1
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. Neuron 2025; 113:291-306.e7. [PMID: 39561767 PMCID: PMC11757082 DOI: 10.1016/j.neuron.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Merging information across sensory modalities is key to forming robust percepts, yet how the brain achieves this feat remains unclear. Recent studies report cross-modal influences in the primary sensory cortex, suggesting possible multisensory integration in the early stages of cortical processing. We test several hypotheses about the function of auditory influences on mouse primary somatosensory cortex (S1) using in vivo two-photon calcium imaging. We found sound-evoked spiking activity in an extremely small fraction of cells, and this sparse activity did not encode auditory stimulus identity. Moreover, S1 did not encode information about specific audio-tactile feature conjunctions. Auditory and audio-tactile stimulus encoding remained unchanged after both passive experience and reinforcement. These results suggest that while primary sensory cortex is plastic within its own modality, the influence of other modalities is remarkably stable and stimulus nonspecific.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
2
|
Paasonen J, Valjakka JS, Salo RA, Paasonen E, Tanila H, Michaeli S, Mangia S, Gröhn O. Whisker stimulation with different frequencies reveals non-uniform modulation of functional magnetic resonance imaging signal across sensory systems in awake rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623361. [PMID: 39605361 PMCID: PMC11601494 DOI: 10.1101/2024.11.13.623361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Primary sensory systems are classically considered to be separate units, however there is current evidence that there are notable interactions between them. We examined the cross-sensory interplay by applying a quiet and motion-tolerant zero echo time functional magnetic resonance imaging (fMRI) technique to elucidate the evoked brain-wide responses to whisker pad stimulation in awake and anesthetized rats. Specifically, characterized the brain-wide responses in core and non-core regions to whisker pad stimulation by the varying stimulation-frequency, and determined whether isoflurane-medetomidine anesthesia, traditionally used in preclinical imaging, confounded investigations related to sensory integration. We demonstrated that unilateral whisker pad stimulation not only elicited robust activity along the whisker-mediated tactile system, but also in auditory, visual, high-order, and cerebellar regions, indicative of brain-wide cross-sensory and associative activity. By inspecting the response profiles to different stimulation frequencies and temporal signal characteristics, we observed that the non-core regions responded to stimulation in a very different way compared to the primary sensory system, likely reflecting different encoding modes between the primary sensory, cross-sensory, and integrative processing. Lastly, while the activity evoked in low-order sensory structures could be reliably detected under anesthesia, the activity in high-order processing and the complex differences between primary, cross-sensory, and associative systems were visible only in the awake state. We conclude that our study reveals novel aspects of the cross-sensory interplay of whisker-mediated tactile system, and importantly, that these would be difficult to observe in anesthetized rats.
Collapse
Affiliation(s)
- Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juha S. Valjakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Raimo A. Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ekaterina Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Senkowski D, Engel AK. Multi-timescale neural dynamics for multisensory integration. Nat Rev Neurosci 2024; 25:625-642. [PMID: 39090214 DOI: 10.1038/s41583-024-00845-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Carrying out any everyday task, be it driving in traffic, conversing with friends or playing basketball, requires rapid selection, integration and segregation of stimuli from different sensory modalities. At present, even the most advanced artificial intelligence-based systems are unable to replicate the multisensory processes that the human brain routinely performs, but how neural circuits in the brain carry out these processes is still not well understood. In this Perspective, we discuss recent findings that shed fresh light on the oscillatory neural mechanisms that mediate multisensory integration (MI), including power modulations, phase resetting, phase-amplitude coupling and dynamic functional connectivity. We then consider studies that also suggest multi-timescale dynamics in intrinsic ongoing neural activity and during stimulus-driven bottom-up and cognitive top-down neural network processing in the context of MI. We propose a new concept of MI that emphasizes the critical role of neural dynamics at multiple timescales within and across brain networks, enabling the simultaneous integration, segregation, hierarchical structuring and selection of information in different time windows. To highlight predictions from our multi-timescale concept of MI, real-world scenarios in which multi-timescale processes may coordinate MI in a flexible and adaptive manner are considered.
Collapse
Affiliation(s)
- Daniel Senkowski
- Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Kato DD, Bruno RM. Stability of cross-sensory input to primary somatosensory cortex across experience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607026. [PMID: 39149350 PMCID: PMC11326227 DOI: 10.1101/2024.08.07.607026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Merging information from across sensory modalities is key to forming robust, disambiguated percepts of the world, yet how the brain achieves this feat remains unclear. Recent observations of cross-modal influences in primary sensory cortical areas have suggested that multisensory integration may occur in the earliest stages of cortical processing, but the role of these responses is still poorly understood. We address these questions by testing several hypotheses about the possible functions served by auditory influences on the barrel field of mouse primary somatosensory cortex (S1) using in vivo 2-photon calcium imaging. We observed sound-evoked spiking activity in a small fraction of cells overall, and moreover that this sparse activity was insufficient to encode auditory stimulus identity; few cells responded preferentially to one sound or another, and a linear classifier trained to decode auditory stimuli from population activity performed barely above chance. Moreover S1 did not encode information about specific audio-tactile feature conjunctions that we tested. Our ability to decode auditory audio-tactile stimuli from neural activity remained unchanged after both passive experience and reinforcement. Collectively, these results suggest that while a primary sensory cortex is highly plastic with regard to its own modality, the influence of other modalities are remarkably stable and play a largely stimulus-non-specific role.
Collapse
Affiliation(s)
- Daniel D Kato
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
5
|
Stocke S, Samuelsen CL. Multisensory Integration Underlies the Distinct Representation of Odor-Taste Mixtures in the Gustatory Cortex of Behaving Rats. J Neurosci 2024; 44:e0071242024. [PMID: 38548337 PMCID: PMC11097261 DOI: 10.1523/jneurosci.0071-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The perception of food relies on the integration of olfactory and gustatory signals originating from the mouth. This multisensory process generates robust associations between odors and tastes, significantly influencing the perceptual judgment of flavors. However, the specific neural substrates underlying this integrative process remain unclear. Previous electrophysiological studies identified the gustatory cortex as a site of convergent olfactory and gustatory signals, but whether neurons represent multimodal odor-taste mixtures as distinct from their unimodal odor and taste components is unknown. To investigate this, we recorded single-unit activity in the gustatory cortex of behaving female rats during the intraoral delivery of individual odors, individual tastes, and odor-taste mixtures. Our results demonstrate that chemoselective neurons in the gustatory cortex are broadly responsive to intraoral chemosensory stimuli, exhibiting time-varying multiphasic changes in activity. In a subset of these chemoselective neurons, odor-taste mixtures elicit nonlinear cross-modal responses that distinguish them from their olfactory and gustatory components. These findings provide novel insights into multimodal chemosensory processing by the gustatory cortex, highlighting the distinct representation of unimodal and multimodal intraoral chemosensory signals. Overall, our findings suggest that olfactory and gustatory signals interact nonlinearly in the gustatory cortex to enhance the identity coding of both unimodal and multimodal chemosensory stimuli.
Collapse
Affiliation(s)
- Sanaya Stocke
- Departments of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Chad L Samuelsen
- Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
6
|
Wang G, Alais D. Tactile adaptation to orientation produces a robust tilt aftereffect and exhibits crossmodal transfer when tested in vision. Sci Rep 2024; 14:10164. [PMID: 38702338 PMCID: PMC11068783 DOI: 10.1038/s41598-024-60343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Orientation processing is one of the most fundamental functions in both visual and somatosensory perception. Converging findings suggest that orientation processing in both modalities is closely linked: somatosensory neurons share a similar orientation organisation as visual neurons, and the visual cortex has been found to be heavily involved in tactile orientation perception. Hence, we hypothesized that somatosensation would exhibit a similar orientation adaptation effect, and this adaptation effect would be transferable between the two modalities, considering the above-mentioned connection. The tilt aftereffect (TAE) is a demonstration of orientation adaptation and is used widely in behavioural experiments to investigate orientation mechanisms in vision. By testing the classic TAE paradigm in both tactile and crossmodal orientation tasks between vision and touch, we were able to show that tactile perception of orientation shows a very robust TAE, similar to its visual counterpart. We further show that orientation adaptation in touch transfers to produce a TAE when tested in vision, but not vice versa. Additionally, when examining the test sequence following adaptation for serial effects, we observed another asymmetry between the two conditions where the visual test sequence displayed a repulsive intramodal serial dependence effect while the tactile test sequence exhibited an attractive serial dependence. These findings provide concrete evidence that vision and touch engage a similar orientation processing mechanism. However, the asymmetry in the crossmodal transfer of TAE and serial dependence points to a non-reciprocal connection between the two modalities, providing further insights into the underlying processing mechanism.
Collapse
Affiliation(s)
- Guandong Wang
- School of Psychology, The University of Sydney, Sydney, Australia.
| | - David Alais
- School of Psychology, The University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Noda T, Aschauer DF, Chambers AR, Seiler JPH, Rumpel S. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci 2024; 18:1366200. [PMID: 38584779 PMCID: PMC10995314 DOI: 10.3389/fncel.2024.1366200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Takahiro Noda
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Dominik F. Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Anna R. Chambers
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Johannes P.-H. Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| |
Collapse
|
8
|
Dinh TNA, Moon HS, Kim SG. Separation of bimodal fMRI responses in mouse somatosensory areas into V1 and non-V1 contributions. Sci Rep 2024; 14:6302. [PMID: 38491035 PMCID: PMC10943206 DOI: 10.1038/s41598-024-56305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Multisensory integration is necessary for the animal to survive in the real world. While conventional methods have been extensively used to investigate the multisensory integration process in various brain areas, its long-range interactions remain less explored. In this study, our goal was to investigate interactions between visual and somatosensory networks on a whole-brain scale using 15.2-T BOLD fMRI. We compared unimodal to bimodal BOLD fMRI responses and dissected potential cross-modal pathways with silencing of primary visual cortex (V1) by optogenetic stimulation of local GABAergic neurons. Our data showed that the influence of visual stimulus on whisker activity is higher than the influence of whisker stimulus on visual activity. Optogenetic silencing of V1 revealed that visual information is conveyed to whisker processing via both V1 and non-V1 pathways. The first-order ventral posteromedial thalamic nucleus (VPM) was functionally affected by non-V1 sources, while the higher-order posterior medial thalamic nucleus (POm) was predominantly modulated by V1 but not non-V1 inputs. The primary somatosensory barrel field (S1BF) was influenced by both V1 and non-V1 inputs. These observations provide valuable insights for into the integration of whisker and visual sensory information.
Collapse
Affiliation(s)
- Thi Ngoc Anh Dinh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hyun Seok Moon
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon, 16419, South Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
9
|
Saltafossi M, Zaccaro A, Perrucci MG, Ferri F, Costantini M. The impact of cardiac phases on multisensory integration. Biol Psychol 2023; 182:108642. [PMID: 37467844 DOI: 10.1016/j.biopsycho.2023.108642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The brain continuously processes information coming from both the external environment and visceral signals generated by the body. This constant information exchange between the body and the brain allows signals originating from the oscillatory activity of the heart, among others, to influence perception. Here, we investigated how the cardiac phase modulates multisensory integration, which is the process that allows information from multiple senses to combine non-linearly to reduce environmental uncertainty. Forty healthy participants completed a Simple Detection Task with unimodal (Auditory, Visual, Tactile) and bimodal (Audio-Tactile, Audio-Visual, Visuo-Tactile) stimuli presented 250 ms and 500 ms after the R-peak of the electrocardiogram, that is, systole and diastole, respectively. First, we found a nonspecific effect of the cardiac cycle phases on detection of both unimodal and bimodal stimuli. Reaction times were faster for stimuli presented during diastole, compared to systole. Then, applying the Race Model Inequality approach to quantify multisensory integration, Audio-Tactile and Visuo-Tactile, but not Audio-Visual stimuli, showed higher integration when presented during diastole than during systole. These findings indicate that the impact of the cardiac phase on multisensory integration may be specific for stimuli including somatosensory (i.e., tactile) inputs. This suggests that the heartbeat-related noise, which according to the interoceptive predictive coding theory suppresses somatosensory inputs, also affects multisensory integration during systole. In conclusion, our data extend the interoceptive predictive coding theory to the multisensory domain. From a more mechanistic view, they may reflect a reduced optimization of neural oscillations orchestrating multisensory integration during systole.
Collapse
Affiliation(s)
- Martina Saltafossi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Andrea Zaccaro
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, ITAB, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Dorman R, Bos JJ, Vinck MA, Marchesi P, Fiorilli J, Lorteije JAM, Reiten I, Bjaalie JG, Okun M, Pennartz CMA. Spike-based coupling between single neurons and populations across rat sensory cortices, perirhinal cortex, and hippocampus. Cereb Cortex 2023; 33:8247-8264. [PMID: 37118890 PMCID: PMC10425201 DOI: 10.1093/cercor/bhad111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/30/2023] Open
Abstract
Cortical computations require coordination of neuronal activity within and across multiple areas. We characterized spiking relationships within and between areas by quantifying coupling of single neurons to population firing patterns. Single-neuron population coupling (SNPC) was investigated using ensemble recordings from hippocampal CA1 region and somatosensory, visual, and perirhinal cortices. Within-area coupling was heterogeneous across structures, with area CA1 showing higher levels than neocortical regions. In contrast to known anatomical connectivity, between-area coupling showed strong firing coherence of sensory neocortices with CA1, but less with perirhinal cortex. Cells in sensory neocortices and CA1 showed positive correlations between within- and between-area coupling; these were weaker for perirhinal cortex. All four areas harbored broadcasting cells, connecting to multiple external areas, which was uncorrelated to within-area coupling strength. When examining correlations between SNPC and spatial coding, we found that, if such correlations were significant, they were negative. This result was consistent with an overall preservation of SNPC across different brain states, suggesting a strong dependence on intrinsic network connectivity. Overall, SNPC offers an important window on cell-to-population synchronization in multi-area networks. Instead of pointing to specific information-coding functions, our results indicate a primary function of SNPC in dynamically organizing communication in systems composed of multiple, interconnected areas.
Collapse
Affiliation(s)
- Reinder Dorman
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jeroen J Bos
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Martin A Vinck
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Plank Society, 60528 Frankfurt, Germany
| | - Pietro Marchesi
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Julien Fiorilli
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Jeanette A M Lorteije
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Ingrid Reiten
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | - Michael Okun
- Department of Psychology and Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Cyriel M A Pennartz
- Systems and Cognitive Neuroscience Group, SILS Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
11
|
Gidding M, Janssen T, Davies CS, Kirilyuk A. Dynamic self-organisation and pattern formation by magnon-polarons. Nat Commun 2023; 14:2208. [PMID: 37072420 PMCID: PMC10113182 DOI: 10.1038/s41467-023-37919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
Magnetic materials play a vital role in energy-efficient data storage technologies, combining very fast switching with long-term retention of information. However, it has been shown that, at very short time scales, magnetisation dynamics become chaotic due to internal instabilities, resulting in incoherent spin-wave excitations that ultimately destroy magnetic ordering. Here, contrary to expectations, we show that such chaos gives rise to a periodic pattern of reversed magnetic domains, with a feature size far smaller than the spatial extent of the excitation. We explain this pattern as a result of phase-synchronisation of magnon-polaron quasiparticles, driven by strong coupling of magnetic and elastic modes. Our results reveal not only the peculiar formation and evolution of magnon-polarons at short time-scales, but also present an alternative mechanism of magnetisation reversal driven by coherent packets of short-wavelength magnetoelastic waves.
Collapse
Affiliation(s)
- M Gidding
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - T Janssen
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - C S Davies
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - A Kirilyuk
- FELIX Laboratory, Radboud University, Toernooiveld 7, 6525 ED, Nijmegen, The Netherlands.
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
López-Bendito G, Aníbal-Martínez M, Martini FJ. Cross-Modal Plasticity in Brains Deprived of Visual Input Before Vision. Annu Rev Neurosci 2022; 45:471-489. [PMID: 35803589 DOI: 10.1146/annurev-neuro-111020-104222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unimodal sensory loss leads to structural and functional changes in both deprived and nondeprived brain circuits. This process is broadly known as cross-modal plasticity. The evidence available indicates that cross-modal changes underlie the enhanced performances of the spared sensory modalities in deprived subjects. Sensory experience is a fundamental driver of cross-modal plasticity, yet there is evidence from early-visually deprived models supporting an additional role for experience-independent factors. These experience-independent factors are expected to act early in development and constrain neuronal plasticity at later stages. Here we review the cross-modal adaptations elicited by congenital or induced visual deprivation prior to vision. In most of these studies, cross-modal adaptations have been addressed at the structural and functional levels. Here, we also appraise recent data regarding behavioral performance in early-visually deprived models. However, further research is needed to explore how circuit reorganization affects their function and what brings about enhanced behavioral performance.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Mar Aníbal-Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| | - Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain; ,
| |
Collapse
|
13
|
Skirzewski M, Molotchnikoff S, Hernandez LF, Maya-Vetencourt JF. Multisensory Integration: Is Medial Prefrontal Cortex Signaling Relevant for the Treatment of Higher-Order Visual Dysfunctions? Front Mol Neurosci 2022; 14:806376. [PMID: 35110996 PMCID: PMC8801884 DOI: 10.3389/fnmol.2021.806376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022] Open
Abstract
In the mammalian brain, information processing in sensory modalities and global mechanisms of multisensory integration facilitate perception. Emerging experimental evidence suggests that the contribution of multisensory integration to sensory perception is far more complex than previously expected. Here we revise how associative areas such as the prefrontal cortex, which receive and integrate inputs from diverse sensory modalities, can affect information processing in unisensory systems via processes of down-stream signaling. We focus our attention on the influence of the medial prefrontal cortex on the processing of information in the visual system and whether this phenomenon can be clinically used to treat higher-order visual dysfunctions. We propose that non-invasive and multisensory stimulation strategies such as environmental enrichment and/or attention-related tasks could be of clinical relevance to fight cerebral visual impairment.
Collapse
Affiliation(s)
- Miguel Skirzewski
- Rodent Cognition Research and Innovation Core, University of Western Ontario, London, ON, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Université de Montréal, Montreal, QC, Canada
- Département de Génie Electrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luis F. Hernandez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, United States
| | - José Fernando Maya-Vetencourt
- Department of Biology, University of Pisa, Pisa, Italy
- Centre for Synaptic Neuroscience, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- *Correspondence: José Fernando Maya-Vetencourt
| |
Collapse
|
14
|
Guo L, Wang H, Zhou J, Tang W, Wang R, Xiao Z, Wu L, Wang J, Li L, Lei Y, Sun X, Tang Z. Magnetic resonance imaging investigations reveal that PM 2.5 exposure triggers visual dysfunction in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112866. [PMID: 34634599 DOI: 10.1016/j.ecoenv.2021.112866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 05/06/2023]
Abstract
OBJECTIVES To investigate how PM2.5 exposure affects the microstructure, metabolites or functions of the visual system. METHODS C57BL/6J mice were randomly assigned to groups exposed to the filtered air (the control group) or the concentrated ambient PM2.5 (the PM2.5 group). Visual evoked potentials (VEP), electroretinograms (ERG), diffusion tensor imaging (DTI), proton magnetic resonance spectroscopy (1H-MRS) and resting-state functional MRI (rsfMRI) were performed. Parameters were obtained and compared between the two groups, including latencies and amplitudes of the P1 wave, N1 wave and P2 wave from VEP, latencies and amplitudes of the a wave and b wave from ERG, fractional anisotropy (FA), mean diffusion (MD), axial diffusivity (AD) and radial diffusivity (RD) from DTI, visual cortex (VC) metabolites from 1H-MRS, and regional homogeneity (ReHo) from rsfMRI. RESULTS Compared with the values of the control group, the PM2.5 group showed a prolonged N1 latency (43.11 ± 7.94 ms vs. 38.75 ± 4.60 ms) and lowered P1 amplitude (5.62 ± 4.38 μV vs. 8.56 ± 5.92 μV) on VEP (all p < 0.05). On ERG, the amplitude of the a wave was lowered (- 91.39 ± 56.29 μV vs. - 138.68 ± 89.05 μV), the amplitude of the b wave was lowered (194.38 ± 126.27 μV vs. 284.72 ± 170.99 μV), and the latency of the b wave was prolonged (37.78 ± 10.72 ms vs. 33.01 ± 4.34 ms) than the values of the control group (all p < 0.05). DTI indicated FA increase in the bilateral piriform cortex (Pir), FA decrease in the bilateral somatosensory cortex (S) and the bilateral striatum (Stri), AD decrease in the bilateral VC, the right S and the bilateral Pir, MD decrease in the bilateral Pir, and RD decrease in the bilateral Pir in the PM2.5 mice (all p < 0.05, Alphasim corrected). 1H-MRS showed Glutamate (Glu) increase and Phosphocholine (PCh) increase in the VC of the PM2.5 group than those of the control group (PCh 1.63 ± 0.25 vs. 1.50 ± 0.25; PCh/total creatine(tCr) 0.19 ± 0.03 vs. 0.18 ± 0.03; Glu 10.46 ± 1.50 vs. 9.60 ± 1.19; Glu/tcr 1.23 ± 0.11 vs. 1.12 ± 0.11) (all p < 0.05). rsfMRI showed higher ReHo in the PM2.5 mice in the left superior colliculus, the left motor cortex, the hippocampus, the periaqueductal gray and the right mesencephalic reticular formation (all p < 0.01, AlphaSim corrected). CONCLUSIONS This study revealed that PM2.5 exposure triggered visual dysfunction, and altered microstructure, metabolite and function in the retina and visual brain areas along the visual system.
Collapse
Affiliation(s)
- Linying Guo
- Department of Radiology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China; Shanghai Typhoon Institute, CMA, Shanghai 200030, China; Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200031, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Rong Wang
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; Department of Biomedical Sciences, University of Pennsylvania, 22, Philadelphia, PA 19104, United States
| | - Lingjie Wu
- Department of Ear, Nose & Throat, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Jie Wang
- Department of Radiotherapy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Liping Li
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China
| | - Yuan Lei
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China.
| | - Xinghuai Sun
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; NHC Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| |
Collapse
|
15
|
Samuelsen CL, Vincis R. Cortical Hub for Flavor Sensation in Rodents. Front Syst Neurosci 2021; 15:772286. [PMID: 34867223 PMCID: PMC8636119 DOI: 10.3389/fnsys.2021.772286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/21/2021] [Indexed: 01/05/2023] Open
Abstract
The experience of eating is inherently multimodal, combining intraoral gustatory, olfactory, and somatosensory signals into a single percept called flavor. As foods and beverages enter the mouth, movements associated with chewing and swallowing activate somatosensory receptors in the oral cavity, dissolve tastants in the saliva to activate taste receptors, and release volatile odorant molecules to retronasally activate olfactory receptors in the nasal epithelium. Human studies indicate that sensory cortical areas are important for intraoral multimodal processing, yet their circuit-level mechanisms remain unclear. Animal models allow for detailed analyses of neural circuits due to the large number of molecular tools available for tracing and neuronal manipulations. In this review, we concentrate on the anatomical and neurophysiological evidence from rodent models toward a better understanding of the circuit-level mechanisms underlying the cortical processing of flavor. While more work is needed, the emerging view pertaining to the multimodal processing of food and beverages is that the piriform, gustatory, and somatosensory cortical regions do not function solely as independent areas. Rather they act as an intraoral cortical hub, simultaneously receiving and processing multimodal sensory information from the mouth to produce the rich and complex flavor experience that guides consummatory behavior.
Collapse
Affiliation(s)
- Chad L Samuelsen
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Roberto Vincis
- Department of Biological Science and Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
16
|
Rezaul Karim AKM, Proulx MJ, de Sousa AA, Likova LT. Neuroplasticity and Crossmodal Connectivity in the Normal, Healthy Brain. PSYCHOLOGY & NEUROSCIENCE 2021; 14:298-334. [PMID: 36937077 PMCID: PMC10019101 DOI: 10.1037/pne0000258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Objective Neuroplasticity enables the brain to establish new crossmodal connections or reorganize old connections which are essential to perceiving a multisensorial world. The intent of this review is to identify and summarize the current developments in neuroplasticity and crossmodal connectivity, and deepen understanding of how crossmodal connectivity develops in the normal, healthy brain, highlighting novel perspectives about the principles that guide this connectivity. Methods To the above end, a narrative review is carried out. The data documented in prior relevant studies in neuroscience, psychology and other related fields available in a wide range of prominent electronic databases are critically assessed, synthesized, interpreted with qualitative rather than quantitative elements, and linked together to form new propositions and hypotheses about neuroplasticity and crossmodal connectivity. Results Three major themes are identified. First, it appears that neuroplasticity operates by following eight fundamental principles and crossmodal integration operates by following three principles. Second, two different forms of crossmodal connectivity, namely direct crossmodal connectivity and indirect crossmodal connectivity, are suggested to operate in both unisensory and multisensory perception. Third, three principles possibly guide the development of crossmodal connectivity into adulthood. These are labeled as the principle of innate crossmodality, the principle of evolution-driven 'neuromodular' reorganization and the principle of multimodal experience. These principles are combined to develop a three-factor interaction model of crossmodal connectivity. Conclusions The hypothesized principles and the proposed model together advance understanding of neuroplasticity, the nature of crossmodal connectivity, and how such connectivity develops in the normal, healthy brain.
Collapse
|
17
|
Varani S, Vecchia D, Zucca S, Forli A, Fellin T. Stimulus Feature-Specific Control of Layer 2/3 Subthreshold Whisker Responses by Layer 4 in the Mouse Primary Somatosensory Cortex. Cereb Cortex 2021; 32:1419-1436. [PMID: 34448808 PMCID: PMC8971086 DOI: 10.1093/cercor/bhab297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/01/2023] Open
Abstract
In the barrel field of the rodent primary somatosensory cortex (S1bf), excitatory cells in layer 2/3 (L2/3) display sparse firing but reliable subthreshold response during whisker stimulation. Subthreshold responses encode specific features of the sensory stimulus, for example, the direction of whisker deflection. According to the canonical model for the flow of sensory information across cortical layers, activity in L2/3 is driven by layer 4 (L4). However, L2/3 cells receive excitatory inputs from other regions, raising the possibility that L4 partially drives L2/3 during whisker stimulation. To test this hypothesis, we combined patch-clamp recordings from L2/3 pyramidal neurons in S1bf with selective optogenetic inhibition of L4 during passive whisker stimulation in both anesthetized and awake head-restrained mice. We found that L4 optogenetic inhibition did not abolish the subthreshold whisker-evoked response nor it affected spontaneous membrane potential fluctuations of L2/3 neurons. However, L4 optogenetic inhibition decreased L2/3 subthreshold responses to whisker deflections in the preferred direction, and it increased L2/3 responses to stimuli in the nonpreferred direction, leading to a change in the direction tuning. Our results contribute to reveal the circuit mechanisms underlying the processing of sensory information in the rodent S1bf.
Collapse
Affiliation(s)
- Stefano Varani
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Stefano Zucca
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
18
|
Long X, Zhang SJ. A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Res 2021; 31:649-663. [PMID: 33462427 PMCID: PMC8169756 DOI: 10.1038/s41422-020-00448-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Spatially selective firing of place cells, grid cells, boundary vector/border cells and head direction cells constitutes the basic building blocks of a canonical spatial navigation system centered on the hippocampal-entorhinal complex. While head direction cells can be found throughout the brain, spatial tuning outside the hippocampal formation is often non-specific or conjunctive to other representations such as a reward. Although the precise mechanism of spatially selective firing activity is not understood, various studies show sensory inputs, particularly vision, heavily modulate spatial representation in the hippocampal-entorhinal circuit. To better understand the contribution of other sensory inputs in shaping spatial representation in the brain, we performed recording from the primary somatosensory cortex in foraging rats. To our surprise, we were able to detect the full complement of spatially selective firing patterns similar to that reported in the hippocampal-entorhinal network, namely, place cells, head direction cells, boundary vector/border cells, grid cells and conjunctive cells, in the somatosensory cortex. These newly identified somatosensory spatial cells form a spatial map outside the hippocampal formation and support the hypothesis that location information modulates body representation in the somatosensory cortex. Our findings provide transformative insights into our understanding of how spatial information is processed and integrated in the brain, as well as functional operations of the somatosensory cortex in the context of rehabilitation with brain-machine interfaces.
Collapse
Affiliation(s)
- Xiaoyang Long
- grid.410570.70000 0004 1760 6682Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Sheng-Jia Zhang
- grid.410570.70000 0004 1760 6682Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| |
Collapse
|
19
|
García-Rosales F, López-Jury L, González-Palomares E, Cabral-Calderín Y, Kössl M, Hechavarria JC. Phase-amplitude coupling profiles differ in frontal and auditory cortices of bats. Eur J Neurosci 2020; 55:3483-3501. [PMID: 32979875 DOI: 10.1111/ejn.14986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
Neural oscillations are at the core of important computations in the mammalian brain. Interactions between oscillatory activities in different frequency bands, such as delta (1-4 Hz), theta (4-8 Hz) or gamma (>30 Hz), are a powerful mechanism for binding fundamentally distinct spatiotemporal scales of neural processing. Phase-amplitude coupling (PAC) is one such plausible and well-described interaction, but much is yet to be uncovered regarding how PAC dynamics contribute to sensory representations. In particular, although PAC appears to have a major role in audition, the characteristics of coupling profiles in sensory and integration (i.e. frontal) cortical areas remain obscure. Here, we address this question by studying PAC dynamics in the frontal-auditory field (FAF; an auditory area in the bat frontal cortex) and the auditory cortex (AC) of the bat Carollia perspicillata. By means of simultaneous electrophysiological recordings in frontal and auditory cortices examining local-field potentials (LFPs), we show that the amplitude of gamma-band activity couples with the phase of low-frequency LFPs in both structures. Our results demonstrate that the coupling in FAF occurs most prominently in delta/high-gamma frequencies (1-4/75-100 Hz), whereas in the AC the coupling is strongest in the delta-theta/low-gamma (2-8/25-55 Hz) range. We argue that distinct PAC profiles may represent different mechanisms for neuronal processing in frontal and auditory cortices, and might complement oscillatory interactions for sensory processing in the frontal-auditory cortex network.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| | | | - Yuranny Cabral-Calderín
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Frankfurt/M, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| |
Collapse
|
20
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
21
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
22
|
Matteucci G, Riggi M, Zoccolan D. A template-matching algorithm for laminar identification of cortical recording sites from evoked response potentials. J Neurophysiol 2020; 124:102-114. [PMID: 32490704 PMCID: PMC7474457 DOI: 10.1152/jn.00033.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022] Open
Abstract
In recent years, the advent of the so-called silicon probes has made it possible to homogeneously sample spikes and local field potentials (LFPs) from a regular grid of cortical recording sites. In principle, this allows inferring the laminar location of the sites based on the spatiotemporal pattern of LFPs recorded along the probe, as in the well-known current source-density (CSD) analysis. This approach, however, has several limitations, since it relies on visual identification of landmark features (i.e., current sinks and sources) by human operators - features that can be absent from the CSD pattern if the probe does not span the whole cortical thickness, thus making manual labelling harder. Furthermore, as any manual annotation procedure, the typical CSD-based workflow for laminar identification of recording sites is affected by subjective judgment undermining the consistency and reproducibility of results. To overcome these limitations, we developed an alternative approach, based on finding the optimal match between the LFPs recorded along a probe in a given experiment and a template LFP profile that was computed using 18 recording sessions, in which the depth of the recording sites had been recovered through histology. We show that this method can achieve an accuracy of 79 µm in recovering the cortical depth of recording sites and a 76% accuracy in inferring their laminar location. As such, our approach provides an alternative to CSD that, being fully automated, is less prone to the idiosyncrasies of subjective judgment and works reliably also for recordings spanning a limited cortical stretch.
Collapse
|
23
|
Xu X, Hanganu-Opatz IL, Bieler M. Cross-Talk of Low-Level Sensory and High-Level Cognitive Processing: Development, Mechanisms, and Relevance for Cross-Modal Abilities of the Brain. Front Neurorobot 2020; 14:7. [PMID: 32116637 PMCID: PMC7034303 DOI: 10.3389/fnbot.2020.00007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of cross-modal learning capabilities requires the interaction of neural areas accounting for sensory and cognitive processing. Convergence of multiple sensory inputs is observed in low-level sensory cortices including primary somatosensory (S1), visual (V1), and auditory cortex (A1), as well as in high-level areas such as prefrontal cortex (PFC). Evidence shows that local neural activity and functional connectivity between sensory cortices participate in cross-modal processing. However, little is known about the functional interplay between neural areas underlying sensory and cognitive processing required for cross-modal learning capabilities across life. Here we review our current knowledge on the interdependence of low- and high-level cortices for the emergence of cross-modal processing in rodents. First, we summarize the mechanisms underlying the integration of multiple senses and how cross-modal processing in primary sensory cortices might be modified by top-down modulation of the PFC. Second, we examine the critical factors and developmental mechanisms that account for the interaction between neuronal networks involved in sensory and cognitive processing. Finally, we discuss the applicability and relevance of cross-modal processing for brain-inspired intelligent robotics. An in-depth understanding of the factors and mechanisms controlling cross-modal processing might inspire the refinement of robotic systems by better mimicking neural computations.
Collapse
Affiliation(s)
- Xiaxia Xu
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Bieler
- Laboratory for Neural Computation, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
24
|
Hebbian associative plasticity in the visuo-tactile domain: A cross-modal paired associative stimulation protocol. Neuroimage 2019; 201:116025. [DOI: 10.1016/j.neuroimage.2019.116025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
|
25
|
Thalamic low frequency activity facilitates resting-state cortical interhemispheric MRI functional connectivity. Neuroimage 2019; 201:115985. [DOI: 10.1016/j.neuroimage.2019.06.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
|
26
|
Macharadze T, Budinger E, Brosch M, Scheich H, Ohl FW, Henschke JU. Early Sensory Loss Alters the Dendritic Branching and Spine Density of Supragranular Pyramidal Neurons in Rodent Primary Sensory Cortices. Front Neural Circuits 2019; 13:61. [PMID: 31611778 PMCID: PMC6773815 DOI: 10.3389/fncir.2019.00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/03/2019] [Indexed: 01/26/2023] Open
Abstract
Multisensory integration in primary auditory (A1), visual (V1), and somatosensory cortex (S1) is substantially mediated by their direct interconnections and by thalamic inputs across the sensory modalities. We have previously shown in rodents (Mongolian gerbils) that during postnatal development, the anatomical and functional strengths of these crossmodal and also of sensory matched connections are determined by early auditory, somatosensory, and visual experience. Because supragranular layer III pyramidal neurons are major targets of corticocortical and thalamocortical connections, we investigated in this follow-up study how the loss of early sensory experience changes their dendritic morphology. Gerbils were sensory deprived early in development by either bilateral sciatic nerve transection at postnatal day (P) 5, ototoxic inner hair cell damage at P10, or eye enucleation at P10. Sholl and branch order analyses of Golgi-stained layer III pyramidal neurons at P28, which demarcates the end of the sensory critical period in this species, revealed that visual and somatosensory deprivation leads to a general increase of apical and basal dendritic branching in A1, V1, and S1. In contrast, dendritic branching, particularly of apical dendrites, decreased in all three areas following auditory deprivation. Generally, the number of spines, and consequently spine density, along the apical and basal dendrites decreased in both sensory deprived and non-deprived cortical areas. Therefore, we conclude that the loss of early sensory experience induces a refinement of corticocortical crossmodal and other cortical and thalamic connections by pruning of dendritic spines at the end of the critical period. Based on present and previous own results and on findings from the literature, we propose a scenario for multisensory development following early sensory loss.
Collapse
Affiliation(s)
- Tamar Macharadze
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Clinic for Anesthesiology and Intensive Care Medicine, Otto von Guericke University Hospital, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Brosch
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Special Lab Primate Neurobiology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Henning Scheich
- Center for Behavioral Brain Sciences, Magdeburg, Germany.,Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute for Biology, Otto von Guericke University, Magdeburg, Germany
| | - Julia U Henschke
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
27
|
Abstract
In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.
Collapse
Affiliation(s)
- Emmanouil Froudarakis
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Jamaica Plain VA Medical Center, Boston, Massachusetts 02130, USA
| | - Edward J Tehovnik
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA;
- Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
28
|
Abstract
Multisensory integration (MSI) is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60) expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. VIDEO ABSTRACT.
Collapse
|
29
|
Multisensory learning between odor and sound enhances beta oscillations. Sci Rep 2019; 9:11236. [PMID: 31375760 PMCID: PMC6677763 DOI: 10.1038/s41598-019-47503-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022] Open
Abstract
Multisensory interactions are essential to make sense of the environment by transforming the mosaic of sensory inputs received by the organism into a unified perception. Brain rhythms allow coherent processing within areas or between distant brain regions and could thus be instrumental in functionally connecting remote brain areas in the context of multisensory interactions. Still, odor and sound processing relate to two sensory systems with specific anatomofunctional characteristics. How does the brain handle their association? Rats were challenged to discriminate between unisensory stimulation (odor or sound) and the multisensory combination of both. During learning, we observed a progressive establishment of high power beta oscillations (15–35 Hz) spanning on the olfactory bulb, the piriform cortex and the perirhinal cortex, but not the primary auditory cortex. In the piriform cortex, beta oscillations power was higher in the multisensory condition compared to the presentation of the odor alone. Furthermore, in the olfactory structures, the sound alone was able to elicit a beta oscillatory response. These findings emphasize the functional differences between olfactory and auditory cortices and reveal that beta oscillations contribute to the memory formation of the multisensory association.
Collapse
|
30
|
Gu J, Liu B, Li X, Wang P, Wang B. Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis. Brain Imaging Behav 2019; 14:1908-1920. [PMID: 31183774 DOI: 10.1007/s11682-019-00135-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Primary sensory cortices can respond not only to their defined sensory modality but also to cross-modal information. In addition to the observed cross-modal phenomenon, it is valuable to research further whether cross-modal information can be valuable for categorizing stimuli and what effect other factors, such as experience and imagination, may have on cross-modal processing. In this study, we researched cross-modal information processing in the early visual cortex (EVC, including the visual area 1, 2, and 3 (V1, V2, and V3)) and auditory cortex (primary (A1) and secondary (A2) auditory cortex). Images and sound clips were presented to participants separately in two experiments in which participants' imagination and expectations were restricted by an orthogonal fixation task and the data were collected by functional magnetic resonance imaging (fMRI). We successfully decoded categories of the cross-modal stimuli in the ROIs except for V1 by multi-voxel pattern analysis (MVPA). It was further shown that familiar sounds had the advantage of classification accuracies in V2 and V3 when compared with unfamiliar sounds. The results of the cross-classification analysis showed that there was no significant similarity between the activity patterns induced by different stimulus modalities. Even though the cross-modal representation is robust when considering the restriction of top-down expectations and mental imagery in our experiments, the sound experience showed effects on cross-modal representation in V2 and V3. In addition, primary sensory cortices may receive information from different modalities in different ways, so the activity patterns between two modalities were not similar enough to complete the cross-classification successfully.
Collapse
Affiliation(s)
- Jin Gu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| |
Collapse
|
31
|
Maruyama AT, Komai S. Auditory-induced response in the primary sensory cortex of rodents. PLoS One 2018; 13:e0209266. [PMID: 30571722 PMCID: PMC6301624 DOI: 10.1371/journal.pone.0209266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022] Open
Abstract
The details of auditory response at the subthreshold level in the rodent primary somatosensory cortex, the barrel cortex, have not been studied extensively, although several phenomenological reports have been published. Multisensory features may act as neuronal representations of links between inputs from one sensory modality to other sensory modalities. Here, we examined the basic multisensory postsynaptic responses in the rodent barrel cortex using in vivo whole-cell recordings of neurons. We observed robust responses to acoustic stimuli in most barrel cortex neurons. Acoustically evoked responses were mediated by hearing and reached approximately 60% of the postsynaptic response amplitude elicited by strong somatosensory stimuli. Compared to tactile stimuli, auditory stimuli evoked postsynaptic potentials with a longer latency and longer duration. Specifically, auditory stimuli in barrel cortex neurons appeared to trigger "up states", episodes associated with membrane depolarization and increased synaptic activity. Taken together, our data suggest that barrel cortex neurons have multisensory properties, with distinct synaptic mechanisms underlying tactile and non-tactile responses.
Collapse
Affiliation(s)
- Atsuko T. Maruyama
- Department of Science and Technology, Nara Institute of Science Technology, Takayama, Japan
| | - Shoji Komai
- Department of Science and Technology, Nara Institute of Science Technology, Takayama, Japan
- * E-mail:
| |
Collapse
|
32
|
How Senses Work Together: Cross-Modal Interactions between Primary Sensory Cortices. Neural Plast 2018; 2018:5380921. [PMID: 30647732 PMCID: PMC6311735 DOI: 10.1155/2018/5380921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/04/2018] [Indexed: 11/17/2022] Open
Abstract
On our way through a town, the things we see can make us change the way we go. The things that we hear can make us stop or walk on, or the things we feel can cause us to wear a warm jacket or just a t-shirt. All these behaviors are mediated by highly complex processing mechanisms in our brain and reflect responses to many important sensory inputs. The mammalian cerebral cortex, which processes the sensory information, consists of largely specialized sensory areas mainly receiving information from their corresponding sensory modalities. The first cortical regions receiving the input from the outer world are the so called primary sensory cortices. Strikingly, there is convincing evidence that primary sensory cortices do not work in isolation but are substantially affected by other sensory modalities. Here, we will review previous and current literature on this cross-modal interplay.
Collapse
|
33
|
Bieler M, Xu X, Marquardt A, Hanganu-Opatz IL. Multisensory integration in rodent tactile but not visual thalamus. Sci Rep 2018; 8:15684. [PMID: 30356135 PMCID: PMC6200796 DOI: 10.1038/s41598-018-33815-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Behavioural performance requires a coherent perception of environmental features that address multiple senses. These diverse sensory inputs are integrated in primary sensory cortices, yet it is still largely unknown whether their convergence occurs even earlier along the sensory tract. Here we investigate the role of putatively modality-specific first-order (FO) thalamic nuclei (ventral posteromedial nucleus (VPM), dorsal lateral geniculate nucleus (dLGN)) and their interactions with primary sensory cortices (S1, V1) for multisensory integration in pigmented rats in vivo. We show that bimodal stimulation (i.e. simultaneous light flash and whisker deflection) enhances sensory evoked activity in VPM, but not dLGN. Moreover, cross-modal stimuli reset the phase of thalamic network oscillations and strengthen the coupling efficiency between VPM and S1, but not between dLGN and V1. Finally, the information flow from VPM to S1 is enhanced. Thus, FO tactile, but not visual, thalamus processes and relays sensory inputs from multiple senses, revealing a functional difference between sensory thalamic nuclei during multisensory integration.
Collapse
Affiliation(s)
- Malte Bieler
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany. .,Laboratory for Neural Computation, Department of Physiology, University of Oslo, 0372, Oslo, Norway.
| | - Xiaxia Xu
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Annette Marquardt
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
34
|
Massé IO, Ross S, Bronchti G, Boire D. Asymmetric Direct Reciprocal Connections Between Primary Visual and Somatosensory Cortices of the Mouse. Cereb Cortex 2018; 27:4361-4378. [PMID: 27522075 DOI: 10.1093/cercor/bhw239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/15/2016] [Indexed: 11/13/2022] Open
Abstract
Several studies show direct connections between primary sensory cortices involved in multisensory integration. The purpose of this study is to understand the microcircuitry of the reciprocal connections between visual and somatosensory cortices. The laminar distribution of retrogradely labeled cell bodies in V1 and in the somatosensory cortex both in (S1BF) and outside (S1) the barrel field was studied to provide layer indices in order to determine whether the connections are of feedforward, feedback or lateral type. Single axons were reconstructed and the size of their swellings was stereologically sampled. The negative layer indices in S1 and S1BF and the layer index near zero in V1 indicate that the connection from S1BF to V1 is of feedback type while the opposite is of lateral type. The greater incidence of larger axonal swellings in the projection from V1 to S1BF strongly suggests that S1BF receives a stronger driver input from V1 and that S1BF inputs to V1 have a predominant modulatory influence.
Collapse
Affiliation(s)
- Ian O Massé
- Département d'anatomie, Université du Québec à Trois-Rivières, CanadaG9A 2W7
| | - Stéphanie Ross
- Département d'anatomie, Université du Québec à Trois-Rivières, CanadaG9A 2W7
| | - Gilles Bronchti
- Département d'anatomie, Université du Québec à Trois-Rivières, CanadaG9A 2W7
| | - Denis Boire
- Département d'anatomie, Université du Québec à Trois-Rivières, CanadaG9A 2W7
| |
Collapse
|
35
|
Henschke JU, Ohl FW, Budinger E. Crossmodal Connections of Primary Sensory Cortices Largely Vanish During Normal Aging. Front Aging Neurosci 2018; 10:52. [PMID: 29551970 PMCID: PMC5840148 DOI: 10.3389/fnagi.2018.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices. We investigate the age-related changes of these connections using a rodent model (Mongolian gerbil), retrograde tracer injections into the primary auditory (A1), somatosensory (S1), and visual cortex (V1), and immunohistochemistry for markers of apoptosis (Caspase-3), axonal plasticity (Growth associated protein 43, GAP 43), and a calcium-binding protein (Parvalbumin, PV). In adult animals, primary sensory cortices receive a substantial number of direct thalamic inputs from nuclei of their matched, but also from nuclei of non-matched sensory modalities. There are also direct intracortical connections among primary sensory cortices and connections with secondary sensory cortices of other modalities. In very old animals, the crossmodal connections strongly decrease in number or vanish entirely. This is likely due to a retraction of the projection neuron axonal branches rather than ongoing programmed cell death. The loss of crossmodal connections is also accompanied by changes in anatomical correlates of inhibition and excitation in the sensory thalamus and cortex. Together, the loss and restructuring of crossmodal connections during aging suggest a shift of multisensory processing from primary cortices towards other sensory brain areas in elderly individuals.
Collapse
Affiliation(s)
- Julia U Henschke
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department Genetics, Leibniz Institute for Neurobiology, Magdeburg, Germany.,German Center for Neurodegenerative Diseases within the Helmholtz Association, Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Institute of Biology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Eike Budinger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
36
|
Shao Y, Bao J, Huang X, Zhou FQ, Ye L, Min YL, Yang L, Sethi Z, Yuan Q, Zhou Q. Comparative study of interhemispheric functional connectivity in left eye monocular blindness versus right eye monocular blindness: a resting-state functional MRI study. Oncotarget 2018; 9:14285-14295. [PMID: 29581843 PMCID: PMC5865669 DOI: 10.18632/oncotarget.24487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/25/2018] [Indexed: 11/25/2022] Open
Abstract
Objective In the present study, we investigated the brain interhemispheric functional connectivity changes in left eye MB versus right eye MB patients by voxel-mirrored homotopic connectivity (VMHC) methods. Methods A total of 31 patients with MB (15 with left eye MB and 16 with right eye MB), and 31 healthy controls (HCs) closely matched for age were recruited. All subjects underwent functional magnetic resonance imaging (fMRI) examinations. The VMHC method was used to evaluate directly functional interactions between the hemispheres. A one-way ANOVA was performed to determine the regions in which the VMHC differs between the three groups. Patients with MB were distinguished from HCs by a receiver operating characteristic (ROC) curve. The relationships between the mean VMHC signal values in many brain regions and clinical features in MB patients were calculated by pearson correlation analysis. Results Compared with HCs, MB patients had significantly decreased VMHC values in the cuneus/calcarine/lingual gyrus. Furthermore, left eye MB showed decreased VMHC values in the cuneus/calcarine/lingual gyrus and showed increased VMHC values in the insula and middle frontal gyrus compared with HC. In addition, right eye MB showed decreased VMHC values in the cuneus/calcarine/lingual gyrus, primary motor cortex (M1)/primary somatosensory cortex (S1) and superior parietal lobule. Conclusion MB subjects showed abnormal brain interhemispheric functional connectivity in visual pathways. Furthermore, different patterns of brain interhemispheric functional connectivity occurred in the left eye and right eye MB. These VMHC values provide much useful information to explain the neural mechanism changes in MB.
Collapse
Affiliation(s)
- Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jing Bao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,Department of Ophthalmology, The People's Hospital of Hubei Province, Wuhan 430060, Hubei, China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zubin Sethi
- University of Miami, Miami, Florida 33146, USA
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
37
|
Suchkov D, Sharipzyanova L, Minlebaev M. Horizontal Synchronization of Neuronal Activity in the Barrel Cortex of the Neonatal Rat by Spindle-Burst Oscillations. Front Cell Neurosci 2018; 12:5. [PMID: 29403359 PMCID: PMC5780442 DOI: 10.3389/fncel.2018.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/04/2018] [Indexed: 01/14/2023] Open
Abstract
During development, activity in the somatosensory cortex is characterized by intermittent oscillatory bursts at gamma (early gamma-oscillations, EGOs) and alpha–beta (spindle-bursts, SBs) frequencies. Here, we explored the topography of EGOs and SBs in the neighbor barrels of the whisker-related barrel cortex of neonatal rats (P4-7) during responses evoked by simultaneous activation of multiple whiskers as it occurs during natural conditions. We found that brief simultaneous deflection of all whiskers evoked complex neuronal responses comprised of EGOs and SBs. In contrast to EGOs, that specifically synchronized neuronal activity in each individual barrel, SBs efficiently synchronized activity between neighboring barrels. After plucking a single whisker, synchronous stimulation of spared whiskers evoked EGO-lacking responses in the whisker-deprived barrel, even though the remaining neuronal activity was synchronized by SBs in neighboring barrels. Thus, EGOs specifically support topographic synchronization of neuronal activity within barrels, whereas SBs support horizontal synchronization between neighboring barrels during stimulation of multiple whiskers. We suggest that these two co-existing activity patterns coordinate activity-dependent formation of topographic maps and support the emergence of integrative functions in the primary somatosensory cortex during the critical period of somatosensory maps development.
Collapse
Affiliation(s)
- Dmitrii Suchkov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | - Marat Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,INMED-INSERM U901, Aix-Marseille Université, Marseille, France
| |
Collapse
|
38
|
Deolindo CS, Kunicki ACB, da Silva MI, Lima Brasil F, Moioli RC. Neuronal Assemblies Evidence Distributed Interactions within a Tactile Discrimination Task in Rats. Front Neural Circuits 2018; 11:114. [PMID: 29375324 PMCID: PMC5768614 DOI: 10.3389/fncir.2017.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence suggests that neural interactions are distributed and relate to animal behavior, but many open questions remain. The neural assembly hypothesis, formulated by Hebb, states that synchronously active single neurons may transiently organize into functional neural circuits-neuronal assemblies (NAs)-and that would constitute the fundamental unit of information processing in the brain. However, the formation, vanishing, and temporal evolution of NAs are not fully understood. In particular, characterizing NAs in multiple brain regions over the course of behavioral tasks is relevant to assess the highly distributed nature of brain processing. In the context of NA characterization, active tactile discrimination tasks with rats are elucidative because they engage several cortical areas in the processing of information that are otherwise masked in passive or anesthetized scenarios. In this work, we investigate the dynamic formation of NAs within and among four different cortical regions in long-range fronto-parieto-occipital networks (primary somatosensory, primary visual, prefrontal, and posterior parietal cortices), simultaneously recorded from seven rats engaged in an active tactile discrimination task. Our results first confirm that task-related neuronal firing rate dynamics in all four regions is significantly modulated. Notably, a support vector machine decoder reveals that neural populations contain more information about the tactile stimulus than the majority of single neurons alone. Then, over the course of the task, we identify the emergence and vanishing of NAs whose participating neurons are shown to contain more information about animal behavior than randomly chosen neurons. Taken together, our results further support the role of multiple and distributed neurons as the functional unit of information processing in the brain (NA hypothesis) and their link to active animal behavior.
Collapse
Affiliation(s)
| | | | | | | | - Renan C. Moioli
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil
| |
Collapse
|
39
|
Starke J, Ball F, Heinze HJ, Noesselt T. The spatio-temporal profile of multisensory integration. Eur J Neurosci 2017; 51:1210-1223. [PMID: 29057531 DOI: 10.1111/ejn.13753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/29/2022]
Abstract
Task-irrelevant visual stimuli can enhance auditory perception. However, while there is some neurophysiological evidence for mechanisms that underlie the phenomenon, the neural basis of visually induced effects on auditory perception remains unknown. Combining fMRI and EEG with psychophysical measurements in two independent studies, we identified the neural underpinnings and temporal dynamics of visually induced auditory enhancement. Lower- and higher-intensity sounds were paired with a non-informative visual stimulus, while participants performed an auditory detection task. Behaviourally, visual co-stimulation enhanced auditory sensitivity. Using fMRI, enhanced BOLD signals were observed in primary auditory cortex for low-intensity audiovisual stimuli which scaled with subject-specific enhancement in perceptual sensitivity. Concordantly, a modulation of event-related potentials could already be observed over frontal electrodes at an early latency (30-80 ms), which again scaled with subject-specific behavioural benefits. Later modulations starting around 280 ms, that is in the time range of the P3, did not fit this pattern of brain-behaviour correspondence. Hence, the latency of the corresponding fMRI-EEG brain-behaviour modulation points at an early interplay of visual and auditory signals in low-level auditory cortex, potentially mediated by crosstalk at the level of the thalamus. However, fMRI signals in primary auditory cortex, auditory thalamus and the P50 for higher-intensity auditory stimuli were also elevated by visual co-stimulation (in the absence of any behavioural effect) suggesting a general, intensity-independent integration mechanism. We propose that this automatic interaction occurs at the level of the thalamus and might signify a first step of audiovisual interplay necessary for visually induced perceptual enhancement of auditory perception.
Collapse
Affiliation(s)
- Johanna Starke
- Department of Biological Psychology, Faculty of Natural Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Neurology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Felix Ball
- Department of Biological Psychology, Faculty of Natural Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Neurology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioural Brain Sciences, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioural Brain Sciences, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Toemme Noesselt
- Department of Biological Psychology, Faculty of Natural Science, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Center for Behavioural Brain Sciences, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
40
|
Teichert M, Bolz J. Simultaneous intrinsic signal imaging of auditory and visual cortex reveals profound effects of acute hearing loss on visual processing. Neuroimage 2017; 159:459-472. [DOI: 10.1016/j.neuroimage.2017.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 12/29/2022] Open
|
41
|
GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism. Neuroimage 2017; 149:53-62. [DOI: 10.1016/j.neuroimage.2017.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|
42
|
Rate and Temporal Coding Convey Multisensory Information in Primary Sensory Cortices. eNeuro 2017; 4:eN-NWR-0037-17. [PMID: 28374008 PMCID: PMC5362936 DOI: 10.1523/eneuro.0037-17.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 11/21/2022] Open
Abstract
Optimal behavior and survival result from integration of information across sensory systems. Modulation of network activity at the level of primary sensory cortices has been identified as a mechanism of cross-modal integration, yet its cellular substrate is still poorly understood. Here, we uncover the mechanisms by which individual neurons in primary somatosensory (S1) and visual (V1) cortices encode visual-tactile stimuli. For this, simultaneous extracellular recordings were performed from all layers of the S1 barrel field and V1 in Brown Norway rats in vivo and units were clustered and assigned to pyramidal neurons (PYRs) and interneurons (INs). We show that visual-tactile stimulation modulates the firing rate of a relatively low fraction of neurons throughout all cortical layers. Generally, it augments the firing of INs and decreases the activity of PYRs. Moreover, bimodal stimulation shapes the timing of neuronal firing by strengthening the phase-coupling between neuronal discharge and theta–beta band network oscillations as well as by modulating spiking onset. Sparse direct axonal projections between neurons in S1 and V1 seem to time the spike trains between the two cortical areas and, thus, may act as a substrate of cross-modal modulation. These results indicate that few cortical neurons mediate multisensory effects in primary sensory areas by directly encoding cross-modal information by their rate and timing of firing.
Collapse
|
43
|
Zhang D, Hong B, Gao S, Röder B. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials. Exp Brain Res 2017; 235:1575-1591. [PMID: 28258437 DOI: 10.1007/s00221-017-4907-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/07/2017] [Indexed: 01/23/2023]
Abstract
While the behavioral dynamics as well as the functional network of sustained and transient attention have extensively been studied, their underlying neural mechanisms have most often been investigated in separate experiments. In the present study, participants were instructed to perform an audio-visual spatial attention task. They were asked to attend to either the left or the right hemifield and to respond to deviant transient either auditory or visual stimuli. Steady-state visual evoked potentials (SSVEPs) elicited by two task irrelevant pattern reversing checkerboards flickering at 10 and 15 Hz in the left and the right hemifields, respectively, were used to continuously monitor the locus of spatial attention. The amplitude and phase of the SSVEPs were extracted for single trials and were separately analyzed. Sustained attention to one hemifield (spatial attention) as well as to the auditory modality (intermodal attention) increased the inter-trial phase locking of the SSVEP responses, whereas briefly presented visual and auditory stimuli decreased the single-trial SSVEP amplitude between 200 and 500 ms post-stimulus. This transient change of the single-trial amplitude was restricted to the SSVEPs elicited by the reversing checkerboard in the spatially attended hemifield and thus might reflect a transient re-orienting of attention towards the brief stimuli. Thus, the present results demonstrate independent, but interacting neural mechanisms of sustained and transient attentional orienting.
Collapse
Affiliation(s)
- Dan Zhang
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany. .,Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Department of Psychology, School of Social Sciences, Tsinghua University, Beijing, 100084, China.
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shangkai Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Von-Melle-Park 11, 20146, Hamburg, Germany
| |
Collapse
|
44
|
Bieler M, Sieben K, Schildt S, Röder B, Hanganu-Opatz IL. Visual-tactile processing in primary somatosensory cortex emerges before cross-modal experience. Synapse 2017; 71. [PMID: 28105686 DOI: 10.1002/syn.21958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
The presumptive unisensory neocortical areas process multisensory information by oscillatory entrainment of neuronal networks via direct cortico-cortical projections. While neonatal unimodal experience has been identified as necessary for setting up the neuronal networks of multisensory processing, it is still unclear whether early cross-modal experience equally controls the ontogeny of multisensory processing. Here, we assess the development of visual-somatosensory interactions and their anatomical substrate by performing extracellular recordings of network activity in primary sensory cortices in vivo and assessing the cortico-cortical connectivity in pigmented rats. Similar to adult animals, juvenile rats with minimal cross-modal experience display supra-additive augmentation of evoked responses, time-dependent modulation of power and phase reset of network oscillations in response to cross-modal light and whisker stimulation. Moreover, the neuronal discharge of individual neurons is stronger coupled to theta and alpha network oscillations after visual-tactile stimuli. The adult-like multisensory processing of juvenile rats relies on abundant direct visual-somatosensory connections and thalamocortical feedforward interactions. Thus, cellular and network interactions ensuring multisensory processing emerge before cross-modal experience and refine during juvenile development.
Collapse
Affiliation(s)
- Malte Bieler
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Kay Sieben
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Sandra Schildt
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University Hamburg, Hamburg, 20146, Germany
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, 20251, Germany
| |
Collapse
|
45
|
Allen AE, Procyk CA, Brown TM, Lucas RJ. Convergence of visual and whisker responses in the primary somatosensory thalamus (ventral posterior medial region) of the mouse. J Physiol 2016; 595:865-881. [PMID: 27501052 PMCID: PMC5285619 DOI: 10.1113/jp272791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
Key points Using in vivo electrophysiology, we find that a subset of whisker‐responsive neurons in the ventral posterior medial region (VPM) respond to visual stimuli. These light‐responsive neurons in the VPM are particularly sensitive to optic flow. Presentation of optic flow stimuli modulates the amplitude of concurrent whisker responses. Visual information reaches the VPM via a circuit encompassing the visual cortex. These data represent a new example of cross‐modal integration in the primary sensory thalamus.
Abstract Sensory signals reach the cortex via sense‐specific thalamic nuclei. Here we report that neurons in the primary sensory thalamus of the mouse vibrissal system (the ventral posterior medial region; VPM) can be excited by visual as well as whisker stimuli. Using extracellular electrophysiological recordings from anaesthetized mice we first show that simple light steps can excite a subset of VPM neurons. We then test the ability of the VPM to respond to spatial patterns and show that many units are excited by visual motion in a direction‐selective manner. Coherent movement of multiple objects (an artificial recreation of ‘optic flow’ that would usually occur during head rotations or body movements) best engages this visual motion response. We next show that, when co‐applied with visual stimuli, the magnitude of responses to whisker deflections is highest in the presence of optic flow going in the opposite direction. Importantly, whisker response amplitude is also modulated by presentation of a movie recreating the mouse's visual experience during natural exploratory behaviour. We finally present functional and anatomical data indicating a functional connection (probably multisynaptic) from the primary visual cortex to VPM. These data provide a rare example of multisensory integration occurring at the level of the sensory thalamus, and provide evidence for dynamic regulation of whisker responses according to visual experience. Using in vivo electrophysiology, we find that a subset of whisker‐responsive neurons in the ventral posterior medial region (VPM) respond to visual stimuli. These light‐responsive neurons in the VPM are particularly sensitive to optic flow. Presentation of optic flow stimuli modulates the amplitude of concurrent whisker responses. Visual information reaches the VPM via a circuit encompassing the visual cortex. These data represent a new example of cross‐modal integration in the primary sensory thalamus.
Collapse
Affiliation(s)
- Annette E Allen
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Robert J Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
46
|
Scheyltjens I, Arckens L. The Current Status of Somatostatin-Interneurons in Inhibitory Control of Brain Function and Plasticity. Neural Plast 2016; 2016:8723623. [PMID: 27403348 PMCID: PMC4923604 DOI: 10.1155/2016/8723623] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 12/05/2022] Open
Abstract
The mammalian neocortex contains many distinct inhibitory neuronal populations to balance excitatory neurotransmission. A correct excitation/inhibition equilibrium is crucial for normal brain development, functioning, and controlling lifelong cortical plasticity. Knowledge about how the inhibitory network contributes to brain plasticity however remains incomplete. Somatostatin- (SST-) interneurons constitute a large neocortical subpopulation of interneurons, next to parvalbumin- (PV-) and vasoactive intestinal peptide- (VIP-) interneurons. Unlike the extensively studied PV-interneurons, acknowledged as key components in guiding ocular dominance plasticity, the contribution of SST-interneurons is less understood. Nevertheless, SST-interneurons are ideally situated within cortical networks to integrate unimodal or cross-modal sensory information processing and therefore likely to be important mediators of experience-dependent plasticity. The lack of knowledge on SST-interneurons partially relates to the wide variety of distinct subpopulations present in the sensory neocortex. This review informs on those SST-subpopulations hitherto described based on anatomical, molecular, or electrophysiological characteristics and whose functional roles can be attributed based on specific cortical wiring patterns. A possible role for these subpopulations in experience-dependent plasticity will be discussed, emphasizing on learning-induced plasticity and on unimodal and cross-modal plasticity upon sensory loss. This knowledge will ultimately contribute to guide brain plasticity into well-defined directions to restore sensory function and promote lifelong learning.
Collapse
Affiliation(s)
- Isabelle Scheyltjens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
47
|
Ibrahim LA, Mesik L, Ji XY, Fang Q, Li HF, Li YT, Zingg B, Zhang LI, Tao HW. Cross-Modality Sharpening of Visual Cortical Processing through Layer-1-Mediated Inhibition and Disinhibition. Neuron 2016; 89:1031-45. [PMID: 26898778 DOI: 10.1016/j.neuron.2016.01.027] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 11/18/2022]
Abstract
Cross-modality interaction in sensory perception is advantageous for animals' survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3, but not L4, excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/L3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron- and L2/L3 VIP-cell-mediated inhibitory and disinhibitory circuits.
Collapse
Affiliation(s)
- Leena A Ibrahim
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Lukas Mesik
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Xu-Ying Ji
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qi Fang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Hai-Fu Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ya-Tang Li
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brian Zingg
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
48
|
Abstract
Ventriloquism is a well-studied multisensory illusion of audiovisual spatial perception in which the perceived location of an auditory stimulus is shifted in the direction of a synchronous, but spatially discrepant visual stimulus. This effect is because of vision's superior acuity in the spatial dimension, but has also been shown to be influenced by the perception of unity of the two signals. We sought to investigate whether a similar phenomenon may occur between vision and somatosensation along the surface of the body as vision is known to possess superior spatial acuity to somatosensation. We report the first demonstration of the visuotactile ventriloquist illusion: individuals were instructed to localize visual stimuli (small white disks) or tactile stimuli (brief localized vibrations) that were presented concurrently or individually along the surface of the forearm, where bimodal presentations included spatially congruent and incongruent stimuli. Participants showed strong visual-tactile interactions. The tactile localization was strongly biased in the direction of the visual stimulus and the magnitude of this bias decreased as the spatial disparity between the two stimuli increased. The Bayesian causal inference model that has previously been shown to account for auditory-visual spatial localization and the ventriloquism effect also accounted well for the present data. Therefore, crossmodal interactions involving spatial representation along the surface of the body follow the same rules as crossmodal interactions involving representations of external space (auditory-visual).
Collapse
|
49
|
Sieben K, Bieler M, Röder B, Hanganu-Opatz IL. Neonatal Restriction of Tactile Inputs Leads to Long-Lasting Impairments of Cross-Modal Processing. PLoS Biol 2015; 13:e1002304. [PMID: 26600123 PMCID: PMC4658190 DOI: 10.1371/journal.pbio.1002304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Optimal behavior relies on the combination of inputs from multiple senses through complex interactions within neocortical networks. The ontogeny of this multisensory interplay is still unknown. Here, we identify critical factors that control the development of visual-tactile processing by combining in vivo electrophysiology with anatomical/functional assessment of cortico-cortical communication and behavioral investigation of pigmented rats. We demonstrate that the transient reduction of unimodal (tactile) inputs during a short period of neonatal development prior to the first cross-modal experience affects feed-forward subcortico-cortical interactions by attenuating the cross-modal enhancement of evoked responses in the adult primary somatosensory cortex. Moreover, the neonatal manipulation alters cortico-cortical interactions by decreasing the cross-modal synchrony and directionality in line with the sparsification of direct projections between primary somatosensory and visual cortices. At the behavioral level, these functional and structural deficits resulted in lower cross-modal matching abilities. Thus, neonatal unimodal experience during defined developmental stages is necessary for setting up the neuronal networks of multisensory processing. Reducing unisensory experience during neonatal development causes permanent disruption of connectivity between primary sensory cortices, resulting in impaired multisensory abilities. Our senses, working together, enable us to interact with the environment. To obtain a unified percept of the world, diverse sensory inputs need to be bound together within distributed but strongly interconnected neuronal networks. Many multisensory abilities emerge or mature late in life, long after the maturation of the individual senses, yet the factors and mechanisms controlling their development are largely unknown. Here, we provide evidence for the critical role of unisensory experience during early postnatal life for the development of multisensory integration. Focusing on visual-tactile interactions in pigmented rats with good visual acuity, we show that a transient reduction of tactile inputs during neonatal development leads to sparser direct connections between adult primary visual and somatosensory cortices. As a result, these animals showed reduced neuronal activation following co-occurring tactile and visual stimuli, as well as impaired communication within visual-somatosensory networks. The structural and functional deficits resulting from an early manipulation of tactile experience had major behavioral consequences, impairing the rats’ ability to transfer information about encountered objects between senses. Thus, unisensory experience during early development shapes the neuronal networks of multisensory processing and the ability to transfer cross-modal information.
Collapse
Affiliation(s)
- Kay Sieben
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (KS); (ILHO)
| | - Malte Bieler
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University Hamburg, Hamburg, Germany
| | - Ileana L. Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail: (KS); (ILHO)
| |
Collapse
|
50
|
Mahoney JR, Molholm S, Butler JS, Sehatpour P, Gomez-Ramirez M, Ritter W, Foxe JJ. Keeping in touch with the visual system: spatial alignment and multisensory integration of visual-somatosensory inputs. Front Psychol 2015; 6:1068. [PMID: 26300797 PMCID: PMC4525670 DOI: 10.3389/fpsyg.2015.01068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/13/2015] [Indexed: 11/21/2022] Open
Abstract
Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration (MSI) at very early sensory processing levels. While MSI is said to be governed by stimulus properties including space, time, and magnitude, violations of these rules have been documented. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory (VS) integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V + S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55 ms). In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest detectable multisensory integrative effects in response to VS pairings.
Collapse
Affiliation(s)
- Jeannette R Mahoney
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; Division of Cognitive and Motor Aging, Department of Neurology, Albert Einstein College of Medicine, New York NY, USA
| | - Sophie Molholm
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA ; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, New York NY, USA
| | - John S Butler
- The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA
| | - Pejman Sehatpour
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA
| | - Manuel Gomez-Ramirez
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA
| | - Walter Ritter
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA
| | - John J Foxe
- The Cognitive Neurophysiology Laboratory, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg NY, USA ; The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children's Evaluation and Rehabilitation Center, Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, New York NY, USA ; The Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine, New York NY, USA
| |
Collapse
|