affected gene's protein product. Mutant htt-mediated toxicity in the brain disrupts a number of vital cellular processes in the course of disease progression, including energy metabolism, gene transcription, clathrin-dependent endocytosis, intraneuronal trafficking, and postsynaptic signaling, but the crucial initiation mechanism induced by mhtt is still unclear. A large body of evidence, however, supports an early and critical involvement of defects in mitochondrial function and CNS energy metabolism in the disease trigger. Thus, downstream death-effector mechanisms, including excitotoxicity, apoptosis, and oxidative damage, have been implicated in the mechanism of selective neuronal damage in HD. Here we review the current evidence supporting a role for oxidative damage in the etiology of neuronal damage and degeneration in HD.
Collapse
Affiliation(s)
- Susan E Browne
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA.
| | | |
Collapse
|
36
|
Crocker SF, Costain WJ, Robertson HA. DNA microarray analysis of striatal gene expression in symptomatic transgenic Huntington's mice (R6/2) reveals neuroinflammation and insulin associations. Brain Res 2006; 1088:176-86. [PMID: 16626669 DOI: 10.1016/j.brainres.2006.02.102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/03/2006] [Accepted: 02/26/2006] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is an inherited, progressive neurodegenerative disorder caused by CAG repeat expansion in the gene that codes for the protein huntingtin. The underlying neuropathological events leading to the selectivity of striatal neuronal loss are unknown. However, the huntingtin mutation interferes at several levels of normal cell function. The complexity of this disease makes microarray analysis an appealing technique to begin the identification of common pathways that may contribute to the pathology. In this study, striatal tissue was extracted for gene expression profiling from wild-type and symptomatic transgenic Huntington mice (R6/2) expressing part of the human Huntington's disease gene. We interrogated a 15 K high-density mouse EST array not previously used for HD and identified 170 significantly differentially expressed ESTs in symptomatic R6/2 mice. Of the 80 genes with known function, 9 genes had previously been identified as altered in HD. 71 known genes were associated with HD for the first time. The data obtained from this study confirm and extend previous observations using DNA microarray techniques on genetic models for HD, revealing novel changes in expression in a number of genes not previously associated with HD. Further bioinformatic analysis, using software to construct biological association maps, focused attention on proteins such as insulin and TH1-mediated cytokines, suggesting that they may be important regulators of affected genes. These results may provide insight into the regulation and interaction of genes that contribute to adaptive and pathological processes involved in HD.
Collapse
Affiliation(s)
- Susan F Crocker
- Brain Repair Centre, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
37
|
Nemes Z, Petrovski G, Fésüs L. Tools for the detection and quantitation of protein transglutamination. Anal Biochem 2005; 342:1-10. [PMID: 15958174 DOI: 10.1016/j.ab.2004.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zoltan Nemes
- Department of Psychiatry, Medical and Health Sciences Center, University of Debrecen, H-4012 Debrecen, Hungary.
| | | | | |
Collapse
|
38
|
Pinto JT, Van Raamsdonk JM, Leavitt BR, Hayden MR, Jeitner TM, Thaler HT, Krasnikov BF, Cooper AJL. Treatment of YAC128 mice and their wild-type littermates with cystamine does not lead to its accumulation in plasma or brain: implications for the treatment of Huntington disease. J Neurochem 2005; 94:1087-101. [PMID: 15992377 DOI: 10.1111/j.1471-4159.2005.03255.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cystamine is beneficial to Huntington disease (HD) transgenic mice. To elucidate the mechanism, cystamine metabolites were determined in brain and plasma of cystamine-treated mice. A major route for cystamine metabolism is thought to be: cystamine --> cysteamine --> hypotaurine --> taurine. Here we describe an HPLC system with coulometric detection that can rapidly measure underivatized cystamine, cysteamine and hypotaurine, as well as cysteine and glutathione in the same deproteinized tissue sample. A method is also described for the coulometric estimation of taurine as its isoindole-sulfonate derivative. Using this new methodology we showed that cystamine and cysteamine are undetectable (< or = 0.2 nmol/100 mg protein) in the brains of 3-month-old HD transgenic (YAC128) mice (or their wild-type littermates) treated daily for 2 weeks with cystamine (225 mg/kg) in their drinking water. No significant changes were observed in brain glutathione and taurine but significant increases were observed in brain cysteine. Cystamine and cysteamine were not detected in the plasma of YAC128 mice treated daily with cystamine between the ages of 4 and 12 or 7 and 12 months. These findings suggest that cystamine is not directly involved in mitigating HD but that increased brain cysteine or uncharacterized sulfur metabolites may be responsible.
Collapse
Affiliation(s)
- John T Pinto
- Burke Medical Research Institute, White Plains, New York, New York 10605, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zainelli GM, Dudek NL, Ross CA, Kim SY, Muma NA. Mutant Huntingtin Protein: A Substrate for Transglutaminase 1, 2, and 3. J Neuropathol Exp Neurol 2005; 64:58-65. [PMID: 15715085 DOI: 10.1093/jnen/64.1.58] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The most prominent neuropathologic hallmarks of Huntington disease (HD) are cortical and striatal perinuclear cytoplasmic aggregates and intranuclear inclusions of mutant huntingtin. Our laboratory previously demonstrated that huntingtin protein colocalizes with transglutaminase 2 and its product, the epsilon-(gamma-glutamyl)lysine bond in intranuclear inclusions in HD frontal cortex. We also found that transglutaminase 2 cross-links N-terminal fragments of mutant huntingtin (htt-N63-148Q-myc) in cells in culture. We now report a significant increase in transglutaminase 2 mRNA in HD cortex (225% of controls) and striatum (399% of controls). Expression of the short transglutaminase 2 mRNA splice variant was not detectable in HD, although previous studies demonstrated upregulation in Alzheimer disease and progressive supranuclear palsy. Cells co-transfected with GFP-tagged transglutaminase 1, 2, or 3 and htt-N63-148Q-myc exhibit increased cross-linked huntingtin in the insoluble fraction of cell lysates. Treatment of cells with cystamine, a chemical inhibitor of transglutaminase, decreased aggregated and cross-linked huntingtin and increased viability of cells that were transfected with transglutaminase 2 and htt-N63-148Q-myc. These data suggest that transglutaminase 1, 2, and 3 could be involved in cross-linking of huntingtin into intranuclear inclusions in HD and that inhibiting transglutaminase should be explored as a potential treatment strategy for HD.
Collapse
Affiliation(s)
- Gina M Zainelli
- Department of Pharmacology, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
40
|
Rakhilin SV, Olson PA, Nishi A, Starkova NN, Fienberg AA, Nairn AC, Surmeier DJ, Greengard P. A network of control mediated by regulator of calcium/calmodulin-dependent signaling. Science 2004; 306:698-701. [PMID: 15499021 DOI: 10.1126/science.1099961] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calmodulin (CaM) is a major effector for the intracellular actions of Ca2+ in nearly all cell types. We identified a CaM-binding protein, designated regulator of calmodulin signaling (RCS). G protein-coupled receptor (GPCR)-dependent activation of protein kinase A (PKA) led to phosphorylation of RCS at Ser55 and increased its binding to CaM. Phospho-RCS acted as a competitive inhibitor of CaM-dependent enzymes, including protein phosphatase 2B (PP2B, also called calcineurin). Increasing RCS phosphorylation blocked GPCR- and PP2B-mediated suppression of L-type Ca2+ currents in striatal neurons. Conversely, genetic deletion of RCS significantly increased this modulation. Through a molecular mechanism that amplifies GPCR- and PKA-mediated signaling and attenuates GPCR- and PP2B-mediated signaling, RCS synergistically increases the phosphorylation of key proteins whose phosphorylation is regulated by PKA and PP2B.
Collapse
Affiliation(s)
- S V Rakhilin
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|